Quantile estimations via modified Cholesky decomposition for longitudinal single-index models
Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In th...
Saved in:
Published in | Annals of the Institute of Statistical Mathematics Vol. 71; no. 5; pp. 1163 - 1199 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Springer Japan
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0020-3157 1572-9052 |
DOI | 10.1007/s10463-018-0673-x |
Cover
Loading…
Abstract | Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In this paper, we focus on longitudinal single-index models. Firstly, we apply the modified Cholesky decomposition to parameterize the intra-subject covariance matrix and develop a regression approach to estimate the parameters of the covariance matrix. Secondly, we propose efficient quantile estimating equations for the index coefficients and the link function based on the estimated covariance matrix. Since the proposed estimating equations include a discrete indicator function, we propose smoothed estimating equations for fast and accurate computation of the index coefficients, as well as their asymptotic covariances. Thirdly, we establish the asymptotic properties of the proposed estimators. Finally, simulation studies and a real data analysis have illustrated the efficiency of the proposed approach. |
---|---|
AbstractList | Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In this paper, we focus on longitudinal single-index models. Firstly, we apply the modified Cholesky decomposition to parameterize the intra-subject covariance matrix and develop a regression approach to estimate the parameters of the covariance matrix. Secondly, we propose efficient quantile estimating equations for the index coefficients and the link function based on the estimated covariance matrix. Since the proposed estimating equations include a discrete indicator function, we propose smoothed estimating equations for fast and accurate computation of the index coefficients, as well as their asymptotic covariances. Thirdly, we establish the asymptotic properties of the proposed estimators. Finally, simulation studies and a real data analysis have illustrated the efficiency of the proposed approach. |
Author | Lv, Jing Guo, Chaohui |
Author_xml | – sequence: 1 givenname: Jing surname: Lv fullname: Lv, Jing organization: School of Mathematics and Statistics, Southwest University – sequence: 2 givenname: Chaohui surname: Guo fullname: Guo, Chaohui email: guochaohui2010@126.com organization: College of Mathematics Science, Chongqing Normal University |
BookMark | eNp9kMtKAzEYRoMo2FYfwF3AdfRPMpfMUoo3KIigSwlxJlNT06QmM9K-vRlHEAS7CoRzwpczRYfOO43QGYULClBeRgpZwQlQQaAoOdkeoAnNS0YqyNkhmgAwIDzdHKNpjCsA4IyzCXp57JXrjNVYx86sVWe8i_jTKLz2jWmNbvD8zVsd33e40bVfb3w0A4RbH7D1bmm6vjFOWRyNW1pNjGv0drC1jSfoqFU26tOfc4aeb66f5ndk8XB7P79akJpnWUcENK9KgKJ5rrXSAkQaylWuRZ1lwFXBgAmVMapEmbdFzanKGybqhtYVr9qKz9D5-O4m-I8-_USufB_SqCgZK7OiElUBeynIiwpEBiJR5UjVwccYdCtr03136YIyVlKQQ3E5FpepuByKy20y6R9zE1LSsNvrsNGJiXVLHX43_S99AT9nlhI |
CitedBy_id | crossref_primary_10_1080_03610918_2021_1986069 crossref_primary_10_4236_ojs_2020_101002 crossref_primary_10_1080_03610926_2022_2060514 crossref_primary_10_1007_s00362_024_01633_2 crossref_primary_10_1080_03610926_2022_2100421 |
Cites_doi | 10.1093/biomet/93.4.927 10.1093/biomet/73.1.13 10.1214/10-AOS871 10.1016/j.jspi.2010.11.017 10.1214/15-AOS1404 10.1080/10485252.2016.1191632 10.1093/biomet/asr068 10.1007/s11425-013-4608-y 10.1198/jasa.2009.tm08485 10.1016/j.jkss.2016.03.003 10.1093/biomet/asq080 10.1016/j.csda.2017.02.015 10.1016/j.jspi.2014.11.008 10.1214/cbms/1462061091 10.1016/j.jspi.2017.02.011 10.1080/01621459.1998.10473723 10.1016/j.jmva.2011.10.004 10.1111/j.1467-9868.2012.01038.x 10.1080/01621459.2014.903185 10.1016/j.jmva.2011.08.009 10.5705/ss.2011.251 10.1080/01621459.1996.10476683 10.1016/j.csda.2010.08.003 10.2307/2999619 |
ContentType | Journal Article |
Copyright | The Institute of Statistical Mathematics, Tokyo 2018 Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved. Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Institute of Statistical Mathematics, Tokyo 2018 – notice: Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved. – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH H8D HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10463-018-0673-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Aerospace Database ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1572-9052 |
EndPage | 1199 |
ExternalDocumentID | 10_1007_s10463_018_0673_x |
GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7.U 78A 7WY 8FL 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DNIVK DPUIP E3Z EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M2O M4Y MA- NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PT4 PT5 Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7X Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ~02 ~8M ~EX -Y2 1SB 2.D 2VQ 2WC 692 88I 8FE 8FG AAPKM AARHV AAYTO AAYXX ABDBE ABFSG ABJCF ABQSL ABULA ABUWG ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFKRA AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ARAPS ATHPR AZQEC BBWZM BENPR BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO FA8 FRNLG GNUQQ H13 HCIFZ HF~ IHE K6V K7- L6V M0C M2P M7S N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS RNI RZC RZE RZK S1Z S26 S28 SCLPG SDD T16 TEORI TKC ZWQNP 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ H8D JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c344t-80dba80a155eeae8081573a5e8c4403a62028a421a875f6c31a5d28cd1c939f93 |
IEDL.DBID | AGYKE |
ISSN | 0020-3157 |
IngestDate | Sat Aug 16 10:11:07 EDT 2025 Sat Aug 23 14:50:23 EDT 2025 Tue Jul 01 01:40:36 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Fri Feb 21 02:32:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Single-index models Longitudinal data B-spline Quantile regression Modified Cholesky decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-80dba80a155eeae8081573a5e8c4403a62028a421a875f6c31a5d28cd1c939f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2056908408 |
PQPubID | 25813 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2274698960 proquest_journals_2056908408 crossref_citationtrail_10_1007_s10463_018_0673_x crossref_primary_10_1007_s10463_018_0673_x springer_journals_10_1007_s10463_018_0673_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Annals of the Institute of Statistical Mathematics |
PublicationTitleAbbrev | Ann Inst Stat Math |
PublicationYear | 2019 |
Publisher | Springer Japan Springer Nature B.V |
Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
References | Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. Wang, H., Zhu, Z. (2011). Empirical likelihood for quantile regression models with longitudinal data. Journal of Statistical Planning and Inference, 141, 1603–1615. JungSQuasi-likelihood for median regression modelsJournal of the American Statistical Association199691251257139407910.1080/01621459.1996.104766830871.62060 Guo, C., Yang, H., Lv, J., Wu, J. (2016). Joint estimation for single index mean-covariance models with longitudinal data. Journal of the Korean Statistical Society, 45, 526–543. Zhao, W., Lian, H., Liang, H. (2017). GEE analysis for longitudinal single-index quantile regression. Journal of Statistical Planning and Inference, 187, 78–102. Ye, H., Pan, J. (2006). Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika, 93, 927–941. Lai, P., Wang, Q., Lian, H. (2012). Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. Journal of Multivariate Analysis, 105, 422–432. Xu, P., Zhu, L. (2012). Estimation for a marginal generalized single-index longitudinal model. Journal of Multivariate Analysis, 105, 285–299. Leng, C., Zhang, W., Pan, J. (2010). Semiparametric mean-covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105, 181–193. HorowitzJLBootstrap methods for median regression modelsEconometrica19986613271351165430710.2307/29996191056.62517 Ma, S., He, X. (2016). Inference for single-index quantile regression models with profile optimization. The Annals of Statistics, 44, 1234–1268. Yao, W., Li, R. (2013). New local estimation procedure for a non-parametric regression function for longitudinal data. Journal of the Royal Statistical Society: Series B, 75, 123–138. Zhang, W., Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data. Biometrika, 99, 141–150. Mao, J., Zhu, Z., Fung, W. K. (2011). Joint estimation of mean-covariance model for longitudinal data with basis function approximations. Computational Statistics and Data Analysis, 55, 983–992. Lin, H., Zhang, R., Shi, J., Liu, J., Liu, Y. (2016). A new local estimation method for single index models for longitudinal data. Journal of Nonparametric Statistics, 28, 644–658. Ma, S., Song, P. X.-K. (2015). Varying index coefficient models. Journal of the American Statistical Association, 110, 341–356. Liu, X., Zhang, W. (2013). A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data. Science China Mathematics, 56, 2367–2379. de BoorCA practical guide to splines2001New YorkSpringer0987.65015 Liu, S., Li, G. (2015). Varying-coefficient mean-covariance regression analysis for longitudinal data. Journal of Statistical Planning and Inference, 160, 89–106. Zheng, X., Fung, W. K., Zhu, Z. (2014). Variable selection in robust joint mean and covariance model for longitudinal data analysis. Statistica Sinica, 24, 515–531. Zhang, D., Lin, X., Raz, J., Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association, 93, 710–719. LiYEfficient semiparametric regression for longitudinal data with nonparametric covariance estimationBiometrika2011982355370280643310.1093/biomet/asq0801215.62042 Cui, X., Härdle, W. K., Zhu, L. (2011). The EFM approach for single-index models. The Annals of Statistics, 39, 1658–688. PollardDEmpirical processes: Theories and applications1990Hayward, CAInstitute of Mathematical Statistics0741.60001 Lv, J., Guo, C., Yang, H., Li, Y. (2017). A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data. Computational Statistics and Data Analysis, 112, 129–144. S Jung (673_CR5) 1996; 91 673_CR14 673_CR13 673_CR12 673_CR11 C Boor de (673_CR2) 2001 673_CR10 673_CR1 673_CR3 D Pollard (673_CR17) 1990 673_CR9 JL Horowitz (673_CR4) 1998; 66 673_CR7 673_CR6 Y Li (673_CR8) 2011; 98 673_CR25 673_CR24 673_CR23 673_CR22 673_CR21 673_CR20 673_CR19 673_CR18 673_CR16 673_CR15 |
References_xml | – reference: Mao, J., Zhu, Z., Fung, W. K. (2011). Joint estimation of mean-covariance model for longitudinal data with basis function approximations. Computational Statistics and Data Analysis, 55, 983–992. – reference: Lin, H., Zhang, R., Shi, J., Liu, J., Liu, Y. (2016). A new local estimation method for single index models for longitudinal data. Journal of Nonparametric Statistics, 28, 644–658. – reference: Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. – reference: de BoorCA practical guide to splines2001New YorkSpringer0987.65015 – reference: Leng, C., Zhang, W., Pan, J. (2010). Semiparametric mean-covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105, 181–193. – reference: Ma, S., Song, P. X.-K. (2015). Varying index coefficient models. Journal of the American Statistical Association, 110, 341–356. – reference: HorowitzJLBootstrap methods for median regression modelsEconometrica19986613271351165430710.2307/29996191056.62517 – reference: Ye, H., Pan, J. (2006). Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika, 93, 927–941. – reference: Lv, J., Guo, C., Yang, H., Li, Y. (2017). A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data. Computational Statistics and Data Analysis, 112, 129–144. – reference: Liu, X., Zhang, W. (2013). A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data. Science China Mathematics, 56, 2367–2379. – reference: Cui, X., Härdle, W. K., Zhu, L. (2011). The EFM approach for single-index models. The Annals of Statistics, 39, 1658–688. – reference: JungSQuasi-likelihood for median regression modelsJournal of the American Statistical Association199691251257139407910.1080/01621459.1996.104766830871.62060 – reference: Lai, P., Wang, Q., Lian, H. (2012). Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. Journal of Multivariate Analysis, 105, 422–432. – reference: Zhang, D., Lin, X., Raz, J., Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association, 93, 710–719. – reference: Ma, S., He, X. (2016). Inference for single-index quantile regression models with profile optimization. The Annals of Statistics, 44, 1234–1268. – reference: Guo, C., Yang, H., Lv, J., Wu, J. (2016). Joint estimation for single index mean-covariance models with longitudinal data. Journal of the Korean Statistical Society, 45, 526–543. – reference: Xu, P., Zhu, L. (2012). Estimation for a marginal generalized single-index longitudinal model. Journal of Multivariate Analysis, 105, 285–299. – reference: Yao, W., Li, R. (2013). New local estimation procedure for a non-parametric regression function for longitudinal data. Journal of the Royal Statistical Society: Series B, 75, 123–138. – reference: Zhang, W., Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data. Biometrika, 99, 141–150. – reference: Zhao, W., Lian, H., Liang, H. (2017). GEE analysis for longitudinal single-index quantile regression. Journal of Statistical Planning and Inference, 187, 78–102. – reference: PollardDEmpirical processes: Theories and applications1990Hayward, CAInstitute of Mathematical Statistics0741.60001 – reference: LiYEfficient semiparametric regression for longitudinal data with nonparametric covariance estimationBiometrika2011982355370280643310.1093/biomet/asq0801215.62042 – reference: Wang, H., Zhu, Z. (2011). Empirical likelihood for quantile regression models with longitudinal data. Journal of Statistical Planning and Inference, 141, 1603–1615. – reference: Zheng, X., Fung, W. K., Zhu, Z. (2014). Variable selection in robust joint mean and covariance model for longitudinal data analysis. Statistica Sinica, 24, 515–531. – reference: Liu, S., Li, G. (2015). Varying-coefficient mean-covariance regression analysis for longitudinal data. Journal of Statistical Planning and Inference, 160, 89–106. – ident: 673_CR21 doi: 10.1093/biomet/93.4.927 – ident: 673_CR9 doi: 10.1093/biomet/73.1.13 – ident: 673_CR1 doi: 10.1214/10-AOS871 – ident: 673_CR18 doi: 10.1016/j.jspi.2010.11.017 – ident: 673_CR14 doi: 10.1214/15-AOS1404 – volume-title: A practical guide to splines year: 2001 ident: 673_CR2 – ident: 673_CR10 doi: 10.1080/10485252.2016.1191632 – ident: 673_CR23 doi: 10.1093/biomet/asr068 – ident: 673_CR12 doi: 10.1007/s11425-013-4608-y – ident: 673_CR7 doi: 10.1198/jasa.2009.tm08485 – ident: 673_CR3 doi: 10.1016/j.jkss.2016.03.003 – volume: 98 start-page: 355 issue: 2 year: 2011 ident: 673_CR8 publication-title: Biometrika doi: 10.1093/biomet/asq080 – ident: 673_CR13 doi: 10.1016/j.csda.2017.02.015 – ident: 673_CR11 doi: 10.1016/j.jspi.2014.11.008 – volume-title: Empirical processes: Theories and applications year: 1990 ident: 673_CR17 doi: 10.1214/cbms/1462061091 – ident: 673_CR24 doi: 10.1016/j.jspi.2017.02.011 – ident: 673_CR22 doi: 10.1080/01621459.1998.10473723 – ident: 673_CR19 doi: 10.1016/j.jmva.2011.10.004 – ident: 673_CR20 doi: 10.1111/j.1467-9868.2012.01038.x – ident: 673_CR15 doi: 10.1080/01621459.2014.903185 – ident: 673_CR6 doi: 10.1016/j.jmva.2011.08.009 – ident: 673_CR25 doi: 10.5705/ss.2011.251 – volume: 91 start-page: 251 year: 1996 ident: 673_CR5 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1996.10476683 – ident: 673_CR16 doi: 10.1016/j.csda.2010.08.003 – volume: 66 start-page: 1327 year: 1998 ident: 673_CR4 publication-title: Econometrica doi: 10.2307/2999619 |
SSID | ssj0003232 |
Score | 2.1919549 |
Snippet | Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1163 |
SubjectTerms | Asymptotic properties Computer simulation Correlation analysis Covariance matrix Data analysis Decomposition Economic models Economics Estimation Finance Insurance Longitudinal studies Management Mathematical models Mathematics Mathematics and Statistics Parameter estimation Regression analysis Statistics Statistics for Business |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQn1hf5OBJCezm0SYnkWIVQUFQ8CJLNsmCWNvqtqL_3pndbIuinrNLYCaZ-SaZfB8hR4VwJgcowIwWnkmtcpYLz1kiTKF5GlAOHrstbjqX9_LqQT3EA7cytlU2MbEK1H7k8IwcinQFhRyUI_p0_MpQNQpvV6OExiJZSiHT4DrX_YtZJBZcRLZwjDWq29xq1k_nJN5gppqhVAv7-J6X5mDzx_1olXb6a2Q14kV6Vjt4nSyE4QZZuZ6RrZYbZBkBY823vEkeb6dgK9jqFOkz6neJJX1_svRl5J8KAJy0h5K45fMn9QEbymPXFgX0SgcjlC-aepTKoniKMAis4lOklWJOuUXu--d3vUsWJRSYE1JOIP_43OrEAmoIwQaU2VBdYVXQTspE2A4HfGElTy3ULUXHidQqz7XzqTPgLSO2SWs4GoYdQiGr8a4yosi9k0Zz4wqjkUDQdHmhuGyTpDFg5iK_OMpcDLI5MzLaPAObZ2jz7KNNjme_jGtyjf8-3m-8ksV9VmbzVfH7MNTcqJDZSdrkpHHkfPjPuXb_n2uPLANuMnVP3z5pTd6m4QCwySQ_rBbgF-Zq3u0 priority: 102 providerName: ProQuest |
Title | Quantile estimations via modified Cholesky decomposition for longitudinal single-index models |
URI | https://link.springer.com/article/10.1007/s10463-018-0673-x https://www.proquest.com/docview/2056908408 https://www.proquest.com/docview/2274698960 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeqAcChSqBkrkAyeQq10_EvuYlKQViKpFjVQOaOW1vVLVNEFsgmh_fWeyuwlUBamn1crel8ePzzsz3wfwrpDe5ggFuDUycGV0znMZBE-kLYxII8nBU7TFcfdorD6d6_M6j7tsot0bl-Rypv4j2U2RzzE1nMRVOALHDZ0aa1qw0T_89nm4moClkDVJOE0xutc4M--7yd_L0Rpj3nGLLleb0TM4a96zCjK53F_M831_c4fC8YEf8hy2avTJ-lV3eQGP4nQbnjTJyeU2PP2yonHFs02CohWT80v4frpAK-AkwoiYo8p4LNmvC8euZuGiQCjLDkhst7y8ZiFSqHodD8YQF7PJjISRFoFEuBj9n5hEvmRqZEstnvIVjEfDs4MjXoszcC-VmuPKFnJnEod4JEYXScBD96TT0XilEum6ApGLUyJ1uCMqul6mTgdhfEi9xX5g5Q60prNp3AWG66XoaSuLPHhljbC-sIaoCW1PFFqoNiSNjTJfM5eTgMYkW3MuU5Nm2KQZNWn2uw3vV5f8qGg7_ld5rzF8Vo_gMhOIDG2C219zfzHu5kl7s5u04UNj5nXxP5_1-kG138AmAjRbBQ_uQWv-cxHfIgia5x14bEaHHez6g4-DUaceAngcDI9PvmLpWPRvAZj1Abo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6aHlUEEBkVLAB7iALO36kdgHVLWlVfqKALVSL2jx2l6pakgKm_Txp_iNncnuJioqvfW8u7J2PJ75xh5_H8D7QnqbIxTg1sjAldE5z2UQPJG2MCKNJAdP3Rb9Tu9E7Z_q0wX429yFobbKJiZOA3UYedojxyJdYyGH5YjZuPjNSTWKTlcbCY3KLQ7izRWWbOXnvS84vx-E2N053u7xWlWAe6nUGENyyJ1JHCbSGF0k5QndlU5H45VKpOsITLlOidQhlC86XqZOB2F8SL3FHyDyJQz5i4putLZgcWun__X7LPZLIWt-copuutuco1aX9RSdmaaGkzgMv76bCefw9p8T2Wmi230KKzVCZZuVSz2DhThchSdHM3rXchWWCaJWDM_P4ce3Cc4OBhdGhB3VTciSXZ459msUzgqEuGybRHjL8xsWIrWw131iDPEyG4xIMGkSSJyL0b7FIPIpgyObavSUL-DkUcz7ElrD0TC-AoZ5VHS1lUUevLJGWF9YQ5SFtisKLVQbksaAma8ZzUlYY5DNuZjJ5hnaPCObZ9dt-Dj75KKi83jo5fVmVrJ6ZZfZ3A_vf4xVPmlydpI2fGomcv74v2OtPTzWO1jqHR8dZod7_YPXsIyozVYdhevQGv-ZxDeIjMb529odGfx87BVwC6UhHD0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SwcdBfGJ95uBJCe4m2TY5FrX4RsFCL7JkkywUa1vcVvTfO9PdbVVU8LhkHzCTZL7szHwfIQepsDoBKMC0Eo5JFSUsEY6zQOhU8dCjHDxWW9zWzlvysh21C53TrKx2L1OSeU8DsjT1hscDlx5_anyTmH8MFUOhFQYgchZ24xAneos3Jlux4KKgC8fNJqqXac2fXvE1ME3R5rcE6TjuNJfJUgEYaSP38AqZ8b1VMl_2E2erZPFmwrwKVwuIHnPy5TXyeD8Cw8G6p8ilkTcpZvS1Y-hz33VSQJ_0BPVxs6d36jxWlxclXBSgLO32Ucto5FA3i-Ivha5nY3JFOpbPydZJq3n2cHLOCj0FZoWUQwhGLjEqMAAhvDceNTeiujCRV1bKQJgaB7BhJA8NHGLSmhWhiRxX1oVWg-u02CCVXr_nNwmFEMfrkRZp4qzUimubaoVsgrrO04jLKglKY8a2IBtHzYtuPKVJRvvHYP8Y7R-_Vcnh5JFBzrTx1807pYfiYtFlMQcwpwM4saqfh-EAjnKZtaBKjkqnTod__dbWv-7eJ3N3p834-uL2apssALzSeenfDqkMX0Z-FyDMMNkbT9MPNZnm4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantile+estimations+via+modified+Cholesky+decomposition+for+longitudinal+single-index+models&rft.jtitle=Annals+of+the+Institute+of+Statistical+Mathematics&rft.au=Lv%2C+Jing&rft.au=Guo%2C+Chaohui&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0020-3157&rft.eissn=1572-9052&rft.volume=71&rft.issue=5&rft.spage=1163&rft.epage=1199&rft_id=info:doi/10.1007%2Fs10463-018-0673-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-3157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-3157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-3157&client=summon |