Coherent lensless X-ray imaging

Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is a...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 4; no. 12; pp. 833 - 839
Main Authors Chapman, Henry N., Nugent, Keith A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is able to circumvent this limitation. A number of classes of lensless X-ray imaging have been developed so far, with many based on other forms of optics. Here we report the key progress in this area, describe the potential applications for biology and materials science, and discuss the prospect for imaging single molecules using X-ray free-electron lasers.
AbstractList Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is limited by the manufacturing quality of the X-ray optics. More recently, lensless X-ray imaging has emerged as a powerful approach that is able to circumvent this limitation. A number of classes of lensless X-ray imaging have been developed so far, with many based on other forms of optics. Here we report the key progress in this area, describe the potential applications for biology and materials science, and discuss the prospect for imaging single molecules using X-ray free-electron lasers.
Author Chapman, Henry N.
Nugent, Keith A.
Author_xml – sequence: 1
  givenname: Henry N.
  surname: Chapman
  fullname: Chapman, Henry N.
  organization: Centre for Free Electron Laser Science, DESY and University of Hamburg
– sequence: 2
  givenname: Keith A.
  surname: Nugent
  fullname: Nugent, Keith A.
  email: keithan@unimelb.edu.au
  organization: ARC Centre of Excellence for Coherent X-ray Science, School of Physics, the University of Melbourne
BookMark eNp9kE1LAzEQhoNUsK3evVm8eNqaj91NcpTiFxS8KHgL2ezsdss2qUl66L83ZYtCQQ8hYXiezMw7QSPrLCB0TfCcYCbu7XblorNzilOF5vgMjQnPZZYLyUY_b1FcoEkIa4wLJikdo5uFW4EHG2c92NBDCLPPzOv9rNvotrPtJTpvdB_g6nhP0cfT4_viJVu-Pb8uHpaZYXkeM8EYlo2oeF0VrCyANrIyuKqNrhgUNSWsJlyXILFoqBFCM8opSdihbHjOpuhu-Hfr3dcOQlSbLhjoe23B7YISApfpSJ7I2xNy7XbepuGU4IyUomA4QXiAjHcheGjU1qeN_F4RrA55qWNe6pCXSnklpTxRTBd17JyNXnf9fyIZxJB62Bb870B_Ot8Rg4Mw
CitedBy_id crossref_primary_10_1002_jbio_201800335
crossref_primary_10_1103_PhysRevLett_113_064801
crossref_primary_10_1117_1_OE_59_10_104105
crossref_primary_10_1364_OE_22_011930
crossref_primary_10_1364_OE_23_016429
crossref_primary_10_1107_S1600576716012279
crossref_primary_10_1364_AO_54_005992
crossref_primary_10_1109_TCI_2022_3204401
crossref_primary_10_1038_s41598_022_09430_3
crossref_primary_10_1088_2040_8978_14_8_083002
crossref_primary_10_1103_PhysRevA_96_013827
crossref_primary_10_1364_OE_418449
crossref_primary_10_1088_0953_4075_49_24_244001
crossref_primary_10_1002_adma_202305549
crossref_primary_10_1016_j_matdes_2020_108551
crossref_primary_10_1016_j_bpj_2014_07_028
crossref_primary_10_1039_C3AN01939J
crossref_primary_10_1088_0022_3727_49_36_363001
crossref_primary_10_1364_OE_23_025034
crossref_primary_10_1126_sciadv_aax4530
crossref_primary_10_1002_advs_202310075
crossref_primary_10_1017_S0033583516000147
crossref_primary_10_1364_OE_443622
crossref_primary_10_1002_admi_202400534
crossref_primary_10_1016_j_optlastec_2024_112374
crossref_primary_10_1038_s41586_024_08278_z
crossref_primary_10_1039_D1CP01994E
crossref_primary_10_1364_AO_58_003564
crossref_primary_10_1038_s41377_020_0289_9
crossref_primary_10_3390_ai3020017
crossref_primary_10_1103_PhysRevB_83_214109
crossref_primary_10_1007_s10043_024_00881_9
crossref_primary_10_3938_jkps_70_849
crossref_primary_10_1364_OL_421232
crossref_primary_10_1109_TSP_2013_2239994
crossref_primary_10_1364_OL_38_001461
crossref_primary_10_15248_proc_1_415
crossref_primary_10_1088_1361_6633_80_1_016101
crossref_primary_10_1364_OE_25_008593
crossref_primary_10_1088_1361_6633_aad1a7
crossref_primary_10_1038_s41566_017_0072_5
crossref_primary_10_1364_OE_397421
crossref_primary_10_1038_s41467_022_32373_2
crossref_primary_10_1088_1361_6420_ab6504
crossref_primary_10_1364_AO_52_000509
crossref_primary_10_1107_S1600577521012200
crossref_primary_10_1063_1_4942105
crossref_primary_10_1063_1_4900982
crossref_primary_10_1038_s41598_024_67972_0
crossref_primary_10_1364_OL_534585
crossref_primary_10_2184_lsj_50_8_447
crossref_primary_10_1007_s11837_013_0699_8
crossref_primary_10_1016_j_ultramic_2022_113591
crossref_primary_10_1063_1_5133154
crossref_primary_10_1038_s43246_020_0021_6
crossref_primary_10_1137_23M1570971
crossref_primary_10_1364_OSAC_2_002948
crossref_primary_10_1364_OL_495706
crossref_primary_10_1016_j_cocis_2011_07_001
crossref_primary_10_1088_0953_8984_28_49_493001
crossref_primary_10_1038_nmat3289
crossref_primary_10_1364_OE_380056
crossref_primary_10_1364_OE_403147
crossref_primary_10_1364_OE_27_003284
crossref_primary_10_1088_1748_0221_20_01_C01032
crossref_primary_10_1364_OE_433507
crossref_primary_10_1116_1_4966654
crossref_primary_10_1002_adma_201304837
crossref_primary_10_1016_j_physrep_2011_07_002
crossref_primary_10_1080_01490451_2014_908982
crossref_primary_10_1103_PhysRevB_91_214114
crossref_primary_10_1134_S102745102470037X
crossref_primary_10_1109_TAP_2013_2278478
crossref_primary_10_1103_PhysRevA_85_023409
crossref_primary_10_1016_j_pquantelec_2013_05_001
crossref_primary_10_3390_app122211436
crossref_primary_10_1063_5_0053291
crossref_primary_10_1063_1_4828656
crossref_primary_10_1088_1361_6455_ac04c4
crossref_primary_10_3151_jact_21_573
crossref_primary_10_1002_appl_202300016
crossref_primary_10_1038_s41598_017_14586_4
crossref_primary_10_1088_1367_2630_ad5d84
crossref_primary_10_1107_S2052252515015523
crossref_primary_10_1364_OE_20_019050
crossref_primary_10_1364_AO_54_005303
crossref_primary_10_1364_OPTICA_4_000903
crossref_primary_10_1103_PhysRevLett_117_027401
crossref_primary_10_1016_j_optcom_2017_12_070
crossref_primary_10_1364_OE_25_024991
crossref_primary_10_1107_S1600577513025629
crossref_primary_10_3390_qubs2010003
crossref_primary_10_1038_s41566_018_0110_y
crossref_primary_10_1364_JOSAA_33_001181
crossref_primary_10_1063_5_0225480
crossref_primary_10_1107_S1600576719004394
crossref_primary_10_1016_j_optcom_2021_127541
crossref_primary_10_1364_OE_25_014822
crossref_primary_10_1088_2040_8986_ad4cff
crossref_primary_10_1126_sciadv_aav0282
crossref_primary_10_1093_jmicro_dfx013
crossref_primary_10_1039_c2sm00032f
crossref_primary_10_1038_s41524_023_00966_0
crossref_primary_10_1073_pnas_2122793119
crossref_primary_10_1016_j_sab_2016_01_002
crossref_primary_10_1088_2040_8986_ad40bf
crossref_primary_10_1364_OE_26_030128
crossref_primary_10_1007_s10577_021_09660_7
crossref_primary_10_1088_0953_4075_49_11_112001
crossref_primary_10_1364_OPTICA_393014
crossref_primary_10_1063_1_4824192
crossref_primary_10_1103_PhysRevResearch_5_L042019
crossref_primary_10_1007_s13204_018_0703_2
crossref_primary_10_1080_00107514_2011_589662
crossref_primary_10_1017_S1431927618013235
crossref_primary_10_3788_CJL231533
crossref_primary_10_1364_OE_24_016835
crossref_primary_10_1107_S1600577523000887
crossref_primary_10_1021_acs_nanolett_6b04652
crossref_primary_10_1038_srep07356
crossref_primary_10_1107_S0909049511016335
crossref_primary_10_1002_adfm_202401017
crossref_primary_10_1038_s41377_024_01581_4
crossref_primary_10_1039_C4FD00156G
crossref_primary_10_1063_1_4971414
crossref_primary_10_1364_JOSAA_36_000D62
crossref_primary_10_1016_j_sbi_2017_07_008
crossref_primary_10_1038_s42005_023_01195_z
crossref_primary_10_1002_ppsc_201300033
crossref_primary_10_1016_j_eng_2020_06_019
crossref_primary_10_1063_1_4919074
crossref_primary_10_1364_AO_56_004029
crossref_primary_10_1038_nmeth_2114
crossref_primary_10_1364_OE_27_002792
crossref_primary_10_1038_nphoton_2012_178
crossref_primary_10_1088_2040_8986_acb830
crossref_primary_10_1038_s41377_022_00758_z
crossref_primary_10_1107_S1600577514013046
crossref_primary_10_1364_OE_465397
crossref_primary_10_30970_jps_28_4401
crossref_primary_10_1088_1742_6596_784_1_012039
crossref_primary_10_1107_S1600577514015343
crossref_primary_10_1364_OE_21_021970
crossref_primary_10_1364_OE_22_005528
crossref_primary_10_1016_j_cemconres_2019_105824
crossref_primary_10_1016_j_optlaseng_2024_108295
crossref_primary_10_1038_s41566_020_0660_7
crossref_primary_10_1364_OE_19_021333
crossref_primary_10_1107_S1600577514006857
crossref_primary_10_1002_adma_201704556
crossref_primary_10_1186_s41476_016_0027_3
crossref_primary_10_22490_24629448_6576
crossref_primary_10_1088_2051_672X_4_2_023003
crossref_primary_10_1364_OE_20_018287
crossref_primary_10_1088_1367_2630_ad8eeb
crossref_primary_10_1038_nphoton_2011_125
crossref_primary_10_1364_OE_19_024718
crossref_primary_10_1080_00107514_2016_1265771
crossref_primary_10_1088_1361_648X_ac0194
crossref_primary_10_1364_OE_21_009959
crossref_primary_10_1107_S1600577515005524
crossref_primary_10_1038_ncomms4798
crossref_primary_10_1364_OPTICA_522380
crossref_primary_10_1016_j_ultramic_2020_112990
crossref_primary_10_1107_S1600577523004897
crossref_primary_10_1038_srep13436
crossref_primary_10_1126_sciadv_ade5839
crossref_primary_10_1007_s10043_023_00835_7
crossref_primary_10_1364_OE_24_001840
crossref_primary_10_1155_2016_9853714
crossref_primary_10_1364_OE_22_025397
crossref_primary_10_1364_OE_432130
crossref_primary_10_1063_1_4807157
crossref_primary_10_1107_S1600576720010778
crossref_primary_10_1364_JOSAA_414276
crossref_primary_10_1103_PhysRevA_86_033411
crossref_primary_10_1038_s41524_025_01549_x
crossref_primary_10_1103_PhysRevA_98_053425
crossref_primary_10_1038_s41467_018_06166_5
crossref_primary_10_1364_OE_509985
crossref_primary_10_1088_1742_6596_463_1_012039
crossref_primary_10_1103_PhysRevE_110_054407
crossref_primary_10_3154_jvs_40_159_26
crossref_primary_10_1103_PhysRevLett_110_098103
crossref_primary_10_1016_j_msec_2017_08_048
crossref_primary_10_1371_journal_pone_0131401
crossref_primary_10_1103_PhysRevB_86_235401
crossref_primary_10_1107_S160057752100477X
crossref_primary_10_1016_j_optcom_2020_125904
crossref_primary_10_1007_s11814_024_00327_7
crossref_primary_10_1017_S1431927618012679
crossref_primary_10_1364_OE_490140
crossref_primary_10_1038_s41467_017_00287_z
crossref_primary_10_1038_s41598_018_28269_1
crossref_primary_10_1016_j_elspec_2023_147340
crossref_primary_10_1088_0953_8984_28_40_403002
crossref_primary_10_1364_AO_57_006527
crossref_primary_10_1063_1_4958887
crossref_primary_10_1107_S1600576722007361
crossref_primary_10_1107_S2052252524006298
crossref_primary_10_1103_PhysRevA_92_023848
crossref_primary_10_1080_08940886_2013_771061
crossref_primary_10_1364_OE_553755
crossref_primary_10_1038_srep01307
crossref_primary_10_1364_OL_537792
crossref_primary_10_1364_OSAC_2_003141
crossref_primary_10_1146_annurev_physchem_042018_052744
crossref_primary_10_1080_08940886_2013_771069
crossref_primary_10_1038_srep10374
crossref_primary_10_1002_adfm_201403409
crossref_primary_10_1063_1_4933297
crossref_primary_10_1016_j_coche_2016_01_006
crossref_primary_10_1364_AO_59_001363
crossref_primary_10_1021_nl303201w
crossref_primary_10_1364_OE_19_019330
crossref_primary_10_1364_JOSAA_32_001922
crossref_primary_10_1021_nl403247x
crossref_primary_10_1103_PhysRevE_110_014802
crossref_primary_10_3390_cryst8040175
crossref_primary_10_1088_1757_899X_1285_1_012005
crossref_primary_10_1364_JOSAA_36_000202
crossref_primary_10_1177_0021955X21997353
crossref_primary_10_3390_app8010132
crossref_primary_10_1107_S1600576716009213
crossref_primary_10_1364_OE_434111
crossref_primary_10_1364_OE_27_017993
crossref_primary_10_1107_S1600577514003440
crossref_primary_10_1364_OPTICA_542299
crossref_primary_10_1021_acs_chemrev_1c00331
crossref_primary_10_1073_pnas_1720785116
crossref_primary_10_1109_JPHOT_2023_3256059
crossref_primary_10_1007_s00340_022_07911_x
crossref_primary_10_1063_4_0000245
crossref_primary_10_3389_aot_2025_1546386
crossref_primary_10_1088_1367_2630_13_10_103026
crossref_primary_10_1016_j_sbi_2012_07_015
crossref_primary_10_1107_S1600576720013850
crossref_primary_10_1364_OE_401449
crossref_primary_10_1103_PhysRevA_106_053521
crossref_primary_10_1103_PhysRevE_86_042901
crossref_primary_10_1107_S1600576721007287
crossref_primary_10_3390_sym15071449
crossref_primary_10_1073_pnas_2303312120
crossref_primary_10_1107_S1600577519014425
crossref_primary_10_1107_S1600577524010567
crossref_primary_10_1088_1367_2630_17_5_053044
crossref_primary_10_1364_JOSAA_516339
crossref_primary_10_1364_JOSAB_477169
crossref_primary_10_1063_5_0179765
crossref_primary_10_1016_j_memsci_2023_122245
crossref_primary_10_1364_OE_26_012479
crossref_primary_10_34133_2021_9892152
crossref_primary_10_1016_j_trac_2023_117492
crossref_primary_10_1080_09500340_2021_1915399
crossref_primary_10_1107_S0021889813002471
crossref_primary_10_1103_PhysRevA_96_042706
crossref_primary_10_1038_s41467_024_52256_y
crossref_primary_10_1364_OPTICA_5_000577
crossref_primary_10_1364_OL_442964
crossref_primary_10_1073_pnas_1202226109
crossref_primary_10_3390_photonics10020153
crossref_primary_10_1364_OE_445498
crossref_primary_10_1038_nphys4301
crossref_primary_10_1364_OE_26_000242
crossref_primary_10_1017_S1431927620024332
crossref_primary_10_1063_1_3644396
crossref_primary_10_1093_micmic_ozad123
crossref_primary_10_1038_s42256_022_00584_3
crossref_primary_10_1063_4_0000270
crossref_primary_10_1103_PhysRevMaterials_3_043803
crossref_primary_10_1016_j_jsb_2011_11_015
crossref_primary_10_1007_s00340_022_07754_6
crossref_primary_10_1051_epjconf_20134112014
crossref_primary_10_1016_j_optlaseng_2019_105973
crossref_primary_10_1103_PhysRevA_102_043516
crossref_primary_10_1103_PhysRevB_85_020104
crossref_primary_10_34133_2022_9819716
crossref_primary_10_1364_OE_507715
crossref_primary_10_1016_j_jsb_2012_04_014
crossref_primary_10_1364_OPTICA_5_001521
crossref_primary_10_1080_23746149_2021_1891001
crossref_primary_10_3788_IRLA20220402
crossref_primary_10_1134_S1063774521060286
crossref_primary_10_1364_OPTICA_386012
crossref_primary_10_1107_S1600577520015684
crossref_primary_10_1039_D4MA00154K
crossref_primary_10_1088_0022_3727_47_26_263001
crossref_primary_10_1364_OE_27_003837
crossref_primary_10_1103_PhysRevX_5_011015
crossref_primary_10_1038_ncomms2622
crossref_primary_10_1039_C8NR03733G
crossref_primary_10_1107_S1600577522001874
crossref_primary_10_1002_smll_202410994
crossref_primary_10_1088_1361_6463_ab60ea
crossref_primary_10_1016_j_physleta_2023_128828
crossref_primary_10_7498_aps_62_150702
crossref_primary_10_1364_OE_19_011578
crossref_primary_10_1109_JPHOT_2022_3188574
crossref_primary_10_1364_OE_23_030250
crossref_primary_10_1107_S1600576722008068
crossref_primary_10_3390_qubs4010009
crossref_primary_10_1021_acs_chemrev_7b00007
crossref_primary_10_1107_S1600576720001375
crossref_primary_10_1002_smtd_201700293
crossref_primary_10_1103_PhysRevResearch_3_043066
crossref_primary_10_1063_1_4937122
crossref_primary_10_1107_S2053273316015114
crossref_primary_10_7498_aps_61_018701
crossref_primary_10_1364_OE_414341
crossref_primary_10_1016_j_ultramic_2020_113005
crossref_primary_10_1016_j_jsb_2011_12_023
crossref_primary_10_1063_1_4918726
crossref_primary_10_3390_sym13081439
crossref_primary_10_1364_OL_42_003169
crossref_primary_10_1103_PhysRevA_99_033413
crossref_primary_10_1111_j_1365_2818_2012_03632_x
crossref_primary_10_1038_nphoton_2010_267
crossref_primary_10_1038_s41467_019_10328_4
crossref_primary_10_1107_S1600577515004361
crossref_primary_10_1088_1757_899X_580_1_012007
crossref_primary_10_1103_PhysRevLett_112_053903
crossref_primary_10_1002_smtd_201900223
crossref_primary_10_1016_j_optlaseng_2021_106796
crossref_primary_10_1016_j_ijleo_2018_06_003
crossref_primary_10_1016_j_mtla_2024_102311
crossref_primary_10_1364_OL_36_002728
crossref_primary_10_1016_j_crhy_2011_11_009
crossref_primary_10_1103_PhysRevLett_107_218102
crossref_primary_10_1364_OPTICA_5_000164
crossref_primary_10_1038_nature16949
crossref_primary_10_1038_s41467_022_32525_4
crossref_primary_10_1126_sciadv_1700553
crossref_primary_10_1107_S1600577524010956
crossref_primary_10_1103_PhysRevB_87_121201
crossref_primary_10_1364_OPTICA_412036
crossref_primary_10_1016_j_orgel_2016_11_023
crossref_primary_10_1038_srep20658
crossref_primary_10_1103_PhysRevE_87_022712
crossref_primary_10_1364_OPTICA_470712
crossref_primary_10_1364_OE_26_014915
crossref_primary_10_1088_2040_8978_18_2_024001
crossref_primary_10_1103_PhysRevA_89_043409
crossref_primary_10_1364_AOP_11_000215
crossref_primary_10_1364_AO_52_002416
crossref_primary_10_1021_acsanm_4c04410
crossref_primary_10_1063_1_4998595
crossref_primary_10_1364_OE_485779
crossref_primary_10_1038_s41598_017_13538_2
crossref_primary_10_1126_sciadv_abf1386
crossref_primary_10_1016_j_optlaseng_2022_107297
crossref_primary_10_3367_UFNe_2020_05_038775
crossref_primary_10_1364_OE_391282
crossref_primary_10_1063_1_4794063
crossref_primary_10_1063_5_0031486
crossref_primary_10_1103_PhysRevLett_108_135004
crossref_primary_10_1364_OE_27_019573
crossref_primary_10_1016_j_sbi_2017_03_014
crossref_primary_10_1063_5_0089305
crossref_primary_10_1103_PhysRevB_89_184105
crossref_primary_10_1103_PhysRevLett_119_053401
crossref_primary_10_1107_S2052252514020818
crossref_primary_10_1016_j_jsb_2013_01_008
crossref_primary_10_1063_1_5008289
crossref_primary_10_1016_j_ultramic_2020_113034
crossref_primary_10_1016_j_ultramic_2021_113335
crossref_primary_10_1016_j_elspec_2017_01_004
crossref_primary_10_1103_PhysRevE_99_063309
crossref_primary_10_1103_RevModPhys_90_025007
crossref_primary_10_1364_OE_503944
crossref_primary_10_1364_OE_23_028691
crossref_primary_10_1364_OPTICA_509745
crossref_primary_10_1103_PhysRevResearch_2_033031
crossref_primary_10_1080_09500340_2015_1052028
crossref_primary_10_1088_1742_6596_849_1_012033
crossref_primary_10_1103_PhysRevA_95_023843
crossref_primary_10_1364_OE_24_013081
crossref_primary_10_1103_PhysRevLett_119_158102
crossref_primary_10_1364_OE_463216
crossref_primary_10_3390_app11072971
crossref_primary_10_1021_acsnano_3c07619
crossref_primary_10_1007_s10043_022_00769_6
crossref_primary_10_1107_S1600577521006263
crossref_primary_10_1364_OE_463338
crossref_primary_10_1016_j_optlaseng_2024_108659
crossref_primary_10_1364_OE_532037
crossref_primary_10_1016_j_optlaseng_2024_108536
crossref_primary_10_1038_srep35060
crossref_primary_10_1109_JSTQE_2011_2157306
crossref_primary_10_1016_j_optcom_2017_03_046
crossref_primary_10_1364_OE_520066
crossref_primary_10_1016_j_cossms_2020_100820
crossref_primary_10_1103_PhysRevLett_110_205501
crossref_primary_10_1140_epjs_s11734_021_00261_3
crossref_primary_10_1364_OE_22_029161
crossref_primary_10_1016_j_bpj_2015_08_047
crossref_primary_10_1107_S1600577513023850
crossref_primary_10_1016_j_cjsc_2024_100256
crossref_primary_10_1364_OPTICA_506572
crossref_primary_10_1016_j_rinp_2014_07_008
crossref_primary_10_1021_acsnano_8b01838
crossref_primary_10_1364_OE_419998
crossref_primary_10_1080_00268976_2024_2388303
crossref_primary_10_3390_s20113147
crossref_primary_10_1021_acs_nanolett_7b05441
crossref_primary_10_1021_acsphotonics_9b01008
crossref_primary_10_1107_S1600576714020822
crossref_primary_10_1038_s41524_021_00644_z
crossref_primary_10_1002_ctpp_201310027
crossref_primary_10_1155_2020_3481830
crossref_primary_10_1038_lsa_2014_44
crossref_primary_10_1038_s41598_018_34400_z
crossref_primary_10_1021_acsestwater_4c01186
crossref_primary_10_1016_j_compag_2023_108475
crossref_primary_10_1038_s42005_021_00658_5
crossref_primary_10_1063_5_0031692
crossref_primary_10_1021_acs_jpcc_2c02795
crossref_primary_10_1364_OE_22_024935
crossref_primary_10_1063_1_4766305
crossref_primary_10_1364_OE_25_032090
Cites_doi 10.1103/PhysRevLett.92.198102
10.1364/OE.15.017592
10.1103/PhysRevLett.104.064801
10.1107/S0108767387099744
10.1364/OL.3.000027
10.1073/pnas.232691299
10.1103/PhysRevLett.89.088303
10.1073/pnas.0910874107
10.1103/PhysRevLett.91.203902
10.1103/PhysRevE.71.061919
10.1103/PhysRevLett.97.025506
10.1103/PhysRevB.75.104102
10.1107/S0365110X52002276
10.1209/epl/i2003-10119-x
10.1016/S0304-3991(96)00084-8
10.1038/22498
10.1103/PhysRevB.80.054103
10.1038/nphoton.2010.267
10.1103/PhysRevLett.103.198101
10.1103/PhysRevLett.87.195505
10.1038/35021099
10.1107/S010876730501055X
10.1107/S0567739469001045
10.1103/PhysRevLett.105.043901
10.1098/rsta.1992.0050
10.1007/3-540-09727-9_82
10.1038/nature04867
10.1038/nphys461
10.1073/pnas.0503305102
10.1103/PhysRevB.68.140101
10.1103/PhysRevLett.90.175501
10.1063/1.2403783
10.1364/JOSAA.20.000040
10.1103/PhysRevLett.99.098103
10.1103/PhysRevLett.101.055501
10.1063/1.3025819
10.1103/PhysRevLett.103.243902
10.1103/PhysRevLett.103.198102
10.1103/PhysRevLett.77.4756
10.1103/PhysRevLett.98.034801
10.1063/1.2364259
10.1364/OL.30.001638
10.1364/JOSAA.23.001179
10.1364/JOSAA.4.000118
10.1103/PhysRevLett.101.090801
10.1038/nmat2400
10.1364/JOSAA.15.001662
10.1103/PhysRevA.79.023809
10.1103/PhysRevLett.102.018101
10.1038/nphoton.2008.154
10.1002/cyto.a.20616
10.1073/pnas.1000156107
10.1016/j.elspec.2008.10.008
10.1364/AO.21.002758
10.1364/OE.15.009954
10.1126/science.1158573
10.1038/nphys896
10.1038/nphys1129
10.1103/PhysRevLett.93.023903
10.1080/09500340.2010.495459
10.1126/science.256.5059.1009
10.1109/TUFFC.2003.1226547
10.1073/pnas.0905846107
10.1038/nature03139
ContentType Journal Article
Copyright Springer Nature Limited 2010
Copyright Nature Publishing Group Dec 2010
Copyright_xml – notice: Springer Nature Limited 2010
– notice: Copyright Nature Publishing Group Dec 2010
DBID AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/nphoton.2010.240
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student
Aerospace Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
Biology
EISSN 1749-4893
EndPage 839
ExternalDocumentID 2380659761
10_1038_nphoton_2010_240
GroupedDBID -~X
0R~
123
29M
39C
4.4
5BI
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NNMJJ
O9-
ODYON
P2P
P62
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c344t-83309f8b7db5365e2f9bc0bdcab3e5d213d17a6e908f2c88a32721e2fd17ac743
IEDL.DBID BENPR
ISSN 1749-4885
IngestDate Fri Jul 11 09:10:21 EDT 2025
Wed Jul 16 16:01:33 EDT 2025
Tue Jul 01 02:34:11 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Fri Feb 21 02:42:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-83309f8b7db5365e2f9bc0bdcab3e5d213d17a6e908f2c88a32721e2fd17ac743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 873168530
PQPubID 546300
PageCount 7
ParticipantIDs proquest_miscellaneous_880688097
proquest_journals_873168530
crossref_primary_10_1038_nphoton_2010_240
crossref_citationtrail_10_1038_nphoton_2010_240
springer_journals_10_1038_nphoton_2010_240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature photonics
PublicationTitleAbbrev Nature Photon
PublicationYear 2010
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References MiaoJWHigh resolution 3D X-ray diffraction microscopyPhys. Rev. Lett.2002890883032002PhRvL..89h8303M10.1103/PhysRevLett.89.088303
YunWBKirzJSayreDObservation of the soft X-ray diffraction pattern of a single diatomActa Crystallogr. A19874313113310.1107/S0108767387099744
MarchesiniSA unified evaluation of iterative projection algorithms for phase retrievalRev. Sci. Instrum.2007780113012007RScI...78a1301M10.1063/1.2403783
ChapmanHNPhase-retrieval X-ray microscopy by Wigner-distribution deconvolutionUltramicroscopy19966615317210.1016/S0304-3991(96)00084-8
Hau-RiegeSPLondonRAHuldtGChapmanHNPulse requirements for X-ray diffraction imaging of single biological moleculesPhys. Rev. E2005710619192005PhRvE..71f1919H10.1103/PhysRevE.71.061919
ElserVPhase retrieval by iterated projectionsJ. Opt. Soc. Am. A20032040552003OSAJ...20...40E10.1364/JOSAA.20.000040
ShapiroDBiological imaging by soft X-ray diffraction microscopyProc. Natl Acad. Sci. USA200510215343153462005PNAS..10215343S10.1073/pnas.0503305102
ChapmanHNFemtosecond diffractive imaging with a soft-X-ray free-electron laserNature Phys.200628398432006NatPh...2..839C10.1038/nphys461
BatesRHTFourier phase problems are uniquely solvable in more than one dimension: Underlying theoryOptik198261247262
RobinsonIKVartanyantsIAWilliamsGJPfeiferMAPitneyJAReconstruction of the shapes of gold nanocrystals using coherent X-ray diffractionPhys. Rev. Lett.200187191955052001PhRvL..87s5505R10.1103/PhysRevLett.87.195505
WilliamsGJQuineyHMPeeleAGNugentKACoherent diffractive imaging and partial coherencePhys. Rev. B2007751041022007PhRvB..75j4102W10.1103/PhysRevB.75.104102
MarchesiniSMassively parallel X-ray holographyNature Photon.2008256056310.1038/nphoton.2008.154
FienupJRPhase retrieval algorithms: A comparisonAppl. Opt.198221275827691982ApOpt..21.2758F10.1364/AO.21.002758
SakdinawatAAttwoodDNanoscale X-ray imagingNature Photon.201048408482010NaPho...4..840S10.1038/nphoton.2010.267
NishinoYTakahashiYImamotoNIshikawaTMaeshimaKThree-dimensional visualization of a human chromosome using coherent X-ray diffractionPhys. Rev. Lett.20091020181012009PhRvL.102a8101N10.1103/PhysRevLett.102.018101
Hau-RiegeSPSacrificial tamper slows down sample explosion in FLASH diffraction experimentsPhys. Rev. Lett.20101040648012010PhRvL.104f4801H10.1103/PhysRevLett.104.064801
BartyAThree-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanismsPhys. Rev. Lett.20081010555012008PhRvL.101e5501B10.1103/PhysRevLett.101.055501
FienupJRReconstruction of a complex-valued object from the modulus of its Fourier-transform using a support constraintJ. Opt. Soc. Am. A198741181231987OSAJ....4..118F10.1364/JOSAA.4.000118
SchlotterWFMultiple reference Fourier transform holography with soft X-raysAppl. Phys. Lett.2006891631122006ApPhL..89p3112S10.1063/1.2364259
SayreDImaging Processes and Coherence in Physics198022923510.1007/3-540-09727-9_82
FienupJRReconstruction of an object from modulus of its Fourier-transformOpt. Lett.1978327291978OptL....3...27F10.1364/OL.3.000027
WilliamsGJHigh-resolution X-ray imaging of Plasmodium falciparum-infected red blood cellsCytom. Part A200873A94995710.1002/cyto.a.20616
MiaoJWCharalambousPKirzJSayreDExtending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimensNature19994003423441999Natur.400..342M10.1038/22498
MiaoJWImaging whole Escherichia coli bacteria by using single-particle X-ray diffractionProc. Natl Acad. Sci. USA20031001101122003PNAS..100..110M10.1073/pnas.232691299
FungRShneersonVSaldinDKOurmazdAStructure from fleeting illumination of faint spinning objects in flightNature Phys.2009564672009NatPh...5...64F10.1038/nphys1129
NelsonJHigh-resolution X-ray diffraction microscopy of specifically labeled yeast cellsProc. Natl Acad. Sci. USA2010107723572392010PNAS..107.7235N10.1073/pnas.0910874107
HuangXJSoft X-ray diffraction microscopy of a frozen hydrated yeast cellPhys. Rev. Lett.20091031981012009PhRvL.103s8101H10.1103/PhysRevLett.103.198101
MiaoJSayreDChapmanHNPhase retrieval from the magnitude of the Fourier transforms of nonperiodic objectsJ. Opt. Soc. Am. A199815166216691998OSAJ...15.1662M10.1364/JOSAA.15.001662
McNultyIHigh-resolution imaging by Fourier-transform X-ray holographyScience1992256100910121992Sci...256.1009M10.1126/science.256.5059.1009
QuineyHMNugentKAPeeleAGIterative image reconstruction algorithms using wave-front intensity and phase variationOpt. Lett.200530163816402005OptL...30.1638Q10.1364/OL.30.001638
WhiteheadLWDiffractive imaging using partially coherent X-raysPhys. Rev. Lett.20091032439022009PhRvL.103x3902W10.1103/PhysRevLett.103.243902
SchroerCGCoherent X-ray diffraction imaging with nanofocused illuminationPhys. Rev. Lett.20081010908012008PhRvL.101i0801S10.1103/PhysRevLett.101.090801
DitmireTSpatial coherence measurement of soft X-ray radiation produced by high order harmonic generationPhys. Rev. Lett.199677475647591996PhRvL..77.4756D10.1103/PhysRevLett.77.4756
PittsTAGreenleafJFFresnel transform phase retrieval from magnitudeIEEE T. Ultrason. Ferr.2003501035104510.1109/TUFFC.2003.1226547
AbbeyBKeyhole coherent diffractive imagingNature Phys.200843943982008NatPh...4..394A10.1038/nphys896
ChenBMultiple wavelength diffractive imagingPhys. Rev. A2009790238092009PhRvA..79b3809C10.1103/PhysRevA.79.023809
GiewekemeyerKQuantitative biological imaging by ptychographic X-ray diffraction microscopyProc. Natl Acad. Sci. USA20101075295342010PNAS..107..529G10.1073/pnas.0905846107
WilliamsGJFresnel coherent diffractive imagingPhys. Rev. Lett.2006970255062006PhRvL..97b5506W10.1103/PhysRevLett.97.025506
LimaECryogenic X-ray diffraction microscopy for biological samplesPhys. Rev. Lett.20091031981022009PhRvL.103s8102L10.1103/PhysRevLett.103.198102
NugentKAPeeleAGQuineyHMChapmanHNDiffraction with wavefront curvature: A path to unique phase recoveryActa Crystallogr. A2005613733812005AcCrA..61..373N10.1107/S010876730501055X
PfeiferMAWilliamsGJVartanyantsIAHarderRRobinsonIKThree-dimensional mapping of a deformation field inside a nanocrystalNature200644263662006Natur.442...63P10.1038/nature04867
EisebittSLensless imaging of magnetic nanostructures by X-ray spectro-holographyNature20044328858882004Natur.432..885E10.1038/nature03139
ThibaultPHigh-resolution scanning X-ray diffraction microscopyScience20083213793822008Sci...321..379T10.1126/science.1158573
MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B2003681401012003PhRvB..68n0101M10.1103/PhysRevB.68.140101
JiangHDQuantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopyProc. Natl Acad. Sci. USA201010711234112392010PNAS..10711234J10.1073/pnas.1000156107
JurekZOszlanyiGFaigelGImaging atom clusters by hard X-ray free-electron lasersEurophys. Lett.2004654914972004EL.....65..491J10.1209/epl/i2003-10119-x
RodenburgJMHard-X-ray lensless imaging of extended objectsPhys. Rev. Lett.2007980348012007PhRvL..98c4801R10.1103/PhysRevLett.98.034801
FaulknerHMLRodenburgJMMovable aperture lensless transmission microscopy: A novel phase retrieval algorithmPhys. Rev. Lett.2004930239032004PhRvL..93b3903F10.1103/PhysRevLett.93.023903
HowellsMRAn assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopyJ. Electron Spectrosc.200917041210.1016/j.elspec.2008.10.008
RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNature Mater.200982912982009NatMa...8..291R10.1038/nmat2400
ChapmanHNHigh-resolution ab initio three-dimensional X-ray diffraction microscopyJ. Opt. Soc. Am. A200623117912002006OSAJ...23.1179C10.1364/JOSAA.23.001179
AbbeyBQuantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nmAppl. Phys. Lett.2008932141012008ApPhL..93u4101A10.1063/1.3025819
TakahashiYHigh-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused X-ray beamPhys. Rev. B2009800541032009PhRvB..80e4103T10.1103/PhysRevB.80.054103
SandbergRLLensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beamsPhys. Rev. Lett.2007990981032007PhRvL..99i8103S10.1103/PhysRevLett.99.098103
GerchbergRWSaxtonWOPractical algorithm for determination of phase from image and diffraction plane picturesOptik197235237246
Spence, J. C. H. & Doak, R. B. Single molecule diffraction. Phys. Rev. Lett.92 (2004).
PodorovSGPavlovKMPaganinDMA non-iterative reconstruction method for direct and unambiguous coherent diffractive imagingOpt. Express200715995499622007OExpr..15.9954P10.1364/OE.15.009954
SayreDSome implications of a theorem due to ShannonActa Crystallogr.1952584384310.1107/S0365110X52002276
Guizar-SicairosMFienupJRHolography with extended reference by autocorrelation linear differential operationOpt. Express20071517592176122007OExpr..1517592G10.1364/OE.15.017592
HoppeWDiffraction in inhomogeneous primary wave fields: Principle of phase determination from electron diffraction interferenceActa Crystallogr. A1969254955011969AcCrA..25..495H10.1107/S0567739469001045
NugentKAPeeleAGChapmanHNMancusoAPUnique phase recovery for nonperiodic objectsPhys. Rev. Lett.2003912039022003PhRvL..91t3902N10.1103/PhysRevLett.91.203902
RodenburgJMBatesRHTThe theory of superresolution electron-microscopy via Wigner-distribution deconvolutionPhil. Trans. R. Soc. Lond. A19923395215531992RSPTA.339..521R10.1098/rsta.1992.0050
QuineyHMCoherent diffractive imaging using short wavelength light sources: A tutorial reviewJ. Mod. Opt.201057110911492010JMOp...57.1109Q274709510.1080/09500340.2010.495459
ZhuDLHigh-resolution X-ray lensless imaging by differential holographic encodingPhys. Rev. Lett.20101050439012010PhRvL.105d3901Z10.1103/PhysRevLett.105.043901
WilliamsGJPfeiferMAVartanyantsIARobinsonIKThree-dimensional imaging of microstructure in Au nanocrystalsPhys. Rev. Lett.2003901755012003PhRvL..90q5501W10.1103/PhysRevLett.90.175501
NeutzeRWoutsRvan der SpoelDWeckertEHajduJPotential for biomolecular imaging with femtosecond X-ray pulsesNature20004067527
TA Pitts (BFnphoton2010240_CR10) 2003; 50
J Nelson (BFnphoton2010240_CR30) 2010; 107
JR Fienup (BFnphoton2010240_CR5) 1978; 3
JM Rodenburg (BFnphoton2010240_CR50) 2007; 98
D Shapiro (BFnphoton2010240_CR33) 2005; 102
CG Schroer (BFnphoton2010240_CR26) 2008; 101
HM Quiney (BFnphoton2010240_CR16) 2010; 57
JR Fienup (BFnphoton2010240_CR13) 1982; 21
I McNulty (BFnphoton2010240_CR53) 1992; 256
SG Podorov (BFnphoton2010240_CR57) 2007; 15
MR Howells (BFnphoton2010240_CR11) 2009; 170
W Hoppe (BFnphoton2010240_CR20) 1969; 25
Y Nishino (BFnphoton2010240_CR37) 2009; 102
JW Miao (BFnphoton2010240_CR3) 1999; 400
JR Fienup (BFnphoton2010240_CR12) 1987; 4
I Robinson (BFnphoton2010240_CR46) 2009; 8
E Lima (BFnphoton2010240_CR35) 2009; 103
HN Chapman (BFnphoton2010240_CR48) 1996; 66
MA Pfeifer (BFnphoton2010240_CR45) 2006; 442
R Fung (BFnphoton2010240_CR65) 2009; 5
D Sayre (BFnphoton2010240_CR1) 1980
JW Miao (BFnphoton2010240_CR24) 2002; 89
WF Schlotter (BFnphoton2010240_CR55) 2006; 89
BFnphoton2010240_CR66
KA Nugent (BFnphoton2010240_CR21) 2003; 91
R Neutze (BFnphoton2010240_CR60) 2000; 406
J Miao (BFnphoton2010240_CR9) 1998; 15
HN Chapman (BFnphoton2010240_CR61) 2006; 2
S Marchesini (BFnphoton2010240_CR15) 2003; 68
JW Miao (BFnphoton2010240_CR29) 2003; 100
M Guizar-Sicairos (BFnphoton2010240_CR58) 2007; 15
GJ Williams (BFnphoton2010240_CR22) 2006; 97
B Abbey (BFnphoton2010240_CR28) 2008; 4
Y Takahashi (BFnphoton2010240_CR27) 2009; 80
LW Whitehead (BFnphoton2010240_CR19) 2009; 103
HN Chapman (BFnphoton2010240_CR25) 2006; 23
HD Jiang (BFnphoton2010240_CR31) 2010; 107
RHT Bates (BFnphoton2010240_CR7) 1982; 61
K Giewekemeyer (BFnphoton2010240_CR52) 2010; 107
P Thibault (BFnphoton2010240_CR51) 2008; 321
KA Nugent (BFnphoton2010240_CR8) 2005; 61
IK Robinson (BFnphoton2010240_CR43) 2001; 8719
V Elser (BFnphoton2010240_CR14) 2003; 20
S Eisebitt (BFnphoton2010240_CR54) 2004; 432
B Chen (BFnphoton2010240_CR42) 2009; 79
A Barty (BFnphoton2010240_CR38) 2008; 101
GJ Williams (BFnphoton2010240_CR18) 2007; 75
GJ Williams (BFnphoton2010240_CR36) 2008; 73A
XJ Huang (BFnphoton2010240_CR34) 2009; 103
D Sayre (BFnphoton2010240_CR4) 1952; 5
S Marchesini (BFnphoton2010240_CR17) 2007; 78
WB Yun (BFnphoton2010240_CR2) 1987; 43
T Ditmire (BFnphoton2010240_CR40) 1996; 77
HML Faulkner (BFnphoton2010240_CR49) 2004; 93
JM Rodenburg (BFnphoton2010240_CR47) 1992; 339
HM Quiney (BFnphoton2010240_CR23) 2005; 30
A Sakdinawat (BFnphoton2010240_CR32) 2010; 4
SP Hau-Riege (BFnphoton2010240_CR62) 2010; 104
Z Jurek (BFnphoton2010240_CR64) 2004; 65
S Marchesini (BFnphoton2010240_CR56) 2008; 2
RW Gerchberg (BFnphoton2010240_CR6) 1972; 35
DL Zhu (BFnphoton2010240_CR59) 2010; 105
GJ Williams (BFnphoton2010240_CR44) 2003; 90
RL Sandberg (BFnphoton2010240_CR41) 2007; 99
SP Hau-Riege (BFnphoton2010240_CR63) 2005; 71
B Abbey (BFnphoton2010240_CR39) 2008; 93
References_xml – reference: FienupJRReconstruction of an object from modulus of its Fourier-transformOpt. Lett.1978327291978OptL....3...27F10.1364/OL.3.000027
– reference: PfeiferMAWilliamsGJVartanyantsIAHarderRRobinsonIKThree-dimensional mapping of a deformation field inside a nanocrystalNature200644263662006Natur.442...63P10.1038/nature04867
– reference: SayreDImaging Processes and Coherence in Physics198022923510.1007/3-540-09727-9_82
– reference: FienupJRReconstruction of a complex-valued object from the modulus of its Fourier-transform using a support constraintJ. Opt. Soc. Am. A198741181231987OSAJ....4..118F10.1364/JOSAA.4.000118
– reference: PodorovSGPavlovKMPaganinDMA non-iterative reconstruction method for direct and unambiguous coherent diffractive imagingOpt. Express200715995499622007OExpr..15.9954P10.1364/OE.15.009954
– reference: NishinoYTakahashiYImamotoNIshikawaTMaeshimaKThree-dimensional visualization of a human chromosome using coherent X-ray diffractionPhys. Rev. Lett.20091020181012009PhRvL.102a8101N10.1103/PhysRevLett.102.018101
– reference: ChapmanHNPhase-retrieval X-ray microscopy by Wigner-distribution deconvolutionUltramicroscopy19966615317210.1016/S0304-3991(96)00084-8
– reference: WilliamsGJPfeiferMAVartanyantsIARobinsonIKThree-dimensional imaging of microstructure in Au nanocrystalsPhys. Rev. Lett.2003901755012003PhRvL..90q5501W10.1103/PhysRevLett.90.175501
– reference: MarchesiniSA unified evaluation of iterative projection algorithms for phase retrievalRev. Sci. Instrum.2007780113012007RScI...78a1301M10.1063/1.2403783
– reference: NugentKAPeeleAGChapmanHNMancusoAPUnique phase recovery for nonperiodic objectsPhys. Rev. Lett.2003912039022003PhRvL..91t3902N10.1103/PhysRevLett.91.203902
– reference: ShapiroDBiological imaging by soft X-ray diffraction microscopyProc. Natl Acad. Sci. USA200510215343153462005PNAS..10215343S10.1073/pnas.0503305102
– reference: WilliamsGJFresnel coherent diffractive imagingPhys. Rev. Lett.2006970255062006PhRvL..97b5506W10.1103/PhysRevLett.97.025506
– reference: RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNature Mater.200982912982009NatMa...8..291R10.1038/nmat2400
– reference: ElserVPhase retrieval by iterated projectionsJ. Opt. Soc. Am. A20032040552003OSAJ...20...40E10.1364/JOSAA.20.000040
– reference: BartyAThree-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanismsPhys. Rev. Lett.20081010555012008PhRvL.101e5501B10.1103/PhysRevLett.101.055501
– reference: SakdinawatAAttwoodDNanoscale X-ray imagingNature Photon.201048408482010NaPho...4..840S10.1038/nphoton.2010.267
– reference: Spence, J. C. H. & Doak, R. B. Single molecule diffraction. Phys. Rev. Lett.92 (2004).
– reference: Hau-RiegeSPSacrificial tamper slows down sample explosion in FLASH diffraction experimentsPhys. Rev. Lett.20101040648012010PhRvL.104f4801H10.1103/PhysRevLett.104.064801
– reference: TakahashiYHigh-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused X-ray beamPhys. Rev. B2009800541032009PhRvB..80e4103T10.1103/PhysRevB.80.054103
– reference: SayreDSome implications of a theorem due to ShannonActa Crystallogr.1952584384310.1107/S0365110X52002276
– reference: NeutzeRWoutsRvan der SpoelDWeckertEHajduJPotential for biomolecular imaging with femtosecond X-ray pulsesNature20004067527572000Natur.406..752N10.1038/35021099
– reference: QuineyHMCoherent diffractive imaging using short wavelength light sources: A tutorial reviewJ. Mod. Opt.201057110911492010JMOp...57.1109Q274709510.1080/09500340.2010.495459
– reference: HowellsMRAn assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopyJ. Electron Spectrosc.200917041210.1016/j.elspec.2008.10.008
– reference: JiangHDQuantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopyProc. Natl Acad. Sci. USA201010711234112392010PNAS..10711234J10.1073/pnas.1000156107
– reference: McNultyIHigh-resolution imaging by Fourier-transform X-ray holographyScience1992256100910121992Sci...256.1009M10.1126/science.256.5059.1009
– reference: ChenBMultiple wavelength diffractive imagingPhys. Rev. A2009790238092009PhRvA..79b3809C10.1103/PhysRevA.79.023809
– reference: PittsTAGreenleafJFFresnel transform phase retrieval from magnitudeIEEE T. Ultrason. Ferr.2003501035104510.1109/TUFFC.2003.1226547
– reference: SandbergRLLensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beamsPhys. Rev. Lett.2007990981032007PhRvL..99i8103S10.1103/PhysRevLett.99.098103
– reference: AbbeyBKeyhole coherent diffractive imagingNature Phys.200843943982008NatPh...4..394A10.1038/nphys896
– reference: RodenburgJMBatesRHTThe theory of superresolution electron-microscopy via Wigner-distribution deconvolutionPhil. Trans. R. Soc. Lond. A19923395215531992RSPTA.339..521R10.1098/rsta.1992.0050
– reference: FungRShneersonVSaldinDKOurmazdAStructure from fleeting illumination of faint spinning objects in flightNature Phys.2009564672009NatPh...5...64F10.1038/nphys1129
– reference: ChapmanHNFemtosecond diffractive imaging with a soft-X-ray free-electron laserNature Phys.200628398432006NatPh...2..839C10.1038/nphys461
– reference: DitmireTSpatial coherence measurement of soft X-ray radiation produced by high order harmonic generationPhys. Rev. Lett.199677475647591996PhRvL..77.4756D10.1103/PhysRevLett.77.4756
– reference: BatesRHTFourier phase problems are uniquely solvable in more than one dimension: Underlying theoryOptik198261247262
– reference: NelsonJHigh-resolution X-ray diffraction microscopy of specifically labeled yeast cellsProc. Natl Acad. Sci. USA2010107723572392010PNAS..107.7235N10.1073/pnas.0910874107
– reference: EisebittSLensless imaging of magnetic nanostructures by X-ray spectro-holographyNature20044328858882004Natur.432..885E10.1038/nature03139
– reference: WhiteheadLWDiffractive imaging using partially coherent X-raysPhys. Rev. Lett.20091032439022009PhRvL.103x3902W10.1103/PhysRevLett.103.243902
– reference: LimaECryogenic X-ray diffraction microscopy for biological samplesPhys. Rev. Lett.20091031981022009PhRvL.103s8102L10.1103/PhysRevLett.103.198102
– reference: RobinsonIKVartanyantsIAWilliamsGJPfeiferMAPitneyJAReconstruction of the shapes of gold nanocrystals using coherent X-ray diffractionPhys. Rev. Lett.200187191955052001PhRvL..87s5505R10.1103/PhysRevLett.87.195505
– reference: MiaoJWCharalambousPKirzJSayreDExtending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimensNature19994003423441999Natur.400..342M10.1038/22498
– reference: FienupJRPhase retrieval algorithms: A comparisonAppl. Opt.198221275827691982ApOpt..21.2758F10.1364/AO.21.002758
– reference: GiewekemeyerKQuantitative biological imaging by ptychographic X-ray diffraction microscopyProc. Natl Acad. Sci. USA20101075295342010PNAS..107..529G10.1073/pnas.0905846107
– reference: SchroerCGCoherent X-ray diffraction imaging with nanofocused illuminationPhys. Rev. Lett.20081010908012008PhRvL.101i0801S10.1103/PhysRevLett.101.090801
– reference: HuangXJSoft X-ray diffraction microscopy of a frozen hydrated yeast cellPhys. Rev. Lett.20091031981012009PhRvL.103s8101H10.1103/PhysRevLett.103.198101
– reference: MarchesiniSMassively parallel X-ray holographyNature Photon.2008256056310.1038/nphoton.2008.154
– reference: WilliamsGJHigh-resolution X-ray imaging of Plasmodium falciparum-infected red blood cellsCytom. Part A200873A94995710.1002/cyto.a.20616
– reference: MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B2003681401012003PhRvB..68n0101M10.1103/PhysRevB.68.140101
– reference: GerchbergRWSaxtonWOPractical algorithm for determination of phase from image and diffraction plane picturesOptik197235237246
– reference: JurekZOszlanyiGFaigelGImaging atom clusters by hard X-ray free-electron lasersEurophys. Lett.2004654914972004EL.....65..491J10.1209/epl/i2003-10119-x
– reference: YunWBKirzJSayreDObservation of the soft X-ray diffraction pattern of a single diatomActa Crystallogr. A19874313113310.1107/S0108767387099744
– reference: HoppeWDiffraction in inhomogeneous primary wave fields: Principle of phase determination from electron diffraction interferenceActa Crystallogr. A1969254955011969AcCrA..25..495H10.1107/S0567739469001045
– reference: MiaoJWHigh resolution 3D X-ray diffraction microscopyPhys. Rev. Lett.2002890883032002PhRvL..89h8303M10.1103/PhysRevLett.89.088303
– reference: MiaoJWImaging whole Escherichia coli bacteria by using single-particle X-ray diffractionProc. Natl Acad. Sci. USA20031001101122003PNAS..100..110M10.1073/pnas.232691299
– reference: RodenburgJMHard-X-ray lensless imaging of extended objectsPhys. Rev. Lett.2007980348012007PhRvL..98c4801R10.1103/PhysRevLett.98.034801
– reference: MiaoJSayreDChapmanHNPhase retrieval from the magnitude of the Fourier transforms of nonperiodic objectsJ. Opt. Soc. Am. A199815166216691998OSAJ...15.1662M10.1364/JOSAA.15.001662
– reference: Guizar-SicairosMFienupJRHolography with extended reference by autocorrelation linear differential operationOpt. Express20071517592176122007OExpr..1517592G10.1364/OE.15.017592
– reference: ThibaultPHigh-resolution scanning X-ray diffraction microscopyScience20083213793822008Sci...321..379T10.1126/science.1158573
– reference: SchlotterWFMultiple reference Fourier transform holography with soft X-raysAppl. Phys. Lett.2006891631122006ApPhL..89p3112S10.1063/1.2364259
– reference: QuineyHMNugentKAPeeleAGIterative image reconstruction algorithms using wave-front intensity and phase variationOpt. Lett.200530163816402005OptL...30.1638Q10.1364/OL.30.001638
– reference: NugentKAPeeleAGQuineyHMChapmanHNDiffraction with wavefront curvature: A path to unique phase recoveryActa Crystallogr. A2005613733812005AcCrA..61..373N10.1107/S010876730501055X
– reference: ChapmanHNHigh-resolution ab initio three-dimensional X-ray diffraction microscopyJ. Opt. Soc. Am. A200623117912002006OSAJ...23.1179C10.1364/JOSAA.23.001179
– reference: AbbeyBQuantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nmAppl. Phys. Lett.2008932141012008ApPhL..93u4101A10.1063/1.3025819
– reference: FaulknerHMLRodenburgJMMovable aperture lensless transmission microscopy: A novel phase retrieval algorithmPhys. Rev. Lett.2004930239032004PhRvL..93b3903F10.1103/PhysRevLett.93.023903
– reference: WilliamsGJQuineyHMPeeleAGNugentKACoherent diffractive imaging and partial coherencePhys. Rev. B2007751041022007PhRvB..75j4102W10.1103/PhysRevB.75.104102
– reference: Hau-RiegeSPLondonRAHuldtGChapmanHNPulse requirements for X-ray diffraction imaging of single biological moleculesPhys. Rev. E2005710619192005PhRvE..71f1919H10.1103/PhysRevE.71.061919
– reference: ZhuDLHigh-resolution X-ray lensless imaging by differential holographic encodingPhys. Rev. Lett.20101050439012010PhRvL.105d3901Z10.1103/PhysRevLett.105.043901
– ident: BFnphoton2010240_CR66
  doi: 10.1103/PhysRevLett.92.198102
– volume: 15
  start-page: 17592
  year: 2007
  ident: BFnphoton2010240_CR58
  publication-title: Opt. Express
  doi: 10.1364/OE.15.017592
– volume: 104
  start-page: 064801
  year: 2010
  ident: BFnphoton2010240_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.064801
– volume: 43
  start-page: 131
  year: 1987
  ident: BFnphoton2010240_CR2
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767387099744
– volume: 3
  start-page: 27
  year: 1978
  ident: BFnphoton2010240_CR5
  publication-title: Opt. Lett.
  doi: 10.1364/OL.3.000027
– volume: 100
  start-page: 110
  year: 2003
  ident: BFnphoton2010240_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.232691299
– volume: 89
  start-page: 088303
  year: 2002
  ident: BFnphoton2010240_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.088303
– volume: 107
  start-page: 7235
  year: 2010
  ident: BFnphoton2010240_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0910874107
– volume: 91
  start-page: 203902
  year: 2003
  ident: BFnphoton2010240_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.203902
– volume: 71
  start-page: 061919
  year: 2005
  ident: BFnphoton2010240_CR63
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.061919
– volume: 97
  start-page: 025506
  year: 2006
  ident: BFnphoton2010240_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.025506
– volume: 75
  start-page: 104102
  year: 2007
  ident: BFnphoton2010240_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.104102
– volume: 61
  start-page: 247
  year: 1982
  ident: BFnphoton2010240_CR7
  publication-title: Optik
– volume: 5
  start-page: 843
  year: 1952
  ident: BFnphoton2010240_CR4
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X52002276
– volume: 35
  start-page: 237
  year: 1972
  ident: BFnphoton2010240_CR6
  publication-title: Optik
– volume: 65
  start-page: 491
  year: 2004
  ident: BFnphoton2010240_CR64
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-10119-x
– volume: 66
  start-page: 153
  year: 1996
  ident: BFnphoton2010240_CR48
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(96)00084-8
– volume: 400
  start-page: 342
  year: 1999
  ident: BFnphoton2010240_CR3
  publication-title: Nature
  doi: 10.1038/22498
– volume: 80
  start-page: 054103
  year: 2009
  ident: BFnphoton2010240_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.054103
– volume: 4
  start-page: 840
  year: 2010
  ident: BFnphoton2010240_CR32
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2010.267
– volume: 103
  start-page: 198101
  year: 2009
  ident: BFnphoton2010240_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.198101
– volume: 8719
  start-page: 195505
  year: 2001
  ident: BFnphoton2010240_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.195505
– volume: 406
  start-page: 752
  year: 2000
  ident: BFnphoton2010240_CR60
  publication-title: Nature
  doi: 10.1038/35021099
– volume: 61
  start-page: 373
  year: 2005
  ident: BFnphoton2010240_CR8
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S010876730501055X
– volume: 25
  start-page: 495
  year: 1969
  ident: BFnphoton2010240_CR20
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0567739469001045
– volume: 105
  start-page: 043901
  year: 2010
  ident: BFnphoton2010240_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.043901
– volume: 339
  start-page: 521
  year: 1992
  ident: BFnphoton2010240_CR47
  publication-title: Phil. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1992.0050
– start-page: 229
  volume-title: Imaging Processes and Coherence in Physics
  year: 1980
  ident: BFnphoton2010240_CR1
  doi: 10.1007/3-540-09727-9_82
– volume: 442
  start-page: 63
  year: 2006
  ident: BFnphoton2010240_CR45
  publication-title: Nature
  doi: 10.1038/nature04867
– volume: 2
  start-page: 839
  year: 2006
  ident: BFnphoton2010240_CR61
  publication-title: Nature Phys.
  doi: 10.1038/nphys461
– volume: 102
  start-page: 15343
  year: 2005
  ident: BFnphoton2010240_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0503305102
– volume: 68
  start-page: 140101
  year: 2003
  ident: BFnphoton2010240_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.140101
– volume: 90
  start-page: 175501
  year: 2003
  ident: BFnphoton2010240_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.175501
– volume: 78
  start-page: 011301
  year: 2007
  ident: BFnphoton2010240_CR17
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2403783
– volume: 20
  start-page: 40
  year: 2003
  ident: BFnphoton2010240_CR14
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.20.000040
– volume: 99
  start-page: 098103
  year: 2007
  ident: BFnphoton2010240_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.098103
– volume: 101
  start-page: 055501
  year: 2008
  ident: BFnphoton2010240_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.055501
– volume: 93
  start-page: 214101
  year: 2008
  ident: BFnphoton2010240_CR39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3025819
– volume: 103
  start-page: 243902
  year: 2009
  ident: BFnphoton2010240_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.243902
– volume: 103
  start-page: 198102
  year: 2009
  ident: BFnphoton2010240_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.198102
– volume: 77
  start-page: 4756
  year: 1996
  ident: BFnphoton2010240_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.4756
– volume: 98
  start-page: 034801
  year: 2007
  ident: BFnphoton2010240_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.034801
– volume: 89
  start-page: 163112
  year: 2006
  ident: BFnphoton2010240_CR55
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2364259
– volume: 30
  start-page: 1638
  year: 2005
  ident: BFnphoton2010240_CR23
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.001638
– volume: 23
  start-page: 1179
  year: 2006
  ident: BFnphoton2010240_CR25
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.23.001179
– volume: 4
  start-page: 118
  year: 1987
  ident: BFnphoton2010240_CR12
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.4.000118
– volume: 101
  start-page: 090801
  year: 2008
  ident: BFnphoton2010240_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.090801
– volume: 8
  start-page: 291
  year: 2009
  ident: BFnphoton2010240_CR46
  publication-title: Nature Mater.
  doi: 10.1038/nmat2400
– volume: 15
  start-page: 1662
  year: 1998
  ident: BFnphoton2010240_CR9
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.15.001662
– volume: 79
  start-page: 023809
  year: 2009
  ident: BFnphoton2010240_CR42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.023809
– volume: 102
  start-page: 018101
  year: 2009
  ident: BFnphoton2010240_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.018101
– volume: 2
  start-page: 560
  year: 2008
  ident: BFnphoton2010240_CR56
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.154
– volume: 73A
  start-page: 949
  year: 2008
  ident: BFnphoton2010240_CR36
  publication-title: Cytom. Part A
  doi: 10.1002/cyto.a.20616
– volume: 107
  start-page: 11234
  year: 2010
  ident: BFnphoton2010240_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1000156107
– volume: 170
  start-page: 4
  year: 2009
  ident: BFnphoton2010240_CR11
  publication-title: J. Electron Spectrosc.
  doi: 10.1016/j.elspec.2008.10.008
– volume: 21
  start-page: 2758
  year: 1982
  ident: BFnphoton2010240_CR13
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.002758
– volume: 15
  start-page: 9954
  year: 2007
  ident: BFnphoton2010240_CR57
  publication-title: Opt. Express
  doi: 10.1364/OE.15.009954
– volume: 321
  start-page: 379
  year: 2008
  ident: BFnphoton2010240_CR51
  publication-title: Science
  doi: 10.1126/science.1158573
– volume: 4
  start-page: 394
  year: 2008
  ident: BFnphoton2010240_CR28
  publication-title: Nature Phys.
  doi: 10.1038/nphys896
– volume: 5
  start-page: 64
  year: 2009
  ident: BFnphoton2010240_CR65
  publication-title: Nature Phys.
  doi: 10.1038/nphys1129
– volume: 93
  start-page: 023903
  year: 2004
  ident: BFnphoton2010240_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.023903
– volume: 57
  start-page: 1109
  year: 2010
  ident: BFnphoton2010240_CR16
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2010.495459
– volume: 256
  start-page: 1009
  year: 1992
  ident: BFnphoton2010240_CR53
  publication-title: Science
  doi: 10.1126/science.256.5059.1009
– volume: 50
  start-page: 1035
  year: 2003
  ident: BFnphoton2010240_CR10
  publication-title: IEEE T. Ultrason. Ferr.
  doi: 10.1109/TUFFC.2003.1226547
– volume: 107
  start-page: 529
  year: 2010
  ident: BFnphoton2010240_CR52
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905846107
– volume: 432
  start-page: 885
  year: 2004
  ident: BFnphoton2010240_CR54
  publication-title: Nature
  doi: 10.1038/nature03139
SSID ssj0053922
Score 2.5381334
SecondaryResourceType review_article
Snippet Very high resolution X-ray imaging has been the subject of considerable research over the past few decades. However, the spatial resolution of these methods is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 833
SubjectTerms 639/624/1020/1087
639/624/1107/510
639/624/400/1106
Applied and Technical Physics
Biology
Coherence
Free electron lasers
Imaging
Lasers
Materials science
Optics
Photonics
Physics
Physics and Astronomy
Quantum Physics
review-article
Spatial resolution
X-rays
Title Coherent lensless X-ray imaging
URI https://link.springer.com/article/10.1038/nphoton.2010.240
https://www.proquest.com/docview/873168530
https://www.proquest.com/docview/880688097
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuHjx2zhR3MGLJg1bu7L2ZEBBYiIxRhJuy_qxaIID-Tj439uODoyJXLd2zd5r3_u17_X9AK7DSEmZcY4EwwJFPNSI8VCiiKgwkyGPM2HvDj8PWv1h9DSiI5ebM3dplaVNLAy1mkh7Rt5kBcUSJcHd9AtZ0igbXHUMGhWoGQvMzN6r1ukOXl5LU0yN88erG5EcmZlKXZwyIKyZT98nBl2tkruwPfv47Zc2YPNPfLRwO70D2HN40W-vFHwIOzo_gn2HHX23MufHcGXvWdhKS75xI_OxsV_-CM3Sb__js-AhOoFhr_t230eO_ABJEkULxAgJeMZErAQlLapxxoUMhJKpIJoqHBphxmlL84BlWDKWEmw2c6aZfSwNLjiFaj7J9Rn4WpFQB5JhbcAPTVWqdChsLTcuFcYq8qBZ_noiXWVwS1AxTooINWGJE1ZihZUYYXlws-4xXVXF2NK2Xkozcetjnqy16YG_fmsmto1WpLmeLE0TZvlwAh57cFvqYPOB_0Y73zpaHXbxOh3lAqqL2VJfGlCxEA2osN5jA2rtzkOn13AT6QfXBc6x
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHODCjigFmgMcQLKa2ElrHxBCQGkp9ESl3kK8RCCVtHQR4qP4R8ZZCkKiN66JY8fj2ezxzAM49nytVCwEkZxK4gvPEC48RXymvVh5oh5Lmzv80Kk1u_5dL-gtwGeRC2OvVRY6MVXUeqDsGXmVpxBLAXMvhm_EgkbZ4GqBoJFxRdt8vOOObXzeusblPaG0cfN41SQ5qABRzPcnhOMGXsRc1rUMWC0wNBZSuVKrSDITaOrhT9ajmhEuj6niPGIUN0nYzD5WaG-x30VY9hkTVqB447ZQ_AG6GjTLvxQE5SLIo6Iu49Vk-DxAXy67SkbtSctPK_jt2v6KxqZGrrEBa7l36lxm7LQJCybZgvXcU3VyPTDehorN6rB1nRw0WuM-akunR0bRh_PymqIe7UD3X6iyC0vJIDF74BjNPOMqTg26WkGkI208aSvHCaUp1X4JqsXUQ5XXIbdwGP0wjYczHubECi2xQiRWCU5nXwyzGhxz2pYLaoa5NI7DGe-UwJm9RTGysZEoMYMpNuEWfccV9RKcFWvw3cFfo-3PHa0CK83Hh_vwvtVpl2GVzi7CHMDSZDQ1h-jOTORRykQOPP03134BGIIIZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50BfHiW1yfPehBIWybtNvkIOJr8bmIKOytNo-isHZXd0X8af47J226iqA3r22atpPJzDeZF8BWEGqlMiGI5FSSUASGcBEoEjIdZCoQcSZt7vBVu3l6F553os4YfFS5MDasspKJhaDWPWXPyBu8aLEUMb-RuaiI6-PWfv-Z2AZS1tFaddMoOeTCvL-h9TbYOzvGpd6mtHVye3RKXIMBolgYDglHY15kXMZaRqwZGZoJqXypVSqZiTQN8IPjtGmEzzOqOE8ZRYMJh9nLCnUvzjsOEzEaRX4NJg5P2tc3lRqIEHjQMhtTENwlkfOR-ow38v5DD5FdGVhG7bnLd534BXR_-GYLldeahWmHVb2DkrnmYMzk8zDjcKvnpMJgATZtjoet8uShCht0UXZ6HfKSvnuPT0UPpEW4-xe6LEEt7-VmGTyjWWB8xalB4BWlOtUmkLaOnFCaUh3WoVH9eqJcVXLbHKObFN5xxhNHrMQSK0Fi1WFn9ES_rMjxx9jVipqJ25uDZMRJdfBGd3FTWU9JmpveKw7hthePL-I67FZr8DXBb29b-fNtmzCJHJtcnrUvVmGKjqJi1qA2fHk164hthnLDcZEH9__NuJ-lRA32
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+lensless+X-ray+imaging&rft.jtitle=Nature+photonics&rft.au=Chapman%2C+Henry+N&rft.au=Nugent%2C+Keith+A&rft.date=2010-12-01&rft.issn=1749-4885&rft.volume=4&rft.issue=12&rft.spage=833&rft.epage=839&rft_id=info:doi/10.1038%2Fnphoton.2010.240&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon