Generalization of the separation of variables in the Jacobi identities for finite-dimensional Poisson systems

A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 375; no. 19; pp. 1972 - 1975
Main Author Hernández-Bermejo, Benito
Format Journal Article
LanguageEnglish
Published Elsevier B.V 09.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. ► A new family of Poisson structures is globally characterized and analyzed. ► Such family is globally defined for arbitrary values of the dimension and the rank. ► Global construction of Casimir invariants and Darboux canonical form is provided. ► Very diverse and previously known solutions of physical interest are generalized.
AbstractList A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures.
A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. ► A new family of Poisson structures is globally characterized and analyzed. ► Such family is globally defined for arbitrary values of the dimension and the rank. ► Global construction of Casimir invariants and Darboux canonical form is provided. ► Very diverse and previously known solutions of physical interest are generalized.
Author Hernández-Bermejo, Benito
Author_xml – sequence: 1
  givenname: Benito
  surname: Hernández-Bermejo
  fullname: Hernández-Bermejo, Benito
  email: benito.hernandez@urjc.es
  organization: Departamento de Física, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán S/N, 28933 Móstoles, Madrid, Spain
BookMark eNqFkE1P3DAQhq0KpC4ffwHl1lNSO3Y-fCtClFIh0UM5W44zFrNK7K3HIG1_PYYtvXIaaeZ9XmmeE3YUYgDGLgRvBBf9122ze9zTAtk2LRei4bLhnfzENmIcZN2qVh-xDZdDV-uei8_shGjLeSG53rD1BgIku-BfmzGGKvoqP0JFsLPp_-bZJrTTAlRheDv_tC5OWOEMIWPGcvAxVR4DZqhnXCFQQe1S_YpIVEpoTxlWOmPH3i4E5__mKXv4fv376kd9d39ze3V5VzupVK5H75UUrded0k6OHdeTktC1nXbd0OlxmhSftObS6XlSXs1j79wwSutGb11BTtmXQ-8uxT9PQNmsSA6WxQaIT2RG3bdi4MNQkv0h6VIkSuDNLuFq094Ibl71mq1512te9RouTdFbwG8HEMofzwjJkEMIDmZM4LKZI35U8QKwn4tm
CitedBy_id crossref_primary_10_1016_j_physd_2011_12_014
crossref_primary_10_1016_j_physd_2014_02_008
crossref_primary_10_1063_1_5006416
Cites_doi 10.1063/1.529795
10.1016/j.physleta.2009.12.003
10.1063/1.1402174
10.1016/j.chaos.2006.03.094
10.1016/j.jmaa.2008.02.061
10.1016/j.nonrwa.2009.10.012
10.1063/1.532621
10.1063/1.1619204
10.1016/j.physd.2008.11.013
10.1088/0305-4470/23/21/013
10.1016/j.physd.2010.04.013
10.1016/S0378-4371(99)00094-1
10.1016/j.aml.2008.04.001
10.1016/S0375-9601(00)00375-3
10.1088/1751-8113/42/28/285204
10.1016/j.physleta.2007.08.052
10.1007/BF02429857
10.1063/1.2161804
10.1063/1.3257919
10.1016/j.physleta.2006.02.010
10.1016/j.aml.2004.02.005
10.1063/1.2456380
10.1088/0305-4470/36/5/314
10.1063/1.530278
10.1088/0951-7715/17/2/002
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
7QQ
7U5
8FD
JG9
L7M
DOI 10.1016/j.physleta.2011.03.053
DatabaseName CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 1975
ExternalDocumentID 10_1016_j_physleta_2011_03_053
S0375960111004014
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
M38
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
XOL
YYP
ZCG
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7QQ
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c344t-8ff4312f9549c38509b43e5259c57598bb40b9903c9db4f4d86cc783ac8fac9c3
IEDL.DBID .~1
ISSN 0375-9601
IngestDate Fri Oct 25 05:32:34 EDT 2024
Thu Sep 26 17:02:37 EDT 2024
Fri Feb 23 02:28:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Hamiltonian systems
Casimir invariants
Jacobi identities
Finite-dimensional Poisson systems
Darboux canonical form
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-8ff4312f9549c38509b43e5259c57598bb40b9903c9db4f4d86cc783ac8fac9c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 896217077
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_896217077
crossref_primary_10_1016_j_physleta_2011_03_053
elsevier_sciencedirect_doi_10_1016_j_physleta_2011_03_053
PublicationCentury 2000
PublicationDate 2011-05-09
PublicationDateYYYYMMDD 2011-05-09
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-09
  day: 09
PublicationDecade 2010
PublicationTitle Physics letters. A
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Castagnino, Gadella, Lara (br0050) 2006; 30
García, Hernández-Bermejo (br0100) 2010; 239
Hernández-Bermejo (br0230) 2006; 355
Blaszak, Gürses, Zheltukhin (br0030) 2009; 42
Nutku (br0160) 1990; 23
Byrnes, Haggar, Quispel (br0170) 1999; 272
Gürses, Guseinov, Zheltukhin (br0040) 2009; 50
Damianou (br0070) 2004; 17
Damianou, Sophocleous (br0080) 2005; 18
Abadoğlu, Gūmral (br0120) 2009; 238
Hernández-Bermejo (br0150) 2001; 42
Damianou, Kouzaris (br0060) 2003; 36
Gūmral, Nutku (br0110) 1993; 34
Hernández-Bermejo (br0240) 2007; 48
Hernández-Bermejo (br0190) 2008; 344
Hernández-Bermejo, Fairén (br0210) 2000; 271
Hernández-Bermejo (br0200) 2010; 374
Hernández-Bermejo (br0260) 2009; 22
Hernández-Bermejo (br0250) 2008; 372
Tudoran, Gîrban (br0130) 2010; 11
Hernández-Bermejo, Fairén (br0140) 1998; 39
Ayres (br0270) 1962
Perlick (br0180) 1992; 33
Ay, Gürses, Zheltukhin (br0020) 2003; 44
Olver (br0010) 1993
David, Holm (br0090) 1992; 2
Hernández-Bermejo (br0220) 2006; 47
Damianou (10.1016/j.physleta.2011.03.053_br0070) 2004; 17
Castagnino (10.1016/j.physleta.2011.03.053_br0050) 2006; 30
Byrnes (10.1016/j.physleta.2011.03.053_br0170) 1999; 272
Gūmral (10.1016/j.physleta.2011.03.053_br0110) 1993; 34
Gürses (10.1016/j.physleta.2011.03.053_br0040) 2009; 50
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0190) 2008; 344
Perlick (10.1016/j.physleta.2011.03.053_br0180) 1992; 33
Blaszak (10.1016/j.physleta.2011.03.053_br0030) 2009; 42
García (10.1016/j.physleta.2011.03.053_br0100) 2010; 239
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0210) 2000; 271
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0230) 2006; 355
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0220) 2006; 47
David (10.1016/j.physleta.2011.03.053_br0090) 1992; 2
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0260) 2009; 22
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0240) 2007; 48
Ay (10.1016/j.physleta.2011.03.053_br0020) 2003; 44
Tudoran (10.1016/j.physleta.2011.03.053_br0130) 2010; 11
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0140) 1998; 39
Damianou (10.1016/j.physleta.2011.03.053_br0060) 2003; 36
Nutku (10.1016/j.physleta.2011.03.053_br0160) 1990; 23
Damianou (10.1016/j.physleta.2011.03.053_br0080) 2005; 18
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0250) 2008; 372
Olver (10.1016/j.physleta.2011.03.053_br0010) 1993
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0200) 2010; 374
Hernández-Bermejo (10.1016/j.physleta.2011.03.053_br0150) 2001; 42
Abadoğlu (10.1016/j.physleta.2011.03.053_br0120) 2009; 238
Ayres (10.1016/j.physleta.2011.03.053_br0270) 1962
References_xml – volume: 36
  start-page: 1385
  year: 2003
  ident: br0060
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Kouzaris
– volume: 44
  start-page: 5688
  year: 2003
  ident: br0020
  publication-title: J. Math. Phys.
  contributor:
    fullname: Zheltukhin
– volume: 239
  start-page: 1665
  year: 2010
  ident: br0100
  publication-title: Physica D
  contributor:
    fullname: Hernández-Bermejo
– year: 1962
  ident: br0270
  article-title: Schaumʼs Outline of Matrices
  contributor:
    fullname: Ayres
– volume: 30
  start-page: 542
  year: 2006
  ident: br0050
  publication-title: Chaos Solitons Fractals
  contributor:
    fullname: Lara
– volume: 23
  start-page: L1145
  year: 1990
  ident: br0160
  publication-title: J. Phys. A: Math. Gen.
  contributor:
    fullname: Nutku
– volume: 33
  start-page: 599
  year: 1992
  ident: br0180
  publication-title: J. Math. Phys.
  contributor:
    fullname: Perlick
– volume: 271
  start-page: 258
  year: 2000
  ident: br0210
  publication-title: Phys. Lett. A
  contributor:
    fullname: Fairén
– volume: 47
  start-page: 022901
  year: 2006
  ident: br0220
  publication-title: J. Math. Phys.
  contributor:
    fullname: Hernández-Bermejo
– volume: 42
  start-page: 4984
  year: 2001
  ident: br0150
  publication-title: J. Math. Phys.
  contributor:
    fullname: Hernández-Bermejo
– volume: 272
  start-page: 99
  year: 1999
  ident: br0170
  publication-title: Physica A
  contributor:
    fullname: Quispel
– volume: 2
  start-page: 241
  year: 1992
  ident: br0090
  publication-title: J. Nonlinear Sci.
  contributor:
    fullname: Holm
– volume: 34
  start-page: 5691
  year: 1993
  ident: br0110
  publication-title: J. Math. Phys.
  contributor:
    fullname: Nutku
– volume: 11
  start-page: 2888
  year: 2010
  ident: br0130
  publication-title: Nonlinear Anal. RWA
  contributor:
    fullname: Gîrban
– volume: 48
  start-page: 022903
  year: 2007
  ident: br0240
  publication-title: J. Math. Phys.
  contributor:
    fullname: Hernández-Bermejo
– year: 1993
  ident: br0010
  article-title: Applications of Lie Groups to Differential Equations
  contributor:
    fullname: Olver
– volume: 344
  start-page: 655
  year: 2008
  ident: br0190
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Hernández-Bermejo
– volume: 50
  start-page: 112703
  year: 2009
  ident: br0040
  publication-title: J. Math. Phys.
  contributor:
    fullname: Zheltukhin
– volume: 22
  start-page: 187
  year: 2009
  ident: br0260
  publication-title: Appl. Math. Lett.
  contributor:
    fullname: Hernández-Bermejo
– volume: 372
  start-page: 1009
  year: 2008
  ident: br0250
  publication-title: Phys. Lett. A
  contributor:
    fullname: Hernández-Bermejo
– volume: 17
  start-page: 397
  year: 2004
  ident: br0070
  publication-title: Nonlinearity
  contributor:
    fullname: Damianou
– volume: 39
  start-page: 6162
  year: 1998
  ident: br0140
  publication-title: J. Math. Phys.
  contributor:
    fullname: Fairén
– volume: 238
  start-page: 526
  year: 2009
  ident: br0120
  publication-title: Physica D
  contributor:
    fullname: Gūmral
– volume: 355
  start-page: 98
  year: 2006
  ident: br0230
  publication-title: Phys. Lett. A
  contributor:
    fullname: Hernández-Bermejo
– volume: 18
  start-page: 163
  year: 2005
  ident: br0080
  publication-title: Appl. Math. Lett.
  contributor:
    fullname: Sophocleous
– volume: 374
  start-page: 836
  year: 2010
  ident: br0200
  publication-title: Phys. Lett. A
  contributor:
    fullname: Hernández-Bermejo
– volume: 42
  start-page: 285204
  year: 2009
  ident: br0030
  publication-title: J. Phys. A: Math. Theor.
  contributor:
    fullname: Zheltukhin
– volume: 33
  start-page: 599
  year: 1992
  ident: 10.1016/j.physleta.2011.03.053_br0180
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529795
  contributor:
    fullname: Perlick
– volume: 374
  start-page: 836
  year: 2010
  ident: 10.1016/j.physleta.2011.03.053_br0200
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.12.003
  contributor:
    fullname: Hernández-Bermejo
– volume: 42
  start-page: 4984
  year: 2001
  ident: 10.1016/j.physleta.2011.03.053_br0150
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1402174
  contributor:
    fullname: Hernández-Bermejo
– volume: 30
  start-page: 542
  year: 2006
  ident: 10.1016/j.physleta.2011.03.053_br0050
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.094
  contributor:
    fullname: Castagnino
– volume: 344
  start-page: 655
  year: 2008
  ident: 10.1016/j.physleta.2011.03.053_br0190
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.02.061
  contributor:
    fullname: Hernández-Bermejo
– volume: 11
  start-page: 2888
  year: 2010
  ident: 10.1016/j.physleta.2011.03.053_br0130
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2009.10.012
  contributor:
    fullname: Tudoran
– volume: 39
  start-page: 6162
  year: 1998
  ident: 10.1016/j.physleta.2011.03.053_br0140
  publication-title: J. Math. Phys.
  doi: 10.1063/1.532621
  contributor:
    fullname: Hernández-Bermejo
– year: 1993
  ident: 10.1016/j.physleta.2011.03.053_br0010
  contributor:
    fullname: Olver
– volume: 44
  start-page: 5688
  year: 2003
  ident: 10.1016/j.physleta.2011.03.053_br0020
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1619204
  contributor:
    fullname: Ay
– volume: 238
  start-page: 526
  year: 2009
  ident: 10.1016/j.physleta.2011.03.053_br0120
  publication-title: Physica D
  doi: 10.1016/j.physd.2008.11.013
  contributor:
    fullname: Abadoğlu
– volume: 23
  start-page: L1145
  year: 1990
  ident: 10.1016/j.physleta.2011.03.053_br0160
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/23/21/013
  contributor:
    fullname: Nutku
– volume: 239
  start-page: 1665
  year: 2010
  ident: 10.1016/j.physleta.2011.03.053_br0100
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.04.013
  contributor:
    fullname: García
– volume: 272
  start-page: 99
  year: 1999
  ident: 10.1016/j.physleta.2011.03.053_br0170
  publication-title: Physica A
  doi: 10.1016/S0378-4371(99)00094-1
  contributor:
    fullname: Byrnes
– volume: 22
  start-page: 187
  year: 2009
  ident: 10.1016/j.physleta.2011.03.053_br0260
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.04.001
  contributor:
    fullname: Hernández-Bermejo
– volume: 271
  start-page: 258
  year: 2000
  ident: 10.1016/j.physleta.2011.03.053_br0210
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00375-3
  contributor:
    fullname: Hernández-Bermejo
– volume: 42
  start-page: 285204
  year: 2009
  ident: 10.1016/j.physleta.2011.03.053_br0030
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/42/28/285204
  contributor:
    fullname: Blaszak
– volume: 372
  start-page: 1009
  year: 2008
  ident: 10.1016/j.physleta.2011.03.053_br0250
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.08.052
  contributor:
    fullname: Hernández-Bermejo
– volume: 2
  start-page: 241
  year: 1992
  ident: 10.1016/j.physleta.2011.03.053_br0090
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02429857
  contributor:
    fullname: David
– volume: 47
  start-page: 022901
  year: 2006
  ident: 10.1016/j.physleta.2011.03.053_br0220
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2161804
  contributor:
    fullname: Hernández-Bermejo
– volume: 50
  start-page: 112703
  year: 2009
  ident: 10.1016/j.physleta.2011.03.053_br0040
  publication-title: J. Math. Phys.
  doi: 10.1063/1.3257919
  contributor:
    fullname: Gürses
– volume: 355
  start-page: 98
  year: 2006
  ident: 10.1016/j.physleta.2011.03.053_br0230
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.02.010
  contributor:
    fullname: Hernández-Bermejo
– volume: 18
  start-page: 163
  year: 2005
  ident: 10.1016/j.physleta.2011.03.053_br0080
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2004.02.005
  contributor:
    fullname: Damianou
– volume: 48
  start-page: 022903
  year: 2007
  ident: 10.1016/j.physleta.2011.03.053_br0240
  publication-title: J. Math. Phys.
  doi: 10.1063/1.2456380
  contributor:
    fullname: Hernández-Bermejo
– volume: 36
  start-page: 1385
  year: 2003
  ident: 10.1016/j.physleta.2011.03.053_br0060
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/36/5/314
  contributor:
    fullname: Damianou
– volume: 34
  start-page: 5691
  year: 1993
  ident: 10.1016/j.physleta.2011.03.053_br0110
  publication-title: J. Math. Phys.
  doi: 10.1063/1.530278
  contributor:
    fullname: Gūmral
– volume: 17
  start-page: 397
  year: 2004
  ident: 10.1016/j.physleta.2011.03.053_br0070
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/17/2/002
  contributor:
    fullname: Damianou
– year: 1962
  ident: 10.1016/j.physleta.2011.03.053_br0270
  contributor:
    fullname: Ayres
SSID ssj0001609
Score 2.0669692
Snippet A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic...
A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1972
SubjectTerms Atomic structure
Canonical forms
Casimir invariants
Construction
Darboux canonical form
Finite-dimensional Poisson systems
Hamiltonian systems
Jacobi identities
Reduction
Separation
Solid state physics
Title Generalization of the separation of variables in the Jacobi identities for finite-dimensional Poisson systems
URI https://dx.doi.org/10.1016/j.physleta.2011.03.053
https://search.proquest.com/docview/896217077
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yIngRn_gmB6_ZtptH06MsyrqiCCrsLTQvqGB3satHf7uTpsUHiAevbRLKl3TmSzLzDUJnhutMWuuJdVYQJrkm4AQtEWZUCipklvlwoH9zKyaPbDrjsxU07nNhQlhlZ_ujTW-tdfck6dBMFlWV3IfqrcC_s1b0LG2LWTNwf7Cmh--fYR6ZiGEe0JiE1l-yhJ-G4fQA4Ck7KU86TDn9zUH9MNWt_7ncRBsdccTn8du20Iqrt9FaG8Bpmh303OlHd2mVeO4xUDvcuKjtHZ-8wcY4pEo1uKrb11Owh7rCle2lVTFwWOyrQESJDcL_UbQD381hgmCQKPzc7KLHy4uH8YR0pRSIoYwtifQemMLIh0s9QyXApBl1HPY-JlTolFqzVINjoqawmnlmpTAml7Q00pcGuuyhQT2v3T7CrnQFdwaYViGZNzlsSIThQnMD1MdQfoCSHj-1iIoZqg8le1I94iogrlKqAPEDVPQwq29zr8Cs_9kX9_Oi4McItx1l7eavjZKFgO1WmueH_xj-CK3HQ2RO0uIYDZYvr-4EWMhSn7bL7BStnl9dT24_AHUz33o
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LInoRn_g2B69xW_PY9LiIsuq6CCp4C80LKtgVu-vvd9KkooJ48Jo2ocw0M98kM98gdGK4zqW1nlhnBWGSawJO0BJhzkpBhcxzHw70bydi9Miun_hTD513tTAhrTLZ_mjTW2udRvpJmv3Xqurfh-6tgL_zlvQsC82sFwENFLA7F4dXN6PJp0HORcz0gPdJmPClUPj5NBwggITKxOZJTzNOf_NRP6x164Iu19Bqwo54GD9vHfVcvYGW2hxO02yil0QhnSor8dRjQHe4cZHeO468Q2wcqqUaXNXt42swibrCle3YVTHAWOyrgEWJDdz_kbcD301BR7BI5H5uttDj5cXD-YikbgrEUMZmRHoPYOHMh3s9QyUABc2o4xD-mNCkU2rNMg2-iZrCauaZlcKYgaSlkb40MGUbLdTT2u0g7EpXcGcAbBWSeTOAmEQYLjQ3gH4M5buo38lPvUbSDNVlkz2rTuIqSFxlVIHEd1HRiVl9U78Cy_7nXNzpRcHeCBceZe2m80bJQkDElQ0Ge_9Y_hgtjx5ux2p8NbnZRyvxTJmTrDhAC7O3uTsEUDLTR-mn-wAns-Iu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalization+of+the+separation+of+variables+in+the+Jacobi+identities+for+finite-dimensional+Poisson+systems&rft.jtitle=Physics+letters.+A&rft.au=Hern%C3%A1ndez-Bermejo%2C+Benito&rft.date=2011-05-09&rft.issn=0375-9601&rft.volume=375&rft.issue=19&rft.spage=1972&rft.epage=1975&rft_id=info:doi/10.1016%2Fj.physleta.2011.03.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2011_03_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon