Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers

Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nano...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 8; no. 13; pp. 4542 - 4548
Main Authors Wang, Chun-Chieh, Chang, Chih-Yu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane (F 21 ) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage ( V oc ) of 600 V and a short circuit current ( I sc ) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a V oc of 873 V and an I sc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs. A promising strategy to simultaneously enhance the performance and stability of TENGs is developed by using silane-based self-assembled monolayers.
AbstractList Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1H,1H,2H,2H-perfluorododecyltrichlorosilane (F21) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage (Voc) of 600 V and a short circuit current (Isc) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a Voc of 873 V and an Isc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs.
Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane (F 21 ) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage ( V oc ) of 600 V and a short circuit current ( I sc ) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a V oc of 873 V and an I sc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs.
Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane (F 21 ) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage ( V oc ) of 600 V and a short circuit current ( I sc ) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a V oc of 873 V and an I sc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs. A promising strategy to simultaneously enhance the performance and stability of TENGs is developed by using silane-based self-assembled monolayers.
Author Chang, Chih-Yu
Wang, Chun-Chieh
AuthorAffiliation Department of Material Science and Engineering
National Taiwan University of Science and Technology
AuthorAffiliation_xml – name: National Taiwan University of Science and Technology
– name: Department of Material Science and Engineering
Author_xml – sequence: 1
  givenname: Chun-Chieh
  surname: Wang
  fullname: Wang, Chun-Chieh
– sequence: 2
  givenname: Chih-Yu
  surname: Chang
  fullname: Chang, Chih-Yu
BookMark eNp9kc9LHTEQx0OxUGu99F5I8VZYmx_79uUdy6tVQejFnpdJMtFINlmTvMMe-r8b-0RBpKf5wWe-w3znIzmIKSIhnzk75UxuvltWDWOs57fvyKFgK9atV7I_eM7F8IEcl3LXGKb4oIbNIfl7Fm8hGrQ07eq8q3TG7FKeHnsUoqWlgvbB14UmR2v2OmFA0xJDI8R0gxEz1JQL1QvFaQ5p8fGGFh8gYqehNOmCwXVQCk46tHJKMQVYMJdP5L2DUPD4KR6RP7_OrrcX3dXv88vtj6vOyL6vnTJKSu3WYuDGGqGMZu0y5GwjBNdWcFRr1NxwtCu0YHqnoLe9UeBAcgPyiJzsdeec7ndY6niXdjm2laOQaiX5IBhr1Lc9ZXIqJaMb5-wnyMvI2fjo8PiTXW__OXzRYPYKNr5C9SnWDD68PfJ1P5KLeZZ-edo4W9eYL_9j5AM9z5ia
CitedBy_id crossref_primary_10_1080_10667857_2022_2038769
crossref_primary_10_1039_D3MH01529G
crossref_primary_10_3390_polym14010165
crossref_primary_10_1021_acs_chemrev_3c00301
crossref_primary_10_1016_j_seta_2024_103951
crossref_primary_10_1016_j_jechem_2023_04_041
crossref_primary_10_1007_s13391_022_00353_9
crossref_primary_10_3390_polym14020332
crossref_primary_10_1039_D2TA09975F
crossref_primary_10_1021_acsaelm_3c01386
crossref_primary_10_1063_5_0050667
crossref_primary_10_1016_j_nanoen_2023_108833
crossref_primary_10_1002_admt_202000985
crossref_primary_10_1039_D2TC03551K
crossref_primary_10_3390_app14199062
crossref_primary_10_1557_s43578_021_00149_x
crossref_primary_10_1039_D0TA11596G
crossref_primary_10_1002_smll_202007805
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1039_D1TC04831G
crossref_primary_10_3390_nanoenergyadv1010004
crossref_primary_10_1039_D4SC01432D
crossref_primary_10_1007_s42835_025_02218_1
crossref_primary_10_1002_ente_202401029
crossref_primary_10_1016_j_nanoen_2021_106887
crossref_primary_10_1142_S0218126621300105
crossref_primary_10_2139_ssrn_3954102
crossref_primary_10_1039_D2MA01015A
crossref_primary_10_1109_ACCESS_2020_3043871
crossref_primary_10_3390_mi15091115
crossref_primary_10_1016_j_nanoen_2022_108122
crossref_primary_10_1016_j_progpolymsci_2023_101723
Cites_doi 10.1039/C5EE01532D
10.1002/adma.200703050
10.1016/j.nanoen.2019.104372
10.1002/adma.200800810
10.1016/j.nanoen.2012.11.015
10.1021/nl404819w
10.1002/adma.201504244
10.1021/nl4001053
10.1002/advs.201801682
10.1016/j.nanoen.2014.10.034
10.1039/C5TA10239A
10.1109/TIM.2016.2519779
10.1021/acs.chemmater.5b01507
10.1039/c3ee42571a
10.1016/j.nanoen.2019.104210
10.1002/adma.201504366
10.1016/j.nanoen.2018.09.057
10.1002/anie.201300437
10.1021/acsnano.7b02156
10.1002/smll.201602790
10.1002/adma.201302397
10.1002/adma.201702517
10.1021/nn4037514
10.1021/acsnano.8b06747
10.1109/JPROC.2015.2412493
10.1016/j.apenergy.2018.01.039
10.1109/MPRV.2005.9
10.1063/1.4959839
10.1126/sciadv.1602902
10.1016/j.ces.2010.07.005
10.2196/12861
10.1109/MC.2009.5
10.1021/acsnano.7b04898
10.1002/adfm.201805216
10.1016/j.ijpharm.2016.06.031
10.1021/ar900118t
10.1021/nn404614z
10.1002/adfm.201700794
10.1021/nn507221f
10.1021/acs.accounts.8b00451
10.1021/acsnano.5b01340
10.1038/s41467-018-07882-8
10.1021/nl300988z
10.1002/adma.201400373
10.1002/anie.201201656
10.1038/srep11070
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d0tc00041h
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 4548
ExternalDocumentID 10_1039_D0TC00041H
d0tc00041h
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c344t-8c833bf7261cdc28cb0753e109221bd21e87eb1c1ed5edac4f8a4d4c8afa31ca3
ISSN 2050-7526
IngestDate Mon Jun 30 05:30:55 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 04:26:14 EDT 2025
Sat Jan 08 03:36:55 EST 2022
Wed Nov 11 00:36:14 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-8c833bf7261cdc28cb0753e109221bd21e87eb1c1ed5edac4f8a4d4c8afa31ca3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0tc00041h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0856-177X
PQID 2385316200
PQPubID 2047521
PageCount 7
ParticipantIDs proquest_journals_2385316200
crossref_primary_10_1039_D0TC00041H
rsc_primary_d0tc00041h
crossref_citationtrail_10_1039_D0TC00041H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-07
PublicationDateYYYYMMDD 2020-04-07
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-07
  day: 07
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D0TC00041H-(cit16)/*[position()=1]) 2018; 12
Misra (D0TC00041H-(cit15)/*[position()=1]) 2015; 103
Naik (D0TC00041H-(cit24)/*[position()=1]) 2016; 510
Dionisi (D0TC00041H-(cit11)/*[position()=1]) 2016; 65
Wang (D0TC00041H-(cit36)/*[position()=1]) 2016; 4
Kim (D0TC00041H-(cit3)/*[position()=1]) 2018; 51
Liu (D0TC00041H-(cit6)/*[position()=1]) 2017; 11
Yip (D0TC00041H-(cit31)/*[position()=1]) 2008; 20
Song (D0TC00041H-(cit35)/*[position()=1]) 2015; 27
Trung (D0TC00041H-(cit4)/*[position()=1]) 2016; 28
Paradiso (D0TC00041H-(cit14)/*[position()=1]) 2005
Wang (D0TC00041H-(cit17)/*[position()=1]) 2015; 8
Yao (D0TC00041H-(cit29)/*[position()=1]) 2017; 27
Shin (D0TC00041H-(cit33)/*[position()=1]) 2017; 11
Matsusaka (D0TC00041H-(cit23)/*[position()=1]) 2010; 65
Qin (D0TC00041H-(cit20)/*[position()=1]) 2020; 68
Trinh (D0TC00041H-(cit42)/*[position()=1]) 2018; 213
Lin (D0TC00041H-(cit38)/*[position()=1]) 2013; 52
Wang (D0TC00041H-(cit18)/*[position()=1]) 2015; 11
Zhou (D0TC00041H-(cit43)/*[position()=1]) 2014; 14
Zhong (D0TC00041H-(cit39)/*[position()=1]) 2013; 2
Yang (D0TC00041H-(cit21)/*[position()=1]) 2020; 67
Zhao (D0TC00041H-(cit22)/*[position()=1]) 2018; 53
Liu (D0TC00041H-(cit45)/*[position()=1]) 2019; 10
Niu (D0TC00041H-(cit44)/*[position()=1]) 2013; 6
Qin (D0TC00041H-(cit19)/*[position()=1]) 2018; 28
Lin (D0TC00041H-(cit25)/*[position()=1]) 2013; 7
Yoon (D0TC00041H-(cit2)/*[position()=1]) 2019; 6
Acton (D0TC00041H-(cit32)/*[position()=1]) 2008; 20
Shin (D0TC00041H-(cit34)/*[position()=1]) 2015; 9
Zhu (D0TC00041H-(cit37)/*[position()=1]) 2013; 13
Li (D0TC00041H-(cit8)/*[position()=1]) 2017; 29
Khan (D0TC00041H-(cit5)/*[position()=1]) 2016; 28
Dinh-Le (D0TC00041H-(cit1)/*[position()=1]) 2019; 7
Wang (D0TC00041H-(cit7)/*[position()=1]) 2017; 13
Seung (D0TC00041H-(cit41)/*[position()=1]) 2015; 9
Mallela (D0TC00041H-(cit12)/*[position()=1]) 2004; 4
Lin (D0TC00041H-(cit26)/*[position()=1]) 2014; 26
Zheng (D0TC00041H-(cit9)/*[position()=1]) 2015; 5
Fan (D0TC00041H-(cit27)/*[position()=1]) 2012; 12
Hanson (D0TC00041H-(cit10)/*[position()=1]) 2009; 42
Wang (D0TC00041H-(cit13)/*[position()=1]) 2012; 51
Wang (D0TC00041H-(cit40)/*[position()=1]) 2013; 7
Wang (D0TC00041H-(cit47)/*[position()=1]) 2016; 109
Pluth (D0TC00041H-(cit46)/*[position()=1]) 2009; 42
Lee (D0TC00041H-(cit30)/*[position()=1]) 2017; 3
Pluth (D0TC00041H-(cit44)/*[position()=2]) 2009; 42
Chen (D0TC00041H-(cit28)/*[position()=1]) 2013; 25
References_xml – volume: 8
  start-page: 2250
  year: 2015
  ident: D0TC00041H-(cit17)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 20
  start-page: 2376
  year: 2008
  ident: D0TC00041H-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703050
– volume: 68
  start-page: 104372
  year: 2020
  ident: D0TC00041H-(cit20)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104372
– volume: 20
  start-page: 3697
  year: 2008
  ident: D0TC00041H-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800810
– volume: 2
  start-page: 491
  year: 2013
  ident: D0TC00041H-(cit39)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.11.015
– volume: 14
  start-page: 1567
  year: 2014
  ident: D0TC00041H-(cit43)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl404819w
– volume: 28
  start-page: 4338
  year: 2016
  ident: D0TC00041H-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504244
– volume: 13
  start-page: 847
  year: 2013
  ident: D0TC00041H-(cit37)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl4001053
– volume: 6
  start-page: 1801682
  year: 2019
  ident: D0TC00041H-(cit2)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801682
– volume: 11
  start-page: 436
  year: 2015
  ident: D0TC00041H-(cit18)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.034
– volume: 4
  start-page: 3728
  year: 2016
  ident: D0TC00041H-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10239A
– volume: 65
  start-page: 1423
  year: 2016
  ident: D0TC00041H-(cit11)/*[position()=1]
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2519779
– volume: 27
  start-page: 4749
  year: 2015
  ident: D0TC00041H-(cit35)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b01507
– volume: 6
  start-page: 3576
  year: 2013
  ident: D0TC00041H-(cit44)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42571a
– volume: 67
  start-page: 104210
  year: 2020
  ident: D0TC00041H-(cit21)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104210
– volume: 28
  start-page: 4373
  year: 2016
  ident: D0TC00041H-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504366
– volume: 53
  start-page: 898
  year: 2018
  ident: D0TC00041H-(cit22)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.057
– volume: 52
  start-page: 5065
  year: 2013
  ident: D0TC00041H-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300437
– volume: 11
  start-page: 6131
  year: 2017
  ident: D0TC00041H-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02156
– volume: 13
  start-page: 1602790
  year: 2017
  ident: D0TC00041H-(cit7)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602790
– volume: 25
  start-page: 6094
  year: 2013
  ident: D0TC00041H-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302397
– volume: 29
  start-page: 1702517
  year: 2017
  ident: D0TC00041H-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702517
– volume: 7
  start-page: 8266
  year: 2013
  ident: D0TC00041H-(cit25)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4037514
– volume: 12
  start-page: 11561
  year: 2018
  ident: D0TC00041H-(cit16)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06747
– volume: 103
  start-page: 665
  year: 2015
  ident: D0TC00041H-(cit15)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2412493
– volume: 213
  start-page: 353
  year: 2018
  ident: D0TC00041H-(cit42)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.039
– start-page: 18
  year: 2005
  ident: D0TC00041H-(cit14)/*[position()=1]
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2005.9
– volume: 109
  start-page: 043901
  year: 2016
  ident: D0TC00041H-(cit47)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4959839
– volume: 3
  start-page: e1602902
  year: 2017
  ident: D0TC00041H-(cit30)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602902
– volume: 4
  start-page: 201
  year: 2004
  ident: D0TC00041H-(cit12)/*[position()=1]
  publication-title: Indian Pacing Electrophysiol. J.
– volume: 65
  start-page: 5781
  year: 2010
  ident: D0TC00041H-(cit23)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.07.005
– volume: 7
  start-page: e12861
  year: 2019
  ident: D0TC00041H-(cit1)/*[position()=1]
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/12861
– volume: 42
  start-page: 58
  year: 2009
  ident: D0TC00041H-(cit10)/*[position()=1]
  publication-title: Computer
  doi: 10.1109/MC.2009.5
– volume: 11
  start-page: 9614
  year: 2017
  ident: D0TC00041H-(cit6)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04898
– volume: 28
  start-page: 1805216
  year: 2018
  ident: D0TC00041H-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805216
– volume: 510
  start-page: 375
  year: 2016
  ident: D0TC00041H-(cit24)/*[position()=1]
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.06.031
– volume: 42
  start-page: 1650
  year: 2009
  ident: D0TC00041H-(cit46)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900118t
– volume: 7
  start-page: 9533
  year: 2013
  ident: D0TC00041H-(cit40)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 27
  start-page: 1700794
  year: 2017
  ident: D0TC00041H-(cit29)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700794
– volume: 42
  start-page: 1650
  year: 2009
  ident: D0TC00041H-(cit44)/*[position()=2]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900118t
– volume: 9
  start-page: 3501
  year: 2015
  ident: D0TC00041H-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn507221f
– volume: 51
  start-page: 2820
  year: 2018
  ident: D0TC00041H-(cit3)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00451
– volume: 9
  start-page: 4621
  year: 2015
  ident: D0TC00041H-(cit34)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01340
– volume: 10
  start-page: 1
  year: 2019
  ident: D0TC00041H-(cit45)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 12
  start-page: 3109
  year: 2012
  ident: D0TC00041H-(cit27)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl300988z
– volume: 26
  start-page: 4690
  year: 2014
  ident: D0TC00041H-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400373
– volume: 51
  start-page: 11700
  year: 2012
  ident: D0TC00041H-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201656
– volume: 5
  start-page: 11070
  year: 2015
  ident: D0TC00041H-(cit9)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep11070
SSID ssj0000816869
Score 2.3918276
Snippet Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4542
SubjectTerms Aluminum
Aminopropyltriethoxysilane
Charge density
Circuits
Covalent bonds
Electric power generation
Energy harvesting
Fluorination
Fluorine
Interfacial properties
Monolayers
Nanogenerators
Open circuit voltage
Polydimethylsiloxane
Self-assembled monolayers
Self-assembly
Short circuit currents
Silicone resins
Stability
Substrates
Surface charge
Title Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers
URI https://www.proquest.com/docview/2385316200
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6TUhwQDCY6BjIElxQ5ZHYTpMcp1BUEHDqpHGK4h8hlUpSbclhSPsf9ifz7CROKhUJuESNnVhJ35fnz_bz-xB6S6XUaq4Yief-nHAVmc3KIiOCQm8f5lwHVrXk67f58pJ_vgquJpP7UdRSU4tz-WvvvpL_sSqUgV3NLtl_sKxrFArgN9gXjmBhOP6VjRdl0S7gV029bWwO4p1dAMD8bOyrXUU30lZVq3qzlrMyK6sfNuW0ldsBEqqt9q-dXlibCFhiOjhoQ29yAgxb_xQbOIV3g8HwbRc3v4fWAgNuX30mey2581nSbgvqa0xoY7WtXaKCkRaP0tZ1DfP8rS9KiqYkSbHWbvY6KVzVuiDfm_H0BfVs1Es4eDnqBR4JA9rlwx6XdbOcnZuOxmhkI5_LgzY_V9d_w2m0t2_wmEmtqrxaGiLrF0MP6OISh8oDdERh4AGe8-hisfr0xc3bWaESq5TonrzPesvi90MDuzxnGLwcXPfKMpbBrJ6gx52N8EWLo6doostj9GiUkPIYPbABwfLmGbrrsYVbbOERtjDYDDts4SrHO9jCu9jC4hY7bOExtvAutvCArefo8uNilSxJJ9VBJOO8JpGMGBN5CONxqSSNpAAqyrTvxZT6QlFfRyGwAulrFWiVSZ5HGVdcRlmeMV9m7AQdllWpXyDsZwyokzBUXvIs9EVsRtVU6NyoETA1Re_6PzaVXR57I6eySW08BYvTD55dLuP-coreuGu3bfaWvVed9fZJu6_7JgUqC93THNzNFJ2Azdz9g4mn6HR_RbpV-emf7nqJHg7fwRk6rK8b_QqIbS1ed1j7DU8-q-c
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+output+performance+and+stability+of+triboelectric+nanogenerators+by+employing+silane-based+self-assembled+monolayers&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Wang%2C+Chun-Chieh&rft.au=Chang%2C+Chih-Yu&rft.date=2020-04-07&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=8&rft.issue=13&rft.spage=4542&rft.epage=4548&rft_id=info:doi/10.1039%2Fd0tc00041h&rft.externalDocID=d0tc00041h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon