Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers
Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nano...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 8; no. 13; pp. 4542 - 4548 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1
H
,1
H
,2
H
,2
H
-perfluorododecyltrichlorosilane (F
21
) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage (
V
oc
) of 600 V and a short circuit current (
I
sc
) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a
V
oc
of 873 V and an
I
sc
of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs.
A promising strategy to simultaneously enhance the performance and stability of TENGs is developed by using silane-based self-assembled monolayers. |
---|---|
AbstractList | Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1H,1H,2H,2H-perfluorododecyltrichlorosilane (F21) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage (Voc) of 600 V and a short circuit current (Isc) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a Voc of 873 V and an Isc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs. Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane (F 21 ) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage ( V oc ) of 600 V and a short circuit current ( I sc ) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a V oc of 873 V and an I sc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs. Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable electronics. In order to maximize the surface charge density, intense efforts have been devoted to the development of various geometrical micro-/nanostructures on the triboelectric surface. However, this approach generally has a low throughput and high cost, making it highly challenging for practical applications. In this study, we present a promising strategy to simultaneously enhance the performance and stability of TENGs by using silane-based self-assembled monolayers (SAMs). Silane-based SAM molecules, including fluorinated molecules with different numbers of fluorine (F) atoms and 3-aminopropyl triethoxysilane (APTES), are employed as the surface modification layer for the polydimethylsiloxane (PDMS) dielectric layer and the aluminum (Al) electrode, respectively. The trichlorosilane groups on these SAMs can hydrolyze to form a covalent bond with the substrate, providing the TENGs with admirable device characteristics. Among the fluorinated molecules investigated herein, the SAMs based on 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane (F 21 ) afford the highest output characteristics due to the most distinct difference in the ability to attract and transfer surface electrons from the Al layer to PDMS, delivering an open circuit voltage ( V oc ) of 600 V and a short circuit current ( I sc ) of 52 μA. The device performance can be further improved by incorporating APTES SAMs on the Al surface, and a V oc of 873 V and an I sc of 78 μA are attained. To the best of our knowledge, these characteristics represent the highest output performance ever reported for SAM-modified TENGs. Importantly, the resulting TENG also exhibits good durability, maintaining 96% of its initial voltage output after 250 000 cycles of repeated tests. More encouragingly, our strategy is also applicable for large-area TENGs. The present findings indicate that tailoring the atomic-scale interfacial properties plays an important role in the development of high-performance and stable TENGs. A promising strategy to simultaneously enhance the performance and stability of TENGs is developed by using silane-based self-assembled monolayers. |
Author | Chang, Chih-Yu Wang, Chun-Chieh |
AuthorAffiliation | Department of Material Science and Engineering National Taiwan University of Science and Technology |
AuthorAffiliation_xml | – name: National Taiwan University of Science and Technology – name: Department of Material Science and Engineering |
Author_xml | – sequence: 1 givenname: Chun-Chieh surname: Wang fullname: Wang, Chun-Chieh – sequence: 2 givenname: Chih-Yu surname: Chang fullname: Chang, Chih-Yu |
BookMark | eNp9kc9LHTEQx0OxUGu99F5I8VZYmx_79uUdy6tVQejFnpdJMtFINlmTvMMe-r8b-0RBpKf5wWe-w3znIzmIKSIhnzk75UxuvltWDWOs57fvyKFgK9atV7I_eM7F8IEcl3LXGKb4oIbNIfl7Fm8hGrQ07eq8q3TG7FKeHnsUoqWlgvbB14UmR2v2OmFA0xJDI8R0gxEz1JQL1QvFaQ5p8fGGFh8gYqehNOmCwXVQCk46tHJKMQVYMJdP5L2DUPD4KR6RP7_OrrcX3dXv88vtj6vOyL6vnTJKSu3WYuDGGqGMZu0y5GwjBNdWcFRr1NxwtCu0YHqnoLe9UeBAcgPyiJzsdeec7ndY6niXdjm2laOQaiX5IBhr1Lc9ZXIqJaMb5-wnyMvI2fjo8PiTXW__OXzRYPYKNr5C9SnWDD68PfJ1P5KLeZZ-edo4W9eYL_9j5AM9z5ia |
CitedBy_id | crossref_primary_10_1080_10667857_2022_2038769 crossref_primary_10_1039_D3MH01529G crossref_primary_10_3390_polym14010165 crossref_primary_10_1021_acs_chemrev_3c00301 crossref_primary_10_1016_j_seta_2024_103951 crossref_primary_10_1016_j_jechem_2023_04_041 crossref_primary_10_1007_s13391_022_00353_9 crossref_primary_10_3390_polym14020332 crossref_primary_10_1039_D2TA09975F crossref_primary_10_1021_acsaelm_3c01386 crossref_primary_10_1063_5_0050667 crossref_primary_10_1016_j_nanoen_2023_108833 crossref_primary_10_1002_admt_202000985 crossref_primary_10_1039_D2TC03551K crossref_primary_10_3390_app14199062 crossref_primary_10_1557_s43578_021_00149_x crossref_primary_10_1039_D0TA11596G crossref_primary_10_1002_smll_202007805 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1039_D1TC04831G crossref_primary_10_3390_nanoenergyadv1010004 crossref_primary_10_1039_D4SC01432D crossref_primary_10_1007_s42835_025_02218_1 crossref_primary_10_1002_ente_202401029 crossref_primary_10_1016_j_nanoen_2021_106887 crossref_primary_10_1142_S0218126621300105 crossref_primary_10_2139_ssrn_3954102 crossref_primary_10_1039_D2MA01015A crossref_primary_10_1109_ACCESS_2020_3043871 crossref_primary_10_3390_mi15091115 crossref_primary_10_1016_j_nanoen_2022_108122 crossref_primary_10_1016_j_progpolymsci_2023_101723 |
Cites_doi | 10.1039/C5EE01532D 10.1002/adma.200703050 10.1016/j.nanoen.2019.104372 10.1002/adma.200800810 10.1016/j.nanoen.2012.11.015 10.1021/nl404819w 10.1002/adma.201504244 10.1021/nl4001053 10.1002/advs.201801682 10.1016/j.nanoen.2014.10.034 10.1039/C5TA10239A 10.1109/TIM.2016.2519779 10.1021/acs.chemmater.5b01507 10.1039/c3ee42571a 10.1016/j.nanoen.2019.104210 10.1002/adma.201504366 10.1016/j.nanoen.2018.09.057 10.1002/anie.201300437 10.1021/acsnano.7b02156 10.1002/smll.201602790 10.1002/adma.201302397 10.1002/adma.201702517 10.1021/nn4037514 10.1021/acsnano.8b06747 10.1109/JPROC.2015.2412493 10.1016/j.apenergy.2018.01.039 10.1109/MPRV.2005.9 10.1063/1.4959839 10.1126/sciadv.1602902 10.1016/j.ces.2010.07.005 10.2196/12861 10.1109/MC.2009.5 10.1021/acsnano.7b04898 10.1002/adfm.201805216 10.1016/j.ijpharm.2016.06.031 10.1021/ar900118t 10.1021/nn404614z 10.1002/adfm.201700794 10.1021/nn507221f 10.1021/acs.accounts.8b00451 10.1021/acsnano.5b01340 10.1038/s41467-018-07882-8 10.1021/nl300988z 10.1002/adma.201400373 10.1002/anie.201201656 10.1038/srep11070 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d0tc00041h |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 4548 |
ExternalDocumentID | 10_1039_D0TC00041H d0tc00041h |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c344t-8c833bf7261cdc28cb0753e109221bd21e87eb1c1ed5edac4f8a4d4c8afa31ca3 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 05:30:55 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Jul 01 04:26:14 EDT 2025 Sat Jan 08 03:36:55 EST 2022 Wed Nov 11 00:36:14 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-8c833bf7261cdc28cb0753e109221bd21e87eb1c1ed5edac4f8a4d4c8afa31ca3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0tc00041h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0856-177X |
PQID | 2385316200 |
PQPubID | 2047521 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2385316200 crossref_primary_10_1039_D0TC00041H rsc_primary_d0tc00041h crossref_citationtrail_10_1039_D0TC00041H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-07 |
PublicationDateYYYYMMDD | 2020-04-07 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chen (D0TC00041H-(cit16)/*[position()=1]) 2018; 12 Misra (D0TC00041H-(cit15)/*[position()=1]) 2015; 103 Naik (D0TC00041H-(cit24)/*[position()=1]) 2016; 510 Dionisi (D0TC00041H-(cit11)/*[position()=1]) 2016; 65 Wang (D0TC00041H-(cit36)/*[position()=1]) 2016; 4 Kim (D0TC00041H-(cit3)/*[position()=1]) 2018; 51 Liu (D0TC00041H-(cit6)/*[position()=1]) 2017; 11 Yip (D0TC00041H-(cit31)/*[position()=1]) 2008; 20 Song (D0TC00041H-(cit35)/*[position()=1]) 2015; 27 Trung (D0TC00041H-(cit4)/*[position()=1]) 2016; 28 Paradiso (D0TC00041H-(cit14)/*[position()=1]) 2005 Wang (D0TC00041H-(cit17)/*[position()=1]) 2015; 8 Yao (D0TC00041H-(cit29)/*[position()=1]) 2017; 27 Shin (D0TC00041H-(cit33)/*[position()=1]) 2017; 11 Matsusaka (D0TC00041H-(cit23)/*[position()=1]) 2010; 65 Qin (D0TC00041H-(cit20)/*[position()=1]) 2020; 68 Trinh (D0TC00041H-(cit42)/*[position()=1]) 2018; 213 Lin (D0TC00041H-(cit38)/*[position()=1]) 2013; 52 Wang (D0TC00041H-(cit18)/*[position()=1]) 2015; 11 Zhou (D0TC00041H-(cit43)/*[position()=1]) 2014; 14 Zhong (D0TC00041H-(cit39)/*[position()=1]) 2013; 2 Yang (D0TC00041H-(cit21)/*[position()=1]) 2020; 67 Zhao (D0TC00041H-(cit22)/*[position()=1]) 2018; 53 Liu (D0TC00041H-(cit45)/*[position()=1]) 2019; 10 Niu (D0TC00041H-(cit44)/*[position()=1]) 2013; 6 Qin (D0TC00041H-(cit19)/*[position()=1]) 2018; 28 Lin (D0TC00041H-(cit25)/*[position()=1]) 2013; 7 Yoon (D0TC00041H-(cit2)/*[position()=1]) 2019; 6 Acton (D0TC00041H-(cit32)/*[position()=1]) 2008; 20 Shin (D0TC00041H-(cit34)/*[position()=1]) 2015; 9 Zhu (D0TC00041H-(cit37)/*[position()=1]) 2013; 13 Li (D0TC00041H-(cit8)/*[position()=1]) 2017; 29 Khan (D0TC00041H-(cit5)/*[position()=1]) 2016; 28 Dinh-Le (D0TC00041H-(cit1)/*[position()=1]) 2019; 7 Wang (D0TC00041H-(cit7)/*[position()=1]) 2017; 13 Seung (D0TC00041H-(cit41)/*[position()=1]) 2015; 9 Mallela (D0TC00041H-(cit12)/*[position()=1]) 2004; 4 Lin (D0TC00041H-(cit26)/*[position()=1]) 2014; 26 Zheng (D0TC00041H-(cit9)/*[position()=1]) 2015; 5 Fan (D0TC00041H-(cit27)/*[position()=1]) 2012; 12 Hanson (D0TC00041H-(cit10)/*[position()=1]) 2009; 42 Wang (D0TC00041H-(cit13)/*[position()=1]) 2012; 51 Wang (D0TC00041H-(cit40)/*[position()=1]) 2013; 7 Wang (D0TC00041H-(cit47)/*[position()=1]) 2016; 109 Pluth (D0TC00041H-(cit46)/*[position()=1]) 2009; 42 Lee (D0TC00041H-(cit30)/*[position()=1]) 2017; 3 Pluth (D0TC00041H-(cit44)/*[position()=2]) 2009; 42 Chen (D0TC00041H-(cit28)/*[position()=1]) 2013; 25 |
References_xml | – volume: 8 start-page: 2250 year: 2015 ident: D0TC00041H-(cit17)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 20 start-page: 2376 year: 2008 ident: D0TC00041H-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200703050 – volume: 68 start-page: 104372 year: 2020 ident: D0TC00041H-(cit20)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104372 – volume: 20 start-page: 3697 year: 2008 ident: D0TC00041H-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200800810 – volume: 2 start-page: 491 year: 2013 ident: D0TC00041H-(cit39)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.11.015 – volume: 14 start-page: 1567 year: 2014 ident: D0TC00041H-(cit43)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl404819w – volume: 28 start-page: 4338 year: 2016 ident: D0TC00041H-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504244 – volume: 13 start-page: 847 year: 2013 ident: D0TC00041H-(cit37)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl4001053 – volume: 6 start-page: 1801682 year: 2019 ident: D0TC00041H-(cit2)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201801682 – volume: 11 start-page: 436 year: 2015 ident: D0TC00041H-(cit18)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 4 start-page: 3728 year: 2016 ident: D0TC00041H-(cit36)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10239A – volume: 65 start-page: 1423 year: 2016 ident: D0TC00041H-(cit11)/*[position()=1] publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2519779 – volume: 27 start-page: 4749 year: 2015 ident: D0TC00041H-(cit35)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b01507 – volume: 6 start-page: 3576 year: 2013 ident: D0TC00041H-(cit44)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42571a – volume: 67 start-page: 104210 year: 2020 ident: D0TC00041H-(cit21)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104210 – volume: 28 start-page: 4373 year: 2016 ident: D0TC00041H-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504366 – volume: 53 start-page: 898 year: 2018 ident: D0TC00041H-(cit22)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.057 – volume: 52 start-page: 5065 year: 2013 ident: D0TC00041H-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300437 – volume: 11 start-page: 6131 year: 2017 ident: D0TC00041H-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b02156 – volume: 13 start-page: 1602790 year: 2017 ident: D0TC00041H-(cit7)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602790 – volume: 25 start-page: 6094 year: 2013 ident: D0TC00041H-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302397 – volume: 29 start-page: 1702517 year: 2017 ident: D0TC00041H-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201702517 – volume: 7 start-page: 8266 year: 2013 ident: D0TC00041H-(cit25)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4037514 – volume: 12 start-page: 11561 year: 2018 ident: D0TC00041H-(cit16)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b06747 – volume: 103 start-page: 665 year: 2015 ident: D0TC00041H-(cit15)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2412493 – volume: 213 start-page: 353 year: 2018 ident: D0TC00041H-(cit42)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.01.039 – start-page: 18 year: 2005 ident: D0TC00041H-(cit14)/*[position()=1] publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2005.9 – volume: 109 start-page: 043901 year: 2016 ident: D0TC00041H-(cit47)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4959839 – volume: 3 start-page: e1602902 year: 2017 ident: D0TC00041H-(cit30)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1602902 – volume: 4 start-page: 201 year: 2004 ident: D0TC00041H-(cit12)/*[position()=1] publication-title: Indian Pacing Electrophysiol. J. – volume: 65 start-page: 5781 year: 2010 ident: D0TC00041H-(cit23)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.07.005 – volume: 7 start-page: e12861 year: 2019 ident: D0TC00041H-(cit1)/*[position()=1] publication-title: JMIR mHealth uHealth doi: 10.2196/12861 – volume: 42 start-page: 58 year: 2009 ident: D0TC00041H-(cit10)/*[position()=1] publication-title: Computer doi: 10.1109/MC.2009.5 – volume: 11 start-page: 9614 year: 2017 ident: D0TC00041H-(cit6)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b04898 – volume: 28 start-page: 1805216 year: 2018 ident: D0TC00041H-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805216 – volume: 510 start-page: 375 year: 2016 ident: D0TC00041H-(cit24)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.06.031 – volume: 42 start-page: 1650 year: 2009 ident: D0TC00041H-(cit46)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900118t – volume: 7 start-page: 9533 year: 2013 ident: D0TC00041H-(cit40)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 27 start-page: 1700794 year: 2017 ident: D0TC00041H-(cit29)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700794 – volume: 42 start-page: 1650 year: 2009 ident: D0TC00041H-(cit44)/*[position()=2] publication-title: Acc. Chem. Res. doi: 10.1021/ar900118t – volume: 9 start-page: 3501 year: 2015 ident: D0TC00041H-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn507221f – volume: 51 start-page: 2820 year: 2018 ident: D0TC00041H-(cit3)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00451 – volume: 9 start-page: 4621 year: 2015 ident: D0TC00041H-(cit34)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01340 – volume: 10 start-page: 1 year: 2019 ident: D0TC00041H-(cit45)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 12 start-page: 3109 year: 2012 ident: D0TC00041H-(cit27)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl300988z – volume: 26 start-page: 4690 year: 2014 ident: D0TC00041H-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400373 – volume: 51 start-page: 11700 year: 2012 ident: D0TC00041H-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201201656 – volume: 5 start-page: 11070 year: 2015 ident: D0TC00041H-(cit9)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep11070 |
SSID | ssj0000816869 |
Score | 2.3918276 |
Snippet | Triboelectric nanogenerators (TENGs) that can harvest environmental mechanical energy have been considered as a promising solution in driving wearable... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4542 |
SubjectTerms | Aluminum Aminopropyltriethoxysilane Charge density Circuits Covalent bonds Electric power generation Energy harvesting Fluorination Fluorine Interfacial properties Monolayers Nanogenerators Open circuit voltage Polydimethylsiloxane Self-assembled monolayers Self-assembly Short circuit currents Silicone resins Stability Substrates Surface charge |
Title | Enhanced output performance and stability of triboelectric nanogenerators by employing silane-based self-assembled monolayers |
URI | https://www.proquest.com/docview/2385316200 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6TUhwQDCY6BjIElxQ5ZHYTpMcp1BUEHDqpHGK4h8hlUpSbclhSPsf9ifz7CROKhUJuESNnVhJ35fnz_bz-xB6S6XUaq4Yief-nHAVmc3KIiOCQm8f5lwHVrXk67f58pJ_vgquJpP7UdRSU4tz-WvvvpL_sSqUgV3NLtl_sKxrFArgN9gXjmBhOP6VjRdl0S7gV029bWwO4p1dAMD8bOyrXUU30lZVq3qzlrMyK6sfNuW0ldsBEqqt9q-dXlibCFhiOjhoQ29yAgxb_xQbOIV3g8HwbRc3v4fWAgNuX30mey2581nSbgvqa0xoY7WtXaKCkRaP0tZ1DfP8rS9KiqYkSbHWbvY6KVzVuiDfm_H0BfVs1Es4eDnqBR4JA9rlwx6XdbOcnZuOxmhkI5_LgzY_V9d_w2m0t2_wmEmtqrxaGiLrF0MP6OISh8oDdERh4AGe8-hisfr0xc3bWaESq5TonrzPesvi90MDuzxnGLwcXPfKMpbBrJ6gx52N8EWLo6doostj9GiUkPIYPbABwfLmGbrrsYVbbOERtjDYDDts4SrHO9jCu9jC4hY7bOExtvAutvCArefo8uNilSxJJ9VBJOO8JpGMGBN5CONxqSSNpAAqyrTvxZT6QlFfRyGwAulrFWiVSZ5HGVdcRlmeMV9m7AQdllWpXyDsZwyokzBUXvIs9EVsRtVU6NyoETA1Re_6PzaVXR57I6eySW08BYvTD55dLuP-coreuGu3bfaWvVed9fZJu6_7JgUqC93THNzNFJ2Azdz9g4mn6HR_RbpV-emf7nqJHg7fwRk6rK8b_QqIbS1ed1j7DU8-q-c |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+output+performance+and+stability+of+triboelectric+nanogenerators+by+employing+silane-based+self-assembled+monolayers&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Wang%2C+Chun-Chieh&rft.au=Chang%2C+Chih-Yu&rft.date=2020-04-07&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=8&rft.issue=13&rft.spage=4542&rft.epage=4548&rft_id=info:doi/10.1039%2Fd0tc00041h&rft.externalDocID=d0tc00041h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |