An explainable AI (XAI) model for landslide susceptibility modeling

Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigatio...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 142; p. 110324
Main Authors Pradhan, Biswajeet, Dikshit, Abhirup, Lee, Saro, Kim, Hyesu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation. Research in this field has grown immensely, ranging from quantitative to deterministic approaches, with a recent surge in machine learning (ML)-based computational models. The development of ML models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful development of accurate susceptibility maps. However, despite their success, these models are rarely used by stakeholders owing to their “black box” nature. Hence, it is crucial to explain the results, thus providing greater transparency for the use of such models. To address this gap, the present work introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for landslide susceptibility modeling. A convolutional neural network model was used conducted in the CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-affected variables, of which 70% was used for training and 30% for testing, and the model achieved an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode, which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both landslide and non-landslide locations, thus providing more clarity as to how the model achieves a specific result. The SHAP dependence plots explained the relationship between altitude and slope, showing a negative relationship with altitude and a positive relationship with slope. This is the first use of an explainable ML model in landslide susceptibility modeling, and we argue that future works should include aspects of explainability to open up the possibility of developing a transferable artificial intelligence model. [Display omitted] •An explainable ML model was used for first time for landslide susceptibility mapping.•Model achieved an accuracy of 89% for CheongJu region of South Korea.•Landslide had a negative relation with altitude but a positive relation with slope.•Plots showed the variation of model interaction for landslides and non-landslides.
AbstractList Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation. Research in this field has grown immensely, ranging from quantitative to deterministic approaches, with a recent surge in machine learning (ML)-based computational models. The development of ML models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful development of accurate susceptibility maps. However, despite their success, these models are rarely used by stakeholders owing to their “black box” nature. Hence, it is crucial to explain the results, thus providing greater transparency for the use of such models. To address this gap, the present work introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for landslide susceptibility modeling. A convolutional neural network model was used conducted in the CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-affected variables, of which 70% was used for training and 30% for testing, and the model achieved an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode, which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both landslide and non-landslide locations, thus providing more clarity as to how the model achieves a specific result. The SHAP dependence plots explained the relationship between altitude and slope, showing a negative relationship with altitude and a positive relationship with slope. This is the first use of an explainable ML model in landslide susceptibility modeling, and we argue that future works should include aspects of explainability to open up the possibility of developing a transferable artificial intelligence model. [Display omitted] •An explainable ML model was used for first time for landslide susceptibility mapping.•Model achieved an accuracy of 89% for CheongJu region of South Korea.•Landslide had a negative relation with altitude but a positive relation with slope.•Plots showed the variation of model interaction for landslides and non-landslides.
ArticleNumber 110324
Author Pradhan, Biswajeet
Dikshit, Abhirup
Kim, Hyesu
Lee, Saro
Author_xml – sequence: 1
  givenname: Biswajeet
  orcidid: 0000-0001-9863-2054
  surname: Pradhan
  fullname: Pradhan, Biswajeet
  email: Biswajeet.Pradhan@uts.edu.au
  organization: Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia
– sequence: 2
  givenname: Abhirup
  surname: Dikshit
  fullname: Dikshit, Abhirup
  organization: Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia
– sequence: 3
  givenname: Saro
  orcidid: 0000-0003-0409-8263
  surname: Lee
  fullname: Lee, Saro
  email: leesaro@kigam.re.sr
  organization: Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea
– sequence: 4
  givenname: Hyesu
  surname: Kim
  fullname: Kim, Hyesu
  organization: Department of Astronomy, Space Science and Geology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
BookMark eNp9kE1Lw0AQhhepYFv9A55y1EPifmWTgJdQrBYKXhS8LfsxkS3bTdmNYv-9KfHkoaeZwzzz8j4LNAt9AIRuCS4IJuJhV6jUm4JiygpCMKP8As1JXdG8ETWZjXsp6pw3XFyhRUo7PEINredo1YYMfg5euaC0h6zdZHcf7eY-2_cWfNb1MfMq2OSdhSx9JQOHwWnn3XCcTlz4vEaXnfIJbv7mEr2vn95WL_n29Xmzare5YZwPeaUZLUnTdAwEaWCMxxXB1paW267uNMN1pYBooIxx6ASUoIUxWlfaWGY5WyI6_TWxTylCJw_R7VU8SoLlSYPcyZMGedIgJw0jVP-DjBvU4PowROX8efRxQmEs9e0gymQcBAPWRTCDtL07h_8Czkp6jg
CitedBy_id crossref_primary_10_1007_s12145_025_01727_x
crossref_primary_10_1016_j_envsoft_2025_106394
crossref_primary_10_1016_j_pce_2023_103496
crossref_primary_10_1007_s12665_024_12032_z
crossref_primary_10_1016_j_envpol_2023_123082
crossref_primary_10_3390_rs17010034
crossref_primary_10_1007_s12517_023_11719_0
crossref_primary_10_1007_s11069_024_07054_6
crossref_primary_10_1016_j_ijdrr_2024_104892
crossref_primary_10_1007_s11356_024_33128_w
crossref_primary_10_1016_j_gsf_2024_101869
crossref_primary_10_1016_j_asr_2024_06_048
crossref_primary_10_3390_rs16183374
crossref_primary_10_1007_s12145_024_01561_7
crossref_primary_10_1016_j_pdisas_2025_100415
crossref_primary_10_1080_13658816_2024_2426067
crossref_primary_10_3390_su16010245
crossref_primary_10_1007_s12665_024_11521_5
crossref_primary_10_1080_19475705_2024_2354499
crossref_primary_10_1080_2150704X_2024_2399331
crossref_primary_10_1007_s11356_023_31352_4
crossref_primary_10_1007_s10064_025_04141_1
crossref_primary_10_1080_19475705_2025_2468323
crossref_primary_10_1016_j_ige_2024_10_003
crossref_primary_10_1016_j_ipm_2024_103940
crossref_primary_10_1007_s12517_024_12022_2
crossref_primary_10_1007_s12145_024_01259_w
crossref_primary_10_1016_j_scitotenv_2024_175059
crossref_primary_10_1016_j_jag_2025_104365
crossref_primary_10_1007_s11069_023_06357_4
crossref_primary_10_3390_rs16234491
crossref_primary_10_1007_s10479_024_06088_0
crossref_primary_10_1016_j_crfs_2024_100738
crossref_primary_10_1016_j_asoc_2024_111279
crossref_primary_10_1007_s12517_023_11842_y
crossref_primary_10_1007_s11356_024_35521_x
crossref_primary_10_1016_j_gsf_2023_101770
crossref_primary_10_1007_s12665_025_12148_w
crossref_primary_10_1007_s10064_025_04180_8
crossref_primary_10_1007_s40789_024_00678_w
crossref_primary_10_1016_j_envsoft_2024_106130
crossref_primary_10_1007_s10489_024_05747_w
crossref_primary_10_1016_j_earscirev_2024_104700
crossref_primary_10_3390_su17051973
crossref_primary_10_3390_s23229041
crossref_primary_10_1016_j_jfca_2023_105508
crossref_primary_10_1016_j_compag_2025_109990
crossref_primary_10_1109_JSTARS_2025_3541638
crossref_primary_10_1007_s42243_024_01431_y
crossref_primary_10_3390_land12061135
crossref_primary_10_1016_j_pdisas_2024_100357
crossref_primary_10_1007_s11069_023_06260_y
crossref_primary_10_1016_j_gsf_2024_101884
crossref_primary_10_1016_j_scs_2024_105523
crossref_primary_10_1016_j_gsf_2024_101800
crossref_primary_10_1109_TGRS_2024_3522165
crossref_primary_10_1007_s11069_025_07197_0
crossref_primary_10_1155_2023_6968854
crossref_primary_10_1016_j_aeolia_2024_100924
crossref_primary_10_1016_j_knosys_2024_112306
crossref_primary_10_1007_s10064_024_04022_z
crossref_primary_10_9719_EEG_2025_58_1_81
crossref_primary_10_1016_j_cageo_2024_105723
crossref_primary_10_1016_j_compeleceng_2024_109409
crossref_primary_10_1007_s12517_023_11704_7
crossref_primary_10_3390_app132312817
crossref_primary_10_3390_land14040678
crossref_primary_10_1108_EC_07_2023_0374
crossref_primary_10_1016_j_acags_2024_100191
crossref_primary_10_1016_j_gsf_2023_101758
crossref_primary_10_3390_su151813563
crossref_primary_10_3390_rs15215262
crossref_primary_10_1007_s10113_024_02341_1
crossref_primary_10_1007_s11356_024_33290_1
crossref_primary_10_1016_j_compeleceng_2024_109246
crossref_primary_10_3390_rs16193653
crossref_primary_10_1038_s41598_024_70125_y
Cites_doi 10.3390/s21144738
10.1007/s10346-014-0550-5
10.3390/app7070683
10.1023/A:1020281327116
10.1080/17445647.2017.1279082
10.3390/rs12030346
10.1007/s10346-016-0689-3
10.1080/19475705.2018.1481147
10.1126/science.aam6960
10.3390/su10051628
10.1016/j.geomorph.2011.12.040
10.1038/nature14539
10.1002/esp.3887
10.1145/3511712
10.3390/app10228189
10.5194/nhess-18-2161-2018
10.1016/j.neunet.2014.09.003
10.3390/app10072466
10.1007/s00468-007-0132-4
10.1016/j.catena.2016.11.032
10.1016/j.enggeo.2019.01.003
10.1016/j.earscirev.2020.103225
10.1016/j.earscirev.2018.03.001
10.1109/EI250167.2020.9347147
10.1016/j.enggeo.2008.03.010
10.1109/5.726791
10.1016/j.earscirev.2016.08.011
10.1016/j.scitotenv.2021.149797
10.1038/nature16961
10.1038/s42256-019-0048-x
10.1007/BF00994018
10.1007/s10346-020-01485-5
10.1016/j.scitotenv.2018.10.064
10.3390/s18030821
10.3390/s21134489
10.1016/j.scitotenv.2019.02.263
10.1007/s10346-008-0138-z
10.1016/j.catena.2018.03.003
10.1016/j.patrec.2005.10.010
10.5194/essd-9-529-2017
10.1130/G33217.1
10.1016/j.catena.2019.104249
10.1016/j.gr.2020.08.007
10.1016/j.artint.2018.07.007
10.1002/2015WR017758
10.1029/WM018
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2023.110324
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2023_110324
S1568494623003423
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-7b325199f3e619e9280710dd5d4df8fb3087ae1be2334ef6e5eb6ccbb7bcd3d43
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:20 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Fri Feb 23 02:36:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SHAP
Explainable AI
Landslide susceptibility
Convolutional neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-7b325199f3e619e9280710dd5d4df8fb3087ae1be2334ef6e5eb6ccbb7bcd3d43
ORCID 0000-0001-9863-2054
0000-0003-0409-8263
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1568494623003423
ParticipantIDs crossref_primary_10_1016_j_asoc_2023_110324
crossref_citationtrail_10_1016_j_asoc_2023_110324
elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Varnes (b33) 1984
Lee, Baek, Jung, Lee (b59) 2020; 10
Cortes, Vapnik (b46) 1995; 20
Amich, Eshete (b50) 2021; vol. 398
Choudhary, Aggarwal, Subbian, Reddy (b64) 2022; 1
Haque, Blum, da Silva, Anderson, Pilz, Chalov, Malet, Auflič, Andres, Poyiadji, Lamas, Zhang, Peshevski, Petursson, Kurt, Dobrev, Garcia-Davalillo, Halkia, Ferri, Gaprindashvili, Engstrom, Keellings (b2) 2016; 13
Kadavi, Lee, Lee (b60) 2019; 78
Rudin (b65) 2019; 1
Kwon, Jin (b37) 1974
Shrikumar, Greenside, Kundaje (b67) 2017
Merghadi, Yunus, Dou, Whiteley, Pham, Bui, Avtar, Abderrahmane (b6) 2020; 207
Lundberg, Lee (b25) 2017
Fan, Lehmann, Or (b39) 2016; 52
Shapley (b49) 1953
Dikshit, Pradhan, Alamri (b9) 2021; 100
García, Aznarte (b28) 2020; 56
Andrieu, De Freitas, Doucet, Jordan (b16) 2003; 50
Mathew, Jha, Rawat (b8) 2009; 6
Chen, Chen, Cheng (b45) 2019
Matin, Pradhan (b26) 2021; 21
Montzka, Herbst, Weihermüller, Verhoef, Vereecken (b42) 2017; 9
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (b5) 2018; 180
S.G. Lee, S.R. Hencher, Slope safety and landslide risk management practice in Korea, in: K. Ho, V. Li (Eds.), Proceedings, 2007 International Forum on Landslide Disaster Management, Vol. 1, Hong Kong, 2007, pp. 125–168.
Oh, Kadavi, Lee, Lee (b48) 2018; 9
Lee, Yun, Lee (b35) 1989
Moravčík (b18) 2017; 356
Chen, Zhang, Ouyang, Ma (b20) 2018; 18
Schmidhuber (b53) 2015; 61
Wan, Dunlap, Ho, Yin, Lee, Jin, Petryk, Bargal, Gonzalez (b68) 2020
Chen, Xie, Wang, Pradhan, Hong, Bui, Zhao, Ma (b14) 2017; 151
Budimir, Atkinson, Lewis (b32) 2015; 12
Molnar (b51) 2020
Francois (b56) 2015
Sameen, Pradhan, Lee (b22) 2020; 186
Brownlee (b54) 2016
Xu, Dai, Xu, Lee (b12) 2012; 145–146
Dikshit, Pradhan (b29) 2021; 801
Lecun, Bottou, Y. Bengio, Haffner (b44) 1998; 86
Fawcett (b57) 2006; 27
van Westen, Castellanos, Kuriakose (b7) 2008; 102
Sahin, Colkesen, Kavzoglu (b15) 2018
Kim, Lee, Park (b4) 2018; 10
Sidle, Ochiai (b43) 2006
James, Witten, Hastie, Tibshirani (b47) 2013
Bartelletti, Giannecchini, D’Amato Avanzi, Galanti, Mazzali (b34) 2017; 13
Silver (b17) 2016; 529
Prakash, Manconi, Leow (b21) 2020; 12
Lee, Lee, Jung (b61) 2017; 7
Abdollahi, Pradhan (b27) 2021; 21
Wang, Fang, Hong (b23) 2019; 666
K. Zhang, P. Xu, J. Zhang, Explainable AI in Deep Reinforcement Learning Models: A SHAP Method applied in Power System Emergency Control, in: 4th IEEE Conference on Energy Internet and Energy System Integration. October 30-November 1, 2020, Wuhan, China, 2020.
Lee, Winter (b30) 2019; 251
Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (b58) 2019; 651
Moos, Bebi, Graf, Mattli, Rickli, Schwarz (b40) 2015; 41
Reubens, Poesen, Danjon, Geudens, Muys (b41) 2007; 21
Ribeiro, Singh, Guestrin (b66) 2016
Gariano, Guzzetti (b3) 2016; 162
Dikshit, Sarkar, Pradhan, Segoni, Alamri (b10) 2020; 10
Ozturk, Pittore, Behling, Rossner, Andreani, Korup (b24) 2021; 18
Miller (b63) 2019; 267
Lee, Jeon, Oh, Lee (b11) 2016; 8
LeCun, Bengio, Hinton (b19) 2015; 521
Petley (b1) 2012; 40
Froude, Petley (b38) 2018; 18
Huang, Zhao (b13) 2018; 165
Srivastava, Hinton, Krizhevsky (b55) 2014; 15
Kim, Khanna, Koyejo (b62) 2016
Lee, Lee, Park (b36) 1980
LeCun (10.1016/j.asoc.2023.110324_b19) 2015; 521
Wan (10.1016/j.asoc.2023.110324_b68) 2020
Xu (10.1016/j.asoc.2023.110324_b12) 2012; 145–146
Lee (10.1016/j.asoc.2023.110324_b30) 2019; 251
Chen (10.1016/j.asoc.2023.110324_b14) 2017; 151
Ribeiro (10.1016/j.asoc.2023.110324_b66) 2016
Kim (10.1016/j.asoc.2023.110324_b62) 2016
Rudin (10.1016/j.asoc.2023.110324_b65) 2019; 1
Cortes (10.1016/j.asoc.2023.110324_b46) 1995; 20
Lee (10.1016/j.asoc.2023.110324_b36) 1980
Chen (10.1016/j.asoc.2023.110324_b45) 2019
Moravčík (10.1016/j.asoc.2023.110324_b18) 2017; 356
Varnes (10.1016/j.asoc.2023.110324_b33) 1984
Mathew (10.1016/j.asoc.2023.110324_b8) 2009; 6
Miller (10.1016/j.asoc.2023.110324_b63) 2019; 267
Sidle (10.1016/j.asoc.2023.110324_b43) 2006
Fawcett (10.1016/j.asoc.2023.110324_b57) 2006; 27
van Westen (10.1016/j.asoc.2023.110324_b7) 2008; 102
Lee (10.1016/j.asoc.2023.110324_b61) 2017; 7
Dikshit (10.1016/j.asoc.2023.110324_b29) 2021; 801
Lecun (10.1016/j.asoc.2023.110324_b44) 1998; 86
Andrieu (10.1016/j.asoc.2023.110324_b16) 2003; 50
Choudhary (10.1016/j.asoc.2023.110324_b64) 2022; 1
Prakash (10.1016/j.asoc.2023.110324_b21) 2020; 12
Amich (10.1016/j.asoc.2023.110324_b50) 2021; vol. 398
Fan (10.1016/j.asoc.2023.110324_b39) 2016; 52
Lee (10.1016/j.asoc.2023.110324_b11) 2016; 8
Dikshit (10.1016/j.asoc.2023.110324_b10) 2020; 10
Lundberg (10.1016/j.asoc.2023.110324_b25) 2017
10.1016/j.asoc.2023.110324_b31
Ozturk (10.1016/j.asoc.2023.110324_b24) 2021; 18
Reubens (10.1016/j.asoc.2023.110324_b41) 2007; 21
Haque (10.1016/j.asoc.2023.110324_b2) 2016; 13
Merghadi (10.1016/j.asoc.2023.110324_b6) 2020; 207
Reichenbach (10.1016/j.asoc.2023.110324_b5) 2018; 180
Budimir (10.1016/j.asoc.2023.110324_b32) 2015; 12
Silver (10.1016/j.asoc.2023.110324_b17) 2016; 529
Kwon (10.1016/j.asoc.2023.110324_b37) 1974
Brownlee (10.1016/j.asoc.2023.110324_b54) 2016
Shrikumar (10.1016/j.asoc.2023.110324_b67) 2017
Dikshit (10.1016/j.asoc.2023.110324_b9) 2021; 100
Srivastava (10.1016/j.asoc.2023.110324_b55) 2014; 15
Lee (10.1016/j.asoc.2023.110324_b35) 1989
Montzka (10.1016/j.asoc.2023.110324_b42) 2017; 9
Shapley (10.1016/j.asoc.2023.110324_b49) 1953
Wang (10.1016/j.asoc.2023.110324_b23) 2019; 666
Abdollahi (10.1016/j.asoc.2023.110324_b27) 2021; 21
Choubin (10.1016/j.asoc.2023.110324_b58) 2019; 651
Oh (10.1016/j.asoc.2023.110324_b48) 2018; 9
García (10.1016/j.asoc.2023.110324_b28) 2020; 56
Kim (10.1016/j.asoc.2023.110324_b4) 2018; 10
Gariano (10.1016/j.asoc.2023.110324_b3) 2016; 162
Froude (10.1016/j.asoc.2023.110324_b38) 2018; 18
Moos (10.1016/j.asoc.2023.110324_b40) 2015; 41
Lee (10.1016/j.asoc.2023.110324_b59) 2020; 10
Chen (10.1016/j.asoc.2023.110324_b20) 2018; 18
Molnar (10.1016/j.asoc.2023.110324_b51) 2020
Petley (10.1016/j.asoc.2023.110324_b1) 2012; 40
10.1016/j.asoc.2023.110324_b52
Kadavi (10.1016/j.asoc.2023.110324_b60) 2019; 78
Sameen (10.1016/j.asoc.2023.110324_b22) 2020; 186
Matin (10.1016/j.asoc.2023.110324_b26) 2021; 21
Sahin (10.1016/j.asoc.2023.110324_b15) 2018
Huang (10.1016/j.asoc.2023.110324_b13) 2018; 165
Bartelletti (10.1016/j.asoc.2023.110324_b34) 2017; 13
Francois (10.1016/j.asoc.2023.110324_b56) 2015
James (10.1016/j.asoc.2023.110324_b47) 2013
Schmidhuber (10.1016/j.asoc.2023.110324_b53) 2015; 61
References_xml – volume: 12
  start-page: 346
  year: 2020
  ident: b21
  article-title: Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models
  publication-title: Remote Sens.
– year: 2006
  ident: b43
  article-title: Landslides Processes, Prediction, and Land Use
– year: 1989
  ident: b35
  article-title: Geological Report of the Pyongchon Sheet
– volume: 10
  start-page: 1628
  year: 2018
  ident: b4
  article-title: Assessing the cost of damage and effect of adaptation to landslides considering climate change
  publication-title: Sustainability
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: b23
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
– year: 2017
  ident: b25
  article-title: A unified approach to interpreting model predictions
– volume: 12
  start-page: 419
  year: 2015
  end-page: 436
  ident: b32
  article-title: A systematic review of landslide probability mapping using logistic regression
  publication-title: Landslides
– volume: 145–146
  start-page: 70
  year: 2012
  end-page: 80
  ident: b12
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
– volume: 21
  start-page: 4489
  year: 2021
  ident: b26
  article-title: Earthquake-induced building-damage mapping using explainable AI (XAI)
  publication-title: Sensors
– volume: 267
  start-page: 1
  year: 2019
  end-page: 38
  ident: b63
  article-title: Explanation in artificial intelligence: insights from the social sciences
  publication-title: Artificial Intelligence
– volume: 801
  year: 2021
  ident: b29
  article-title: Interpretable and Explainable AI (XAI) model for spatial drought prediction
  publication-title: Sci. Total Environ.
– volume: 100
  start-page: 290
  year: 2021
  end-page: 301
  ident: b9
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondwana Res.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b55
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 1974
  ident: b37
  article-title: Explanatory Texture of the Geological Map of Cheongju Sheet
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b46
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 18
  start-page: 821
  year: 2018
  ident: b20
  article-title: Automated landslides detection for mountain cities using multi-temporal remote sensing imagery
  publication-title: Sensors
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: b17
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– start-page: 1135
  year: 2016
  end-page: 1144
  ident: b66
  article-title: Why should i trust you? Explaining the predictions of any classifier
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 307
  year: 1953
  end-page: 317
  ident: b49
  article-title: A value for n-person games
  publication-title: Contributions to the Theory of Games, Vol. 2
– volume: 651
  start-page: 2087
  year: 2019
  end-page: 2096
  ident: b58
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
– reference: K. Zhang, P. Xu, J. Zhang, Explainable AI in Deep Reinforcement Learning Models: A SHAP Method applied in Power System Emergency Control, in: 4th IEEE Conference on Energy Internet and Energy System Integration. October 30-November 1, 2020, Wuhan, China, 2020.
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  ident: b14
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
– volume: 10
  start-page: 2466
  year: 2020
  ident: b10
  article-title: Rainfall induced landslide studies in Indian himalayan region: A critical review
  publication-title: Appl. Sci.
– volume: 78
  year: 2019
  ident: b60
  article-title: Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models
  publication-title: Environ. Earth Sci.
– volume: 251
  start-page: 172
  year: 2019
  end-page: 189
  ident: b30
  article-title: The effects of debris flow in the Republic of Korea and some issues for successful risk reduction
  publication-title: Eng. Geol.
– volume: 207
  year: 2020
  ident: b6
  article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance
  publication-title: Earth-Sci. Rev.
– volume: 18
  start-page: 2161
  year: 2018
  end-page: 2181
  ident: b38
  article-title: Global fatal landslide occurrence from 2004 to 2016
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 9
  start-page: 529
  year: 2017
  end-page: 543
  ident: b42
  article-title: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves
  publication-title: Earth Syst. Sci. Data
– volume: 165
  start-page: 520
  year: 2018
  end-page: 529
  ident: b13
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
– year: 2015
  ident: b56
  article-title: Keras
– volume: 21
  start-page: 385
  year: 2007
  end-page: 402
  ident: b41
  article-title: The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review
  publication-title: Trees
– start-page: 2280
  year: 2016
  end-page: 2288
  ident: b62
  article-title: Examples are not enough, learn to criticize! criticism for interpretability
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  ident: b47
  article-title: An Introduction to Statistical Learning
– volume: 8
  start-page: 117
  year: 2016
  end-page: 132
  ident: b11
  article-title: The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a case study of Inje, Korea
  publication-title: Open Geosci.
– year: 1980
  ident: b36
  article-title: Explanatory Texture of Geological Map of Miweon Sheet
– volume: 356
  start-page: 508
  year: 2017
  end-page: 513
  ident: b18
  article-title: DeepStack: expert-level artificial intelligence in heads-up no-limit poker
  publication-title: Science
– volume: 52
  start-page: 1781
  year: 2016
  end-page: 1799
  ident: b39
  article-title: Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides
  publication-title: Water Resour. Res.
– volume: 9
  start-page: 1053
  year: 2018
  end-page: 1070
  ident: b48
  article-title: Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models
  publication-title: Geomat. Nat. Hazards Risk
– volume: 18
  start-page: 681
  year: 2021
  end-page: 695
  ident: b24
  article-title: How robust are landslide susceptibility estimates?
  publication-title: Landslides
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: b65
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
– reference: S.G. Lee, S.R. Hencher, Slope safety and landslide risk management practice in Korea, in: K. Ho, V. Li (Eds.), Proceedings, 2007 International Forum on Landslide Disaster Management, Vol. 1, Hong Kong, 2007, pp. 125–168.
– start-page: 3145
  year: 2017
  end-page: 3153
  ident: b67
  article-title: Learning important features through propagating activation differences
  publication-title: Proceedings of the 34th International Conference on Machine Learning, Vol. 70
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b44
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b57
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
– volume: 13
  start-page: 1545
  year: 2016
  end-page: 1554
  ident: b2
  article-title: Fatal landslides in Europe
  publication-title: Landslides
– volume: 102
  start-page: 112
  year: 2008
  end-page: 131
  ident: b7
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview
  publication-title: Eng. Geol.
– volume: 40
  start-page: 927
  year: 2012
  end-page: 930
  ident: b1
  article-title: Global patterns of loss of life from landslides
  publication-title: Geology
– year: 2020
  ident: b68
  article-title: NBDT: Neural-backed decision trees
– volume: 50
  start-page: 5
  year: 2003
  end-page: 43
  ident: b16
  article-title: An introduction to MCMC for machine learning
  publication-title: Mach. Learn.
– volume: 7
  start-page: 683
  year: 2017
  ident: b61
  article-title: Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea
  publication-title: Appl. Sci.
– volume: 41
  start-page: 951
  year: 2015
  end-page: 960
  ident: b40
  article-title: How does forest structure affect root reinforcement and susceptibility to shallow landslides?
  publication-title: Earth Surf. Process. Landf.
– volume: 180
  start-page: 60
  year: 2018
  end-page: 91
  ident: b5
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth-Sci. Rev.
– start-page: 1
  year: 2018
  end-page: 23
  ident: b15
  article-title: A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping
  publication-title: Geocarto Int.
– volume: 186
  year: 2020
  ident: b22
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
– volume: 6
  start-page: 17
  year: 2009
  end-page: 26
  ident: b8
  article-title: Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method
  publication-title: Landslides
– start-page: 8996
  year: 2019
  end-page: 9004
  ident: b45
  article-title: On the over-smoothing problem of CNN based disparity estimation
  publication-title: IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 21
  start-page: 4738
  year: 2021
  ident: b27
  article-title: Urban vegetation mapping from aerial imagery using explainable AI (XAI)
  publication-title: Sensors
– year: 2016
  ident: b54
  article-title: Supervised and unsupervised machine learning algorithms
  publication-title: Machine Learning Mastery
– volume: 13
  start-page: 142
  year: 2017
  end-page: 152
  ident: b34
  article-title: The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy)
  publication-title: J. Maps
– volume: vol. 398
  year: 2021
  ident: b50
  article-title: Explanation-guided diagnosis of machine learning evasion attacks
  publication-title: Security and Privacy in Communication Networks. SecureComm 2021
– volume: 10
  start-page: 8189
  year: 2020
  ident: b59
  article-title: Susceptibility mapping on urban landslides using deep learning approaches in Mt. Umyeon
  publication-title: Appl. Sci.
– volume: 56
  year: 2020
  ident: b28
  article-title: Shapley additive explanations for NO2 forecasting
  publication-title: Ecol. Inform.
– volume: 521
  start-page: 436
  year: 2015
  ident: b19
  article-title: Deep learning
  publication-title: Nature
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b53
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 162
  start-page: 227
  year: 2016
  end-page: 252
  ident: b3
  article-title: Landslides in a changing climate
  publication-title: Earth Sci. Rev.
– year: 1984
  ident: b33
  publication-title: Landslide hazard zonation: a review of principle and practice Nat. Hazards, 3
– year: 2020
  ident: b51
  article-title: Interpretable Machine Learning
– volume: 1
  start-page: 1
  year: 2022
  ident: b64
  article-title: Self-supervised short text modeling through auxiliary context generation
  publication-title: ACM Trans. Intell. Syst. Technol.
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b15
  article-title: A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping
  publication-title: Geocarto Int.
– volume: 21
  start-page: 4738
  year: 2021
  ident: 10.1016/j.asoc.2023.110324_b27
  article-title: Urban vegetation mapping from aerial imagery using explainable AI (XAI)
  publication-title: Sensors
  doi: 10.3390/s21144738
– volume: 12
  start-page: 419
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2023.110324_b32
  article-title: A systematic review of landslide probability mapping using logistic regression
  publication-title: Landslides
  doi: 10.1007/s10346-014-0550-5
– start-page: 1135
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b66
  article-title: Why should i trust you? Explaining the predictions of any classifier
– volume: 7
  start-page: 683
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2023.110324_b61
  article-title: Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea
  publication-title: Appl. Sci.
  doi: 10.3390/app7070683
– year: 1989
  ident: 10.1016/j.asoc.2023.110324_b35
– volume: 50
  start-page: 5
  year: 2003
  ident: 10.1016/j.asoc.2023.110324_b16
  article-title: An introduction to MCMC for machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1020281327116
– year: 2013
  ident: 10.1016/j.asoc.2023.110324_b47
– volume: 13
  start-page: 142
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2023.110324_b34
  article-title: The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy)
  publication-title: J. Maps
  doi: 10.1080/17445647.2017.1279082
– volume: 12
  start-page: 346
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2023.110324_b21
  article-title: Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models
  publication-title: Remote Sens.
  doi: 10.3390/rs12030346
– volume: 13
  start-page: 1545
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b2
  article-title: Fatal landslides in Europe
  publication-title: Landslides
  doi: 10.1007/s10346-016-0689-3
– volume: 9
  start-page: 1053
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b48
  article-title: Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2018.1481147
– start-page: 3145
  year: 2017
  ident: 10.1016/j.asoc.2023.110324_b67
  article-title: Learning important features through propagating activation differences
– volume: 356
  start-page: 508
  year: 2017
  ident: 10.1016/j.asoc.2023.110324_b18
  article-title: DeepStack: expert-level artificial intelligence in heads-up no-limit poker
  publication-title: Science
  doi: 10.1126/science.aam6960
– volume: 10
  start-page: 1628
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b4
  article-title: Assessing the cost of damage and effect of adaptation to landslides considering climate change
  publication-title: Sustainability
  doi: 10.3390/su10051628
– volume: 145–146
  start-page: 70
  year: 2012
  ident: 10.1016/j.asoc.2023.110324_b12
  article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.040
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.asoc.2023.110324_b19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 41
  start-page: 951
  issue: 7
  year: 2015
  ident: 10.1016/j.asoc.2023.110324_b40
  article-title: How does forest structure affect root reinforcement and susceptibility to shallow landslides?
  publication-title: Earth Surf. Process. Landf.
  doi: 10.1002/esp.3887
– year: 2017
  ident: 10.1016/j.asoc.2023.110324_b25
– start-page: 8996
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b45
  article-title: On the over-smoothing problem of CNN based disparity estimation
– volume: 78
  issue: 116
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b60
  article-title: Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models
  publication-title: Environ. Earth Sci.
– volume: 1
  start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2023.110324_b64
  article-title: Self-supervised short text modeling through auxiliary context generation
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3511712
– volume: 10
  start-page: 8189
  year: 2020
  ident: 10.1016/j.asoc.2023.110324_b59
  article-title: Susceptibility mapping on urban landslides using deep learning approaches in Mt. Umyeon
  publication-title: Appl. Sci.
  doi: 10.3390/app10228189
– ident: 10.1016/j.asoc.2023.110324_b31
– volume: 18
  start-page: 2161
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b38
  article-title: Global fatal landslide occurrence from 2004 to 2016
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-18-2161-2018
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.asoc.2023.110324_b53
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 10
  start-page: 2466
  year: 2020
  ident: 10.1016/j.asoc.2023.110324_b10
  article-title: Rainfall induced landslide studies in Indian himalayan region: A critical review
  publication-title: Appl. Sci.
  doi: 10.3390/app10072466
– volume: 21
  start-page: 385
  issue: 4
  year: 2007
  ident: 10.1016/j.asoc.2023.110324_b41
  article-title: The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review
  publication-title: Trees
  doi: 10.1007/s00468-007-0132-4
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.asoc.2023.110324_b55
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 117
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b11
  article-title: The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a case study of Inje, Korea
  publication-title: Open Geosci.
– volume: 151
  start-page: 147
  year: 2017
  ident: 10.1016/j.asoc.2023.110324_b14
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: Catena
  doi: 10.1016/j.catena.2016.11.032
– volume: 251
  start-page: 172
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b30
  article-title: The effects of debris flow in the Republic of Korea and some issues for successful risk reduction
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.01.003
– volume: 207
  year: 2020
  ident: 10.1016/j.asoc.2023.110324_b6
  article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 180
  start-page: 60
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b5
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– year: 1984
  ident: 10.1016/j.asoc.2023.110324_b33
– ident: 10.1016/j.asoc.2023.110324_b52
  doi: 10.1109/EI250167.2020.9347147
– volume: 102
  start-page: 112
  issue: 3–4
  year: 2008
  ident: 10.1016/j.asoc.2023.110324_b7
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 56
  year: 2020
  ident: 10.1016/j.asoc.2023.110324_b28
  article-title: Shapley additive explanations for NO2 forecasting
  publication-title: Ecol. Inform.
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.asoc.2023.110324_b44
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 2020
  ident: 10.1016/j.asoc.2023.110324_b68
– volume: 162
  start-page: 227
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b3
  article-title: Landslides in a changing climate
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.08.011
– volume: 801
  year: 2021
  ident: 10.1016/j.asoc.2023.110324_b29
  article-title: Interpretable and Explainable AI (XAI) model for spatial drought prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149797
– year: 2016
  ident: 10.1016/j.asoc.2023.110324_b54
  article-title: Supervised and unsupervised machine learning algorithms
– year: 2020
  ident: 10.1016/j.asoc.2023.110324_b51
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b17
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 2015
  ident: 10.1016/j.asoc.2023.110324_b56
– volume: 1
  start-page: 206
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b65
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.asoc.2023.110324_b46
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 18
  start-page: 681
  year: 2021
  ident: 10.1016/j.asoc.2023.110324_b24
  article-title: How robust are landslide susceptibility estimates?
  publication-title: Landslides
  doi: 10.1007/s10346-020-01485-5
– volume: vol. 398
  year: 2021
  ident: 10.1016/j.asoc.2023.110324_b50
  article-title: Explanation-guided diagnosis of machine learning evasion attacks
– start-page: 2280
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b62
  article-title: Examples are not enough, learn to criticize! criticism for interpretability
– volume: 651
  start-page: 2087
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b58
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 18
  start-page: 821
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b20
  article-title: Automated landslides detection for mountain cities using multi-temporal remote sensing imagery
  publication-title: Sensors
  doi: 10.3390/s18030821
– volume: 21
  start-page: 4489
  year: 2021
  ident: 10.1016/j.asoc.2023.110324_b26
  article-title: Earthquake-induced building-damage mapping using explainable AI (XAI)
  publication-title: Sensors
  doi: 10.3390/s21134489
– volume: 666
  start-page: 975
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b23
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 6
  start-page: 17
  year: 2009
  ident: 10.1016/j.asoc.2023.110324_b8
  article-title: Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method
  publication-title: Landslides
  doi: 10.1007/s10346-008-0138-z
– volume: 165
  start-page: 520
  year: 2018
  ident: 10.1016/j.asoc.2023.110324_b13
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– year: 1980
  ident: 10.1016/j.asoc.2023.110324_b36
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.asoc.2023.110324_b57
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 9
  start-page: 529
  year: 2017
  ident: 10.1016/j.asoc.2023.110324_b42
  article-title: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-9-529-2017
– volume: 40
  start-page: 927
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2023.110324_b1
  article-title: Global patterns of loss of life from landslides
  publication-title: Geology
  doi: 10.1130/G33217.1
– volume: 186
  year: 2020
  ident: 10.1016/j.asoc.2023.110324_b22
  article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104249
– year: 1974
  ident: 10.1016/j.asoc.2023.110324_b37
– start-page: 307
  year: 1953
  ident: 10.1016/j.asoc.2023.110324_b49
  article-title: A value for n-person games
– volume: 100
  start-page: 290
  year: 2021
  ident: 10.1016/j.asoc.2023.110324_b9
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2020.08.007
– volume: 267
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2023.110324_b63
  article-title: Explanation in artificial intelligence: insights from the social sciences
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.07.007
– volume: 52
  start-page: 1781
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2023.110324_b39
  article-title: Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017758
– year: 2006
  ident: 10.1016/j.asoc.2023.110324_b43
  doi: 10.1029/WM018
SSID ssj0016928
Score 2.63202
Snippet Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110324
SubjectTerms Convolutional neural networks
Explainable AI
Landslide susceptibility
SHAP
Title An explainable AI (XAI) model for landslide susceptibility modeling
URI https://dx.doi.org/10.1016/j.asoc.2023.110324
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHjwosm3T3STNMQRL66OIWugtZF9QKbHYFvTib3dnd1MUpAdPIWEGwuxmZpZ833wIXYSMKaoTQTgvYsKKMCbcJEvSkVraP2VBBATnh2HUH7HbcTiuoaziwgCs0ud-l9NttvZPWj6ardlk0no2J48uS5ip326OHTDYWQy7vPm1gnkEUWL1VcGYgLUnzjiMV2Ei0AQBcUDD0w77uzj9KDi9HbTlO0WcupfZRTVV7qHtSoUB-49yH2VpidXHbOppUDgd4MtxOrjCVuQGm6YUWz7vdCIVni_nFsdiIbGfzsQUrwM06t28ZH3ipRGIoIwtSMwpUE4TTZU5AakEZtoEbSlDyaTuag5z_goVcNWhlCkdqVDxSAjOYy4klYweonr5VqojhKOk0CA0HpvFZEIzrgMeF23FheleVKKPUVDFJBd-bjjIV0zzCiD2mkMcc4hj7uJ4jK5XPjM3NWOtdViFOv-19rlJ62v8Tv7pd4o24c6Bbs9QffG-VOemtVjwht07DbSRZk_3j3Ad3PWH3-vRzo0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7aAXv8X5mYMHReLWJW3XYxmOzn1c3GC30DQJTEYdbgP9702adCjIDl7b96D8kr73Qn7v_QDufEolUVGGOU9DTFM_xFwHS9wSShQ3ZV5gGpyHoyCZ0JepP61Ap-yFMbRKF_ttTC-itXvScGg2FrNZ41WfPNo0ojp_2zl2O1Az06n8KtTiXj8ZbS4TgqiQWDX22Di43hlL80o1CE9GQ9wQ4kmL_p2ffuSc7iHsu2IRxfZ7jqAi82M4KIUYkPsvT6AT50h-LuauEwrFPXQ_jXsPqNC5QbouRUVL73wmJFqulwWVpWDFflkTnb9OYdJ9HncS7NQRcEYoXeGQE9N1Giki9SFIRmasjdcUwhdUqLbiZtRfKj0uW4RQqQLpSx5kGechzwQRlJxBNX_P5TmgIEqV0RoP9XrSTFGuPB6mTckzXcDISNXBKzFhmRsdbhQs5qzkiL0xgyMzODKLYx0eNz4LOzhjq7VfQs1-LT_TkX2L38U__W5hNxkPB2zQG_UvYc-8sRzcK6iuPtbyWlcaK37jdtI3mIfPqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+explainable+AI+%28XAI%29+model+for+landslide+susceptibility+modeling&rft.jtitle=Applied+soft+computing&rft.au=Pradhan%2C+Biswajeet&rft.au=Dikshit%2C+Abhirup&rft.au=Lee%2C+Saro&rft.au=Kim%2C+Hyesu&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=142&rft_id=info:doi/10.1016%2Fj.asoc.2023.110324&rft.externalDocID=S1568494623003423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon