Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions
Currently, industrial-scale NH 3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N 2 with large amount of CO 2 emission, while low-cost and high-efficient catalysts are demanded for the N 2 reduction reaction (NRR). In this study, Mn 3 O 4 nanoparticles@reduced grap...
Saved in:
Published in | Nano research Vol. 12; no. 5; pp. 1093 - 1098 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, industrial-scale NH
3
production almost relies on energy-intensive Haber-Bosch process from atmospheric N
2
with large amount of CO
2
emission, while low-cost and high-efficient catalysts are demanded for the N
2
reduction reaction (NRR). In this study, Mn
3
O
4
nanoparticles@reduced graphene oxide (Mn
3
O
4
@rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH
3
formation. In 0.1 M Na
2
SO
4
solution, such catalyst obtains a NH
3
yield of 17.4 μg·h
−1
·mg
−1
cat
. and a Faradaic efficiency of 3.52% at −0.85 V vs. reversible hydrogen electrode. Notably, it also shows high electrochemical stability during electrolysis process. Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn
3
O
4
possess superior NRR activity. |
---|---|
AbstractList | Currently, industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission, while low-cost and high-efficient catalysts are demanded for the N2 reduction reaction (NRR). In this study, Mn3O4 nanoparticles@reduced graphene oxide (Mn3O4@rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH3 formation. In 0.1 M Na2SO4 solution, such catalyst obtains a NH3 yield of 17.4 μg·h−1·mg−1cat. and a Faradaic efficiency of 3.52% at −0.85 V vs. reversible hydrogen electrode. Notably, it also shows high electrochemical stability during electrolysis process. Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn3O4 possess superior NRR activity. Currently, industrial-scale NH 3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N 2 with large amount of CO 2 emission, while low-cost and high-efficient catalysts are demanded for the N 2 reduction reaction (NRR). In this study, Mn 3 O 4 nanoparticles@reduced graphene oxide (Mn 3 O 4 @rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH 3 formation. In 0.1 M Na 2 SO 4 solution, such catalyst obtains a NH 3 yield of 17.4 μg·h −1 ·mg −1 cat . and a Faradaic efficiency of 3.52% at −0.85 V vs. reversible hydrogen electrode. Notably, it also shows high electrochemical stability during electrolysis process. Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn 3 O 4 possess superior NRR activity. |
Author | Sun, Xuping Wang, Yuan Wu, Xiufeng Gong, Feng Wang, Huanbo Li, Tingshuai Chen, Hongyu Huang, Hong Lu, Wenbo Liu, Qian Shi, Xifeng Zhao, Runbo Asiri, Abdullah M. |
Author_xml | – sequence: 1 givenname: Hong surname: Huang fullname: Huang, Hong organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 2 givenname: Feng surname: Gong fullname: Gong, Feng organization: School of Materials and Energy, University of Electronic Science and Technology of China – sequence: 3 givenname: Yuan surname: Wang fullname: Wang, Yuan organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 4 givenname: Huanbo surname: Wang fullname: Wang, Huanbo organization: School of Environment and Resource, Southwest University of Science and Technology – sequence: 5 givenname: Xiufeng surname: Wu fullname: Wu, Xiufeng organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University – sequence: 6 givenname: Wenbo surname: Lu fullname: Lu, Wenbo organization: Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University – sequence: 7 givenname: Runbo surname: Zhao fullname: Zhao, Runbo organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 8 givenname: Hongyu surname: Chen fullname: Chen, Hongyu organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 9 givenname: Xifeng surname: Shi fullname: Shi, Xifeng organization: College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University – sequence: 10 givenname: Abdullah M. surname: Asiri fullname: Asiri, Abdullah M. organization: Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University – sequence: 11 givenname: Tingshuai surname: Li fullname: Li, Tingshuai organization: School of Materials and Energy, University of Electronic Science and Technology of China – sequence: 12 givenname: Qian surname: Liu fullname: Liu, Qian organization: School of Materials and Energy, University of Electronic Science and Technology of China – sequence: 13 givenname: Xuping surname: Sun fullname: Sun, Xuping email: xpsun@uestc.edu.cn organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China |
BookMark | eNp9kctKBDEQRYMo-PwAdwHXrXl0pieuFPEFOm50HdJJRSM9SZtkwPkFv9ruGUUQtDYpUvfcSri7aDPEAAgdUnJMCWlOMmWsqStCZcW4YJXYQDtUymlFhtr87imrt9Fuzq-ETBitpzvo4z7whxoHHWKvU_Gmg3yWwC4MWPycdP8CAXB89xawifM-Zl_gFJ8HDM554yEUDB2YkqLRRXfLXLCLCY9e41x3eMaw8--6-BhwiXh2w7EuWM_bFWxisH6c5X205XSX4eDr3ENPV5ePFzfV3cP17cX5XWV4XZeqsQ03UxCtMNxy2_JpSxm3mlAinBPWttIy3cAEmNRsuBQSNG9baiQ0kjq-h47Wvn2KbwvIRb3GRQrDSsUE4YJLKdm_KioJm0jZyEHVrFUmxZwTOGV8WX21JO07RYka41HreNQQjxrjUWIg6S-yT36u0_Jfhq2ZPGjDM6SfN_0NfQIpd6V6 |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_9b01707 crossref_primary_10_1039_C9TA04902A crossref_primary_10_1016_j_scitotenv_2021_150268 crossref_primary_10_1021_acs_energyfuels_2c03378 crossref_primary_10_1002_aenm_202301979 crossref_primary_10_1021_acsami_1c07613 crossref_primary_10_1016_j_cej_2023_142039 crossref_primary_10_1007_s12274_020_3206_x crossref_primary_10_1016_j_cattod_2022_09_003 crossref_primary_10_1016_j_fuel_2023_129320 crossref_primary_10_1002_aenm_202103022 crossref_primary_10_1039_C9CY00907H crossref_primary_10_1039_D3GC03831A crossref_primary_10_1002_adma_201904870 crossref_primary_10_1002_anie_202405493 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1021_acsami_0c15987 crossref_primary_10_1039_D1QM01620B crossref_primary_10_1039_D2MA00279E crossref_primary_10_1088_1361_6528_ab814e crossref_primary_10_1039_C9TA06523G crossref_primary_10_1016_j_cclet_2020_02_053 crossref_primary_10_1039_D1NR04513J crossref_primary_10_1002_asia_201901624 crossref_primary_10_1016_S1872_2067_23_64464_X crossref_primary_10_1016_j_colsurfa_2020_125345 crossref_primary_10_1039_C9DT04441H crossref_primary_10_1039_D1MA00680K crossref_primary_10_1016_j_electacta_2021_137716 crossref_primary_10_1021_acs_inorgchem_4c04699 crossref_primary_10_1021_acssuschemeng_3c07338 crossref_primary_10_1002_adfm_202424142 crossref_primary_10_1021_acsaem_3c01084 crossref_primary_10_1021_acsmaterialslett_1c00673 crossref_primary_10_1002_adfm_202211537 crossref_primary_10_1002_aenm_201902020 crossref_primary_10_1039_C9QI00968J crossref_primary_10_3390_catal13010049 crossref_primary_10_1016_j_chemosphere_2022_135506 crossref_primary_10_1016_j_carbpol_2024_122834 crossref_primary_10_1039_C9TA13044F crossref_primary_10_1039_D2EE00953F crossref_primary_10_1002_ange_202405493 crossref_primary_10_1016_j_jcis_2019_10_107 crossref_primary_10_1021_acs_energyfuels_4c04978 crossref_primary_10_1021_acssuschemeng_9b03890 crossref_primary_10_1016_j_apcatb_2023_122998 crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1016_j_carbon_2021_04_045 crossref_primary_10_1016_S1872_2067_21_63877_9 crossref_primary_10_1002_eem2_12247 crossref_primary_10_3390_nano12193413 crossref_primary_10_1016_j_cej_2020_125163 crossref_primary_10_1016_j_ijhydene_2019_10_144 crossref_primary_10_1039_D4CY00171K crossref_primary_10_1007_s12274_019_2600_8 crossref_primary_10_1007_s10853_020_04371_6 crossref_primary_10_1016_j_ica_2021_120700 crossref_primary_10_1002_anie_202010159 crossref_primary_10_1016_j_isci_2023_107944 crossref_primary_10_1021_acsami_0c13902 crossref_primary_10_3390_nano13182580 crossref_primary_10_1039_C9CC00936A crossref_primary_10_1039_D1DT00213A crossref_primary_10_1016_j_apcatb_2019_118525 crossref_primary_10_1039_D1CC01451J crossref_primary_10_1002_aesr_202300056 crossref_primary_10_1039_C9CC08971C crossref_primary_10_1039_C9TA06573C crossref_primary_10_1016_j_ijhydene_2020_05_203 crossref_primary_10_1016_j_jcis_2023_02_056 crossref_primary_10_1002_cey2_13 crossref_primary_10_1039_D4CY00124A crossref_primary_10_1016_j_compositesb_2021_109609 crossref_primary_10_1039_C9CC09179C crossref_primary_10_1039_D1SE00594D crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1002_ange_202010159 crossref_primary_10_1021_acs_energyfuels_3c03517 crossref_primary_10_1016_j_jhazmat_2020_122146 crossref_primary_10_1021_acsami_9b18027 crossref_primary_10_1016_j_optmat_2022_112274 crossref_primary_10_1016_j_enchem_2019_100011 crossref_primary_10_1021_acsami_9b18263 crossref_primary_10_1002_cssc_202000487 crossref_primary_10_1002_sus2_7 crossref_primary_10_1021_acs_energyfuels_0c00894 crossref_primary_10_1039_C9CC08352A crossref_primary_10_1007_s11595_024_3002_7 crossref_primary_10_1016_j_jcis_2023_04_113 crossref_primary_10_1039_C9TA10346E crossref_primary_10_1016_j_cej_2022_135417 crossref_primary_10_1016_j_ceramint_2019_09_124 crossref_primary_10_1016_j_jechem_2023_03_012 crossref_primary_10_1016_j_fuproc_2021_106945 crossref_primary_10_1002_sstr_202000075 |
Cites_doi | 10.1016/j.joule.2018.09.011 10.1007/s40843-018-9324-0 10.1021/acscatal.6b02849 10.1039/C8TA09840A 10.1039/c3ta12554h 10.1103/PhysRevB.73.195107 10.1021/acsami.7b19582 10.1007/978-1-4757-9592-9 10.1103/PhysRevB.46.6671 10.1016/j.jpowsour.2012.05.109 10.1002/smll.201803111 10.1039/C8CC06366D 10.1039/C8CC06524A 10.1039/C8TA05627G 10.1002/anie.201801538 10.1002/adma.201803694 10.1038/s41467-018-05758-5 10.1016/j.energy.2004.12.004 10.1021/acsnano.6b02319 10.1039/c0nr00224k 10.1039/C8CC06365F 10.1039/C5EE02179K 10.1021/ac60072a044 10.1038/nature04969 10.1016/j.electacta.2017.09.116 10.1103/PhysRevB.84.045115 10.1088/1361-6528/aa52a5 10.1021/am2017909 10.1002/adfm.201200186 10.1002/anie.200301553 10.1038/nmat3696 10.1021/jacs.7b04393 10.1039/c1cc14875c 10.1002/adfm.200900377 10.1016/j.electacta.2012.11.124 10.1021/acsami.8b06647 10.1039/C7TA10866D 10.1016/j.elecom.2013.03.033 10.1021/am405213z 10.1016/j.nanoen.2018.07.045 10.1021/ja403440e 10.1038/22672 10.1021/nn901850u 10.1021/cm203697w 10.1002/adma.201604799 10.1002/aenm.201801357 10.1038/s41467-018-04213-9 10.1016/j.cattod.2016.06.014 10.1021/acscatal.8b02311 10.1016/j.apenergy.2016.12.129 10.1016/j.cattod.2016.05.008 10.1021/ja105296a 10.1021/acscentsci.8b00734 10.1088/0953-8984/14/11/301 10.1103/PhysRevB.54.11169 10.1039/C7TA06139K 10.1002/advs.201801182 10.1039/C4RA07534J 10.1002/smtd.201800337 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Nano Research is a copyright of Springer, (2019). All Rights Reserved. Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Nano Research is a copyright of Springer, (2019). All Rights Reserved. – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-019-2352-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) ProQuest Central China |
DatabaseTitleList | Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 1098 |
ExternalDocumentID | 10_1007_s12274_019_2352_5 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c344t-7d73c8e5b5c3d3db38b123da0105ff5ddb9d2a7e6e29a210559ea3bb1c9e791f3 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:32:32 EDT 2025 Wed Aug 20 00:30:55 EDT 2025 Tue Jul 01 01:46:53 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Fri Feb 21 02:35:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | synthesis Mn electrocatalyst @rGO composite ambient conditions reduction reaction NH N O |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-7d73c8e5b5c3d3db38b123da0105ff5ddb9d2a7e6e29a210559ea3bb1c9e791f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2190269979 |
PQPubID | 326270 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2503539992 proquest_journals_2190269979 crossref_citationtrail_10_1007_s12274_019_2352_5 crossref_primary_10_1007_s12274_019_2352_5 springer_journals_10_1007_s12274_019_2352_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190500 2019-5-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190500 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2019 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Zhu, Zhang, Ruther, Hamers (CR35) 2013; 12 Schlögl (CR2) 2003; 42 Smil (CR3) 1999; 400 Kyriakou, Garagounis, Vasileiou, Vourros, Stoukides (CR8) 2017; 286 Wang, Gong, Zhang, Wang, Ji, Liu, Luo, Guo, Li, Gao (CR60) 2019; 6 Gong, Ding, Fang, Tong, Xia, Lv, Wang, Papavassiliou, Liao, Wu (CR42) 2018; 10 Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (CR30) 2006; 442 Tian, Li, Liu, Wang, Zhang, Zheng, Liu, Hou (CR55) 2017; 257 Liu, Chang, Hu, Wen (CR47) 2012; 217 Liu, Ma, Liu, Hao, Du, Ma, Asiri, Sun, Chen (CR52) 2017; 7 Jennings (CR5) 1991 Huang, Xia, Shi, Asiri, Sun (CR10) 2018; 54 Zhang, Ren, Luo, Shi, Asiri, Li, Sun (CR13) 2018; 54 Qu, Liu, Baek, Dai (CR27) 2010; 4 Di Blasi, Busaccaa, Di Blasia, Briguglioa, Squadritoa, Antonuccia (CR26) 2017; 190 Wu, Liu, Wang, Wang, Zhang, Jin (CR53) 2013; 90 Ren, Zhao, Wei, Ma, Guo, Liu, Wang, Cui, Asiri, Li (CR56) 2018; 5 Zhang, Ren, Shi, Xie, Zheng, Guo, Sun (CR12) 2018; 10 Jain, Hautier, Ong, Moore, Fischer, Persson, Ceder (CR38) 2011; 84 CR6 Wu, Xia, Wang, Lu, Liu, Shi, Sun (CR24) 2018; 14 Bao, Zhang, Meng, Zhong, Shi, Zhang, Yan, Jiang, Zhang (CR9) 2017; 29 Kresse, Furthmüller (CR40) 1996; 54 Liu, Pan, Lv, Zhu, Sun, Sun (CR45) 2011; 47 Qiu, Xie, Qiu, Fang, Liang, Ren, Ji, Cui, Asiri, Cui (CR57) 2018; 9 Service (CR1) 2014; 345 Zhu, Cao, Li, Chen, Peng, Wang, Li (CR61) 2018; 61 Wang, Yu, Hu, Chen, Xin, Feng (CR58) 2018; 9 Cheng, Ding, Chen, Zhang, Xue, Wang (CR20) 2018; 30 Shipman, Symes (CR7) 2017; 286 Yang, Song, Zhang, Gao (CR46) 2013; 1 Wang, Yin, Xiang, Qi (CR50) 2012; 4 Wang, Hao, Yang, Lu, Wang (CR48) 2010; 2 Lv, Yan, Chen, Ding, Sun, Zhou, Yu (CR15) 2018; 57 Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais (CR41) 1992; 46 Yang, Zhi, Tang, Feng, Maier, Müllen (CR29) 2012; 22 Lee, Hall, Kim, Mallouk (CR54) 2012; 24 Zhang, Zhao, Lian (CR49) 2014; 4 Wang, Maxisch, Ceder (CR39) 2006; 73 Zhao, Zhang, Xie, Li, Ma, Liu, Fang, Shi, Cui, Sun (CR22) 2018; 6 Wang, Jin, Zhou, Li, Liu, Shen, Xie, Li, Kang, Wei (CR31) 2016; 10 Yang, Chen, Wang (CR16) 2017; 5 Luo, Chen, Ding, Chen, Ding, Wang (CR14) 2019; 3 Watt, Chrisp (CR36) 1952; 24 Liu, Han, Zhao, Zhu, Tian, Zeng, Jiang, Xia, Chen (CR11) 2018; 6 Zhang, Qiu, Ma, Luo, Tian, Cui, Xie, Chen, Li, Sun (CR21) 2018; 8 Segall, Linda, Probert, Pickard, Hasnip, Clark, Payne (CR37) 2002; 14 Tang, Wang, Li, Feng, Lu, Li (CR44) 2009; 19 Zhu, Liu, Liu, Luo, Shi, Asiri, Wu, Sun (CR19) 2018; 54 Han, Liu, Ma, Cui, Xie, Wang, Wu, Gao, Xu, Sun (CR17) 2018; 52 Zhang, Liu, Shi, Asiri, Luo, Sun, Li (CR32) 2018; 6 Kibsgaard, Tsai, Chan, Benck, Nørskov, Abild-Pedersen, Jaramillo (CR33) 2015; 8 Chen, Cao, Wu, Zeng, Ding, Zhu, Wang (CR23) 2017; 139 Wang, Cui, Yang, Casalongue, Robinson, Liang, Cui, Dai (CR25) 2010; 132 Zhang, Du, Ma, Ji, Guo, Tian, Chen, Huang, Cui, Asiri (CR59) 2019 Zhang, Kong, Yao, Long, Yan, Liao, Yin, Huang, Asiri, Sun (CR43) 2017; 28 Bag, Roy, Gopinath, Raj (CR51) 2014; 6 Xing, Chu, Ren, Tian, Asiri, Alamry, Al-Youbi, Sun (CR28) 2013; 32 Li, Li, Ma, Wei, Qiu, Guo, Shi, Zhang, Asiri, Chen (CR18) 2018; 8 Rafiqul, Weber, Lehmann, Voss (CR4) 2005; 30 Popczun, McKone, Read, Biacchi, Wiltrout, Lewis, Schaak (CR34) 2013; 135 T. T. Liu (2352_CR52) 2017; 7 L. H. Tang (2352_CR44) 2009; 19 X. H. Li (2352_CR18) 2018; 8 G. W. Watt (2352_CR36) 1952; 24 J. Wang (2352_CR58) 2018; 9 H. L. Wang (2352_CR25) 2010; 132 X. X. Zhang (2352_CR32) 2018; 6 J. G. Wang (2352_CR31) 2016; 10 D. Bao (2352_CR9) 2017; 29 L. T. Qu (2352_CR27) 2010; 4 V. Kyriakou (2352_CR8) 2017; 286 D. Zhu (2352_CR35) 2013; 12 E. J. Popczun (2352_CR34) 2013; 135 S. Bag (2352_CR51) 2014; 6 G. F. Chen (2352_CR23) 2017; 139 H. M. Liu (2352_CR11) 2018; 6 Y. Q. Zhu (2352_CR61) 2018; 61 G. Kresse (2352_CR40) 1996; 54 J. X. Zhao (2352_CR22) 2018; 6 J. P. Perdew (2352_CR41) 1992; 46 C. B. Wang (2352_CR50) 2012; 4 Y. R. Luo (2352_CR14) 2019; 3 R. Zhang (2352_CR12) 2018; 10 X. J. Zhu (2352_CR19) 2018; 54 D. S. Yang (2352_CR16) 2017; 5 2352_CR6 H. Cheng (2352_CR20) 2018; 30 R. F. Service (2352_CR1) 2014; 345 W. B. Qiu (2352_CR57) 2018; 9 Y. Zhang (2352_CR59) 2019 S. Stankovich (2352_CR30) 2006; 442 J. Kibsgaard (2352_CR33) 2015; 8 J. R. Jennings (2352_CR5) 1991 A. Blasi Di (2352_CR26) 2017; 190 C. D. Lv (2352_CR15) 2018; 57 Z. C. Xing (2352_CR28) 2013; 32 C. L. Liu (2352_CR47) 2012; 217 V. Smil (2352_CR3) 1999; 400 L. Zhang (2352_CR13) 2018; 54 L. Wang (2352_CR39) 2006; 73 X. J. Liu (2352_CR45) 2011; 47 X. F. Wu (2352_CR24) 2018; 14 X. Ren (2352_CR56) 2018; 5 G. G. Zhang (2352_CR43) 2017; 28 H. L. Wang (2352_CR48) 2010; 2 F. Gong (2352_CR42) 2018; 10 R. Schlögl (2352_CR2) 2003; 42 S. H. Yang (2352_CR46) 2013; 1 M. A. Shipman (2352_CR7) 2017; 286 I. Rafiqul (2352_CR4) 2005; 30 H. H. Huang (2352_CR10) 2018; 54 J. W. Lee (2352_CR54) 2012; 24 Z. Wang (2352_CR60) 2019; 6 L. S. Zhang (2352_CR49) 2014; 4 M. D. Segall (2352_CR37) 2002; 14 Y. Y. Tian (2352_CR55) 2017; 257 A. Jain (2352_CR38) 2011; 84 J. R. Han (2352_CR17) 2018; 52 S. B. Yang (2352_CR29) 2012; 22 Y. Zhang (2352_CR21) 2018; 8 Y. Z. Wu (2352_CR53) 2013; 90 |
References_xml | – volume: 3 start-page: 279 year: 2019 end-page: 289 ident: CR14 article-title: Efficient electrocatalytic N fixation with MXene under ambient conditions publication-title: Joule doi: 10.1016/j.joule.2018.09.011 – volume: 61 start-page: 1527 year: 2018 end-page: 1535 ident: CR61 article-title: Two-dimensional SnO /graphene heterostructures for highly reversible electrochemical lithium storage publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9324-0 – volume: 7 start-page: 98 year: 2017 end-page: 102 ident: CR52 article-title: Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values publication-title: ACS Catal. doi: 10.1021/acscatal.6b02849 – volume: 6 start-page: 24031 year: 2018 end-page: 24035 ident: CR22 article-title: Ti C T (T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N to NH publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09840A – volume: 1 start-page: 14162 year: 2013 end-page: 14169 ident: CR46 article-title: Crumpled nitrogen-doped graphene–ultrafine Mn O nanohybrids and their application in supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12554h – volume: 73 start-page: 195107 year: 2006 ident: CR39 article-title: Oxidation energies of transition metal oxides within the GGA + U framework publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.195107 – volume: 10 start-page: 14614 year: 2018 end-page: 14621 ident: CR42 article-title: Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multiscale modeling publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19582 – year: 1991 ident: CR5 publication-title: Catalytic Ammonia Synthesis: Fundamentals and Practice doi: 10.1007/978-1-4757-9592-9 – volume: 46 start-page: 6671 year: 1992 end-page: 6687 ident: CR41 article-title: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 217 start-page: 184 year: 2012 end-page: 192 ident: CR47 article-title: Microwave-assisted hydrothermal synthesis of Mn O /reduced graphene oxide composites for high power supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.05.109 – volume: 345 start-page: 610 year: 2014 ident: CR1 article-title: Chemistry publication-title: New recipe produces ammonia from air, water, and sunlight. Science – volume: 14 start-page: 1803111 year: 2018 ident: CR24 article-title: Mn O nanocube: An efficient electrocatalyst toward artificial N fixation to NH publication-title: Small doi: 10.1002/smll.201803111 – volume: 54 start-page: 11332 year: 2018 end-page: 11335 ident: CR19 article-title: Efficient and durable N reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst publication-title: Chem. Commun. doi: 10.1039/C8CC06366D – volume: 54 start-page: 12966 year: 2018 end-page: 12969 ident: CR13 article-title: Ambient NH synthesis via electrochemical reduction of N over cubic sub-micron SnO particles publication-title: Chem. Commun. doi: 10.1039/C8CC06524A – volume: 6 start-page: 17303 year: 2018 end-page: 17306 ident: CR32 article-title: TiO nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N fixation to NH under ambient conditions publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05627G – volume: 57 start-page: 6073 year: 2018 end-page: 6076 ident: CR15 article-title: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801538 – volume: 30 start-page: 1803694 year: 2018 ident: CR20 article-title: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions publication-title: Adv. Mater. doi: 10.1002/adma.201803694 – volume: 9 start-page: 3485 year: 2018 ident: CR57 article-title: High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst publication-title: Nat. Commun. doi: 10.1038/s41467-018-05758-5 – year: 2019 ident: CR59 article-title: Hexagonal boron nitride nanosheet for effective ambient N fixation to NH publication-title: Nano Res. – volume: 30 start-page: 2487 year: 2005 end-page: 2504 ident: CR4 article-title: Energy efficiency improvements in ammonia production—Perspectives and uncertainties publication-title: Energy doi: 10.1016/j.energy.2004.12.004 – volume: 10 start-page: 6227 year: 2016 end-page: 6234 ident: CR31 article-title: Highly flexible graphene/Mn O nanocomposite membrane as advanced anodes for li-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b02319 – volume: 2 start-page: 2164 year: 2010 end-page: 2170 ident: CR48 article-title: A nanostructured graphene/polyaniline hybrid material for supercapacitors publication-title: Nanoscale doi: 10.1039/c0nr00224k – volume: 54 start-page: 11427 year: 2018 end-page: 11430 ident: CR10 article-title: Ag nanosheets for efficient electrocatalytic N fixation to NH under ambient conditions publication-title: Chem. Commun. doi: 10.1039/C8CC06365F – volume: 8 start-page: 3022 year: 2015 end-page: 3029 ident: CR33 article-title: Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02179K – volume: 24 start-page: 2006 year: 1952 end-page: 2008 ident: CR36 article-title: A spectrophotometric method for the determination of hydrazine publication-title: Anal. Chem. doi: 10.1021/ac60072a044 – volume: 442 start-page: 282 year: 2006 end-page: 286 ident: CR30 article-title: Graphene-based composite materials publication-title: Nature doi: 10.1038/nature04969 – volume: 257 start-page: 155 year: 2017 end-page: 164 ident: CR55 article-title: Facile synthesis of Mn O nanoplates-anchored graphene microspheres and their applications for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.116 – volume: 84 start-page: 045115 year: 2011 ident: CR38 article-title: Formation enthalpies by mixing GGA and GGA + U calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.045115 – volume: 28 start-page: 065402 year: 2017 ident: CR43 article-title: One-pot synthesis of γ-MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors publication-title: Nanotechnology doi: 10.1088/1361-6528/aa52a5 – volume: 4 start-page: 1636 year: 2012 end-page: 1642 ident: CR50 article-title: Uniform carbon layer coated Mn O nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2017909 – volume: 22 start-page: 3634 year: 2012 end-page: 3640 ident: CR29 article-title: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200186 – volume: 42 start-page: 2004 year: 2003 end-page: 2008 ident: CR2 article-title: Catalytic synthesis of ammonia—a “never-ending story” publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301553 – volume: 12 start-page: 836 year: 2013 end-page: 841 ident: CR35 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 139 start-page: 9771 year: 2017 end-page: 9774 ident: CR23 article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04393 – volume: 47 start-page: 11984 year: 2011 end-page: 11986 ident: CR45 article-title: Microwaveassisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr (VI) publication-title: Chem. Commun. doi: 10.1039/c1cc14875c – volume: 19 start-page: 2782 year: 2009 end-page: 2789 ident: CR44 article-title: Preparation, structure, and electrochemical properties of reduced graphene sheet films publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900377 – volume: 90 start-page: 210 year: 2013 end-page: 218 ident: CR53 article-title: A novel solvothermal synthesis of Mn O /graphene composites for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.124 – volume: 10 start-page: 28251 year: 2018 end-page: 28255 ident: CR12 article-title: Enabling effective electrocatalytic N conversion to NH by the TiO nanosheets array under ambient conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06647 – volume: 6 start-page: 3211 year: 2018 end-page: 3217 ident: CR11 article-title: Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10866D – volume: 32 start-page: 9 year: 2013 end-page: 13 ident: CR28 article-title: Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.03.033 – ident: CR6 – volume: 6 start-page: 2692 year: 2014 end-page: 2699 ident: CR51 article-title: Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn O hybrid functional material for the electrocatalytic reduction of oxygen publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405213z – volume: 52 start-page: 264 year: 2018 end-page: 270 ident: CR17 article-title: Ambient N2 fixation to NH at ambient conditions: Using Nb O nanofiber as a high-performance electrocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.045 – volume: 135 start-page: 9267 year: 2013 end-page: 9270 ident: CR34 article-title: Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 400 start-page: 415 year: 1999 ident: CR3 article-title: Detonator of the population explosion publication-title: Nature doi: 10.1038/22672 – volume: 4 start-page: 1321 year: 2010 end-page: 1326 ident: CR27 article-title: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 24 start-page: 1158 year: 2012 end-page: 1164 ident: CR54 article-title: A facile and template-free hydrothermal synthesis of Mn O nanorods on graphene sheets for supercapacitor electrodes with long cycle stability publication-title: Chem. Mater. doi: 10.1021/cm203697w – volume: 29 start-page: 1604799 year: 2017 ident: CR9 article-title: Electrochemical reduction of N under ambient Conditions for artificial N2 fixation and renewable energy storage using N /NH cycle publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 8 start-page: 1801357 year: 2018 ident: CR18 article-title: Boosted electrocatalytic N reduction to NH by defect-rich MoS nanoflower publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801357 – volume: 9 start-page: 1795 year: 2018 ident: CR58 article-title: Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential publication-title: Nat. Commun. doi: 10.1038/s41467-018-04213-9 – volume: 286 start-page: 2 year: 2017 end-page: 13 ident: CR8 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 8 start-page: 8540 year: 2018 end-page: 8544 ident: CR21 article-title: High-performance electrohydrogenation of N to NH catalyzed by multishelled hollow Cr O microspheres under ambient conditions publication-title: ACS Catal. doi: 10.1021/acscatal.8b02311 – volume: 190 start-page: 165 year: 2017 end-page: 171 ident: CR26 article-title: Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.129 – volume: 286 start-page: 57 year: 2017 end-page: 68 ident: CR7 article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 132 start-page: 13978 year: 2010 end-page: 13980 ident: CR25 article-title: Mn O -graphene hybrid as a high-capacity anode material for lithium ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105296a – volume: 5 start-page: 116 year: 2018 end-page: 121 ident: CR56 article-title: High-performance N -to-NH conversion electrocatalyzed by Mo C nanorod publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00734 – volume: 14 start-page: 2717 year: 2002 end-page: 2744 ident: CR37 article-title: First-principles simulation: Ideas, illustrations and the CASTEP code publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/301 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR40 article-title: Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 5 start-page: 18967 year: 2017 end-page: 18971 ident: CR16 article-title: Electrochemical reduction of aqueous nitrogen (N ) at a low overpotential on (110)-oriented Mo nanofilm publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06139K – volume: 6 start-page: 1801182 year: 2019 ident: CR60 article-title: Electrocatalytic hydrogenation of N to NH by MnO: Experimental and theoretical investigations publication-title: Adv. Sci. doi: 10.1002/advs.201801182 – volume: 4 start-page: 41838 year: 2014 end-page: 41847 ident: CR49 article-title: Nanostructured Mn O –reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of orange II and high lithium storage capacity publication-title: RSC Adv. doi: 10.1039/C4RA07534J – volume: 54 start-page: 11427 year: 2018 ident: 2352_CR10 publication-title: Chem. Commun. doi: 10.1039/C8CC06365F – volume: 217 start-page: 184 year: 2012 ident: 2352_CR47 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.05.109 – volume: 10 start-page: 6227 year: 2016 ident: 2352_CR31 publication-title: ACS Nano doi: 10.1021/acsnano.6b02319 – volume: 4 start-page: 1636 year: 2012 ident: 2352_CR50 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2017909 – volume: 9 start-page: 1795 year: 2018 ident: 2352_CR58 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04213-9 – volume: 4 start-page: 41838 year: 2014 ident: 2352_CR49 publication-title: RSC Adv. doi: 10.1039/C4RA07534J – volume: 400 start-page: 415 year: 1999 ident: 2352_CR3 publication-title: Nature doi: 10.1038/22672 – volume: 190 start-page: 165 year: 2017 ident: 2352_CR26 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.129 – volume: 2 start-page: 2164 year: 2010 ident: 2352_CR48 publication-title: Nanoscale doi: 10.1039/c0nr00224k – volume: 8 start-page: 1801357 year: 2018 ident: 2352_CR18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801357 – volume: 47 start-page: 11984 year: 2011 ident: 2352_CR45 publication-title: Chem. Commun. doi: 10.1039/c1cc14875c – ident: 2352_CR6 doi: 10.1002/smtd.201800337 – volume: 6 start-page: 24031 year: 2018 ident: 2352_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09840A – volume: 12 start-page: 836 year: 2013 ident: 2352_CR35 publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 5 start-page: 116 year: 2018 ident: 2352_CR56 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00734 – volume: 9 start-page: 3485 year: 2018 ident: 2352_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05758-5 – volume: 24 start-page: 2006 year: 1952 ident: 2352_CR36 publication-title: Anal. Chem. doi: 10.1021/ac60072a044 – volume-title: Catalytic Ammonia Synthesis: Fundamentals and Practice year: 1991 ident: 2352_CR5 doi: 10.1007/978-1-4757-9592-9 – volume: 132 start-page: 13978 year: 2010 ident: 2352_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105296a – volume-title: Nano Res. year: 2019 ident: 2352_CR59 – volume: 4 start-page: 1321 year: 2010 ident: 2352_CR27 publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 345 start-page: 610 year: 2014 ident: 2352_CR1 publication-title: New recipe produces ammonia from air, water, and sunlight. Science – volume: 24 start-page: 1158 year: 2012 ident: 2352_CR54 publication-title: Chem. Mater. doi: 10.1021/cm203697w – volume: 54 start-page: 11332 year: 2018 ident: 2352_CR19 publication-title: Chem. Commun. doi: 10.1039/C8CC06366D – volume: 286 start-page: 2 year: 2017 ident: 2352_CR8 publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 257 start-page: 155 year: 2017 ident: 2352_CR55 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.116 – volume: 14 start-page: 1803111 year: 2018 ident: 2352_CR24 publication-title: Small doi: 10.1002/smll.201803111 – volume: 73 start-page: 195107 year: 2006 ident: 2352_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.195107 – volume: 32 start-page: 9 year: 2013 ident: 2352_CR28 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.03.033 – volume: 42 start-page: 2004 year: 2003 ident: 2352_CR2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200301553 – volume: 30 start-page: 2487 year: 2005 ident: 2352_CR4 publication-title: Energy doi: 10.1016/j.energy.2004.12.004 – volume: 139 start-page: 9771 year: 2017 ident: 2352_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04393 – volume: 90 start-page: 210 year: 2013 ident: 2352_CR53 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.124 – volume: 10 start-page: 14614 year: 2018 ident: 2352_CR42 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19582 – volume: 6 start-page: 1801182 year: 2019 ident: 2352_CR60 publication-title: Adv. Sci. doi: 10.1002/advs.201801182 – volume: 61 start-page: 1527 year: 2018 ident: 2352_CR61 publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9324-0 – volume: 57 start-page: 6073 year: 2018 ident: 2352_CR15 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801538 – volume: 5 start-page: 18967 year: 2017 ident: 2352_CR16 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06139K – volume: 46 start-page: 6671 year: 1992 ident: 2352_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6671 – volume: 286 start-page: 57 year: 2017 ident: 2352_CR7 publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 29 start-page: 1604799 year: 2017 ident: 2352_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 6 start-page: 3211 year: 2018 ident: 2352_CR11 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10866D – volume: 54 start-page: 12966 year: 2018 ident: 2352_CR13 publication-title: Chem. Commun. doi: 10.1039/C8CC06524A – volume: 8 start-page: 8540 year: 2018 ident: 2352_CR21 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02311 – volume: 6 start-page: 17303 year: 2018 ident: 2352_CR32 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05627G – volume: 442 start-page: 282 year: 2006 ident: 2352_CR30 publication-title: Nature doi: 10.1038/nature04969 – volume: 52 start-page: 264 year: 2018 ident: 2352_CR17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.045 – volume: 3 start-page: 279 year: 2019 ident: 2352_CR14 publication-title: Joule doi: 10.1016/j.joule.2018.09.011 – volume: 84 start-page: 045115 year: 2011 ident: 2352_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.045115 – volume: 6 start-page: 2692 year: 2014 ident: 2352_CR51 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405213z – volume: 7 start-page: 98 year: 2017 ident: 2352_CR52 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02849 – volume: 54 start-page: 11169 year: 1996 ident: 2352_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 30 start-page: 1803694 year: 2018 ident: 2352_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201803694 – volume: 14 start-page: 2717 year: 2002 ident: 2352_CR37 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/301 – volume: 28 start-page: 065402 year: 2017 ident: 2352_CR43 publication-title: Nanotechnology doi: 10.1088/1361-6528/aa52a5 – volume: 1 start-page: 14162 year: 2013 ident: 2352_CR46 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12554h – volume: 135 start-page: 9267 year: 2013 ident: 2352_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 22 start-page: 3634 year: 2012 ident: 2352_CR29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200186 – volume: 10 start-page: 28251 year: 2018 ident: 2352_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06647 – volume: 8 start-page: 3022 year: 2015 ident: 2352_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02179K – volume: 19 start-page: 2782 year: 2009 ident: 2352_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900377 |
SSID | ssj0062148 |
Score | 2.5349581 |
Snippet | Currently, industrial-scale NH
3
production almost relies on energy-intensive Haber-Bosch process from atmospheric N
2
with large amount of CO
2
emission,... Currently, industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission, while... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1093 |
SubjectTerms | Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carbon dioxide Carbon dioxide emissions Catalysis Catalysts Chemical reduction Chemistry and Materials Science Condensed Matter Physics Density functional theory Electrocatalysts Electrochemistry Electrolysis Graphene Haber Bosch process Manganese oxides Materials Science Nanoparticles Nanotechnology Nitrogen fixation Nitrogenation Research Article Selectivity Sodium sulfate |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELXK9gIH1FIQS7fVHDgVWd3Y-VhzoagqWiGxvYC0tyiOJxISZJfdIMFf4Fd3xnF2CwKuSexIeZOZefb4jRCHCu2wSoZDOXIpEkFJrbRkGFIVmdVJqSlk-ALZSTq-is-nyTQsuC1DWWXnE72jdrOS18h_UqjWrKJq1Mn8TnLXKN5dDS00NsRHli5jq86mK8KVqsh3z2qPkVEg63Y1_dE5RXyMrhqpKAeRyfO4tE42X-yP-rBz9klsh3wRTluAP4sPWO-Irf9UBL-Ip4ta_42hLmoiwKHO7deCJVnRgRekJn8Gs4drh8AV5FymhcdwWgN6_QgKOxC64fjFnMdlA5TKAs_V6kvAREF1_eBBhGYGk7GGooHi1vrBRKldW_m1K67O_lz-HsvQYkGWOo4bmblMlyNMLMHitLN6ZCmUuYL7ZlZV4pw1jmDDFJUpFDfTNFhoa6PSYGaiSu-JXj2rcV8AERMXYYSxS0cxmpRSDe2Y3sRVpkpV9cWw-8B5GfTHuQ3GTb5WTmZMcsIkZ0zypC9-rIbMW_GN9x4edKjl4T9c5uSPiWQak5nXb6-Mqi-OOqDXt99818H7k30Vm4oty9dFDkSvWdzjN8pdGvvdG-g_s9Lqjw priority: 102 providerName: ProQuest |
Title | Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions |
URI | https://link.springer.com/article/10.1007/s12274-019-2352-5 https://www.proquest.com/docview/2190269979 https://www.proquest.com/docview/2503539992 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VuJRD1Q-qbgurOfQEipTYcRL31G21ywrUBVWstD1FcTyRkGi2YoMEf6G_umMnYaECJC7JwR-R8pyZefH4DcBnQSasVBgGmU2ICUpiAsMLIxBFaqQqJbsMnyA7S6bz-GihFt057lWf7d5vSXpLvT7sJphBMfXVgeCoIVAbsKWYurs8rrkY9eY3EZEvmdWeHWPv1W9lPjTFfWe0jjD_2xT1vmbyGl51QSKOWlTfwAuq38L2HenAd_D3Ry1PYqyLmllvl9z29dLpsJJFr0LNRgyX1-eW0KWNu9ws-oKjGsmLRrCvwa4Ejv-Dc7NqkONXdHO1ohI4E1idX3vksFnibCqxaLD4bfxg5tG2TffagflkfPZ9GnR1FYJSxnETpDaVZUbKMBZWWiMzw_7LFq5YZlUpa422jBUlJHQhXAVNTYU0Jio1pTqq5HvYrJc1fQBkNmIjiii2SRaTTji-kNZxmrhKRSmqAYT9C87LTnTc1b64yNdyyQ6TnDHJHSa5GsD-7ZA_reLGU513e9Ty7uNb5WyEmVlqneqHm1UonR6vFgM46IFeNz_6rI_P6v0JXgq30Hxu5C5sNpdXtMfxS2OGsJEuUr5mk8MhbI0Ofx2P-f5tPDv9OfRr-R8SguwB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFU91aYE5wAVksbHzWFdCUAHLlrbLpZV6C3E8kSpBtu2mavsX-DH8RmacpAsIeus1jp3IM56HPf4-gOea3LBKhkM18ilxgpI65VgxlC4yZ5LSsMsIBbLTdLIffz5IDpbgZ38XRsoqe5sYDLWflbJH_ppdtREUVavfHh0rYY2S09WeQqNVi226OOOUbf5m6wPL94XW44977yeqYxVQpYnjRmU-M-WIEsd_4o13ZuTYevtCqCKrKvHeWc9_SilpW2jhj7RUGOei0lJmo8rwuDfgZmzYk8vN9PGn3vKnOgpsXe21NXac_SlquKqnOf_jp1ZpjnlU8qcfXAS3f53HBjc3vgsrXXyKm61C3YMlqu_Dnd9QCx_Aj93afImxLmpOuLu6uncnAgFLHgMANttPnJ0fekKpWJeyMNrAzRop4FWwm8OOfSdsHl3MG-TQGWWsFs8Cpxqrw_OgNNjMcDoxWDRYfHehM6fwvq00ewj71zL5j2C5ntW0CsiJkI8ootino5hsyqGN8ZJOxVWmS10NYNhPcF52eOdCu_EtXyA1i0xylkkuMsmTAby87HLUgn1c9fJ6L7W8W_fznO0_J7XWZvbfzZdKPIBXvaAXzf_91uOrB3sGtyZ7uzv5ztZ0ew1ua9GyUJO5DsvNySk94bipcU-DsiJ8ve7V8QtY9Siy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYToAVEe6kKhc4ALyOrGzmONhKCv1ZZCqBCVekvjeCJVgmzppmr7F_qT-usYO0m3RdBbr3HsRJ7xzHz2-BuA15LMoIwGAzG0MTFAiY0wrBhC5olRUaHYZfgE2TQe74Wf96P9Objs7sK4tMrOJnpDbSeF2yNfZVetHIuqlqtlmxaxuzn6ePRbuApS7qS1K6fRqMgOnZ8yfJt-2N5kWb-RcrT1Y2Ms2goDolBhWIvEJqoYUmT4r6yyRg0NW3Kbu7KRZRlZa7Tlv6aYpM6lqyWpKVfGBIWmRAel4nHvwXziUFEP5te30t3vnR-IZeBrdzWX2NiNdmeq_uKeZDTIT7WQHAGJ6KZXnIW6f53Oeqc3egQP22gV1xr1WoQ5qh7DwjUOwydw8bVS30Ks8orhd5tl9-nYEcKSRU-HzdYUJ2eHltDlr7skMXqPaxWSZ69gp4dtLR6_lXQ-rZEDaXRjNewWmEosD8-8CmE9wXSsMK8x_2V8Zwb0tsk7ewp7dzL9z6BXTSpaAmRYZAMKKLTxMCQdc6CjrANXYZnIQpZ9GHQTnBUt-7krwvEzm_E2O5lkLJPMySSL-vD2qstRQ_1x28vLndSy1gpMM_YGDHG1TvS_m69Uug_vOkHPmv_7ree3D7YC93llZF-2050X8EA6JfMJmsvQq49P6CUHUbV51WorwsFdL5A_HaAuRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mn3O4+nanoparticles%40reduced+graphene+oxide+composite%3A+An+efficient+electrocatalyst+for+artificial+N2+fixation+to+NH3+at+ambient+conditions&rft.jtitle=Nano+research&rft.au=Huang%2C+Hong&rft.au=Gong%2C+Feng&rft.au=Wang%2C+Yuan&rft.au=Wang%2C+Huanbo&rft.date=2019-05-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=12&rft.issue=5&rft.spage=1093&rft.epage=1098&rft_id=info:doi/10.1007%2Fs12274-019-2352-5&rft.externalDocID=10_1007_s12274_019_2352_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |