An explainable AI (XAI) model for landslide susceptibility modeling
Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigatio...
Saved in:
Published in | Applied soft computing Vol. 142; p. 110324 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation. Research in this field has grown immensely, ranging from quantitative to deterministic approaches, with a recent surge in machine learning (ML)-based computational models. The development of ML models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful development of accurate susceptibility maps. However, despite their success, these models are rarely used by stakeholders owing to their “black box” nature. Hence, it is crucial to explain the results, thus providing greater transparency for the use of such models. To address this gap, the present work introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for landslide susceptibility modeling. A convolutional neural network model was used conducted in the CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-affected variables, of which 70% was used for training and 30% for testing, and the model achieved an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode, which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both landslide and non-landslide locations, thus providing more clarity as to how the model achieves a specific result. The SHAP dependence plots explained the relationship between altitude and slope, showing a negative relationship with altitude and a positive relationship with slope. This is the first use of an explainable ML model in landslide susceptibility modeling, and we argue that future works should include aspects of explainability to open up the possibility of developing a transferable artificial intelligence model.
[Display omitted]
•An explainable ML model was used for first time for landslide susceptibility mapping.•Model achieved an accuracy of 89% for CheongJu region of South Korea.•Landslide had a negative relation with altitude but a positive relation with slope.•Plots showed the variation of model interaction for landslides and non-landslides. |
---|---|
AbstractList | Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation. Research in this field has grown immensely, ranging from quantitative to deterministic approaches, with a recent surge in machine learning (ML)-based computational models. The development of ML models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful development of accurate susceptibility maps. However, despite their success, these models are rarely used by stakeholders owing to their “black box” nature. Hence, it is crucial to explain the results, thus providing greater transparency for the use of such models. To address this gap, the present work introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for landslide susceptibility modeling. A convolutional neural network model was used conducted in the CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-affected variables, of which 70% was used for training and 30% for testing, and the model achieved an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode, which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both landslide and non-landslide locations, thus providing more clarity as to how the model achieves a specific result. The SHAP dependence plots explained the relationship between altitude and slope, showing a negative relationship with altitude and a positive relationship with slope. This is the first use of an explainable ML model in landslide susceptibility modeling, and we argue that future works should include aspects of explainability to open up the possibility of developing a transferable artificial intelligence model.
[Display omitted]
•An explainable ML model was used for first time for landslide susceptibility mapping.•Model achieved an accuracy of 89% for CheongJu region of South Korea.•Landslide had a negative relation with altitude but a positive relation with slope.•Plots showed the variation of model interaction for landslides and non-landslides. |
ArticleNumber | 110324 |
Author | Pradhan, Biswajeet Dikshit, Abhirup Kim, Hyesu Lee, Saro |
Author_xml | – sequence: 1 givenname: Biswajeet orcidid: 0000-0001-9863-2054 surname: Pradhan fullname: Pradhan, Biswajeet email: Biswajeet.Pradhan@uts.edu.au organization: Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia – sequence: 2 givenname: Abhirup surname: Dikshit fullname: Dikshit, Abhirup organization: Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia – sequence: 3 givenname: Saro orcidid: 0000-0003-0409-8263 surname: Lee fullname: Lee, Saro email: leesaro@kigam.re.sr organization: Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea – sequence: 4 givenname: Hyesu surname: Kim fullname: Kim, Hyesu organization: Department of Astronomy, Space Science and Geology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea |
BookMark | eNp9kE1Lw0AQhhepYFv9A55y1EPifmWTgJdQrBYKXhS8LfsxkS3bTdmNYv-9KfHkoaeZwzzz8j4LNAt9AIRuCS4IJuJhV6jUm4JiygpCMKP8As1JXdG8ETWZjXsp6pw3XFyhRUo7PEINredo1YYMfg5euaC0h6zdZHcf7eY-2_cWfNb1MfMq2OSdhSx9JQOHwWnn3XCcTlz4vEaXnfIJbv7mEr2vn95WL_n29Xmzare5YZwPeaUZLUnTdAwEaWCMxxXB1paW267uNMN1pYBooIxx6ASUoIUxWlfaWGY5WyI6_TWxTylCJw_R7VU8SoLlSYPcyZMGedIgJw0jVP-DjBvU4PowROX8efRxQmEs9e0gymQcBAPWRTCDtL07h_8Czkp6jg |
CitedBy_id | crossref_primary_10_1007_s12145_025_01727_x crossref_primary_10_1016_j_envsoft_2025_106394 crossref_primary_10_1016_j_pce_2023_103496 crossref_primary_10_1007_s12665_024_12032_z crossref_primary_10_1016_j_envpol_2023_123082 crossref_primary_10_3390_rs17010034 crossref_primary_10_1007_s12517_023_11719_0 crossref_primary_10_1007_s11069_024_07054_6 crossref_primary_10_1016_j_ijdrr_2024_104892 crossref_primary_10_1007_s11356_024_33128_w crossref_primary_10_1016_j_gsf_2024_101869 crossref_primary_10_1016_j_asr_2024_06_048 crossref_primary_10_3390_rs16183374 crossref_primary_10_1007_s12145_024_01561_7 crossref_primary_10_1016_j_pdisas_2025_100415 crossref_primary_10_1080_13658816_2024_2426067 crossref_primary_10_3390_su16010245 crossref_primary_10_1007_s12665_024_11521_5 crossref_primary_10_1080_19475705_2024_2354499 crossref_primary_10_1080_2150704X_2024_2399331 crossref_primary_10_1007_s11356_023_31352_4 crossref_primary_10_1007_s10064_025_04141_1 crossref_primary_10_1080_19475705_2025_2468323 crossref_primary_10_1016_j_ige_2024_10_003 crossref_primary_10_1016_j_ipm_2024_103940 crossref_primary_10_1007_s12517_024_12022_2 crossref_primary_10_1007_s12145_024_01259_w crossref_primary_10_1016_j_scitotenv_2024_175059 crossref_primary_10_1016_j_jag_2025_104365 crossref_primary_10_1007_s11069_023_06357_4 crossref_primary_10_3390_rs16234491 crossref_primary_10_1007_s10479_024_06088_0 crossref_primary_10_1016_j_crfs_2024_100738 crossref_primary_10_1016_j_asoc_2024_111279 crossref_primary_10_1007_s12517_023_11842_y crossref_primary_10_1007_s11356_024_35521_x crossref_primary_10_1016_j_gsf_2023_101770 crossref_primary_10_1007_s12665_025_12148_w crossref_primary_10_1007_s10064_025_04180_8 crossref_primary_10_1007_s40789_024_00678_w crossref_primary_10_1016_j_envsoft_2024_106130 crossref_primary_10_1007_s10489_024_05747_w crossref_primary_10_1016_j_earscirev_2024_104700 crossref_primary_10_3390_su17051973 crossref_primary_10_3390_s23229041 crossref_primary_10_1016_j_jfca_2023_105508 crossref_primary_10_1016_j_compag_2025_109990 crossref_primary_10_1109_JSTARS_2025_3541638 crossref_primary_10_1007_s42243_024_01431_y crossref_primary_10_3390_land12061135 crossref_primary_10_1016_j_pdisas_2024_100357 crossref_primary_10_1007_s11069_023_06260_y crossref_primary_10_1016_j_gsf_2024_101884 crossref_primary_10_1016_j_scs_2024_105523 crossref_primary_10_1016_j_gsf_2024_101800 crossref_primary_10_1109_TGRS_2024_3522165 crossref_primary_10_1007_s11069_025_07197_0 crossref_primary_10_1155_2023_6968854 crossref_primary_10_1016_j_aeolia_2024_100924 crossref_primary_10_1016_j_knosys_2024_112306 crossref_primary_10_1007_s10064_024_04022_z crossref_primary_10_9719_EEG_2025_58_1_81 crossref_primary_10_1016_j_cageo_2024_105723 crossref_primary_10_1016_j_compeleceng_2024_109409 crossref_primary_10_1007_s12517_023_11704_7 crossref_primary_10_3390_app132312817 crossref_primary_10_3390_land14040678 crossref_primary_10_1108_EC_07_2023_0374 crossref_primary_10_1016_j_acags_2024_100191 crossref_primary_10_1016_j_gsf_2023_101758 crossref_primary_10_3390_su151813563 crossref_primary_10_3390_rs15215262 crossref_primary_10_1007_s10113_024_02341_1 crossref_primary_10_1007_s11356_024_33290_1 crossref_primary_10_1016_j_compeleceng_2024_109246 crossref_primary_10_3390_rs16193653 crossref_primary_10_1038_s41598_024_70125_y |
Cites_doi | 10.3390/s21144738 10.1007/s10346-014-0550-5 10.3390/app7070683 10.1023/A:1020281327116 10.1080/17445647.2017.1279082 10.3390/rs12030346 10.1007/s10346-016-0689-3 10.1080/19475705.2018.1481147 10.1126/science.aam6960 10.3390/su10051628 10.1016/j.geomorph.2011.12.040 10.1038/nature14539 10.1002/esp.3887 10.1145/3511712 10.3390/app10228189 10.5194/nhess-18-2161-2018 10.1016/j.neunet.2014.09.003 10.3390/app10072466 10.1007/s00468-007-0132-4 10.1016/j.catena.2016.11.032 10.1016/j.enggeo.2019.01.003 10.1016/j.earscirev.2020.103225 10.1016/j.earscirev.2018.03.001 10.1109/EI250167.2020.9347147 10.1016/j.enggeo.2008.03.010 10.1109/5.726791 10.1016/j.earscirev.2016.08.011 10.1016/j.scitotenv.2021.149797 10.1038/nature16961 10.1038/s42256-019-0048-x 10.1007/BF00994018 10.1007/s10346-020-01485-5 10.1016/j.scitotenv.2018.10.064 10.3390/s18030821 10.3390/s21134489 10.1016/j.scitotenv.2019.02.263 10.1007/s10346-008-0138-z 10.1016/j.catena.2018.03.003 10.1016/j.patrec.2005.10.010 10.5194/essd-9-529-2017 10.1130/G33217.1 10.1016/j.catena.2019.104249 10.1016/j.gr.2020.08.007 10.1016/j.artint.2018.07.007 10.1002/2015WR017758 10.1029/WM018 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.asoc.2023.110324 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2023_110324 S1568494623003423 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-7b325199f3e619e9280710dd5d4df8fb3087ae1be2334ef6e5eb6ccbb7bcd3d43 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:20 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:36:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SHAP Explainable AI Landslide susceptibility Convolutional neural networks |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-7b325199f3e619e9280710dd5d4df8fb3087ae1be2334ef6e5eb6ccbb7bcd3d43 |
ORCID | 0000-0001-9863-2054 0000-0003-0409-8263 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568494623003423 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2023_110324 crossref_citationtrail_10_1016_j_asoc_2023_110324 elsevier_sciencedirect_doi_10_1016_j_asoc_2023_110324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Varnes (b33) 1984 Lee, Baek, Jung, Lee (b59) 2020; 10 Cortes, Vapnik (b46) 1995; 20 Amich, Eshete (b50) 2021; vol. 398 Choudhary, Aggarwal, Subbian, Reddy (b64) 2022; 1 Haque, Blum, da Silva, Anderson, Pilz, Chalov, Malet, Auflič, Andres, Poyiadji, Lamas, Zhang, Peshevski, Petursson, Kurt, Dobrev, Garcia-Davalillo, Halkia, Ferri, Gaprindashvili, Engstrom, Keellings (b2) 2016; 13 Kadavi, Lee, Lee (b60) 2019; 78 Rudin (b65) 2019; 1 Kwon, Jin (b37) 1974 Shrikumar, Greenside, Kundaje (b67) 2017 Merghadi, Yunus, Dou, Whiteley, Pham, Bui, Avtar, Abderrahmane (b6) 2020; 207 Lundberg, Lee (b25) 2017 Fan, Lehmann, Or (b39) 2016; 52 Shapley (b49) 1953 Dikshit, Pradhan, Alamri (b9) 2021; 100 García, Aznarte (b28) 2020; 56 Andrieu, De Freitas, Doucet, Jordan (b16) 2003; 50 Mathew, Jha, Rawat (b8) 2009; 6 Chen, Chen, Cheng (b45) 2019 Matin, Pradhan (b26) 2021; 21 Montzka, Herbst, Weihermüller, Verhoef, Vereecken (b42) 2017; 9 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (b5) 2018; 180 S.G. Lee, S.R. Hencher, Slope safety and landslide risk management practice in Korea, in: K. Ho, V. Li (Eds.), Proceedings, 2007 International Forum on Landslide Disaster Management, Vol. 1, Hong Kong, 2007, pp. 125–168. Oh, Kadavi, Lee, Lee (b48) 2018; 9 Lee, Yun, Lee (b35) 1989 Moravčík (b18) 2017; 356 Chen, Zhang, Ouyang, Ma (b20) 2018; 18 Schmidhuber (b53) 2015; 61 Wan, Dunlap, Ho, Yin, Lee, Jin, Petryk, Bargal, Gonzalez (b68) 2020 Chen, Xie, Wang, Pradhan, Hong, Bui, Zhao, Ma (b14) 2017; 151 Budimir, Atkinson, Lewis (b32) 2015; 12 Molnar (b51) 2020 Francois (b56) 2015 Sameen, Pradhan, Lee (b22) 2020; 186 Brownlee (b54) 2016 Xu, Dai, Xu, Lee (b12) 2012; 145–146 Dikshit, Pradhan (b29) 2021; 801 Lecun, Bottou, Y. Bengio, Haffner (b44) 1998; 86 Fawcett (b57) 2006; 27 van Westen, Castellanos, Kuriakose (b7) 2008; 102 Sahin, Colkesen, Kavzoglu (b15) 2018 Kim, Lee, Park (b4) 2018; 10 Sidle, Ochiai (b43) 2006 James, Witten, Hastie, Tibshirani (b47) 2013 Bartelletti, Giannecchini, D’Amato Avanzi, Galanti, Mazzali (b34) 2017; 13 Silver (b17) 2016; 529 Prakash, Manconi, Leow (b21) 2020; 12 Lee, Lee, Jung (b61) 2017; 7 Abdollahi, Pradhan (b27) 2021; 21 Wang, Fang, Hong (b23) 2019; 666 K. Zhang, P. Xu, J. Zhang, Explainable AI in Deep Reinforcement Learning Models: A SHAP Method applied in Power System Emergency Control, in: 4th IEEE Conference on Energy Internet and Energy System Integration. October 30-November 1, 2020, Wuhan, China, 2020. Lee, Winter (b30) 2019; 251 Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (b58) 2019; 651 Moos, Bebi, Graf, Mattli, Rickli, Schwarz (b40) 2015; 41 Reubens, Poesen, Danjon, Geudens, Muys (b41) 2007; 21 Ribeiro, Singh, Guestrin (b66) 2016 Gariano, Guzzetti (b3) 2016; 162 Dikshit, Sarkar, Pradhan, Segoni, Alamri (b10) 2020; 10 Ozturk, Pittore, Behling, Rossner, Andreani, Korup (b24) 2021; 18 Miller (b63) 2019; 267 Lee, Jeon, Oh, Lee (b11) 2016; 8 LeCun, Bengio, Hinton (b19) 2015; 521 Petley (b1) 2012; 40 Froude, Petley (b38) 2018; 18 Huang, Zhao (b13) 2018; 165 Srivastava, Hinton, Krizhevsky (b55) 2014; 15 Kim, Khanna, Koyejo (b62) 2016 Lee, Lee, Park (b36) 1980 LeCun (10.1016/j.asoc.2023.110324_b19) 2015; 521 Wan (10.1016/j.asoc.2023.110324_b68) 2020 Xu (10.1016/j.asoc.2023.110324_b12) 2012; 145–146 Lee (10.1016/j.asoc.2023.110324_b30) 2019; 251 Chen (10.1016/j.asoc.2023.110324_b14) 2017; 151 Ribeiro (10.1016/j.asoc.2023.110324_b66) 2016 Kim (10.1016/j.asoc.2023.110324_b62) 2016 Rudin (10.1016/j.asoc.2023.110324_b65) 2019; 1 Cortes (10.1016/j.asoc.2023.110324_b46) 1995; 20 Lee (10.1016/j.asoc.2023.110324_b36) 1980 Chen (10.1016/j.asoc.2023.110324_b45) 2019 Moravčík (10.1016/j.asoc.2023.110324_b18) 2017; 356 Varnes (10.1016/j.asoc.2023.110324_b33) 1984 Mathew (10.1016/j.asoc.2023.110324_b8) 2009; 6 Miller (10.1016/j.asoc.2023.110324_b63) 2019; 267 Sidle (10.1016/j.asoc.2023.110324_b43) 2006 Fawcett (10.1016/j.asoc.2023.110324_b57) 2006; 27 van Westen (10.1016/j.asoc.2023.110324_b7) 2008; 102 Lee (10.1016/j.asoc.2023.110324_b61) 2017; 7 Dikshit (10.1016/j.asoc.2023.110324_b29) 2021; 801 Lecun (10.1016/j.asoc.2023.110324_b44) 1998; 86 Andrieu (10.1016/j.asoc.2023.110324_b16) 2003; 50 Choudhary (10.1016/j.asoc.2023.110324_b64) 2022; 1 Prakash (10.1016/j.asoc.2023.110324_b21) 2020; 12 Amich (10.1016/j.asoc.2023.110324_b50) 2021; vol. 398 Fan (10.1016/j.asoc.2023.110324_b39) 2016; 52 Lee (10.1016/j.asoc.2023.110324_b11) 2016; 8 Dikshit (10.1016/j.asoc.2023.110324_b10) 2020; 10 Lundberg (10.1016/j.asoc.2023.110324_b25) 2017 10.1016/j.asoc.2023.110324_b31 Ozturk (10.1016/j.asoc.2023.110324_b24) 2021; 18 Reubens (10.1016/j.asoc.2023.110324_b41) 2007; 21 Haque (10.1016/j.asoc.2023.110324_b2) 2016; 13 Merghadi (10.1016/j.asoc.2023.110324_b6) 2020; 207 Reichenbach (10.1016/j.asoc.2023.110324_b5) 2018; 180 Budimir (10.1016/j.asoc.2023.110324_b32) 2015; 12 Silver (10.1016/j.asoc.2023.110324_b17) 2016; 529 Kwon (10.1016/j.asoc.2023.110324_b37) 1974 Brownlee (10.1016/j.asoc.2023.110324_b54) 2016 Shrikumar (10.1016/j.asoc.2023.110324_b67) 2017 Dikshit (10.1016/j.asoc.2023.110324_b9) 2021; 100 Srivastava (10.1016/j.asoc.2023.110324_b55) 2014; 15 Lee (10.1016/j.asoc.2023.110324_b35) 1989 Montzka (10.1016/j.asoc.2023.110324_b42) 2017; 9 Shapley (10.1016/j.asoc.2023.110324_b49) 1953 Wang (10.1016/j.asoc.2023.110324_b23) 2019; 666 Abdollahi (10.1016/j.asoc.2023.110324_b27) 2021; 21 Choubin (10.1016/j.asoc.2023.110324_b58) 2019; 651 Oh (10.1016/j.asoc.2023.110324_b48) 2018; 9 García (10.1016/j.asoc.2023.110324_b28) 2020; 56 Kim (10.1016/j.asoc.2023.110324_b4) 2018; 10 Gariano (10.1016/j.asoc.2023.110324_b3) 2016; 162 Froude (10.1016/j.asoc.2023.110324_b38) 2018; 18 Moos (10.1016/j.asoc.2023.110324_b40) 2015; 41 Lee (10.1016/j.asoc.2023.110324_b59) 2020; 10 Chen (10.1016/j.asoc.2023.110324_b20) 2018; 18 Molnar (10.1016/j.asoc.2023.110324_b51) 2020 Petley (10.1016/j.asoc.2023.110324_b1) 2012; 40 10.1016/j.asoc.2023.110324_b52 Kadavi (10.1016/j.asoc.2023.110324_b60) 2019; 78 Sameen (10.1016/j.asoc.2023.110324_b22) 2020; 186 Matin (10.1016/j.asoc.2023.110324_b26) 2021; 21 Sahin (10.1016/j.asoc.2023.110324_b15) 2018 Huang (10.1016/j.asoc.2023.110324_b13) 2018; 165 Bartelletti (10.1016/j.asoc.2023.110324_b34) 2017; 13 Francois (10.1016/j.asoc.2023.110324_b56) 2015 James (10.1016/j.asoc.2023.110324_b47) 2013 Schmidhuber (10.1016/j.asoc.2023.110324_b53) 2015; 61 |
References_xml | – volume: 12 start-page: 346 year: 2020 ident: b21 article-title: Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models publication-title: Remote Sens. – year: 2006 ident: b43 article-title: Landslides Processes, Prediction, and Land Use – year: 1989 ident: b35 article-title: Geological Report of the Pyongchon Sheet – volume: 10 start-page: 1628 year: 2018 ident: b4 article-title: Assessing the cost of damage and effect of adaptation to landslides considering climate change publication-title: Sustainability – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: b23 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. – year: 2017 ident: b25 article-title: A unified approach to interpreting model predictions – volume: 12 start-page: 419 year: 2015 end-page: 436 ident: b32 article-title: A systematic review of landslide probability mapping using logistic regression publication-title: Landslides – volume: 145–146 start-page: 70 year: 2012 end-page: 80 ident: b12 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology – volume: 21 start-page: 4489 year: 2021 ident: b26 article-title: Earthquake-induced building-damage mapping using explainable AI (XAI) publication-title: Sensors – volume: 267 start-page: 1 year: 2019 end-page: 38 ident: b63 article-title: Explanation in artificial intelligence: insights from the social sciences publication-title: Artificial Intelligence – volume: 801 year: 2021 ident: b29 article-title: Interpretable and Explainable AI (XAI) model for spatial drought prediction publication-title: Sci. Total Environ. – volume: 100 start-page: 290 year: 2021 end-page: 301 ident: b9 article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling publication-title: Gondwana Res. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b55 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 1974 ident: b37 article-title: Explanatory Texture of the Geological Map of Cheongju Sheet – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b46 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 18 start-page: 821 year: 2018 ident: b20 article-title: Automated landslides detection for mountain cities using multi-temporal remote sensing imagery publication-title: Sensors – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: b17 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – start-page: 1135 year: 2016 end-page: 1144 ident: b66 article-title: Why should i trust you? Explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 307 year: 1953 end-page: 317 ident: b49 article-title: A value for n-person games publication-title: Contributions to the Theory of Games, Vol. 2 – volume: 651 start-page: 2087 year: 2019 end-page: 2096 ident: b58 article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines publication-title: Sci. Total Environ. – reference: K. Zhang, P. Xu, J. Zhang, Explainable AI in Deep Reinforcement Learning Models: A SHAP Method applied in Power System Emergency Control, in: 4th IEEE Conference on Energy Internet and Energy System Integration. October 30-November 1, 2020, Wuhan, China, 2020. – volume: 151 start-page: 147 year: 2017 end-page: 160 ident: b14 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena – volume: 10 start-page: 2466 year: 2020 ident: b10 article-title: Rainfall induced landslide studies in Indian himalayan region: A critical review publication-title: Appl. Sci. – volume: 78 year: 2019 ident: b60 article-title: Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models publication-title: Environ. Earth Sci. – volume: 251 start-page: 172 year: 2019 end-page: 189 ident: b30 article-title: The effects of debris flow in the Republic of Korea and some issues for successful risk reduction publication-title: Eng. Geol. – volume: 207 year: 2020 ident: b6 article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance publication-title: Earth-Sci. Rev. – volume: 18 start-page: 2161 year: 2018 end-page: 2181 ident: b38 article-title: Global fatal landslide occurrence from 2004 to 2016 publication-title: Nat. Hazards Earth Syst. Sci. – volume: 9 start-page: 529 year: 2017 end-page: 543 ident: b42 article-title: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves publication-title: Earth Syst. Sci. Data – volume: 165 start-page: 520 year: 2018 end-page: 529 ident: b13 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena – year: 2015 ident: b56 article-title: Keras – volume: 21 start-page: 385 year: 2007 end-page: 402 ident: b41 article-title: The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review publication-title: Trees – start-page: 2280 year: 2016 end-page: 2288 ident: b62 article-title: Examples are not enough, learn to criticize! criticism for interpretability publication-title: Advances in Neural Information Processing Systems – year: 2013 ident: b47 article-title: An Introduction to Statistical Learning – volume: 8 start-page: 117 year: 2016 end-page: 132 ident: b11 article-title: The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a case study of Inje, Korea publication-title: Open Geosci. – year: 1980 ident: b36 article-title: Explanatory Texture of Geological Map of Miweon Sheet – volume: 356 start-page: 508 year: 2017 end-page: 513 ident: b18 article-title: DeepStack: expert-level artificial intelligence in heads-up no-limit poker publication-title: Science – volume: 52 start-page: 1781 year: 2016 end-page: 1799 ident: b39 article-title: Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides publication-title: Water Resour. Res. – volume: 9 start-page: 1053 year: 2018 end-page: 1070 ident: b48 article-title: Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models publication-title: Geomat. Nat. Hazards Risk – volume: 18 start-page: 681 year: 2021 end-page: 695 ident: b24 article-title: How robust are landslide susceptibility estimates? publication-title: Landslides – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: b65 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. – reference: S.G. Lee, S.R. Hencher, Slope safety and landslide risk management practice in Korea, in: K. Ho, V. Li (Eds.), Proceedings, 2007 International Forum on Landslide Disaster Management, Vol. 1, Hong Kong, 2007, pp. 125–168. – start-page: 3145 year: 2017 end-page: 3153 ident: b67 article-title: Learning important features through propagating activation differences publication-title: Proceedings of the 34th International Conference on Machine Learning, Vol. 70 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b44 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b57 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. – volume: 13 start-page: 1545 year: 2016 end-page: 1554 ident: b2 article-title: Fatal landslides in Europe publication-title: Landslides – volume: 102 start-page: 112 year: 2008 end-page: 131 ident: b7 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview publication-title: Eng. Geol. – volume: 40 start-page: 927 year: 2012 end-page: 930 ident: b1 article-title: Global patterns of loss of life from landslides publication-title: Geology – year: 2020 ident: b68 article-title: NBDT: Neural-backed decision trees – volume: 50 start-page: 5 year: 2003 end-page: 43 ident: b16 article-title: An introduction to MCMC for machine learning publication-title: Mach. Learn. – volume: 7 start-page: 683 year: 2017 ident: b61 article-title: Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea publication-title: Appl. Sci. – volume: 41 start-page: 951 year: 2015 end-page: 960 ident: b40 article-title: How does forest structure affect root reinforcement and susceptibility to shallow landslides? publication-title: Earth Surf. Process. Landf. – volume: 180 start-page: 60 year: 2018 end-page: 91 ident: b5 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth-Sci. Rev. – start-page: 1 year: 2018 end-page: 23 ident: b15 article-title: A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping publication-title: Geocarto Int. – volume: 186 year: 2020 ident: b22 article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment publication-title: Catena – volume: 6 start-page: 17 year: 2009 end-page: 26 ident: b8 article-title: Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method publication-title: Landslides – start-page: 8996 year: 2019 end-page: 9004 ident: b45 article-title: On the over-smoothing problem of CNN based disparity estimation publication-title: IEEE/CVF International Conference on Computer Vision (ICCV) – volume: 21 start-page: 4738 year: 2021 ident: b27 article-title: Urban vegetation mapping from aerial imagery using explainable AI (XAI) publication-title: Sensors – year: 2016 ident: b54 article-title: Supervised and unsupervised machine learning algorithms publication-title: Machine Learning Mastery – volume: 13 start-page: 142 year: 2017 end-page: 152 ident: b34 article-title: The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy) publication-title: J. Maps – volume: vol. 398 year: 2021 ident: b50 article-title: Explanation-guided diagnosis of machine learning evasion attacks publication-title: Security and Privacy in Communication Networks. SecureComm 2021 – volume: 10 start-page: 8189 year: 2020 ident: b59 article-title: Susceptibility mapping on urban landslides using deep learning approaches in Mt. Umyeon publication-title: Appl. Sci. – volume: 56 year: 2020 ident: b28 article-title: Shapley additive explanations for NO2 forecasting publication-title: Ecol. Inform. – volume: 521 start-page: 436 year: 2015 ident: b19 article-title: Deep learning publication-title: Nature – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b53 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – volume: 162 start-page: 227 year: 2016 end-page: 252 ident: b3 article-title: Landslides in a changing climate publication-title: Earth Sci. Rev. – year: 1984 ident: b33 publication-title: Landslide hazard zonation: a review of principle and practice Nat. Hazards, 3 – year: 2020 ident: b51 article-title: Interpretable Machine Learning – volume: 1 start-page: 1 year: 2022 ident: b64 article-title: Self-supervised short text modeling through auxiliary context generation publication-title: ACM Trans. Intell. Syst. Technol. – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2023.110324_b15 article-title: A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping publication-title: Geocarto Int. – volume: 21 start-page: 4738 year: 2021 ident: 10.1016/j.asoc.2023.110324_b27 article-title: Urban vegetation mapping from aerial imagery using explainable AI (XAI) publication-title: Sensors doi: 10.3390/s21144738 – volume: 12 start-page: 419 issue: 3 year: 2015 ident: 10.1016/j.asoc.2023.110324_b32 article-title: A systematic review of landslide probability mapping using logistic regression publication-title: Landslides doi: 10.1007/s10346-014-0550-5 – start-page: 1135 year: 2016 ident: 10.1016/j.asoc.2023.110324_b66 article-title: Why should i trust you? Explaining the predictions of any classifier – volume: 7 start-page: 683 issue: 7 year: 2017 ident: 10.1016/j.asoc.2023.110324_b61 article-title: Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea publication-title: Appl. Sci. doi: 10.3390/app7070683 – year: 1989 ident: 10.1016/j.asoc.2023.110324_b35 – volume: 50 start-page: 5 year: 2003 ident: 10.1016/j.asoc.2023.110324_b16 article-title: An introduction to MCMC for machine learning publication-title: Mach. Learn. doi: 10.1023/A:1020281327116 – year: 2013 ident: 10.1016/j.asoc.2023.110324_b47 – volume: 13 start-page: 142 issue: 2 year: 2017 ident: 10.1016/j.asoc.2023.110324_b34 article-title: The influence of geological–morphological and land use settings on shallow landslides in the Pogliaschina T. basin (northern Apennines, Italy) publication-title: J. Maps doi: 10.1080/17445647.2017.1279082 – volume: 12 start-page: 346 issue: 3 year: 2020 ident: 10.1016/j.asoc.2023.110324_b21 article-title: Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models publication-title: Remote Sens. doi: 10.3390/rs12030346 – volume: 13 start-page: 1545 issue: 6 year: 2016 ident: 10.1016/j.asoc.2023.110324_b2 article-title: Fatal landslides in Europe publication-title: Landslides doi: 10.1007/s10346-016-0689-3 – volume: 9 start-page: 1053 issue: 1 year: 2018 ident: 10.1016/j.asoc.2023.110324_b48 article-title: Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2018.1481147 – start-page: 3145 year: 2017 ident: 10.1016/j.asoc.2023.110324_b67 article-title: Learning important features through propagating activation differences – volume: 356 start-page: 508 year: 2017 ident: 10.1016/j.asoc.2023.110324_b18 article-title: DeepStack: expert-level artificial intelligence in heads-up no-limit poker publication-title: Science doi: 10.1126/science.aam6960 – volume: 10 start-page: 1628 issue: 5 year: 2018 ident: 10.1016/j.asoc.2023.110324_b4 article-title: Assessing the cost of damage and effect of adaptation to landslides considering climate change publication-title: Sustainability doi: 10.3390/su10051628 – volume: 145–146 start-page: 70 year: 2012 ident: 10.1016/j.asoc.2023.110324_b12 article-title: GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.040 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.asoc.2023.110324_b19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 41 start-page: 951 issue: 7 year: 2015 ident: 10.1016/j.asoc.2023.110324_b40 article-title: How does forest structure affect root reinforcement and susceptibility to shallow landslides? publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3887 – year: 2017 ident: 10.1016/j.asoc.2023.110324_b25 – start-page: 8996 year: 2019 ident: 10.1016/j.asoc.2023.110324_b45 article-title: On the over-smoothing problem of CNN based disparity estimation – volume: 78 issue: 116 year: 2019 ident: 10.1016/j.asoc.2023.110324_b60 article-title: Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models publication-title: Environ. Earth Sci. – volume: 1 start-page: 1 year: 2022 ident: 10.1016/j.asoc.2023.110324_b64 article-title: Self-supervised short text modeling through auxiliary context generation publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3511712 – volume: 10 start-page: 8189 year: 2020 ident: 10.1016/j.asoc.2023.110324_b59 article-title: Susceptibility mapping on urban landslides using deep learning approaches in Mt. Umyeon publication-title: Appl. Sci. doi: 10.3390/app10228189 – ident: 10.1016/j.asoc.2023.110324_b31 – volume: 18 start-page: 2161 year: 2018 ident: 10.1016/j.asoc.2023.110324_b38 article-title: Global fatal landslide occurrence from 2004 to 2016 publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-18-2161-2018 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.asoc.2023.110324_b53 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 10 start-page: 2466 year: 2020 ident: 10.1016/j.asoc.2023.110324_b10 article-title: Rainfall induced landslide studies in Indian himalayan region: A critical review publication-title: Appl. Sci. doi: 10.3390/app10072466 – volume: 21 start-page: 385 issue: 4 year: 2007 ident: 10.1016/j.asoc.2023.110324_b41 article-title: The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review publication-title: Trees doi: 10.1007/s00468-007-0132-4 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.asoc.2023.110324_b55 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 117 issue: 1 year: 2016 ident: 10.1016/j.asoc.2023.110324_b11 article-title: The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a case study of Inje, Korea publication-title: Open Geosci. – volume: 151 start-page: 147 year: 2017 ident: 10.1016/j.asoc.2023.110324_b14 article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility publication-title: Catena doi: 10.1016/j.catena.2016.11.032 – volume: 251 start-page: 172 year: 2019 ident: 10.1016/j.asoc.2023.110324_b30 article-title: The effects of debris flow in the Republic of Korea and some issues for successful risk reduction publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.01.003 – volume: 207 year: 2020 ident: 10.1016/j.asoc.2023.110324_b6 article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103225 – volume: 180 start-page: 60 year: 2018 ident: 10.1016/j.asoc.2023.110324_b5 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2018.03.001 – year: 1984 ident: 10.1016/j.asoc.2023.110324_b33 – ident: 10.1016/j.asoc.2023.110324_b52 doi: 10.1109/EI250167.2020.9347147 – volume: 102 start-page: 112 issue: 3–4 year: 2008 ident: 10.1016/j.asoc.2023.110324_b7 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2008.03.010 – volume: 56 year: 2020 ident: 10.1016/j.asoc.2023.110324_b28 article-title: Shapley additive explanations for NO2 forecasting publication-title: Ecol. Inform. – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.asoc.2023.110324_b44 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – year: 2020 ident: 10.1016/j.asoc.2023.110324_b68 – volume: 162 start-page: 227 year: 2016 ident: 10.1016/j.asoc.2023.110324_b3 article-title: Landslides in a changing climate publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.08.011 – volume: 801 year: 2021 ident: 10.1016/j.asoc.2023.110324_b29 article-title: Interpretable and Explainable AI (XAI) model for spatial drought prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149797 – year: 2016 ident: 10.1016/j.asoc.2023.110324_b54 article-title: Supervised and unsupervised machine learning algorithms – year: 2020 ident: 10.1016/j.asoc.2023.110324_b51 – volume: 529 start-page: 484 year: 2016 ident: 10.1016/j.asoc.2023.110324_b17 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – year: 2015 ident: 10.1016/j.asoc.2023.110324_b56 – volume: 1 start-page: 206 year: 2019 ident: 10.1016/j.asoc.2023.110324_b65 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.asoc.2023.110324_b46 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 18 start-page: 681 year: 2021 ident: 10.1016/j.asoc.2023.110324_b24 article-title: How robust are landslide susceptibility estimates? publication-title: Landslides doi: 10.1007/s10346-020-01485-5 – volume: vol. 398 year: 2021 ident: 10.1016/j.asoc.2023.110324_b50 article-title: Explanation-guided diagnosis of machine learning evasion attacks – start-page: 2280 year: 2016 ident: 10.1016/j.asoc.2023.110324_b62 article-title: Examples are not enough, learn to criticize! criticism for interpretability – volume: 651 start-page: 2087 issue: 2 year: 2019 ident: 10.1016/j.asoc.2023.110324_b58 article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.064 – volume: 18 start-page: 821 year: 2018 ident: 10.1016/j.asoc.2023.110324_b20 article-title: Automated landslides detection for mountain cities using multi-temporal remote sensing imagery publication-title: Sensors doi: 10.3390/s18030821 – volume: 21 start-page: 4489 year: 2021 ident: 10.1016/j.asoc.2023.110324_b26 article-title: Earthquake-induced building-damage mapping using explainable AI (XAI) publication-title: Sensors doi: 10.3390/s21134489 – volume: 666 start-page: 975 year: 2019 ident: 10.1016/j.asoc.2023.110324_b23 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – volume: 6 start-page: 17 year: 2009 ident: 10.1016/j.asoc.2023.110324_b8 article-title: Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method publication-title: Landslides doi: 10.1007/s10346-008-0138-z – volume: 165 start-page: 520 year: 2018 ident: 10.1016/j.asoc.2023.110324_b13 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – year: 1980 ident: 10.1016/j.asoc.2023.110324_b36 – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.asoc.2023.110324_b57 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 9 start-page: 529 year: 2017 ident: 10.1016/j.asoc.2023.110324_b42 article-title: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-9-529-2017 – volume: 40 start-page: 927 issue: 10 year: 2012 ident: 10.1016/j.asoc.2023.110324_b1 article-title: Global patterns of loss of life from landslides publication-title: Geology doi: 10.1130/G33217.1 – volume: 186 year: 2020 ident: 10.1016/j.asoc.2023.110324_b22 article-title: Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment publication-title: Catena doi: 10.1016/j.catena.2019.104249 – year: 1974 ident: 10.1016/j.asoc.2023.110324_b37 – start-page: 307 year: 1953 ident: 10.1016/j.asoc.2023.110324_b49 article-title: A value for n-person games – volume: 100 start-page: 290 year: 2021 ident: 10.1016/j.asoc.2023.110324_b9 article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling publication-title: Gondwana Res. doi: 10.1016/j.gr.2020.08.007 – volume: 267 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2023.110324_b63 article-title: Explanation in artificial intelligence: insights from the social sciences publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.07.007 – volume: 52 start-page: 1781 issue: 3 year: 2016 ident: 10.1016/j.asoc.2023.110324_b39 article-title: Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides publication-title: Water Resour. Res. doi: 10.1002/2015WR017758 – year: 2006 ident: 10.1016/j.asoc.2023.110324_b43 doi: 10.1029/WM018 |
SSID | ssj0016928 |
Score | 2.63202 |
Snippet | Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110324 |
SubjectTerms | Convolutional neural networks Explainable AI Landslide susceptibility SHAP |
Title | An explainable AI (XAI) model for landslide susceptibility modeling |
URI | https://dx.doi.org/10.1016/j.asoc.2023.110324 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHjwosm3T3STNMQRL66OIWugtZF9QKbHYFvTib3dnd1MUpAdPIWEGwuxmZpZ833wIXYSMKaoTQTgvYsKKMCbcJEvSkVraP2VBBATnh2HUH7HbcTiuoaziwgCs0ud-l9NttvZPWj6ardlk0no2J48uS5ip326OHTDYWQy7vPm1gnkEUWL1VcGYgLUnzjiMV2Ei0AQBcUDD0w77uzj9KDi9HbTlO0WcupfZRTVV7qHtSoUB-49yH2VpidXHbOppUDgd4MtxOrjCVuQGm6YUWz7vdCIVni_nFsdiIbGfzsQUrwM06t28ZH3ipRGIoIwtSMwpUE4TTZU5AakEZtoEbSlDyaTuag5z_goVcNWhlCkdqVDxSAjOYy4klYweonr5VqojhKOk0CA0HpvFZEIzrgMeF23FheleVKKPUVDFJBd-bjjIV0zzCiD2mkMcc4hj7uJ4jK5XPjM3NWOtdViFOv-19rlJ62v8Tv7pd4o24c6Bbs9QffG-VOemtVjwht07DbSRZk_3j3Ad3PWH3-vRzo0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7aAXv8X5mYMHReLWJW3XYxmOzn1c3GC30DQJTEYdbgP9702adCjIDl7b96D8kr73Qn7v_QDufEolUVGGOU9DTFM_xFwHS9wSShQ3ZV5gGpyHoyCZ0JepP61Ap-yFMbRKF_ttTC-itXvScGg2FrNZ41WfPNo0ojp_2zl2O1Az06n8KtTiXj8ZbS4TgqiQWDX22Di43hlL80o1CE9GQ9wQ4kmL_p2ffuSc7iHsu2IRxfZ7jqAi82M4KIUYkPsvT6AT50h-LuauEwrFPXQ_jXsPqNC5QbouRUVL73wmJFqulwWVpWDFflkTnb9OYdJ9HncS7NQRcEYoXeGQE9N1Giki9SFIRmasjdcUwhdUqLbiZtRfKj0uW4RQqQLpSx5kGechzwQRlJxBNX_P5TmgIEqV0RoP9XrSTFGuPB6mTckzXcDISNXBKzFhmRsdbhQs5qzkiL0xgyMzODKLYx0eNz4LOzhjq7VfQs1-LT_TkX2L38U__W5hNxkPB2zQG_UvYc-8sRzcK6iuPtbyWlcaK37jdtI3mIfPqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+explainable+AI+%28XAI%29+model+for+landslide+susceptibility+modeling&rft.jtitle=Applied+soft+computing&rft.au=Pradhan%2C+Biswajeet&rft.au=Dikshit%2C+Abhirup&rft.au=Lee%2C+Saro&rft.au=Kim%2C+Hyesu&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=142&rft_id=info:doi/10.1016%2Fj.asoc.2023.110324&rft.externalDocID=S1568494623003423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |