Coherent lensless X-ray imaging
Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is a...
Saved in:
Published in | Nature photonics Vol. 4; no. 12; pp. 833 - 839 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2010
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is able to circumvent this limitation. A number of classes of lensless X-ray imaging have been developed so far, with many based on other forms of optics. Here we report the key progress in this area, describe the potential applications for biology and materials science, and discuss the prospect for imaging single molecules using X-ray free-electron lasers. |
---|---|
AbstractList | Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is able to circumvent this limitation. A number of classes of lensless X-ray imaging have been developed so far, with many based on other forms of optics. Here we report the key progress in this area, describe the potential applications for biology and materials science, and discuss the prospect for imaging single molecules using X-ray free-electron lasers. |
Author | Chapman, Henry N. Nugent, Keith A. |
Author_xml | – sequence: 1 givenname: Henry N. surname: Chapman fullname: Chapman, Henry N. organization: Centre for Free Electron Laser Science, DESY and University of Hamburg – sequence: 2 givenname: Keith A. surname: Nugent fullname: Nugent, Keith A. email: keithan@unimelb.edu.au organization: ARC Centre of Excellence for Coherent X-ray Science, School of Physics, the University of Melbourne |
BookMark | eNp9kE1LAzEQhoNUsK3evVm8eNqaj91NcpTiFxS8KHgL2ezsdss2qUl66L83ZYtCQQ8hYXiezMw7QSPrLCB0TfCcYCbu7XblorNzilOF5vgMjQnPZZYLyUY_b1FcoEkIa4wLJikdo5uFW4EHG2c92NBDCLPPzOv9rNvotrPtJTpvdB_g6nhP0cfT4_viJVu-Pb8uHpaZYXkeM8EYlo2oeF0VrCyANrIyuKqNrhgUNSWsJlyXILFoqBFCM8opSdihbHjOpuhu-Hfr3dcOQlSbLhjoe23B7YISApfpSJ7I2xNy7XbepuGU4IyUomA4QXiAjHcheGjU1qeN_F4RrA55qWNe6pCXSnklpTxRTBd17JyNXnf9fyIZxJB62Bb870B_Ot8Rg4Mw |
CitedBy_id | crossref_primary_10_1002_jbio_201800335 crossref_primary_10_1103_PhysRevLett_113_064801 crossref_primary_10_1117_1_OE_59_10_104105 crossref_primary_10_1364_OE_22_011930 crossref_primary_10_1364_OE_23_016429 crossref_primary_10_1107_S1600576716012279 crossref_primary_10_1364_AO_54_005992 crossref_primary_10_1109_TCI_2022_3204401 crossref_primary_10_1038_s41598_022_09430_3 crossref_primary_10_1088_2040_8978_14_8_083002 crossref_primary_10_1103_PhysRevA_96_013827 crossref_primary_10_1364_OE_418449 crossref_primary_10_1088_0953_4075_49_24_244001 crossref_primary_10_1002_adma_202305549 crossref_primary_10_1016_j_matdes_2020_108551 crossref_primary_10_1016_j_bpj_2014_07_028 crossref_primary_10_1039_C3AN01939J crossref_primary_10_1088_0022_3727_49_36_363001 crossref_primary_10_1364_OE_23_025034 crossref_primary_10_1126_sciadv_aax4530 crossref_primary_10_1002_advs_202310075 crossref_primary_10_1017_S0033583516000147 crossref_primary_10_1364_OE_443622 crossref_primary_10_1002_admi_202400534 crossref_primary_10_1016_j_optlastec_2024_112374 crossref_primary_10_1038_s41586_024_08278_z crossref_primary_10_1039_D1CP01994E crossref_primary_10_1364_AO_58_003564 crossref_primary_10_1038_s41377_020_0289_9 crossref_primary_10_3390_ai3020017 crossref_primary_10_1103_PhysRevB_83_214109 crossref_primary_10_1007_s10043_024_00881_9 crossref_primary_10_3938_jkps_70_849 crossref_primary_10_1364_OL_421232 crossref_primary_10_1109_TSP_2013_2239994 crossref_primary_10_1364_OL_38_001461 crossref_primary_10_15248_proc_1_415 crossref_primary_10_1088_1361_6633_80_1_016101 crossref_primary_10_1364_OE_25_008593 crossref_primary_10_1088_1361_6633_aad1a7 crossref_primary_10_1038_s41566_017_0072_5 crossref_primary_10_1364_OE_397421 crossref_primary_10_1038_s41467_022_32373_2 crossref_primary_10_1088_1361_6420_ab6504 crossref_primary_10_1364_AO_52_000509 crossref_primary_10_1107_S1600577521012200 crossref_primary_10_1063_1_4942105 crossref_primary_10_1063_1_4900982 crossref_primary_10_1038_s41598_024_67972_0 crossref_primary_10_1364_OL_534585 crossref_primary_10_2184_lsj_50_8_447 crossref_primary_10_1007_s11837_013_0699_8 crossref_primary_10_1016_j_ultramic_2022_113591 crossref_primary_10_1063_1_5133154 crossref_primary_10_1038_s43246_020_0021_6 crossref_primary_10_1137_23M1570971 crossref_primary_10_1364_OSAC_2_002948 crossref_primary_10_1364_OL_495706 crossref_primary_10_1016_j_cocis_2011_07_001 crossref_primary_10_1088_0953_8984_28_49_493001 crossref_primary_10_1038_nmat3289 crossref_primary_10_1364_OE_380056 crossref_primary_10_1364_OE_403147 crossref_primary_10_1364_OE_27_003284 crossref_primary_10_1088_1748_0221_20_01_C01032 crossref_primary_10_1364_OE_433507 crossref_primary_10_1116_1_4966654 crossref_primary_10_1002_adma_201304837 crossref_primary_10_1016_j_physrep_2011_07_002 crossref_primary_10_1080_01490451_2014_908982 crossref_primary_10_1103_PhysRevB_91_214114 crossref_primary_10_1134_S102745102470037X crossref_primary_10_1109_TAP_2013_2278478 crossref_primary_10_1103_PhysRevA_85_023409 crossref_primary_10_1016_j_pquantelec_2013_05_001 crossref_primary_10_3390_app122211436 crossref_primary_10_1063_5_0053291 crossref_primary_10_1063_1_4828656 crossref_primary_10_1088_1361_6455_ac04c4 crossref_primary_10_3151_jact_21_573 crossref_primary_10_1002_appl_202300016 crossref_primary_10_1038_s41598_017_14586_4 crossref_primary_10_1088_1367_2630_ad5d84 crossref_primary_10_1107_S2052252515015523 crossref_primary_10_1364_OE_20_019050 crossref_primary_10_1364_AO_54_005303 crossref_primary_10_1364_OPTICA_4_000903 crossref_primary_10_1103_PhysRevLett_117_027401 crossref_primary_10_1016_j_optcom_2017_12_070 crossref_primary_10_1364_OE_25_024991 crossref_primary_10_1107_S1600577513025629 crossref_primary_10_3390_qubs2010003 crossref_primary_10_1038_s41566_018_0110_y crossref_primary_10_1364_JOSAA_33_001181 crossref_primary_10_1063_5_0225480 crossref_primary_10_1107_S1600576719004394 crossref_primary_10_1016_j_optcom_2021_127541 crossref_primary_10_1364_OE_25_014822 crossref_primary_10_1088_2040_8986_ad4cff crossref_primary_10_1126_sciadv_aav0282 crossref_primary_10_1093_jmicro_dfx013 crossref_primary_10_1039_c2sm00032f crossref_primary_10_1038_s41524_023_00966_0 crossref_primary_10_1073_pnas_2122793119 crossref_primary_10_1016_j_sab_2016_01_002 crossref_primary_10_1088_2040_8986_ad40bf crossref_primary_10_1364_OE_26_030128 crossref_primary_10_1007_s10577_021_09660_7 crossref_primary_10_1088_0953_4075_49_11_112001 crossref_primary_10_1364_OPTICA_393014 crossref_primary_10_1063_1_4824192 crossref_primary_10_1103_PhysRevResearch_5_L042019 crossref_primary_10_1007_s13204_018_0703_2 crossref_primary_10_1080_00107514_2011_589662 crossref_primary_10_1017_S1431927618013235 crossref_primary_10_3788_CJL231533 crossref_primary_10_1364_OE_24_016835 crossref_primary_10_1107_S1600577523000887 crossref_primary_10_1021_acs_nanolett_6b04652 crossref_primary_10_1038_srep07356 crossref_primary_10_1107_S0909049511016335 crossref_primary_10_1002_adfm_202401017 crossref_primary_10_1038_s41377_024_01581_4 crossref_primary_10_1039_C4FD00156G crossref_primary_10_1063_1_4971414 crossref_primary_10_1364_JOSAA_36_000D62 crossref_primary_10_1016_j_sbi_2017_07_008 crossref_primary_10_1038_s42005_023_01195_z crossref_primary_10_1002_ppsc_201300033 crossref_primary_10_1016_j_eng_2020_06_019 crossref_primary_10_1063_1_4919074 crossref_primary_10_1364_AO_56_004029 crossref_primary_10_1038_nmeth_2114 crossref_primary_10_1364_OE_27_002792 crossref_primary_10_1038_nphoton_2012_178 crossref_primary_10_1088_2040_8986_acb830 crossref_primary_10_1038_s41377_022_00758_z crossref_primary_10_1107_S1600577514013046 crossref_primary_10_1364_OE_465397 crossref_primary_10_30970_jps_28_4401 crossref_primary_10_1088_1742_6596_784_1_012039 crossref_primary_10_1107_S1600577514015343 crossref_primary_10_1364_OE_21_021970 crossref_primary_10_1364_OE_22_005528 crossref_primary_10_1016_j_cemconres_2019_105824 crossref_primary_10_1016_j_optlaseng_2024_108295 crossref_primary_10_1038_s41566_020_0660_7 crossref_primary_10_1364_OE_19_021333 crossref_primary_10_1107_S1600577514006857 crossref_primary_10_1002_adma_201704556 crossref_primary_10_1186_s41476_016_0027_3 crossref_primary_10_22490_24629448_6576 crossref_primary_10_1088_2051_672X_4_2_023003 crossref_primary_10_1364_OE_20_018287 crossref_primary_10_1088_1367_2630_ad8eeb crossref_primary_10_1038_nphoton_2011_125 crossref_primary_10_1364_OE_19_024718 crossref_primary_10_1080_00107514_2016_1265771 crossref_primary_10_1088_1361_648X_ac0194 crossref_primary_10_1364_OE_21_009959 crossref_primary_10_1107_S1600577515005524 crossref_primary_10_1038_ncomms4798 crossref_primary_10_1364_OPTICA_522380 crossref_primary_10_1016_j_ultramic_2020_112990 crossref_primary_10_1107_S1600577523004897 crossref_primary_10_1038_srep13436 crossref_primary_10_1126_sciadv_ade5839 crossref_primary_10_1007_s10043_023_00835_7 crossref_primary_10_1364_OE_24_001840 crossref_primary_10_1155_2016_9853714 crossref_primary_10_1364_OE_22_025397 crossref_primary_10_1364_OE_432130 crossref_primary_10_1063_1_4807157 crossref_primary_10_1107_S1600576720010778 crossref_primary_10_1364_JOSAA_414276 crossref_primary_10_1103_PhysRevA_86_033411 crossref_primary_10_1038_s41524_025_01549_x crossref_primary_10_1103_PhysRevA_98_053425 crossref_primary_10_1038_s41467_018_06166_5 crossref_primary_10_1364_OE_509985 crossref_primary_10_1088_1742_6596_463_1_012039 crossref_primary_10_1103_PhysRevE_110_054407 crossref_primary_10_3154_jvs_40_159_26 crossref_primary_10_1103_PhysRevLett_110_098103 crossref_primary_10_1016_j_msec_2017_08_048 crossref_primary_10_1371_journal_pone_0131401 crossref_primary_10_1103_PhysRevB_86_235401 crossref_primary_10_1107_S160057752100477X crossref_primary_10_1016_j_optcom_2020_125904 crossref_primary_10_1007_s11814_024_00327_7 crossref_primary_10_1017_S1431927618012679 crossref_primary_10_1364_OE_490140 crossref_primary_10_1038_s41467_017_00287_z crossref_primary_10_1038_s41598_018_28269_1 crossref_primary_10_1016_j_elspec_2023_147340 crossref_primary_10_1088_0953_8984_28_40_403002 crossref_primary_10_1364_AO_57_006527 crossref_primary_10_1063_1_4958887 crossref_primary_10_1107_S1600576722007361 crossref_primary_10_1107_S2052252524006298 crossref_primary_10_1103_PhysRevA_92_023848 crossref_primary_10_1080_08940886_2013_771061 crossref_primary_10_1364_OE_553755 crossref_primary_10_1038_srep01307 crossref_primary_10_1364_OL_537792 crossref_primary_10_1364_OSAC_2_003141 crossref_primary_10_1146_annurev_physchem_042018_052744 crossref_primary_10_1080_08940886_2013_771069 crossref_primary_10_1038_srep10374 crossref_primary_10_1002_adfm_201403409 crossref_primary_10_1063_1_4933297 crossref_primary_10_1016_j_coche_2016_01_006 crossref_primary_10_1364_AO_59_001363 crossref_primary_10_1021_nl303201w crossref_primary_10_1364_OE_19_019330 crossref_primary_10_1364_JOSAA_32_001922 crossref_primary_10_1021_nl403247x crossref_primary_10_1103_PhysRevE_110_014802 crossref_primary_10_3390_cryst8040175 crossref_primary_10_1088_1757_899X_1285_1_012005 crossref_primary_10_1364_JOSAA_36_000202 crossref_primary_10_1177_0021955X21997353 crossref_primary_10_3390_app8010132 crossref_primary_10_1107_S1600576716009213 crossref_primary_10_1364_OE_434111 crossref_primary_10_1364_OE_27_017993 crossref_primary_10_1107_S1600577514003440 crossref_primary_10_1364_OPTICA_542299 crossref_primary_10_1021_acs_chemrev_1c00331 crossref_primary_10_1073_pnas_1720785116 crossref_primary_10_1109_JPHOT_2023_3256059 crossref_primary_10_1007_s00340_022_07911_x crossref_primary_10_1063_4_0000245 crossref_primary_10_3389_aot_2025_1546386 crossref_primary_10_1088_1367_2630_13_10_103026 crossref_primary_10_1016_j_sbi_2012_07_015 crossref_primary_10_1107_S1600576720013850 crossref_primary_10_1364_OE_401449 crossref_primary_10_1103_PhysRevA_106_053521 crossref_primary_10_1103_PhysRevE_86_042901 crossref_primary_10_1107_S1600576721007287 crossref_primary_10_3390_sym15071449 crossref_primary_10_1073_pnas_2303312120 crossref_primary_10_1107_S1600577519014425 crossref_primary_10_1107_S1600577524010567 crossref_primary_10_1088_1367_2630_17_5_053044 crossref_primary_10_1364_JOSAA_516339 crossref_primary_10_1364_JOSAB_477169 crossref_primary_10_1063_5_0179765 crossref_primary_10_1016_j_memsci_2023_122245 crossref_primary_10_1364_OE_26_012479 crossref_primary_10_34133_2021_9892152 crossref_primary_10_1016_j_trac_2023_117492 crossref_primary_10_1080_09500340_2021_1915399 crossref_primary_10_1107_S0021889813002471 crossref_primary_10_1103_PhysRevA_96_042706 crossref_primary_10_1038_s41467_024_52256_y crossref_primary_10_1364_OPTICA_5_000577 crossref_primary_10_1364_OL_442964 crossref_primary_10_1073_pnas_1202226109 crossref_primary_10_3390_photonics10020153 crossref_primary_10_1364_OE_445498 crossref_primary_10_1038_nphys4301 crossref_primary_10_1364_OE_26_000242 crossref_primary_10_1017_S1431927620024332 crossref_primary_10_1063_1_3644396 crossref_primary_10_1093_micmic_ozad123 crossref_primary_10_1038_s42256_022_00584_3 crossref_primary_10_1063_4_0000270 crossref_primary_10_1103_PhysRevMaterials_3_043803 crossref_primary_10_1016_j_jsb_2011_11_015 crossref_primary_10_1007_s00340_022_07754_6 crossref_primary_10_1051_epjconf_20134112014 crossref_primary_10_1016_j_optlaseng_2019_105973 crossref_primary_10_1103_PhysRevA_102_043516 crossref_primary_10_1103_PhysRevB_85_020104 crossref_primary_10_34133_2022_9819716 crossref_primary_10_1364_OE_507715 crossref_primary_10_1016_j_jsb_2012_04_014 crossref_primary_10_1364_OPTICA_5_001521 crossref_primary_10_1080_23746149_2021_1891001 crossref_primary_10_3788_IRLA20220402 crossref_primary_10_1134_S1063774521060286 crossref_primary_10_1364_OPTICA_386012 crossref_primary_10_1107_S1600577520015684 crossref_primary_10_1039_D4MA00154K crossref_primary_10_1088_0022_3727_47_26_263001 crossref_primary_10_1364_OE_27_003837 crossref_primary_10_1103_PhysRevX_5_011015 crossref_primary_10_1038_ncomms2622 crossref_primary_10_1039_C8NR03733G crossref_primary_10_1107_S1600577522001874 crossref_primary_10_1002_smll_202410994 crossref_primary_10_1088_1361_6463_ab60ea crossref_primary_10_1016_j_physleta_2023_128828 crossref_primary_10_7498_aps_62_150702 crossref_primary_10_1364_OE_19_011578 crossref_primary_10_1109_JPHOT_2022_3188574 crossref_primary_10_1364_OE_23_030250 crossref_primary_10_1107_S1600576722008068 crossref_primary_10_3390_qubs4010009 crossref_primary_10_1021_acs_chemrev_7b00007 crossref_primary_10_1107_S1600576720001375 crossref_primary_10_1002_smtd_201700293 crossref_primary_10_1103_PhysRevResearch_3_043066 crossref_primary_10_1063_1_4937122 crossref_primary_10_1107_S2053273316015114 crossref_primary_10_7498_aps_61_018701 crossref_primary_10_1364_OE_414341 crossref_primary_10_1016_j_ultramic_2020_113005 crossref_primary_10_1016_j_jsb_2011_12_023 crossref_primary_10_1063_1_4918726 crossref_primary_10_3390_sym13081439 crossref_primary_10_1364_OL_42_003169 crossref_primary_10_1103_PhysRevA_99_033413 crossref_primary_10_1111_j_1365_2818_2012_03632_x crossref_primary_10_1038_nphoton_2010_267 crossref_primary_10_1038_s41467_019_10328_4 crossref_primary_10_1107_S1600577515004361 crossref_primary_10_1088_1757_899X_580_1_012007 crossref_primary_10_1103_PhysRevLett_112_053903 crossref_primary_10_1002_smtd_201900223 crossref_primary_10_1016_j_optlaseng_2021_106796 crossref_primary_10_1016_j_ijleo_2018_06_003 crossref_primary_10_1016_j_mtla_2024_102311 crossref_primary_10_1364_OL_36_002728 crossref_primary_10_1016_j_crhy_2011_11_009 crossref_primary_10_1103_PhysRevLett_107_218102 crossref_primary_10_1364_OPTICA_5_000164 crossref_primary_10_1038_nature16949 crossref_primary_10_1038_s41467_022_32525_4 crossref_primary_10_1126_sciadv_1700553 crossref_primary_10_1107_S1600577524010956 crossref_primary_10_1103_PhysRevB_87_121201 crossref_primary_10_1364_OPTICA_412036 crossref_primary_10_1016_j_orgel_2016_11_023 crossref_primary_10_1038_srep20658 crossref_primary_10_1103_PhysRevE_87_022712 crossref_primary_10_1364_OPTICA_470712 crossref_primary_10_1364_OE_26_014915 crossref_primary_10_1088_2040_8978_18_2_024001 crossref_primary_10_1103_PhysRevA_89_043409 crossref_primary_10_1364_AOP_11_000215 crossref_primary_10_1364_AO_52_002416 crossref_primary_10_1021_acsanm_4c04410 crossref_primary_10_1063_1_4998595 crossref_primary_10_1364_OE_485779 crossref_primary_10_1038_s41598_017_13538_2 crossref_primary_10_1126_sciadv_abf1386 crossref_primary_10_1016_j_optlaseng_2022_107297 crossref_primary_10_3367_UFNe_2020_05_038775 crossref_primary_10_1364_OE_391282 crossref_primary_10_1063_1_4794063 crossref_primary_10_1063_5_0031486 crossref_primary_10_1103_PhysRevLett_108_135004 crossref_primary_10_1364_OE_27_019573 crossref_primary_10_1016_j_sbi_2017_03_014 crossref_primary_10_1063_5_0089305 crossref_primary_10_1103_PhysRevB_89_184105 crossref_primary_10_1103_PhysRevLett_119_053401 crossref_primary_10_1107_S2052252514020818 crossref_primary_10_1016_j_jsb_2013_01_008 crossref_primary_10_1063_1_5008289 crossref_primary_10_1016_j_ultramic_2020_113034 crossref_primary_10_1016_j_ultramic_2021_113335 crossref_primary_10_1016_j_elspec_2017_01_004 crossref_primary_10_1103_PhysRevE_99_063309 crossref_primary_10_1103_RevModPhys_90_025007 crossref_primary_10_1364_OE_503944 crossref_primary_10_1364_OE_23_028691 crossref_primary_10_1364_OPTICA_509745 crossref_primary_10_1103_PhysRevResearch_2_033031 crossref_primary_10_1080_09500340_2015_1052028 crossref_primary_10_1088_1742_6596_849_1_012033 crossref_primary_10_1103_PhysRevA_95_023843 crossref_primary_10_1364_OE_24_013081 crossref_primary_10_1103_PhysRevLett_119_158102 crossref_primary_10_1364_OE_463216 crossref_primary_10_3390_app11072971 crossref_primary_10_1021_acsnano_3c07619 crossref_primary_10_1007_s10043_022_00769_6 crossref_primary_10_1107_S1600577521006263 crossref_primary_10_1364_OE_463338 crossref_primary_10_1016_j_optlaseng_2024_108659 crossref_primary_10_1364_OE_532037 crossref_primary_10_1016_j_optlaseng_2024_108536 crossref_primary_10_1038_srep35060 crossref_primary_10_1109_JSTQE_2011_2157306 crossref_primary_10_1016_j_optcom_2017_03_046 crossref_primary_10_1364_OE_520066 crossref_primary_10_1016_j_cossms_2020_100820 crossref_primary_10_1103_PhysRevLett_110_205501 crossref_primary_10_1140_epjs_s11734_021_00261_3 crossref_primary_10_1364_OE_22_029161 crossref_primary_10_1016_j_bpj_2015_08_047 crossref_primary_10_1107_S1600577513023850 crossref_primary_10_1016_j_cjsc_2024_100256 crossref_primary_10_1364_OPTICA_506572 crossref_primary_10_1016_j_rinp_2014_07_008 crossref_primary_10_1021_acsnano_8b01838 crossref_primary_10_1364_OE_419998 crossref_primary_10_1080_00268976_2024_2388303 crossref_primary_10_3390_s20113147 crossref_primary_10_1021_acs_nanolett_7b05441 crossref_primary_10_1021_acsphotonics_9b01008 crossref_primary_10_1107_S1600576714020822 crossref_primary_10_1038_s41524_021_00644_z crossref_primary_10_1002_ctpp_201310027 crossref_primary_10_1155_2020_3481830 crossref_primary_10_1038_lsa_2014_44 crossref_primary_10_1038_s41598_018_34400_z crossref_primary_10_1021_acsestwater_4c01186 crossref_primary_10_1016_j_compag_2023_108475 crossref_primary_10_1038_s42005_021_00658_5 crossref_primary_10_1063_5_0031692 crossref_primary_10_1021_acs_jpcc_2c02795 crossref_primary_10_1364_OE_22_024935 crossref_primary_10_1063_1_4766305 crossref_primary_10_1364_OE_25_032090 |
Cites_doi | 10.1103/PhysRevLett.92.198102 10.1364/OE.15.017592 10.1103/PhysRevLett.104.064801 10.1107/S0108767387099744 10.1364/OL.3.000027 10.1073/pnas.232691299 10.1103/PhysRevLett.89.088303 10.1073/pnas.0910874107 10.1103/PhysRevLett.91.203902 10.1103/PhysRevE.71.061919 10.1103/PhysRevLett.97.025506 10.1103/PhysRevB.75.104102 10.1107/S0365110X52002276 10.1209/epl/i2003-10119-x 10.1016/S0304-3991(96)00084-8 10.1038/22498 10.1103/PhysRevB.80.054103 10.1038/nphoton.2010.267 10.1103/PhysRevLett.103.198101 10.1103/PhysRevLett.87.195505 10.1038/35021099 10.1107/S010876730501055X 10.1107/S0567739469001045 10.1103/PhysRevLett.105.043901 10.1098/rsta.1992.0050 10.1007/3-540-09727-9_82 10.1038/nature04867 10.1038/nphys461 10.1073/pnas.0503305102 10.1103/PhysRevB.68.140101 10.1103/PhysRevLett.90.175501 10.1063/1.2403783 10.1364/JOSAA.20.000040 10.1103/PhysRevLett.99.098103 10.1103/PhysRevLett.101.055501 10.1063/1.3025819 10.1103/PhysRevLett.103.243902 10.1103/PhysRevLett.103.198102 10.1103/PhysRevLett.77.4756 10.1103/PhysRevLett.98.034801 10.1063/1.2364259 10.1364/OL.30.001638 10.1364/JOSAA.23.001179 10.1364/JOSAA.4.000118 10.1103/PhysRevLett.101.090801 10.1038/nmat2400 10.1364/JOSAA.15.001662 10.1103/PhysRevA.79.023809 10.1103/PhysRevLett.102.018101 10.1038/nphoton.2008.154 10.1002/cyto.a.20616 10.1073/pnas.1000156107 10.1016/j.elspec.2008.10.008 10.1364/AO.21.002758 10.1364/OE.15.009954 10.1126/science.1158573 10.1038/nphys896 10.1038/nphys1129 10.1103/PhysRevLett.93.023903 10.1080/09500340.2010.495459 10.1126/science.256.5059.1009 10.1109/TUFFC.2003.1226547 10.1073/pnas.0905846107 10.1038/nature03139 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2010 Copyright Nature Publishing Group Dec 2010 |
Copyright_xml | – notice: Springer Nature Limited 2010 – notice: Copyright Nature Publishing Group Dec 2010 |
DBID | AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/nphoton.2010.240 |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student Aerospace Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics Biology |
EISSN | 1749-4893 |
EndPage | 839 |
ExternalDocumentID | 2380659761 10_1038_nphoton_2010_240 |
GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5BI 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NNMJJ O9- ODYON P2P P62 Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c344t-83309f8b7db5365e2f9bc0bdcab3e5d213d17a6e908f2c88a32721e2fd17ac743 |
IEDL.DBID | BENPR |
ISSN | 1749-4885 |
IngestDate | Fri Jul 11 09:10:21 EDT 2025 Wed Jul 16 16:01:33 EDT 2025 Tue Jul 01 02:34:11 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Fri Feb 21 02:42:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-83309f8b7db5365e2f9bc0bdcab3e5d213d17a6e908f2c88a32721e2fd17ac743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 873168530 |
PQPubID | 546300 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_880688097 proquest_journals_873168530 crossref_primary_10_1038_nphoton_2010_240 crossref_citationtrail_10_1038_nphoton_2010_240 springer_journals_10_1038_nphoton_2010_240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nature Photon |
PublicationYear | 2010 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | MiaoJWHigh resolution 3D X-ray diffraction microscopyPhys. Rev. Lett.2002890883032002PhRvL..89h8303M10.1103/PhysRevLett.89.088303 YunWBKirzJSayreDObservation of the soft X-ray diffraction pattern of a single diatomActa Crystallogr. A19874313113310.1107/S0108767387099744 MarchesiniSA unified evaluation of iterative projection algorithms for phase retrievalRev. Sci. Instrum.2007780113012007RScI...78a1301M10.1063/1.2403783 ChapmanHNPhase-retrieval X-ray microscopy by Wigner-distribution deconvolutionUltramicroscopy19966615317210.1016/S0304-3991(96)00084-8 Hau-RiegeSPLondonRAHuldtGChapmanHNPulse requirements for X-ray diffraction imaging of single biological moleculesPhys. Rev. E2005710619192005PhRvE..71f1919H10.1103/PhysRevE.71.061919 ElserVPhase retrieval by iterated projectionsJ. Opt. Soc. Am. A20032040552003OSAJ...20...40E10.1364/JOSAA.20.000040 ShapiroDBiological imaging by soft X-ray diffraction microscopyProc. Natl Acad. Sci. USA200510215343153462005PNAS..10215343S10.1073/pnas.0503305102 ChapmanHNFemtosecond diffractive imaging with a soft-X-ray free-electron laserNature Phys.200628398432006NatPh...2..839C10.1038/nphys461 BatesRHTFourier phase problems are uniquely solvable in more than one dimension: Underlying theoryOptik198261247262 RobinsonIKVartanyantsIAWilliamsGJPfeiferMAPitneyJAReconstruction of the shapes of gold nanocrystals using coherent X-ray diffractionPhys. Rev. Lett.200187191955052001PhRvL..87s5505R10.1103/PhysRevLett.87.195505 WilliamsGJQuineyHMPeeleAGNugentKACoherent diffractive imaging and partial coherencePhys. Rev. B2007751041022007PhRvB..75j4102W10.1103/PhysRevB.75.104102 MarchesiniSMassively parallel X-ray holographyNature Photon.2008256056310.1038/nphoton.2008.154 FienupJRPhase retrieval algorithms: A comparisonAppl. Opt.198221275827691982ApOpt..21.2758F10.1364/AO.21.002758 SakdinawatAAttwoodDNanoscale X-ray imagingNature Photon.201048408482010NaPho...4..840S10.1038/nphoton.2010.267 NishinoYTakahashiYImamotoNIshikawaTMaeshimaKThree-dimensional visualization of a human chromosome using coherent X-ray diffractionPhys. Rev. Lett.20091020181012009PhRvL.102a8101N10.1103/PhysRevLett.102.018101 Hau-RiegeSPSacrificial tamper slows down sample explosion in FLASH diffraction experimentsPhys. Rev. Lett.20101040648012010PhRvL.104f4801H10.1103/PhysRevLett.104.064801 BartyAThree-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanismsPhys. Rev. Lett.20081010555012008PhRvL.101e5501B10.1103/PhysRevLett.101.055501 FienupJRReconstruction of a complex-valued object from the modulus of its Fourier-transform using a support constraintJ. Opt. Soc. Am. A198741181231987OSAJ....4..118F10.1364/JOSAA.4.000118 SchlotterWFMultiple reference Fourier transform holography with soft X-raysAppl. Phys. Lett.2006891631122006ApPhL..89p3112S10.1063/1.2364259 SayreDImaging Processes and Coherence in Physics198022923510.1007/3-540-09727-9_82 FienupJRReconstruction of an object from modulus of its Fourier-transformOpt. Lett.1978327291978OptL....3...27F10.1364/OL.3.000027 WilliamsGJHigh-resolution X-ray imaging of Plasmodium falciparum-infected red blood cellsCytom. Part A200873A94995710.1002/cyto.a.20616 MiaoJWCharalambousPKirzJSayreDExtending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimensNature19994003423441999Natur.400..342M10.1038/22498 MiaoJWImaging whole Escherichia coli bacteria by using single-particle X-ray diffractionProc. Natl Acad. Sci. USA20031001101122003PNAS..100..110M10.1073/pnas.232691299 FungRShneersonVSaldinDKOurmazdAStructure from fleeting illumination of faint spinning objects in flightNature Phys.2009564672009NatPh...5...64F10.1038/nphys1129 NelsonJHigh-resolution X-ray diffraction microscopy of specifically labeled yeast cellsProc. Natl Acad. Sci. USA2010107723572392010PNAS..107.7235N10.1073/pnas.0910874107 HuangXJSoft X-ray diffraction microscopy of a frozen hydrated yeast cellPhys. Rev. Lett.20091031981012009PhRvL.103s8101H10.1103/PhysRevLett.103.198101 MiaoJSayreDChapmanHNPhase retrieval from the magnitude of the Fourier transforms of nonperiodic objectsJ. Opt. Soc. Am. A199815166216691998OSAJ...15.1662M10.1364/JOSAA.15.001662 McNultyIHigh-resolution imaging by Fourier-transform X-ray holographyScience1992256100910121992Sci...256.1009M10.1126/science.256.5059.1009 QuineyHMNugentKAPeeleAGIterative image reconstruction algorithms using wave-front intensity and phase variationOpt. Lett.200530163816402005OptL...30.1638Q10.1364/OL.30.001638 WhiteheadLWDiffractive imaging using partially coherent X-raysPhys. Rev. Lett.20091032439022009PhRvL.103x3902W10.1103/PhysRevLett.103.243902 SchroerCGCoherent X-ray diffraction imaging with nanofocused illuminationPhys. Rev. Lett.20081010908012008PhRvL.101i0801S10.1103/PhysRevLett.101.090801 DitmireTSpatial coherence measurement of soft X-ray radiation produced by high order harmonic generationPhys. Rev. Lett.199677475647591996PhRvL..77.4756D10.1103/PhysRevLett.77.4756 PittsTAGreenleafJFFresnel transform phase retrieval from magnitudeIEEE T. Ultrason. Ferr.2003501035104510.1109/TUFFC.2003.1226547 AbbeyBKeyhole coherent diffractive imagingNature Phys.200843943982008NatPh...4..394A10.1038/nphys896 ChenBMultiple wavelength diffractive imagingPhys. Rev. A2009790238092009PhRvA..79b3809C10.1103/PhysRevA.79.023809 GiewekemeyerKQuantitative biological imaging by ptychographic X-ray diffraction microscopyProc. Natl Acad. Sci. USA20101075295342010PNAS..107..529G10.1073/pnas.0905846107 WilliamsGJFresnel coherent diffractive imagingPhys. Rev. Lett.2006970255062006PhRvL..97b5506W10.1103/PhysRevLett.97.025506 LimaECryogenic X-ray diffraction microscopy for biological samplesPhys. Rev. Lett.20091031981022009PhRvL.103s8102L10.1103/PhysRevLett.103.198102 NugentKAPeeleAGQuineyHMChapmanHNDiffraction with wavefront curvature: A path to unique phase recoveryActa Crystallogr. A2005613733812005AcCrA..61..373N10.1107/S010876730501055X PfeiferMAWilliamsGJVartanyantsIAHarderRRobinsonIKThree-dimensional mapping of a deformation field inside a nanocrystalNature200644263662006Natur.442...63P10.1038/nature04867 EisebittSLensless imaging of magnetic nanostructures by X-ray spectro-holographyNature20044328858882004Natur.432..885E10.1038/nature03139 ThibaultPHigh-resolution scanning X-ray diffraction microscopyScience20083213793822008Sci...321..379T10.1126/science.1158573 MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B2003681401012003PhRvB..68n0101M10.1103/PhysRevB.68.140101 JiangHDQuantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopyProc. Natl Acad. Sci. USA201010711234112392010PNAS..10711234J10.1073/pnas.1000156107 JurekZOszlanyiGFaigelGImaging atom clusters by hard X-ray free-electron lasersEurophys. Lett.2004654914972004EL.....65..491J10.1209/epl/i2003-10119-x RodenburgJMHard-X-ray lensless imaging of extended objectsPhys. Rev. Lett.2007980348012007PhRvL..98c4801R10.1103/PhysRevLett.98.034801 FaulknerHMLRodenburgJMMovable aperture lensless transmission microscopy: A novel phase retrieval algorithmPhys. Rev. Lett.2004930239032004PhRvL..93b3903F10.1103/PhysRevLett.93.023903 HowellsMRAn assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopyJ. Electron Spectrosc.200917041210.1016/j.elspec.2008.10.008 RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNature Mater.200982912982009NatMa...8..291R10.1038/nmat2400 ChapmanHNHigh-resolution ab initio three-dimensional X-ray diffraction microscopyJ. Opt. Soc. Am. A200623117912002006OSAJ...23.1179C10.1364/JOSAA.23.001179 AbbeyBQuantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nmAppl. Phys. Lett.2008932141012008ApPhL..93u4101A10.1063/1.3025819 TakahashiYHigh-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused X-ray beamPhys. Rev. B2009800541032009PhRvB..80e4103T10.1103/PhysRevB.80.054103 SandbergRLLensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beamsPhys. Rev. Lett.2007990981032007PhRvL..99i8103S10.1103/PhysRevLett.99.098103 GerchbergRWSaxtonWOPractical algorithm for determination of phase from image and diffraction plane picturesOptik197235237246 Spence, J. C. H. & Doak, R. B. Single molecule diffraction. Phys. Rev. Lett.92 (2004). PodorovSGPavlovKMPaganinDMA non-iterative reconstruction method for direct and unambiguous coherent diffractive imagingOpt. Express200715995499622007OExpr..15.9954P10.1364/OE.15.009954 SayreDSome implications of a theorem due to ShannonActa Crystallogr.1952584384310.1107/S0365110X52002276 Guizar-SicairosMFienupJRHolography with extended reference by autocorrelation linear differential operationOpt. Express20071517592176122007OExpr..1517592G10.1364/OE.15.017592 HoppeWDiffraction in inhomogeneous primary wave fields: Principle of phase determination from electron diffraction interferenceActa Crystallogr. A1969254955011969AcCrA..25..495H10.1107/S0567739469001045 NugentKAPeeleAGChapmanHNMancusoAPUnique phase recovery for nonperiodic objectsPhys. Rev. Lett.2003912039022003PhRvL..91t3902N10.1103/PhysRevLett.91.203902 RodenburgJMBatesRHTThe theory of superresolution electron-microscopy via Wigner-distribution deconvolutionPhil. Trans. R. Soc. Lond. A19923395215531992RSPTA.339..521R10.1098/rsta.1992.0050 QuineyHMCoherent diffractive imaging using short wavelength light sources: A tutorial reviewJ. Mod. Opt.201057110911492010JMOp...57.1109Q274709510.1080/09500340.2010.495459 ZhuDLHigh-resolution X-ray lensless imaging by differential holographic encodingPhys. Rev. Lett.20101050439012010PhRvL.105d3901Z10.1103/PhysRevLett.105.043901 WilliamsGJPfeiferMAVartanyantsIARobinsonIKThree-dimensional imaging of microstructure in Au nanocrystalsPhys. Rev. Lett.2003901755012003PhRvL..90q5501W10.1103/PhysRevLett.90.175501 NeutzeRWoutsRvan der SpoelDWeckertEHajduJPotential for biomolecular imaging with femtosecond X-ray pulsesNature20004067527 TA Pitts (BFnphoton2010240_CR10) 2003; 50 J Nelson (BFnphoton2010240_CR30) 2010; 107 JR Fienup (BFnphoton2010240_CR5) 1978; 3 JM Rodenburg (BFnphoton2010240_CR50) 2007; 98 D Shapiro (BFnphoton2010240_CR33) 2005; 102 CG Schroer (BFnphoton2010240_CR26) 2008; 101 HM Quiney (BFnphoton2010240_CR16) 2010; 57 JR Fienup (BFnphoton2010240_CR13) 1982; 21 I McNulty (BFnphoton2010240_CR53) 1992; 256 SG Podorov (BFnphoton2010240_CR57) 2007; 15 MR Howells (BFnphoton2010240_CR11) 2009; 170 W Hoppe (BFnphoton2010240_CR20) 1969; 25 Y Nishino (BFnphoton2010240_CR37) 2009; 102 JW Miao (BFnphoton2010240_CR3) 1999; 400 JR Fienup (BFnphoton2010240_CR12) 1987; 4 I Robinson (BFnphoton2010240_CR46) 2009; 8 E Lima (BFnphoton2010240_CR35) 2009; 103 HN Chapman (BFnphoton2010240_CR48) 1996; 66 MA Pfeifer (BFnphoton2010240_CR45) 2006; 442 R Fung (BFnphoton2010240_CR65) 2009; 5 D Sayre (BFnphoton2010240_CR1) 1980 JW Miao (BFnphoton2010240_CR24) 2002; 89 WF Schlotter (BFnphoton2010240_CR55) 2006; 89 BFnphoton2010240_CR66 KA Nugent (BFnphoton2010240_CR21) 2003; 91 R Neutze (BFnphoton2010240_CR60) 2000; 406 J Miao (BFnphoton2010240_CR9) 1998; 15 HN Chapman (BFnphoton2010240_CR61) 2006; 2 S Marchesini (BFnphoton2010240_CR15) 2003; 68 JW Miao (BFnphoton2010240_CR29) 2003; 100 M Guizar-Sicairos (BFnphoton2010240_CR58) 2007; 15 GJ Williams (BFnphoton2010240_CR22) 2006; 97 B Abbey (BFnphoton2010240_CR28) 2008; 4 Y Takahashi (BFnphoton2010240_CR27) 2009; 80 LW Whitehead (BFnphoton2010240_CR19) 2009; 103 HN Chapman (BFnphoton2010240_CR25) 2006; 23 HD Jiang (BFnphoton2010240_CR31) 2010; 107 RHT Bates (BFnphoton2010240_CR7) 1982; 61 K Giewekemeyer (BFnphoton2010240_CR52) 2010; 107 P Thibault (BFnphoton2010240_CR51) 2008; 321 KA Nugent (BFnphoton2010240_CR8) 2005; 61 IK Robinson (BFnphoton2010240_CR43) 2001; 8719 V Elser (BFnphoton2010240_CR14) 2003; 20 S Eisebitt (BFnphoton2010240_CR54) 2004; 432 B Chen (BFnphoton2010240_CR42) 2009; 79 A Barty (BFnphoton2010240_CR38) 2008; 101 GJ Williams (BFnphoton2010240_CR18) 2007; 75 GJ Williams (BFnphoton2010240_CR36) 2008; 73A XJ Huang (BFnphoton2010240_CR34) 2009; 103 D Sayre (BFnphoton2010240_CR4) 1952; 5 S Marchesini (BFnphoton2010240_CR17) 2007; 78 WB Yun (BFnphoton2010240_CR2) 1987; 43 T Ditmire (BFnphoton2010240_CR40) 1996; 77 HML Faulkner (BFnphoton2010240_CR49) 2004; 93 JM Rodenburg (BFnphoton2010240_CR47) 1992; 339 HM Quiney (BFnphoton2010240_CR23) 2005; 30 A Sakdinawat (BFnphoton2010240_CR32) 2010; 4 SP Hau-Riege (BFnphoton2010240_CR62) 2010; 104 Z Jurek (BFnphoton2010240_CR64) 2004; 65 S Marchesini (BFnphoton2010240_CR56) 2008; 2 RW Gerchberg (BFnphoton2010240_CR6) 1972; 35 DL Zhu (BFnphoton2010240_CR59) 2010; 105 GJ Williams (BFnphoton2010240_CR44) 2003; 90 RL Sandberg (BFnphoton2010240_CR41) 2007; 99 SP Hau-Riege (BFnphoton2010240_CR63) 2005; 71 B Abbey (BFnphoton2010240_CR39) 2008; 93 |
References_xml | – reference: FienupJRReconstruction of an object from modulus of its Fourier-transformOpt. Lett.1978327291978OptL....3...27F10.1364/OL.3.000027 – reference: PfeiferMAWilliamsGJVartanyantsIAHarderRRobinsonIKThree-dimensional mapping of a deformation field inside a nanocrystalNature200644263662006Natur.442...63P10.1038/nature04867 – reference: SayreDImaging Processes and Coherence in Physics198022923510.1007/3-540-09727-9_82 – reference: FienupJRReconstruction of a complex-valued object from the modulus of its Fourier-transform using a support constraintJ. Opt. Soc. Am. A198741181231987OSAJ....4..118F10.1364/JOSAA.4.000118 – reference: PodorovSGPavlovKMPaganinDMA non-iterative reconstruction method for direct and unambiguous coherent diffractive imagingOpt. Express200715995499622007OExpr..15.9954P10.1364/OE.15.009954 – reference: NishinoYTakahashiYImamotoNIshikawaTMaeshimaKThree-dimensional visualization of a human chromosome using coherent X-ray diffractionPhys. Rev. Lett.20091020181012009PhRvL.102a8101N10.1103/PhysRevLett.102.018101 – reference: ChapmanHNPhase-retrieval X-ray microscopy by Wigner-distribution deconvolutionUltramicroscopy19966615317210.1016/S0304-3991(96)00084-8 – reference: WilliamsGJPfeiferMAVartanyantsIARobinsonIKThree-dimensional imaging of microstructure in Au nanocrystalsPhys. Rev. Lett.2003901755012003PhRvL..90q5501W10.1103/PhysRevLett.90.175501 – reference: MarchesiniSA unified evaluation of iterative projection algorithms for phase retrievalRev. Sci. Instrum.2007780113012007RScI...78a1301M10.1063/1.2403783 – reference: NugentKAPeeleAGChapmanHNMancusoAPUnique phase recovery for nonperiodic objectsPhys. Rev. Lett.2003912039022003PhRvL..91t3902N10.1103/PhysRevLett.91.203902 – reference: ShapiroDBiological imaging by soft X-ray diffraction microscopyProc. Natl Acad. Sci. USA200510215343153462005PNAS..10215343S10.1073/pnas.0503305102 – reference: WilliamsGJFresnel coherent diffractive imagingPhys. Rev. Lett.2006970255062006PhRvL..97b5506W10.1103/PhysRevLett.97.025506 – reference: RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNature Mater.200982912982009NatMa...8..291R10.1038/nmat2400 – reference: ElserVPhase retrieval by iterated projectionsJ. Opt. Soc. Am. A20032040552003OSAJ...20...40E10.1364/JOSAA.20.000040 – reference: BartyAThree-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanismsPhys. Rev. Lett.20081010555012008PhRvL.101e5501B10.1103/PhysRevLett.101.055501 – reference: SakdinawatAAttwoodDNanoscale X-ray imagingNature Photon.201048408482010NaPho...4..840S10.1038/nphoton.2010.267 – reference: Spence, J. C. H. & Doak, R. B. Single molecule diffraction. Phys. Rev. Lett.92 (2004). – reference: Hau-RiegeSPSacrificial tamper slows down sample explosion in FLASH diffraction experimentsPhys. Rev. Lett.20101040648012010PhRvL.104f4801H10.1103/PhysRevLett.104.064801 – reference: TakahashiYHigh-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused X-ray beamPhys. Rev. B2009800541032009PhRvB..80e4103T10.1103/PhysRevB.80.054103 – reference: SayreDSome implications of a theorem due to ShannonActa Crystallogr.1952584384310.1107/S0365110X52002276 – reference: NeutzeRWoutsRvan der SpoelDWeckertEHajduJPotential for biomolecular imaging with femtosecond X-ray pulsesNature20004067527572000Natur.406..752N10.1038/35021099 – reference: QuineyHMCoherent diffractive imaging using short wavelength light sources: A tutorial reviewJ. Mod. Opt.201057110911492010JMOp...57.1109Q274709510.1080/09500340.2010.495459 – reference: HowellsMRAn assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopyJ. Electron Spectrosc.200917041210.1016/j.elspec.2008.10.008 – reference: JiangHDQuantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopyProc. Natl Acad. Sci. USA201010711234112392010PNAS..10711234J10.1073/pnas.1000156107 – reference: McNultyIHigh-resolution imaging by Fourier-transform X-ray holographyScience1992256100910121992Sci...256.1009M10.1126/science.256.5059.1009 – reference: ChenBMultiple wavelength diffractive imagingPhys. Rev. A2009790238092009PhRvA..79b3809C10.1103/PhysRevA.79.023809 – reference: PittsTAGreenleafJFFresnel transform phase retrieval from magnitudeIEEE T. Ultrason. Ferr.2003501035104510.1109/TUFFC.2003.1226547 – reference: SandbergRLLensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beamsPhys. Rev. Lett.2007990981032007PhRvL..99i8103S10.1103/PhysRevLett.99.098103 – reference: AbbeyBKeyhole coherent diffractive imagingNature Phys.200843943982008NatPh...4..394A10.1038/nphys896 – reference: RodenburgJMBatesRHTThe theory of superresolution electron-microscopy via Wigner-distribution deconvolutionPhil. Trans. R. Soc. Lond. A19923395215531992RSPTA.339..521R10.1098/rsta.1992.0050 – reference: FungRShneersonVSaldinDKOurmazdAStructure from fleeting illumination of faint spinning objects in flightNature Phys.2009564672009NatPh...5...64F10.1038/nphys1129 – reference: ChapmanHNFemtosecond diffractive imaging with a soft-X-ray free-electron laserNature Phys.200628398432006NatPh...2..839C10.1038/nphys461 – reference: DitmireTSpatial coherence measurement of soft X-ray radiation produced by high order harmonic generationPhys. Rev. Lett.199677475647591996PhRvL..77.4756D10.1103/PhysRevLett.77.4756 – reference: BatesRHTFourier phase problems are uniquely solvable in more than one dimension: Underlying theoryOptik198261247262 – reference: NelsonJHigh-resolution X-ray diffraction microscopy of specifically labeled yeast cellsProc. Natl Acad. Sci. USA2010107723572392010PNAS..107.7235N10.1073/pnas.0910874107 – reference: EisebittSLensless imaging of magnetic nanostructures by X-ray spectro-holographyNature20044328858882004Natur.432..885E10.1038/nature03139 – reference: WhiteheadLWDiffractive imaging using partially coherent X-raysPhys. Rev. Lett.20091032439022009PhRvL.103x3902W10.1103/PhysRevLett.103.243902 – reference: LimaECryogenic X-ray diffraction microscopy for biological samplesPhys. Rev. Lett.20091031981022009PhRvL.103s8102L10.1103/PhysRevLett.103.198102 – reference: RobinsonIKVartanyantsIAWilliamsGJPfeiferMAPitneyJAReconstruction of the shapes of gold nanocrystals using coherent X-ray diffractionPhys. Rev. Lett.200187191955052001PhRvL..87s5505R10.1103/PhysRevLett.87.195505 – reference: MiaoJWCharalambousPKirzJSayreDExtending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimensNature19994003423441999Natur.400..342M10.1038/22498 – reference: FienupJRPhase retrieval algorithms: A comparisonAppl. Opt.198221275827691982ApOpt..21.2758F10.1364/AO.21.002758 – reference: GiewekemeyerKQuantitative biological imaging by ptychographic X-ray diffraction microscopyProc. Natl Acad. Sci. USA20101075295342010PNAS..107..529G10.1073/pnas.0905846107 – reference: SchroerCGCoherent X-ray diffraction imaging with nanofocused illuminationPhys. Rev. Lett.20081010908012008PhRvL.101i0801S10.1103/PhysRevLett.101.090801 – reference: HuangXJSoft X-ray diffraction microscopy of a frozen hydrated yeast cellPhys. Rev. Lett.20091031981012009PhRvL.103s8101H10.1103/PhysRevLett.103.198101 – reference: MarchesiniSMassively parallel X-ray holographyNature Photon.2008256056310.1038/nphoton.2008.154 – reference: WilliamsGJHigh-resolution X-ray imaging of Plasmodium falciparum-infected red blood cellsCytom. Part A200873A94995710.1002/cyto.a.20616 – reference: MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B2003681401012003PhRvB..68n0101M10.1103/PhysRevB.68.140101 – reference: GerchbergRWSaxtonWOPractical algorithm for determination of phase from image and diffraction plane picturesOptik197235237246 – reference: JurekZOszlanyiGFaigelGImaging atom clusters by hard X-ray free-electron lasersEurophys. Lett.2004654914972004EL.....65..491J10.1209/epl/i2003-10119-x – reference: YunWBKirzJSayreDObservation of the soft X-ray diffraction pattern of a single diatomActa Crystallogr. A19874313113310.1107/S0108767387099744 – reference: HoppeWDiffraction in inhomogeneous primary wave fields: Principle of phase determination from electron diffraction interferenceActa Crystallogr. A1969254955011969AcCrA..25..495H10.1107/S0567739469001045 – reference: MiaoJWHigh resolution 3D X-ray diffraction microscopyPhys. Rev. Lett.2002890883032002PhRvL..89h8303M10.1103/PhysRevLett.89.088303 – reference: MiaoJWImaging whole Escherichia coli bacteria by using single-particle X-ray diffractionProc. Natl Acad. Sci. USA20031001101122003PNAS..100..110M10.1073/pnas.232691299 – reference: RodenburgJMHard-X-ray lensless imaging of extended objectsPhys. Rev. Lett.2007980348012007PhRvL..98c4801R10.1103/PhysRevLett.98.034801 – reference: MiaoJSayreDChapmanHNPhase retrieval from the magnitude of the Fourier transforms of nonperiodic objectsJ. Opt. Soc. Am. A199815166216691998OSAJ...15.1662M10.1364/JOSAA.15.001662 – reference: Guizar-SicairosMFienupJRHolography with extended reference by autocorrelation linear differential operationOpt. Express20071517592176122007OExpr..1517592G10.1364/OE.15.017592 – reference: ThibaultPHigh-resolution scanning X-ray diffraction microscopyScience20083213793822008Sci...321..379T10.1126/science.1158573 – reference: SchlotterWFMultiple reference Fourier transform holography with soft X-raysAppl. Phys. Lett.2006891631122006ApPhL..89p3112S10.1063/1.2364259 – reference: QuineyHMNugentKAPeeleAGIterative image reconstruction algorithms using wave-front intensity and phase variationOpt. Lett.200530163816402005OptL...30.1638Q10.1364/OL.30.001638 – reference: NugentKAPeeleAGQuineyHMChapmanHNDiffraction with wavefront curvature: A path to unique phase recoveryActa Crystallogr. A2005613733812005AcCrA..61..373N10.1107/S010876730501055X – reference: ChapmanHNHigh-resolution ab initio three-dimensional X-ray diffraction microscopyJ. Opt. Soc. Am. A200623117912002006OSAJ...23.1179C10.1364/JOSAA.23.001179 – reference: AbbeyBQuantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nmAppl. Phys. Lett.2008932141012008ApPhL..93u4101A10.1063/1.3025819 – reference: FaulknerHMLRodenburgJMMovable aperture lensless transmission microscopy: A novel phase retrieval algorithmPhys. Rev. Lett.2004930239032004PhRvL..93b3903F10.1103/PhysRevLett.93.023903 – reference: WilliamsGJQuineyHMPeeleAGNugentKACoherent diffractive imaging and partial coherencePhys. Rev. B2007751041022007PhRvB..75j4102W10.1103/PhysRevB.75.104102 – reference: Hau-RiegeSPLondonRAHuldtGChapmanHNPulse requirements for X-ray diffraction imaging of single biological moleculesPhys. Rev. E2005710619192005PhRvE..71f1919H10.1103/PhysRevE.71.061919 – reference: ZhuDLHigh-resolution X-ray lensless imaging by differential holographic encodingPhys. Rev. Lett.20101050439012010PhRvL.105d3901Z10.1103/PhysRevLett.105.043901 – ident: BFnphoton2010240_CR66 doi: 10.1103/PhysRevLett.92.198102 – volume: 15 start-page: 17592 year: 2007 ident: BFnphoton2010240_CR58 publication-title: Opt. Express doi: 10.1364/OE.15.017592 – volume: 104 start-page: 064801 year: 2010 ident: BFnphoton2010240_CR62 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.064801 – volume: 43 start-page: 131 year: 1987 ident: BFnphoton2010240_CR2 publication-title: Acta Crystallogr. A doi: 10.1107/S0108767387099744 – volume: 3 start-page: 27 year: 1978 ident: BFnphoton2010240_CR5 publication-title: Opt. Lett. doi: 10.1364/OL.3.000027 – volume: 100 start-page: 110 year: 2003 ident: BFnphoton2010240_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.232691299 – volume: 89 start-page: 088303 year: 2002 ident: BFnphoton2010240_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.088303 – volume: 107 start-page: 7235 year: 2010 ident: BFnphoton2010240_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0910874107 – volume: 91 start-page: 203902 year: 2003 ident: BFnphoton2010240_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.203902 – volume: 71 start-page: 061919 year: 2005 ident: BFnphoton2010240_CR63 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.061919 – volume: 97 start-page: 025506 year: 2006 ident: BFnphoton2010240_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.025506 – volume: 75 start-page: 104102 year: 2007 ident: BFnphoton2010240_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.104102 – volume: 61 start-page: 247 year: 1982 ident: BFnphoton2010240_CR7 publication-title: Optik – volume: 5 start-page: 843 year: 1952 ident: BFnphoton2010240_CR4 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X52002276 – volume: 35 start-page: 237 year: 1972 ident: BFnphoton2010240_CR6 publication-title: Optik – volume: 65 start-page: 491 year: 2004 ident: BFnphoton2010240_CR64 publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-10119-x – volume: 66 start-page: 153 year: 1996 ident: BFnphoton2010240_CR48 publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(96)00084-8 – volume: 400 start-page: 342 year: 1999 ident: BFnphoton2010240_CR3 publication-title: Nature doi: 10.1038/22498 – volume: 80 start-page: 054103 year: 2009 ident: BFnphoton2010240_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.054103 – volume: 4 start-page: 840 year: 2010 ident: BFnphoton2010240_CR32 publication-title: Nature Photon. doi: 10.1038/nphoton.2010.267 – volume: 103 start-page: 198101 year: 2009 ident: BFnphoton2010240_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.198101 – volume: 8719 start-page: 195505 year: 2001 ident: BFnphoton2010240_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.195505 – volume: 406 start-page: 752 year: 2000 ident: BFnphoton2010240_CR60 publication-title: Nature doi: 10.1038/35021099 – volume: 61 start-page: 373 year: 2005 ident: BFnphoton2010240_CR8 publication-title: Acta Crystallogr. A doi: 10.1107/S010876730501055X – volume: 25 start-page: 495 year: 1969 ident: BFnphoton2010240_CR20 publication-title: Acta Crystallogr. A doi: 10.1107/S0567739469001045 – volume: 105 start-page: 043901 year: 2010 ident: BFnphoton2010240_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.043901 – volume: 339 start-page: 521 year: 1992 ident: BFnphoton2010240_CR47 publication-title: Phil. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1992.0050 – start-page: 229 volume-title: Imaging Processes and Coherence in Physics year: 1980 ident: BFnphoton2010240_CR1 doi: 10.1007/3-540-09727-9_82 – volume: 442 start-page: 63 year: 2006 ident: BFnphoton2010240_CR45 publication-title: Nature doi: 10.1038/nature04867 – volume: 2 start-page: 839 year: 2006 ident: BFnphoton2010240_CR61 publication-title: Nature Phys. doi: 10.1038/nphys461 – volume: 102 start-page: 15343 year: 2005 ident: BFnphoton2010240_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0503305102 – volume: 68 start-page: 140101 year: 2003 ident: BFnphoton2010240_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.140101 – volume: 90 start-page: 175501 year: 2003 ident: BFnphoton2010240_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.175501 – volume: 78 start-page: 011301 year: 2007 ident: BFnphoton2010240_CR17 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2403783 – volume: 20 start-page: 40 year: 2003 ident: BFnphoton2010240_CR14 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.20.000040 – volume: 99 start-page: 098103 year: 2007 ident: BFnphoton2010240_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.098103 – volume: 101 start-page: 055501 year: 2008 ident: BFnphoton2010240_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.055501 – volume: 93 start-page: 214101 year: 2008 ident: BFnphoton2010240_CR39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3025819 – volume: 103 start-page: 243902 year: 2009 ident: BFnphoton2010240_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.243902 – volume: 103 start-page: 198102 year: 2009 ident: BFnphoton2010240_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.198102 – volume: 77 start-page: 4756 year: 1996 ident: BFnphoton2010240_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.4756 – volume: 98 start-page: 034801 year: 2007 ident: BFnphoton2010240_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.034801 – volume: 89 start-page: 163112 year: 2006 ident: BFnphoton2010240_CR55 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2364259 – volume: 30 start-page: 1638 year: 2005 ident: BFnphoton2010240_CR23 publication-title: Opt. Lett. doi: 10.1364/OL.30.001638 – volume: 23 start-page: 1179 year: 2006 ident: BFnphoton2010240_CR25 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.23.001179 – volume: 4 start-page: 118 year: 1987 ident: BFnphoton2010240_CR12 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.4.000118 – volume: 101 start-page: 090801 year: 2008 ident: BFnphoton2010240_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.090801 – volume: 8 start-page: 291 year: 2009 ident: BFnphoton2010240_CR46 publication-title: Nature Mater. doi: 10.1038/nmat2400 – volume: 15 start-page: 1662 year: 1998 ident: BFnphoton2010240_CR9 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.15.001662 – volume: 79 start-page: 023809 year: 2009 ident: BFnphoton2010240_CR42 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.023809 – volume: 102 start-page: 018101 year: 2009 ident: BFnphoton2010240_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.018101 – volume: 2 start-page: 560 year: 2008 ident: BFnphoton2010240_CR56 publication-title: Nature Photon. doi: 10.1038/nphoton.2008.154 – volume: 73A start-page: 949 year: 2008 ident: BFnphoton2010240_CR36 publication-title: Cytom. Part A doi: 10.1002/cyto.a.20616 – volume: 107 start-page: 11234 year: 2010 ident: BFnphoton2010240_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1000156107 – volume: 170 start-page: 4 year: 2009 ident: BFnphoton2010240_CR11 publication-title: J. Electron Spectrosc. doi: 10.1016/j.elspec.2008.10.008 – volume: 21 start-page: 2758 year: 1982 ident: BFnphoton2010240_CR13 publication-title: Appl. Opt. doi: 10.1364/AO.21.002758 – volume: 15 start-page: 9954 year: 2007 ident: BFnphoton2010240_CR57 publication-title: Opt. Express doi: 10.1364/OE.15.009954 – volume: 321 start-page: 379 year: 2008 ident: BFnphoton2010240_CR51 publication-title: Science doi: 10.1126/science.1158573 – volume: 4 start-page: 394 year: 2008 ident: BFnphoton2010240_CR28 publication-title: Nature Phys. doi: 10.1038/nphys896 – volume: 5 start-page: 64 year: 2009 ident: BFnphoton2010240_CR65 publication-title: Nature Phys. doi: 10.1038/nphys1129 – volume: 93 start-page: 023903 year: 2004 ident: BFnphoton2010240_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.023903 – volume: 57 start-page: 1109 year: 2010 ident: BFnphoton2010240_CR16 publication-title: J. Mod. Opt. doi: 10.1080/09500340.2010.495459 – volume: 256 start-page: 1009 year: 1992 ident: BFnphoton2010240_CR53 publication-title: Science doi: 10.1126/science.256.5059.1009 – volume: 50 start-page: 1035 year: 2003 ident: BFnphoton2010240_CR10 publication-title: IEEE T. Ultrason. Ferr. doi: 10.1109/TUFFC.2003.1226547 – volume: 107 start-page: 529 year: 2010 ident: BFnphoton2010240_CR52 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905846107 – volume: 432 start-page: 885 year: 2004 ident: BFnphoton2010240_CR54 publication-title: Nature doi: 10.1038/nature03139 |
SSID | ssj0053922 |
Score | 2.5381334 |
SecondaryResourceType | review_article |
Snippet | Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 833 |
SubjectTerms | 639/624/1020/1087 639/624/1107/510 639/624/400/1106 Applied and Technical Physics Biology Coherence Free electron lasers Imaging Lasers Materials science Optics Photonics Physics Physics and Astronomy Quantum Physics review-article Spatial resolution X-rays |
Title | Coherent lensless X-ray imaging |
URI | https://link.springer.com/article/10.1038/nphoton.2010.240 https://www.proquest.com/docview/873168530 https://www.proquest.com/docview/880688097 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuHjx2zhR3MGLJg1bu7L2ZEBBYiIxRhJuy_qxaIID-Tj439uODoyJXLd2zd5r3_u17_X9AK7DSEmZcY4EwwJFPNSI8VCiiKgwkyGPM2HvDj8PWv1h9DSiI5ebM3dplaVNLAy1mkh7Rt5kBcUSJcHd9AtZ0igbXHUMGhWoGQvMzN6r1ukOXl5LU0yN88erG5EcmZlKXZwyIKyZT98nBl2tkruwPfv47Zc2YPNPfLRwO70D2HN40W-vFHwIOzo_gn2HHX23MufHcGXvWdhKS75xI_OxsV_-CM3Sb__js-AhOoFhr_t230eO_ABJEkULxAgJeMZErAQlLapxxoUMhJKpIJoqHBphxmlL84BlWDKWEmw2c6aZfSwNLjiFaj7J9Rn4WpFQB5JhbcAPTVWqdChsLTcuFcYq8qBZ_noiXWVwS1AxTooINWGJE1ZihZUYYXlws-4xXVXF2NK2Xkozcetjnqy16YG_fmsmto1WpLmeLE0TZvlwAh57cFvqYPOB_0Y73zpaHXbxOh3lAqqL2VJfGlCxEA2osN5jA2rtzkOn13AT6QfXBc6x |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjigFmgMcQLKa2ElrHxBCQGkp9ESl3kK8RCCVtHQR4qP4R8ZZCkKiN66JY8fj2ezxzAM49nytVCwEkZxK4gvPEC48RXymvVh5oh5Lmzv80Kk1u_5dL-gtwGeRC2OvVRY6MVXUeqDsGXmVpxBLAXMvhm_EgkbZ4GqBoJFxRdt8vOOObXzeusblPaG0cfN41SQ5qABRzPcnhOMGXsRc1rUMWC0wNBZSuVKrSDITaOrhT9ajmhEuj6niPGIUN0nYzD5WaG-x30VY9hkTVqB447ZQ_AG6GjTLvxQE5SLIo6Iu49Vk-DxAXy67SkbtSctPK_jt2v6KxqZGrrEBa7l36lxm7LQJCybZgvXcU3VyPTDehorN6rB1nRw0WuM-akunR0bRh_PymqIe7UD3X6iyC0vJIDF74BjNPOMqTg26WkGkI208aSvHCaUp1X4JqsXUQ5XXIbdwGP0wjYczHubECi2xQiRWCU5nXwyzGhxz2pYLaoa5NI7DGe-UwJm9RTGysZEoMYMpNuEWfccV9RKcFWvw3cFfo-3PHa0CK83Hh_vwvtVpl2GVzi7CHMDSZDQ1h-jOTORRykQOPP03134BGIIIZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BfHiW1yfPehBIWybtNvkIOJr8bmIKOytNo-isHZXd0X8af47J226iqA3r22atpPJzDeZF8BWEGqlMiGI5FSSUASGcBEoEjIdZCoQcSZt7vBVu3l6F553os4YfFS5MDasspKJhaDWPWXPyBu8aLEUMb-RuaiI6-PWfv-Z2AZS1tFaddMoOeTCvL-h9TbYOzvGpd6mtHVye3RKXIMBolgYDglHY15kXMZaRqwZGZoJqXypVSqZiTQN8IPjtGmEzzOqOE8ZRYMJh9nLCnUvzjsOEzEaRX4NJg5P2tc3lRqIEHjQMhtTENwlkfOR-ow38v5DD5FdGVhG7bnLd534BXR_-GYLldeahWmHVb2DkrnmYMzk8zDjcKvnpMJgATZtjoet8uShCht0UXZ6HfKSvnuPT0UPpEW4-xe6LEEt7-VmGTyjWWB8xalB4BWlOtUmkLaOnFCaUh3WoVH9eqJcVXLbHKObFN5xxhNHrMQSK0Fi1WFn9ES_rMjxx9jVipqJ25uDZMRJdfBGd3FTWU9JmpveKw7hthePL-I67FZr8DXBb29b-fNtmzCJHJtcnrUvVmGKjqJi1qA2fHk164hthnLDcZEH9__NuJ-lRA32 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+lensless+X-ray+imaging&rft.jtitle=Nature+photonics&rft.au=Chapman%2C+Henry+N&rft.au=Nugent%2C+Keith+A&rft.date=2010-12-01&rft.issn=1749-4885&rft.volume=4&rft.issue=12&rft.spage=833&rft.epage=839&rft_id=info:doi/10.1038%2Fnphoton.2010.240&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |