Broccoli seedling pest damage degree evaluation based on machine learning combined with color and shape features

The degree of pest damage evaluation on corps in the field environment is very important for precision spraying pesticides. In this paper, we proposed an image processing method to identify the wormholes in the image of broccoli seedlings, and then to evaluate the damage of the broccoli seedlings by...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in agriculture Vol. 8; no. 4; pp. 505 - 514
Main Authors Zou, Kunlin, Ge, Luzhen, Zhou, Hang, Zhang, Chunlong, Li, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The degree of pest damage evaluation on corps in the field environment is very important for precision spraying pesticides. In this paper, we proposed an image processing method to identify the wormholes in the image of broccoli seedlings, and then to evaluate the damage of the broccoli seedlings by pests. The broccoli seedlings were taken as the research object. The ratio of wormhole areas to broccoli seedling leaves areas (Rw) was used to describe the pest damage degree. An algorithm was developed to calculate the ratio of wormhole areas to broccoli seedling leaves areas. Firstly, broccoli seedling leaves were segmented from the background and the area of the leaves was obtained. There were some holes in segmentation results due to pest damage and other reasons. Then, a classifier based on machine learning was developed to classify the wormholes and other holes. Twenty-four features, including color features and shape features of the holes, were used to develop classifiers. After identifying wormholes from images, the area of the wormholes was obtained and the degree of pest damage to broccoli seedling was calculated. The determination coefficient (R2) between the algorithm calculated pest damage degree and manually labeled pest damage degree was 0.85. The root-mean-square error (δ) was 0.02. Results demonstrated that the color and shape were able to effectively segment wormholes from leaves of broccoli seedlings and evaluate the degree of pest damage. This method could provide references for precision spraying pesticides.
AbstractList The degree of pest damage evaluation on corps in the field environment is very important for precision spraying pesticides. In this paper, we proposed an image processing method to identify the wormholes in the image of broccoli seedlings, and then to evaluate the damage of the broccoli seedlings by pests. The broccoli seedlings were taken as the research object. The ratio of wormhole areas to broccoli seedling leaves areas (Rw) was used to describe the pest damage degree. An algorithm was developed to calculate the ratio of wormhole areas to broccoli seedling leaves areas. Firstly, broccoli seedling leaves were segmented from the background and the area of the leaves was obtained. There were some holes in segmentation results due to pest damage and other reasons. Then, a classifier based on machine learning was developed to classify the wormholes and other holes. Twenty-four features, including color features and shape features of the holes, were used to develop classifiers. After identifying wormholes from images, the area of the wormholes was obtained and the degree of pest damage to broccoli seedling was calculated. The determination coefficient (R2) between the algorithm calculated pest damage degree and manually labeled pest damage degree was 0.85. The root-mean-square error (δ) was 0.02. Results demonstrated that the color and shape were able to effectively segment wormholes from leaves of broccoli seedlings and evaluate the degree of pest damage. This method could provide references for precision spraying pesticides.
Author Li, Wei
Zou, Kunlin
Ge, Luzhen
Zhang, Chunlong
Zhou, Hang
Author_xml – sequence: 1
  givenname: Kunlin
  surname: Zou
  fullname: Zou, Kunlin
– sequence: 2
  givenname: Luzhen
  surname: Ge
  fullname: Ge, Luzhen
– sequence: 3
  givenname: Hang
  surname: Zhou
  fullname: Zhou, Hang
– sequence: 4
  givenname: Chunlong
  surname: Zhang
  fullname: Zhang, Chunlong
  email: zcl1515@cau.edu.cn
– sequence: 5
  givenname: Wei
  surname: Li
  fullname: Li, Wei
BookMark eNp9kMtqwzAQRUVJoWmaH-hKP2BXkpXIhm7a0BcEumnXYiyNEwVbMpKT0r-vTbroqqu5c-EMw7kmMx88EnLLWc4ZX98dcud7yAUTYyFyxooLMheCy6zgqpj9yVdkmdKBMcbVupCMzUn_GIMxoXU0IdrW-R3tMQ3UQgc7pBZ3EZHiCdojDC54WkNCS8fQgdk7j7RFiH7iTOjqsbD0yw37cWtDpOAtTXvokTYIwzFiuiGXDbQJl79zQT6fnz42r9n2_eVt87DNTCHlkJW2XllhQGJZIrKVqo1EKKwEgKaRHFUFSqCQ68oWZcmaWgkjlG1KVVUWTbEg4nzXxJBSxEb30XUQvzVnetKmD3rSpidtmgs9ahuh-zOE42cnh1En49AbtC6iGbQN7j_8B9JKesE
CitedBy_id crossref_primary_10_15832_ankutbd_1308406
crossref_primary_10_1007_s42464_022_00155_6
Cites_doi 10.1002/fes3.108
10.1007/s40626-016-0072-8
10.1016/S0168-1923(99)00091-X
10.1109/ACCESS.2019.2954587
10.1016/j.jksuci.2015.12.004
10.1016/j.compag.2018.11.040
10.3844/jcssp.2007.430.435
10.17582/journal.pjz/20180721120723
10.13031/2013.27838
10.1109/ACCESS.2019.2891749
10.1093/jee/70.5.659
10.1016/j.compind.2018.03.001
10.13031/2013.17244
10.1186/s42483-020-00049-8
10.1016/j.inpa.2019.02.001
10.1016/j.compag.2008.03.009
10.1016/j.inpa.2020.09.004
10.1007/s11042-018-6748-0
10.1007/978-3-319-24574-4_28
10.1016/j.biosystemseng.2008.09.030
10.1016/j.inpa.2018.05.002
10.1007/s00779-019-01268-3
10.1017/S1742758417000200
10.1094/PHP-RS-15-0024
10.3390/agronomy10070972
10.1111/ijfs.13256
10.1016/j.inpa.2019.07.003
10.1016/j.compag.2016.09.007
10.1109/ACCESS.2019.2942158
10.1016/S0034-4257(00)00197-8
10.1007/s10586-018-1844-5
10.1186/1746-4811-7-28
ContentType Journal Article
Copyright 2021 China Agricultural University
Copyright_xml – notice: 2021 China Agricultural University
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.inpa.2020.12.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2214-3173
EndPage 514
ExternalDocumentID 10_1016_j_inpa_2020_12_003
S2214317320302328
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAHBH
AAYXX
ADVLN
AKRWK
CITATION
ID FETCH-LOGICAL-c344t-8db5d2ca4e88ee057bc4ea3d4aaaff41e79a72e2469d3880fb72c27df8799dec3
IEDL.DBID IXB
ISSN 2214-3173
IngestDate Fri Aug 23 00:44:13 EDT 2024
Wed May 17 00:08:11 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Shape features
Color features
Wormhole segmentation
Machine learning
Pest damage evaluation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-8db5d2ca4e88ee057bc4ea3d4aaaff41e79a72e2469d3880fb72c27df8799dec3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214317320302328
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_inpa_2020_12_003
elsevier_sciencedirect_doi_10_1016_j_inpa_2020_12_003
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Information processing in agriculture
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References da Silva LA, Bressan PO, Gonçalves DN, Freitas DM, Machado BB, Gonçalves WNJC. Agriculture E i. Estimating soybean leaf defoliation using convolutional neural networks and synthetic images. 2019;156:360–368.
Thaseen IS, Kumar C A J J o K S U-C, Sciences I. Intrusion detection model using fusion of chi-square feature selection and multi class SVM. 2017; 29(4):462–472.
Camargo A, Smith JJBe. An image-processing based algorithm to automatically identify plant disease visual symptoms. 2009;102(1):9–21.
Golhani K, Balasundram SK, Vadamalai G, Pradhan BJIPiA. A review of neural networks in plant disease detection using hyperspectral data. 2018;5(3):354–371.
Sabzi S, Abbaspour-Gilandeh Y, García-Mateos GJCiI. A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. 2018;98:80–89.
Jiang D, Zheng Z, Li G, Sun Y, Kong J, Jiang G et al. Gesture recognition based on binocular vision. 2019;22(6):13261–13271.
Tripathi MK, Maktedar DDJI PiA. A role of computer vision in fruits and vegetables among various horticulture products of agriculture fields: a survey. 2020;7(2):183–203.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer. 2015. p. 234–241.
Drury B, Fernandes R, Moura M-F, de Andrade Lopes AJIPiA. A survey of semantic web technology for agriculture. 2019;6(4):487–501.
Kogan M, Turnipseed S, Shepard M, De Oliveira E, Borgo A JJoEE. Pilot insect pest management program for soybean in southern Brazil. 1977;70(5):659–663.
Meyer GE, Neto JCJC, agriculture e i. Verification of color vegetation indices for automated crop imaging applications. 2008; 63(2):282–293.
Moh'd A Mesleh AJJoCS. Chi square feature extraction based svms arabic language text categorization system. 2007;3(6):430–435.
Carvalho FPJF, Security E. Pesticides, environment, and food safety. 2017;6(2):48–60.
Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DAJTotA. Color indices for weed identification under various soil, residue, and lighting conditions. 1995;38(1):259–269.
Aires A, Carvalho R, Saavedra M J J I j o f s, technology. Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and flavonoids. 2017; 52(1):98–107.
Bock CH, Barbedo JG, Del Ponte EM, Bohnenkamp D, Mahlein A-KJPR. From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy. 2020;2:1–30.
Zou K, Ge L, Zhang C, Yuan T, Li WJIA. Broccoli seedling segmentation based on support vector machine combined with color texture features 2019;7:168565–168574.
Jiang D, Li G, Sun Y, Kong J, Tao B J M T, Applications. Gesture recognition based on skeletonization algorithm and CNN with ASL database. 2019; 78(21):29953–29970.
Machado BB, Orue JP, Arruda MS, Santos CV, Sarath DS, Goncalves WN et al. BioLeaf: A professional mobile application to measure foliar damage caused by insect herbivory. 2016; 129:44–55.
Zhang C, Zou K, Pan YJA. A method of apple image segmentation based on color-texture fusion feature and machine learning. 2020;10(7):972.
Palumbo JC, Carrière YJPHP. Association between Bagrada hilaris density and feeding damage in broccoli: implications for pest management. 2015;16(4):158–162.
Labou B, Brévault T, Sylla S, Diatte M, Bordat D, Diarra KJIJoTIS. Spatial and temporal incidence of insect pests in farmers’ cabbage fields in Senegal. 2017;37(4):225–233.
Kvet J, Marshall JJSZ. Plant photosynthetic production. Assessment of leaf area and other assimilating plant surfaces; 1971.
Ullah MI, Arshad M, Ali S, Abdullah A, Khalid S, Aatif HM et al. Using smartphone application to estimate the defoliation caused by insect herbivory in various crops. 2020; 52(3).
Broge NH, Leblanc EJRsoe. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. 2001;76(2):156–172.
Li N, Zhang X, Zhang C, Guo H, Sun Z, Wu XJIA. Real-time crop recognition in transplanted fields with prominent weed growth: a visual-attention-based approach. 2019;7:185310–185321.
Nazaré-Jr A, Menotti D, Neves J, Sediyama T. Automatic detection of the damaged leaf area in digital images of soybean. In: 17th International Conference on Systems, Signals and Image Processing. IEEE Computer Society. 2010. p. 499-503.
Jiang D, Li G, Sun Y, Kong J, Tao B, Chen DJP, Computing U. Grip strength forecast and rehabilitative guidance based on adaptive neural fuzzy inference system using sEMG. 2019:1–10.
Li G, Jiang D, Zhou Y, Jiang G, Kong J, Manogaran GJIA. Human lesion detection method based on image information and brain signal. 2019;7:11533–11542.
Golzarian MR, Frick RAJPM. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. 2011;7(1):28.
Barclay H, Trofymow J, Leach R J A, Meteorology F. Assessing bias from boles in calculating leaf area index in immature Douglas-fir with the LI-COR canopy analyzer. 2000;100(2-3):255–260.
Kambli A, McGarvey RGJIPiA. Network design for local agriculture using robust optimization; 2020.
Meyer G, Mehta T, Kocher M, Mortensen D, Samal AJTotA. Textural imaging and discriminant analysis for distinguishing weeds for spot spraying. 1998; 41(4):1189.
Shahbandeh M. Global production of vegetables in 2017. link: https://www.statista.com/statistics/264065/global-production-of-vegetables-by-type/. 2019.
dos Santos JCC, Costa RN, Silva DMR, de Souza AA, Moura FdBP, da Silva Junior JM, et al. Physiology E P. use of allometric models to estimate leaf area in Hymenaeacourbaril L. 2016;28(4):357–369.
Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. 2013.
10.1016/j.inpa.2020.12.003_b0040
10.1016/j.inpa.2020.12.003_b0160
10.1016/j.inpa.2020.12.003_b0060
10.1016/j.inpa.2020.12.003_b0180
10.1016/j.inpa.2020.12.003_b0080
10.1016/j.inpa.2020.12.003_b0015
10.1016/j.inpa.2020.12.003_b0135
10.1016/j.inpa.2020.12.003_b0035
10.1016/j.inpa.2020.12.003_b0155
10.1016/j.inpa.2020.12.003_b0055
10.1016/j.inpa.2020.12.003_b0110
10.1016/j.inpa.2020.12.003_b0010
10.1016/j.inpa.2020.12.003_b0175
10.1016/j.inpa.2020.12.003_b0075
10.1016/j.inpa.2020.12.003_b0130
10.1016/j.inpa.2020.12.003_b0030
10.1016/j.inpa.2020.12.003_b0115
10.1016/j.inpa.2020.12.003_b0095
10.1016/j.inpa.2020.12.003_b0150
10.1016/j.inpa.2020.12.003_b0050
10.1016/j.inpa.2020.12.003_b0170
10.1016/j.inpa.2020.12.003_b0070
10.1016/j.inpa.2020.12.003_b0090
10.1016/j.inpa.2020.12.003_b0125
10.1016/j.inpa.2020.12.003_b0025
10.1016/j.inpa.2020.12.003_b0145
10.1016/j.inpa.2020.12.003_b0045
10.1016/j.inpa.2020.12.003_b0100
10.1016/j.inpa.2020.12.003_b0165
10.1016/j.inpa.2020.12.003_b0065
10.1016/j.inpa.2020.12.003_b0120
10.1016/j.inpa.2020.12.003_b0020
10.1016/j.inpa.2020.12.003_b0085
10.1016/j.inpa.2020.12.003_b0140
10.1016/j.inpa.2020.12.003_b0105
10.1016/j.inpa.2020.12.003_b0005
References_xml – ident: 10.1016/j.inpa.2020.12.003_b0025
  doi: 10.1002/fes3.108
– ident: 10.1016/j.inpa.2020.12.003_b0045
  doi: 10.1007/s40626-016-0072-8
– ident: 10.1016/j.inpa.2020.12.003_b0040
  doi: 10.1016/S0168-1923(99)00091-X
– ident: 10.1016/j.inpa.2020.12.003_b0125
  doi: 10.1109/ACCESS.2019.2954587
– ident: 10.1016/j.inpa.2020.12.003_b0165
  doi: 10.1016/j.jksuci.2015.12.004
– ident: 10.1016/j.inpa.2020.12.003_b0060
  doi: 10.1016/j.compag.2018.11.040
– ident: 10.1016/j.inpa.2020.12.003_b0130
  doi: 10.3844/jcssp.2007.430.435
– ident: 10.1016/j.inpa.2020.12.003_b0065
  doi: 10.17582/journal.pjz/20180721120723
– ident: 10.1016/j.inpa.2020.12.003_b0155
  doi: 10.13031/2013.27838
– ident: 10.1016/j.inpa.2020.12.003_b0100
  doi: 10.1109/ACCESS.2019.2891749
– ident: 10.1016/j.inpa.2020.12.003_b0030
  doi: 10.1093/jee/70.5.659
– ident: 10.1016/j.inpa.2020.12.003_b0110
  doi: 10.1016/j.compind.2018.03.001
– ident: 10.1016/j.inpa.2020.12.003_b0145
  doi: 10.13031/2013.17244
– ident: 10.1016/j.inpa.2020.12.003_b0090
  doi: 10.1186/s42483-020-00049-8
– ident: 10.1016/j.inpa.2020.12.003_b0035
– ident: 10.1016/j.inpa.2020.12.003_b0075
  doi: 10.1016/j.inpa.2019.02.001
– ident: 10.1016/j.inpa.2020.12.003_b0160
  doi: 10.1016/j.compag.2008.03.009
– ident: 10.1016/j.inpa.2020.12.003_b0010
– ident: 10.1016/j.inpa.2020.12.003_b0105
  doi: 10.1016/j.inpa.2020.09.004
– ident: 10.1016/j.inpa.2020.12.003_b0180
  doi: 10.1007/s11042-018-6748-0
– ident: 10.1016/j.inpa.2020.12.003_b0175
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.inpa.2020.12.003_b0115
  doi: 10.1016/j.biosystemseng.2008.09.030
– ident: 10.1016/j.inpa.2020.12.003_b0085
  doi: 10.1016/j.inpa.2018.05.002
– ident: 10.1016/j.inpa.2020.12.003_b0095
  doi: 10.1007/s00779-019-01268-3
– ident: 10.1016/j.inpa.2020.12.003_b0020
  doi: 10.1017/S1742758417000200
– ident: 10.1016/j.inpa.2020.12.003_b0015
  doi: 10.1094/PHP-RS-15-0024
– ident: 10.1016/j.inpa.2020.12.003_b0170
  doi: 10.3390/agronomy10070972
– ident: 10.1016/j.inpa.2020.12.003_b0005
  doi: 10.1111/ijfs.13256
– ident: 10.1016/j.inpa.2020.12.003_b0135
– ident: 10.1016/j.inpa.2020.12.003_b0070
  doi: 10.1016/j.inpa.2019.07.003
– ident: 10.1016/j.inpa.2020.12.003_b0050
  doi: 10.1016/j.compag.2016.09.007
– ident: 10.1016/j.inpa.2020.12.003_b0055
– ident: 10.1016/j.inpa.2020.12.003_b0120
  doi: 10.1109/ACCESS.2019.2942158
– ident: 10.1016/j.inpa.2020.12.003_b0140
  doi: 10.1016/S0034-4257(00)00197-8
– ident: 10.1016/j.inpa.2020.12.003_b0080
  doi: 10.1007/s10586-018-1844-5
– ident: 10.1016/j.inpa.2020.12.003_b0150
  doi: 10.1186/1746-4811-7-28
SSID ssj0001763400
Score 2.2556684
Snippet The degree of pest damage evaluation on corps in the field environment is very important for precision spraying pesticides. In this paper, we proposed an image...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 505
SubjectTerms Color features
Machine learning
Pest damage evaluation
Shape features
Wormhole segmentation
Title Broccoli seedling pest damage degree evaluation based on machine learning combined with color and shape features
URI https://dx.doi.org/10.1016/j.inpa.2020.12.003
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywoaip49TJWCqqiqEMUCliiZz4XILUELXl_3PnJCowMLBFSU6KPjv3sL77jrFbYYNIgK89I0fWk8Y3HpZgysPUWWUmC0VmnNrnfDRbyMckTDps0vbCEK2y8f21T3feurkzaNAcVEUxeBZiSNEvED4NvhHU8Eu0dGriS-535yz4A0nXiULve2TQ9M7UNK-irEh-SPjuVLCdnfU7Pn2LOdMjdtgki3xcf88x60B5wg7Gy3UjmAGnrMI6OsfFLPgG4xD1lvMKHT03eoWeghvAehr4TtObU9gyHC9WjkYJvJkbseQIAZbJ-JDOZjmpWa-5Lg3fvOkKuAUnAbo5Y4vpw8tk5jVTFLw8kHLrRYi4EbmWEEUAmJ5luQQdGKm1tlYOQcVaCRBYJxtShrGZErlQxkYqjg3kwTnrlh8lXDAemREahBaCQEkb5LGkGdUqw6InijBT6bG7Fru0qsUy0pZF9p4S0ikhnQ4FSZL2WNjCm_5Y8hS9-R92l_-0u2L7gggpjotyzbrb9SfcYEaxzfquEu-7jdNne_NJ8vT6BeMzzPY
link.rule.ids 315,783,787,867,3514,27937,27938,45887
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQdvpgG2C7s9ItGAIhch4dZsu7NYE2oD-P-d6SOoBw_emjaTNN-2M_NNZr5h7FY4XwtoGc_KrvOkbVkPKZjyMHVWkY06IrK52ue4O5jKp1lnVmP9ahaG2ipL31_49Nxbl3eaJZrNLEmar0K0Kfr5okWLb4TeYts0dkkMbDi73xRa8A-S-SgKGXhkUQ7PFH1eSZqR_pBo5WXBannW7wD1Leg8HrD9MlvkveKFDlkN0iO215svS8UMOGYZEukYTzPhKwxENFzOM_T03JoFugpuAQk18I2oN6e4ZTleLPI-SuDl4og5RwyQJ-NDKs5ykrNecpNavnozGXAHuQbo6oRNHx8m_YFXrlHwYl_KtacRcitiI0FrAMzPoliC8a00xjgn26ACowQIJMqWpGFcpEQslHVaBYGF2D9l9fQjhTPGte2iQceB7yvp_DiQtKRaRch6tMZUpcHuKuzCrFDLCKs2sveQkA4J6bAtSJO0wToVvOGPMw_Rnf9hd_5Puxu2M5i8jMLRcPx8wXYFdafkjSmXrL5efsIVphfr6Dr_fL4AHqvNeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broccoli+seedling+pest+damage+degree+evaluation+based+on+machine+learning+combined+with+color+and+shape+features&rft.jtitle=Information+processing+in+agriculture&rft.au=Zou%2C+Kunlin&rft.au=Ge%2C+Luzhen&rft.au=Zhou%2C+Hang&rft.au=Zhang%2C+Chunlong&rft.date=2021-12-01&rft.issn=2214-3173&rft.eissn=2214-3173&rft.volume=8&rft.issue=4&rft.spage=505&rft.epage=514&rft_id=info:doi/10.1016%2Fj.inpa.2020.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inpa_2020_12_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-3173&client=summon