Quantile estimations via modified Cholesky decomposition for longitudinal single-index models

Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In th...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the Institute of Statistical Mathematics Vol. 71; no. 5; pp. 1163 - 1199
Main Authors Lv, Jing, Guo, Chaohui
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0020-3157
1572-9052
DOI10.1007/s10463-018-0673-x

Cover

Loading…
Abstract Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In this paper, we focus on longitudinal single-index models. Firstly, we apply the modified Cholesky decomposition to parameterize the intra-subject covariance matrix and develop a regression approach to estimate the parameters of the covariance matrix. Secondly, we propose efficient quantile estimating equations for the index coefficients and the link function based on the estimated covariance matrix. Since the proposed estimating equations include a discrete indicator function, we propose smoothed estimating equations for fast and accurate computation of the index coefficients, as well as their asymptotic covariances. Thirdly, we establish the asymptotic properties of the proposed estimators. Finally, simulation studies and a real data analysis have illustrated the efficiency of the proposed approach.
AbstractList Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal studies, it is necessary to consider the intra-subject correlation among repeated measures over time to improve the estimation efficiency. In this paper, we focus on longitudinal single-index models. Firstly, we apply the modified Cholesky decomposition to parameterize the intra-subject covariance matrix and develop a regression approach to estimate the parameters of the covariance matrix. Secondly, we propose efficient quantile estimating equations for the index coefficients and the link function based on the estimated covariance matrix. Since the proposed estimating equations include a discrete indicator function, we propose smoothed estimating equations for fast and accurate computation of the index coefficients, as well as their asymptotic covariances. Thirdly, we establish the asymptotic properties of the proposed estimators. Finally, simulation studies and a real data analysis have illustrated the efficiency of the proposed approach.
Author Lv, Jing
Guo, Chaohui
Author_xml – sequence: 1
  givenname: Jing
  surname: Lv
  fullname: Lv, Jing
  organization: School of Mathematics and Statistics, Southwest University
– sequence: 2
  givenname: Chaohui
  surname: Guo
  fullname: Guo, Chaohui
  email: guochaohui2010@126.com
  organization: College of Mathematics Science, Chongqing Normal University
BookMark eNp9kMtKAzEYRoMo2FYfwF3AdfRPMpfMUoo3KIigSwlxJlNT06QmM9K-vRlHEAS7CoRzwpczRYfOO43QGYULClBeRgpZwQlQQaAoOdkeoAnNS0YqyNkhmgAwIDzdHKNpjCsA4IyzCXp57JXrjNVYx86sVWe8i_jTKLz2jWmNbvD8zVsd33e40bVfb3w0A4RbH7D1bmm6vjFOWRyNW1pNjGv0drC1jSfoqFU26tOfc4aeb66f5ndk8XB7P79akJpnWUcENK9KgKJ5rrXSAkQaylWuRZ1lwFXBgAmVMapEmbdFzanKGybqhtYVr9qKz9D5-O4m-I8-_USufB_SqCgZK7OiElUBeynIiwpEBiJR5UjVwccYdCtr03136YIyVlKQQ3E5FpepuByKy20y6R9zE1LSsNvrsNGJiXVLHX43_S99AT9nlhI
CitedBy_id crossref_primary_10_1080_03610918_2021_1986069
crossref_primary_10_4236_ojs_2020_101002
crossref_primary_10_1080_03610926_2022_2060514
crossref_primary_10_1007_s00362_024_01633_2
crossref_primary_10_1080_03610926_2022_2100421
Cites_doi 10.1093/biomet/93.4.927
10.1093/biomet/73.1.13
10.1214/10-AOS871
10.1016/j.jspi.2010.11.017
10.1214/15-AOS1404
10.1080/10485252.2016.1191632
10.1093/biomet/asr068
10.1007/s11425-013-4608-y
10.1198/jasa.2009.tm08485
10.1016/j.jkss.2016.03.003
10.1093/biomet/asq080
10.1016/j.csda.2017.02.015
10.1016/j.jspi.2014.11.008
10.1214/cbms/1462061091
10.1016/j.jspi.2017.02.011
10.1080/01621459.1998.10473723
10.1016/j.jmva.2011.10.004
10.1111/j.1467-9868.2012.01038.x
10.1080/01621459.2014.903185
10.1016/j.jmva.2011.08.009
10.5705/ss.2011.251
10.1080/01621459.1996.10476683
10.1016/j.csda.2010.08.003
10.2307/2999619
ContentType Journal Article
Copyright The Institute of Statistical Mathematics, Tokyo 2018
Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved.
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Institute of Statistical Mathematics, Tokyo 2018
– notice: Annals of the Institute of Statistical Mathematics is a copyright of Springer, (2018). All Rights Reserved.
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
H8D
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10463-018-0673-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Aerospace Database

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1572-9052
EndPage 1199
ExternalDocumentID 10_1007_s10463_018_0673_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7.U
78A
7WY
8FL
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M2O
M4Y
MA-
NB0
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
~02
~8M
~EX
-Y2
1SB
2.D
2VQ
2WC
692
88I
8FE
8FG
AAPKM
AARHV
AAYTO
AAYXX
ABDBE
ABFSG
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ARAPS
ATHPR
AZQEC
BBWZM
BENPR
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
FA8
FRNLG
GNUQQ
H13
HCIFZ
HF~
IHE
K6V
K7-
L6V
M0C
M2P
M7S
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SDD
T16
TEORI
TKC
ZWQNP
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
H8D
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c344t-80dba80a155eeae8081573a5e8c4403a62028a421a875f6c31a5d28cd1c939f93
IEDL.DBID AGYKE
ISSN 0020-3157
IngestDate Sat Aug 16 10:11:07 EDT 2025
Sat Aug 23 14:50:23 EDT 2025
Tue Jul 01 01:40:36 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Fri Feb 21 02:32:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Single-index models
Longitudinal data
B-spline
Quantile regression
Modified Cholesky decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-80dba80a155eeae8081573a5e8c4403a62028a421a875f6c31a5d28cd1c939f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2056908408
PQPubID 25813
PageCount 37
ParticipantIDs proquest_journals_2274698960
proquest_journals_2056908408
crossref_citationtrail_10_1007_s10463_018_0673_x
crossref_primary_10_1007_s10463_018_0673_x
springer_journals_10_1007_s10463_018_0673_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Annals of the Institute of Statistical Mathematics
PublicationTitleAbbrev Ann Inst Stat Math
PublicationYear 2019
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.
Wang, H., Zhu, Z. (2011). Empirical likelihood for quantile regression models with longitudinal data. Journal of Statistical Planning and Inference, 141, 1603–1615.
JungSQuasi-likelihood for median regression modelsJournal of the American Statistical Association199691251257139407910.1080/01621459.1996.104766830871.62060
Guo, C., Yang, H., Lv, J., Wu, J. (2016). Joint estimation for single index mean-covariance models with longitudinal data. Journal of the Korean Statistical Society, 45, 526–543.
Zhao, W., Lian, H., Liang, H. (2017). GEE analysis for longitudinal single-index quantile regression. Journal of Statistical Planning and Inference, 187, 78–102.
Ye, H., Pan, J. (2006). Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika, 93, 927–941.
Lai, P., Wang, Q., Lian, H. (2012). Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. Journal of Multivariate Analysis, 105, 422–432.
Xu, P., Zhu, L. (2012). Estimation for a marginal generalized single-index longitudinal model. Journal of Multivariate Analysis, 105, 285–299.
Leng, C., Zhang, W., Pan, J. (2010). Semiparametric mean-covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105, 181–193.
HorowitzJLBootstrap methods for median regression modelsEconometrica19986613271351165430710.2307/29996191056.62517
Ma, S., He, X. (2016). Inference for single-index quantile regression models with profile optimization. The Annals of Statistics, 44, 1234–1268.
Yao, W., Li, R. (2013). New local estimation procedure for a non-parametric regression function for longitudinal data. Journal of the Royal Statistical Society: Series B, 75, 123–138.
Zhang, W., Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data. Biometrika, 99, 141–150.
Mao, J., Zhu, Z., Fung, W. K. (2011). Joint estimation of mean-covariance model for longitudinal data with basis function approximations. Computational Statistics and Data Analysis, 55, 983–992.
Lin, H., Zhang, R., Shi, J., Liu, J., Liu, Y. (2016). A new local estimation method for single index models for longitudinal data. Journal of Nonparametric Statistics, 28, 644–658.
Ma, S., Song, P. X.-K. (2015). Varying index coefficient models. Journal of the American Statistical Association, 110, 341–356.
Liu, X., Zhang, W. (2013). A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data. Science China Mathematics, 56, 2367–2379.
de BoorCA practical guide to splines2001New YorkSpringer0987.65015
Liu, S., Li, G. (2015). Varying-coefficient mean-covariance regression analysis for longitudinal data. Journal of Statistical Planning and Inference, 160, 89–106.
Zheng, X., Fung, W. K., Zhu, Z. (2014). Variable selection in robust joint mean and covariance model for longitudinal data analysis. Statistica Sinica, 24, 515–531.
Zhang, D., Lin, X., Raz, J., Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association, 93, 710–719.
LiYEfficient semiparametric regression for longitudinal data with nonparametric covariance estimationBiometrika2011982355370280643310.1093/biomet/asq0801215.62042
Cui, X., Härdle, W. K., Zhu, L. (2011). The EFM approach for single-index models. The Annals of Statistics, 39, 1658–688.
PollardDEmpirical processes: Theories and applications1990Hayward, CAInstitute of Mathematical Statistics0741.60001
Lv, J., Guo, C., Yang, H., Li, Y. (2017). A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data. Computational Statistics and Data Analysis, 112, 129–144.
S Jung (673_CR5) 1996; 91
673_CR14
673_CR13
673_CR12
673_CR11
C Boor de (673_CR2) 2001
673_CR10
673_CR1
673_CR3
D Pollard (673_CR17) 1990
673_CR9
JL Horowitz (673_CR4) 1998; 66
673_CR7
673_CR6
Y Li (673_CR8) 2011; 98
673_CR25
673_CR24
673_CR23
673_CR22
673_CR21
673_CR20
673_CR19
673_CR18
673_CR16
673_CR15
References_xml – reference: Mao, J., Zhu, Z., Fung, W. K. (2011). Joint estimation of mean-covariance model for longitudinal data with basis function approximations. Computational Statistics and Data Analysis, 55, 983–992.
– reference: Lin, H., Zhang, R., Shi, J., Liu, J., Liu, Y. (2016). A new local estimation method for single index models for longitudinal data. Journal of Nonparametric Statistics, 28, 644–658.
– reference: Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.
– reference: de BoorCA practical guide to splines2001New YorkSpringer0987.65015
– reference: Leng, C., Zhang, W., Pan, J. (2010). Semiparametric mean-covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105, 181–193.
– reference: Ma, S., Song, P. X.-K. (2015). Varying index coefficient models. Journal of the American Statistical Association, 110, 341–356.
– reference: HorowitzJLBootstrap methods for median regression modelsEconometrica19986613271351165430710.2307/29996191056.62517
– reference: Ye, H., Pan, J. (2006). Modelling of covariance structures in generalised estimating equations for longitudinal data. Biometrika, 93, 927–941.
– reference: Lv, J., Guo, C., Yang, H., Li, Y. (2017). A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data. Computational Statistics and Data Analysis, 112, 129–144.
– reference: Liu, X., Zhang, W. (2013). A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data. Science China Mathematics, 56, 2367–2379.
– reference: Cui, X., Härdle, W. K., Zhu, L. (2011). The EFM approach for single-index models. The Annals of Statistics, 39, 1658–688.
– reference: JungSQuasi-likelihood for median regression modelsJournal of the American Statistical Association199691251257139407910.1080/01621459.1996.104766830871.62060
– reference: Lai, P., Wang, Q., Lian, H. (2012). Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data. Journal of Multivariate Analysis, 105, 422–432.
– reference: Zhang, D., Lin, X., Raz, J., Sowers, M. (1998). Semiparametric stochastic mixed models for longitudinal data. Journal of the American Statistical Association, 93, 710–719.
– reference: Ma, S., He, X. (2016). Inference for single-index quantile regression models with profile optimization. The Annals of Statistics, 44, 1234–1268.
– reference: Guo, C., Yang, H., Lv, J., Wu, J. (2016). Joint estimation for single index mean-covariance models with longitudinal data. Journal of the Korean Statistical Society, 45, 526–543.
– reference: Xu, P., Zhu, L. (2012). Estimation for a marginal generalized single-index longitudinal model. Journal of Multivariate Analysis, 105, 285–299.
– reference: Yao, W., Li, R. (2013). New local estimation procedure for a non-parametric regression function for longitudinal data. Journal of the Royal Statistical Society: Series B, 75, 123–138.
– reference: Zhang, W., Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data. Biometrika, 99, 141–150.
– reference: Zhao, W., Lian, H., Liang, H. (2017). GEE analysis for longitudinal single-index quantile regression. Journal of Statistical Planning and Inference, 187, 78–102.
– reference: PollardDEmpirical processes: Theories and applications1990Hayward, CAInstitute of Mathematical Statistics0741.60001
– reference: LiYEfficient semiparametric regression for longitudinal data with nonparametric covariance estimationBiometrika2011982355370280643310.1093/biomet/asq0801215.62042
– reference: Wang, H., Zhu, Z. (2011). Empirical likelihood for quantile regression models with longitudinal data. Journal of Statistical Planning and Inference, 141, 1603–1615.
– reference: Zheng, X., Fung, W. K., Zhu, Z. (2014). Variable selection in robust joint mean and covariance model for longitudinal data analysis. Statistica Sinica, 24, 515–531.
– reference: Liu, S., Li, G. (2015). Varying-coefficient mean-covariance regression analysis for longitudinal data. Journal of Statistical Planning and Inference, 160, 89–106.
– ident: 673_CR21
  doi: 10.1093/biomet/93.4.927
– ident: 673_CR9
  doi: 10.1093/biomet/73.1.13
– ident: 673_CR1
  doi: 10.1214/10-AOS871
– ident: 673_CR18
  doi: 10.1016/j.jspi.2010.11.017
– ident: 673_CR14
  doi: 10.1214/15-AOS1404
– volume-title: A practical guide to splines
  year: 2001
  ident: 673_CR2
– ident: 673_CR10
  doi: 10.1080/10485252.2016.1191632
– ident: 673_CR23
  doi: 10.1093/biomet/asr068
– ident: 673_CR12
  doi: 10.1007/s11425-013-4608-y
– ident: 673_CR7
  doi: 10.1198/jasa.2009.tm08485
– ident: 673_CR3
  doi: 10.1016/j.jkss.2016.03.003
– volume: 98
  start-page: 355
  issue: 2
  year: 2011
  ident: 673_CR8
  publication-title: Biometrika
  doi: 10.1093/biomet/asq080
– ident: 673_CR13
  doi: 10.1016/j.csda.2017.02.015
– ident: 673_CR11
  doi: 10.1016/j.jspi.2014.11.008
– volume-title: Empirical processes: Theories and applications
  year: 1990
  ident: 673_CR17
  doi: 10.1214/cbms/1462061091
– ident: 673_CR24
  doi: 10.1016/j.jspi.2017.02.011
– ident: 673_CR22
  doi: 10.1080/01621459.1998.10473723
– ident: 673_CR19
  doi: 10.1016/j.jmva.2011.10.004
– ident: 673_CR20
  doi: 10.1111/j.1467-9868.2012.01038.x
– ident: 673_CR15
  doi: 10.1080/01621459.2014.903185
– ident: 673_CR6
  doi: 10.1016/j.jmva.2011.08.009
– ident: 673_CR25
  doi: 10.5705/ss.2011.251
– volume: 91
  start-page: 251
  year: 1996
  ident: 673_CR5
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1996.10476683
– ident: 673_CR16
  doi: 10.1016/j.csda.2010.08.003
– volume: 66
  start-page: 1327
  year: 1998
  ident: 673_CR4
  publication-title: Econometrica
  doi: 10.2307/2999619
SSID ssj0003232
Score 2.1919549
Snippet Quantile regression is a powerful complement to the usual mean regression and becomes increasingly popular due to its desirable properties. In longitudinal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1163
SubjectTerms Asymptotic properties
Computer simulation
Correlation analysis
Covariance matrix
Data analysis
Decomposition
Economic models
Economics
Estimation
Finance
Insurance
Longitudinal studies
Management
Mathematical models
Mathematics
Mathematics and Statistics
Parameter estimation
Regression analysis
Statistics
Statistics for Business
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQn1hf5OBJCezm0SYnkWIVQUFQ8CJLNsmCWNvqtqL_3pndbIuinrNLYCaZ-SaZfB8hR4VwJgcowIwWnkmtcpYLz1kiTKF5GlAOHrstbjqX9_LqQT3EA7cytlU2MbEK1H7k8IwcinQFhRyUI_p0_MpQNQpvV6OExiJZSiHT4DrX_YtZJBZcRLZwjDWq29xq1k_nJN5gppqhVAv7-J6X5mDzx_1olXb6a2Q14kV6Vjt4nSyE4QZZuZ6RrZYbZBkBY823vEkeb6dgK9jqFOkz6neJJX1_svRl5J8KAJy0h5K45fMn9QEbymPXFgX0SgcjlC-aepTKoniKMAis4lOklWJOuUXu--d3vUsWJRSYE1JOIP_43OrEAmoIwQaU2VBdYVXQTspE2A4HfGElTy3ULUXHidQqz7XzqTPgLSO2SWs4GoYdQiGr8a4yosi9k0Zz4wqjkUDQdHmhuGyTpDFg5iK_OMpcDLI5MzLaPAObZ2jz7KNNjme_jGtyjf8-3m-8ksV9VmbzVfH7MNTcqJDZSdrkpHHkfPjPuXb_n2uPLANuMnVP3z5pTd6m4QCwySQ_rBbgF-Zq3u0
  priority: 102
  providerName: ProQuest
Title Quantile estimations via modified Cholesky decomposition for longitudinal single-index models
URI https://link.springer.com/article/10.1007/s10463-018-0673-x
https://www.proquest.com/docview/2056908408
https://www.proquest.com/docview/2274698960
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BeqAcChSqBkrkAyeQq10_EvuYlKQViKpFjVQOaOW1vVLVNEFsgmh_fWeyuwlUBamn1crel8ePzzsz3wfwrpDe5ggFuDUycGV0znMZBE-kLYxII8nBU7TFcfdorD6d6_M6j7tsot0bl-Rypv4j2U2RzzE1nMRVOALHDZ0aa1qw0T_89nm4moClkDVJOE0xutc4M--7yd_L0Rpj3nGLLleb0TM4a96zCjK53F_M831_c4fC8YEf8hy2avTJ-lV3eQGP4nQbnjTJyeU2PP2yonHFs02CohWT80v4frpAK-AkwoiYo8p4LNmvC8euZuGiQCjLDkhst7y8ZiFSqHodD8YQF7PJjISRFoFEuBj9n5hEvmRqZEstnvIVjEfDs4MjXoszcC-VmuPKFnJnEod4JEYXScBD96TT0XilEum6ApGLUyJ1uCMqul6mTgdhfEi9xX5g5Q60prNp3AWG66XoaSuLPHhljbC-sIaoCW1PFFqoNiSNjTJfM5eTgMYkW3MuU5Nm2KQZNWn2uw3vV5f8qGg7_ld5rzF8Vo_gMhOIDG2C219zfzHu5kl7s5u04UNj5nXxP5_1-kG138AmAjRbBQ_uQWv-cxHfIgia5x14bEaHHez6g4-DUaceAngcDI9PvmLpWPRvAZj1Abo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6aHlUEEBkVLAB7iALO36kdgHVLWlVfqKALVSL2jx2l6pakgKm_Txp_iNncnuJioqvfW8u7J2PJ75xh5_H8D7QnqbIxTg1sjAldE5z2UQPJG2MCKNJAdP3Rb9Tu9E7Z_q0wX429yFobbKJiZOA3UYedojxyJdYyGH5YjZuPjNSTWKTlcbCY3KLQ7izRWWbOXnvS84vx-E2N053u7xWlWAe6nUGENyyJ1JHCbSGF0k5QndlU5H45VKpOsITLlOidQhlC86XqZOB2F8SL3FHyDyJQz5i4putLZgcWun__X7LPZLIWt-copuutuco1aX9RSdmaaGkzgMv76bCefw9p8T2Wmi230KKzVCZZuVSz2DhThchSdHM3rXchWWCaJWDM_P4ce3Cc4OBhdGhB3VTciSXZ459msUzgqEuGybRHjL8xsWIrWw131iDPEyG4xIMGkSSJyL0b7FIPIpgyObavSUL-DkUcz7ElrD0TC-AoZ5VHS1lUUevLJGWF9YQ5SFtisKLVQbksaAma8ZzUlYY5DNuZjJ5hnaPCObZ9dt-Dj75KKi83jo5fVmVrJ6ZZfZ3A_vf4xVPmlydpI2fGomcv74v2OtPTzWO1jqHR8dZod7_YPXsIyozVYdhevQGv-ZxDeIjMb529odGfx87BVwC6UhHD0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SwcdBfGJ95uBJCe4m2TY5FrX4RsFCL7JkkywUa1vcVvTfO9PdbVVU8LhkHzCTZL7szHwfIQepsDoBKMC0Eo5JFSUsEY6zQOhU8dCjHDxWW9zWzlvysh21C53TrKx2L1OSeU8DsjT1hscDlx5_anyTmH8MFUOhFQYgchZ24xAneos3Jlux4KKgC8fNJqqXac2fXvE1ME3R5rcE6TjuNJfJUgEYaSP38AqZ8b1VMl_2E2erZPFmwrwKVwuIHnPy5TXyeD8Cw8G6p8ilkTcpZvS1Y-hz33VSQJ_0BPVxs6d36jxWlxclXBSgLO32Ucto5FA3i-Ivha5nY3JFOpbPydZJq3n2cHLOCj0FZoWUQwhGLjEqMAAhvDceNTeiujCRV1bKQJgaB7BhJA8NHGLSmhWhiRxX1oVWg-u02CCVXr_nNwmFEMfrkRZp4qzUimubaoVsgrrO04jLKglKY8a2IBtHzYtuPKVJRvvHYP8Y7R-_Vcnh5JFBzrTx1807pYfiYtFlMQcwpwM4saqfh-EAjnKZtaBKjkqnTod__dbWv-7eJ3N3p834-uL2apssALzSeenfDqkMX0Z-FyDMMNkbT9MPNZnm4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantile+estimations+via+modified+Cholesky+decomposition+for+longitudinal+single-index+models&rft.jtitle=Annals+of+the+Institute+of+Statistical+Mathematics&rft.au=Lv%2C+Jing&rft.au=Guo%2C+Chaohui&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0020-3157&rft.eissn=1572-9052&rft.volume=71&rft.issue=5&rft.spage=1163&rft.epage=1199&rft_id=info:doi/10.1007%2Fs10463-018-0673-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-3157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-3157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-3157&client=summon