Effects of arsenic and trace metals on bacterial denitrification process from estuarine sediments and associated nitrous oxide emission
Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments...
Saved in:
Published in | Environmental pollution (1987) Vol. 372; p. 125916 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5–10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3−) and nitrite (NO2−). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution.
[Display omitted]
•Marinobacter sp. with As(III)-oxidizing and denitrifying ability was isolated.•Only Cd significantly induced the accumulation of N2O of Marinobacter sp.•As addition will further inhibit the N2O reduction process when Cd is present.•Cd primarily induced the accumulation of N2O by inhibiting of NO2R activity. |
---|---|
AbstractList | Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N
O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N
O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N
O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N
O, while not significantly affecting the reduction of nitrate (NO
) and nitrite (NO
). The presence of As(III) further inhibited the N
O reduction under Cd exposure, but it had no significant effect on the N
O reduction after exposure to other trace metals. A negative correlation was observed between N
O reductase (NO
R) activity and N
O emissions, indicating that Cd(II) inhibits the reduction process of N
O mainly by suppressing the activity of NO
R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N
O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution. Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N₂O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N₂O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N₂O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N₂O, while not significantly affecting the reduction of nitrate (NO₃⁻) and nitrite (NO₂⁻). The presence of As(III) further inhibited the N₂O reduction under Cd exposure, but it had no significant effect on the N₂O reduction after exposure to other trace metals. A negative correlation was observed between N₂O reductase (NO₂R) activity and N₂O emissions, indicating that Cd(II) inhibits the reduction process of N₂O mainly by suppressing the activity of NO₂R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N₂O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution. Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3-) and nitrite (NO2-). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution.Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3-) and nitrite (NO2-). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution. Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5–10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3−) and nitrite (NO2−). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution. [Display omitted] •Marinobacter sp. with As(III)-oxidizing and denitrifying ability was isolated.•Only Cd significantly induced the accumulation of N2O of Marinobacter sp.•As addition will further inhibit the N2O reduction process when Cd is present.•Cd primarily induced the accumulation of N2O by inhibiting of NO2R activity. |
ArticleNumber | 125916 |
Author | Li, Haozheng Huang, Zhangxun Jia, Yongfeng Wang, Shaofeng Peng, Zetao Li, Yongbin Zeng, Xiangfeng Wang, Jun Sang, Changpeng Ding, Yu Wang, Xinjie Zhu, Xiayu |
Author_xml | – sequence: 1 givenname: Yu surname: Ding fullname: Ding, Yu organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 2 givenname: Yongbin surname: Li fullname: Li, Yongbin organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 3 givenname: Xiangfeng surname: Zeng fullname: Zeng, Xiangfeng email: zengxf@iae.ac.cn organization: Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 4 givenname: Jun surname: Wang fullname: Wang, Jun organization: Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110136, China – sequence: 5 givenname: Zhangxun orcidid: 0000-0002-7570-9693 surname: Huang fullname: Huang, Zhangxun organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 6 givenname: Haozheng surname: Li fullname: Li, Haozheng organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 7 givenname: Zetao surname: Peng fullname: Peng, Zetao organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 8 givenname: Xinjie surname: Wang fullname: Wang, Xinjie organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 9 givenname: Xiayu surname: Zhu fullname: Zhu, Xiayu organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 10 givenname: Changpeng surname: Sang fullname: Sang, Changpeng organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 11 givenname: Shaofeng surname: Wang fullname: Wang, Shaofeng organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China – sequence: 12 givenname: Yongfeng surname: Jia fullname: Jia, Yongfeng organization: Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39993703$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2KFDEUhYOMOD2jbyCSpZtq85_JRpBh_IEBN7oOqeQG0lQlbZIe9Al87UlTo0txlcX9zsm591yhi1wyIPSakj0lVL077CE_HMuyZ4TJPWXSUPUM7eiN5pMSTFygHWHKTFoYeomuWjsQQgTn_AW65MYYrgnfod93MYLvDZeIXW2Qk8cuB9yr84BX6G4Zs4xn5zvU5BYcBtNrism7nsbkWIuH1nCsZcXQ-snVlAE3CGmFPJzPdq614pPrEPBZXU7D9GcKgGFNrQ2bl-h5HF_Bq6f3Gn3_ePft9vN0__XTl9sP95PnQvRJGz0rEmanKPOSxFn6sQibg_KgqJBeBz5ToyJ1TAWhPZMOgpE6-ngTHePX6O3mO2L_OI24dgTwsCwuw0hlOROMCKnUf6BUE8OZVGSgb57Q07xCsMeaVld_2T93HoDYAF9LaxXiX4QSe67THuxWpz3Xabc6h-z9JoNxkocE1TafIPtx2zpas6Gkfxs8AvflrOo |
Cites_doi | 10.1016/j.envint.2021.106522 10.1016/j.biortech.2020.123609 10.1016/j.marpolbul.2022.114425 10.1016/j.marchem.2007.02.005 10.1111/j.1574-6941.1995.tb00125.x 10.1029/2021GB007069 10.1016/j.envres.2023.118030 10.1016/j.scitotenv.2024.171180 10.1016/j.jclepro.2022.135807 10.1016/j.jclepro.2021.126869 10.1016/j.envint.2019.05.058 10.1016/j.cosust.2011.08.004 10.1186/s40168-022-01379-9 10.1016/j.bej.2020.107520 10.1016/j.ecoleng.2015.12.002 10.1016/j.soilbio.2005.08.007 10.1016/j.biortech.2021.125822 10.1016/j.scitotenv.2020.139585 10.1016/j.chemgeo.2012.05.005 10.1016/j.watres.2024.121766 10.1016/j.envpol.2022.120387 10.1016/j.watres.2023.120031 10.1017/S1755691018000592 10.1016/j.biortech.2015.12.068 10.1016/j.jhazmat.2025.137569 10.1016/j.scitotenv.2022.154732 10.1016/j.marpolbul.2022.113350 10.3389/fmicb.2018.02121 10.1007/s00203-021-02275-w 10.1016/j.abb.2009.06.018 10.1016/j.biortech.2023.129681 10.1016/j.scitotenv.2023.163831 10.1016/j.envres.2025.121073 10.1016/0038-0717(93)90062-G 10.1007/BF03326257 10.1007/s12665-018-7565-5 10.1016/j.scitotenv.2021.150926 10.1021/acs.est.6b06255 10.1016/j.marpolbul.2013.11.014 10.1111/gcb.12923 10.3389/fmicb.2015.00474 10.1016/0143-1471(85)90128-X 10.1016/j.chemosphere.2021.132948 10.1007/s13280-010-0077-5 10.3390/w15010147 10.1016/j.nbt.2016.07.011 10.1007/s11356-014-2953-1 10.1016/j.marpolbul.2023.114648 10.1016/j.watres.2005.03.008 10.1128/aem.42.6.1074-1084.1981 10.3390/ijerph14121504 10.1016/S0038-0717(01)00096-7 10.3389/fmicb.2020.01846 10.1021/es504251v |
ContentType | Journal Article |
Copyright | 2025 Copyright © 2025. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.envpol.2025.125916 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Environmental Sciences |
EISSN | 1873-6424 |
ExternalDocumentID | 39993703 10_1016_j_envpol_2025_125916 S0269749125002891 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGCQF AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SEW SPCBC SSH SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFFNX AFPUW AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ LW9 LY9 OHT R2- RIG SEN VH1 WUQ XJT XOL CGR CUY CVF ECM EIF NPM 7X8 AFXIZ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c344t-797b60dba612c50fb5c9372bd6ce6145c7d3b196f1a26d47c25aed957fcf8fa23 |
IEDL.DBID | .~1 |
ISSN | 0269-7491 1873-6424 |
IngestDate | Fri Aug 22 20:36:25 EDT 2025 Fri Jul 11 00:36:44 EDT 2025 Sun May 11 01:41:38 EDT 2025 Tue Jul 01 05:10:14 EDT 2025 Sat May 03 15:55:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Denitrification Marinobacter Trace metal exposure Co-exposure N2O reductase NO reductase |
Language | English |
License | Copyright © 2025. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-797b60dba612c50fb5c9372bd6ce6145c7d3b196f1a26d47c25aed957fcf8fa23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7570-9693 |
PMID | 39993703 |
PQID | 3170932560 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3242045662 proquest_miscellaneous_3170932560 pubmed_primary_39993703 crossref_primary_10_1016_j_envpol_2025_125916 elsevier_sciencedirect_doi_10_1016_j_envpol_2025_125916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Environmental pollution (1987) |
PublicationTitleAlternate | Environ Pollut |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ma, Li, Liu, Liu (bib28) 2023; 387 Hall, Harrison, Pärnänen, Virta, Brockhurst (bib14) 2020; 11 Mohiuddin, Ogawa, Zakir, Otomo, Shikazono (bib32) 2011; 8 Wang, Xu, Zhao, Wang, Jia, Wang, Wang (bib44) 2012; 314 Gadda, Francis (bib12) 2010; 493 Bradley, Chapelle (bib5) 1993; 25 Ma, Niu, Liao, Qin, Xu, Lin (bib27) 2023; 186 Ding, Li, You, Liu, Wang, Zeng, Jia (bib10) 2024; 258 Magalhaes, Joye, Moreira, Wiebe, Bordalo (bib30) 2005; 39 Ojuederie, Babalola (bib35) 2017; 14 Mosley, Priestley, Brookes, Dittmann, Farkas, Farrell, Ferguson, Gibbs, Hipsey, Huang, Lam-Gordillo, Simpson, Tyler, Waycott, Welsh (bib33) 2023; 188 Deng, Zhang, Yang, Li, Lu, Wang, Fan, Zhu, Li, Zhang (bib9) 2022; 291 Magalhaes, Costa, Teixeira, Bordalo (bib29) 2007; 107 Betlach, Tiedje (bib3) 1981; 42 Murray, Erler, Eyre (bib34) 2015; 21 Wang, Long, Chong, Yu (bib42) 2016; 87 Chen, Yin, Tang, Peng, Liu, Dang (bib7) 2016; 204 Richards, Knowles (bib36) 1995; 17 Biswas, Haider, Kabiraj, Mondal, Bandopadhyay (bib4) 2021; 203 Ruan, Awasthi, Cai, Lu, Xu, Li (bib37) 2020; 313 Liu, Zhang, Yan, Wu, Wang, Zhao, Shi, Yuan, Zeng, Zhou, Sang, Li, Wu, Jia (bib22) 2025; 489 Li, Ma, Xi, Wang, Zeng, Jia (bib18) 2024; 245 Wang, Ye, Huang, Zhang, Guo, Zhang (bib43) 2023; 15 Mckenney, Vriesacker (bib31) 1985; 38 Sheng, Weng, He, Wei, Yang, Chen, Huang, Zhou (bib55) 2021; 341 Yang, Sun, Guo, Li, Wang, Huang, Gao, Xu, Li (bib47) 2022; 315 Leng, Lu, Hai, Liu, Wu, Sun, Yuan, Zhao, Hu (bib15) 2023; 387 Zhang, Zhao, Xu, Zhou, Huang, Tang, Zhao (bib51) 2017; 51 Wrage, Velthof, van Beusichem, Oenema (bib45) 2001; 33 Severini, Carbone, Villagran, Marcovecchio (bib39) 2018; 77 Semedo, Song, Sparrer, Phillips (bib38) 2018; 9 Zhang, Zhang, Peng, Li, Chen, Xu, Yu, Zheng, Zheng (bib50) 2015; 6 Li, Zhang, Xu, Lin, Sun, Xu, Gao, Kong, Xiao, Yang, Sun (bib20) 2021; 153 Sun, Wang, Yu, Liu, Houlton, Wang, Zeng, Bai, Fang, Jia (bib40) 2021; 35 Li, Zhang, Ma, Shi, Xi, Li, Wang, Zeng, Jia (bib21) 2024; 923 Yuk, Kamarisima, Miyanaga, Tanji (bib48) 2020; 156 Wu, Zhao, Liu, Niu, Zhao, Bai, Hussain, Li (bib46) 2023; 239 Lu, Chen, Ke, Wang, Sima, Huang (bib24) 2022; 830 Cicero-Fernández, Peña-Fernández, Expósito-Camargo, Antizar-Ladislao (bib8) 2017; 38 Butterbach-Bahl, Dannenmann (bib6) 2011; 3 Gang, Ylinen, Di Capua, Papirio, Lakaniemi, Puhakka (bib13) 2013; 825 Liu, Zeng, Lin (bib23) 2022; 175 Ma, Shi, Li, Wang, Zeng, Jia (bib26) 2025; 271 Almeida, Mucha, da Silva, Monteiro, Salgado, Necrasov, Magalhes (bib2) 2014; 21 Li, Shi, Bao, Ma, Wang (bib16) 2014; 85 Li, Yang, Häggblom, Li, Guo, Li, Kolton, Cao, Soleimani, Chen, Xu, Gao, Yan, Sun (bib19) 2022; 10 Zhong, Zhou, Tsang, Liu, Yang, Yin, Wu, Wang, Xiao, Zhang (bib54) 2020; 736 Zheng, Su, Chen, Wan, Liu, Li, Yin (bib53) 2014; 48 Zhao, Kou, Chen, Xue, Fan, Wang (bib52) 2021; 299 Li, Yang, Buchner, Wang, Xu, Haderlein, Zhu (bib17) 2019; 109 Vásquez-Murrieta, Cruz-Mondragón, Trujillo-Tapia, Heffera-Arreola, Govaerts, Van Cleemput, Dendooven (bib41) 2006; 38 Afzal, Yu, Tang, Zhang, Muhammad, Zhao, Feng, Yu, Xu (bib1) 2019; 129 Zeng, Li, Wang, Jia, Zhu (bib49) 2023; 886 Dong, Liu, Long, Xu, Lichtfouse (bib11) 2022; 806 Luo, Lu, Wang, Hu, Jiao, Naile, Khim, Giesy (bib25) 2010; 39 Yang (10.1016/j.envpol.2025.125916_bib47) 2022; 315 Mckenney (10.1016/j.envpol.2025.125916_bib31) 1985; 38 Wang (10.1016/j.envpol.2025.125916_bib43) 2023; 15 Li (10.1016/j.envpol.2025.125916_bib21) 2024; 923 Ojuederie (10.1016/j.envpol.2025.125916_bib35) 2017; 14 Luo (10.1016/j.envpol.2025.125916_bib25) 2010; 39 Yuk (10.1016/j.envpol.2025.125916_bib48) 2020; 156 Deng (10.1016/j.envpol.2025.125916_bib9) 2022; 291 Li (10.1016/j.envpol.2025.125916_bib20) 2021; 153 Wang (10.1016/j.envpol.2025.125916_bib42) 2016; 87 Liu (10.1016/j.envpol.2025.125916_bib23) 2022; 175 Zeng (10.1016/j.envpol.2025.125916_bib49) 2023; 886 Zhang (10.1016/j.envpol.2025.125916_bib51) 2017; 51 Afzal (10.1016/j.envpol.2025.125916_bib1) 2019; 129 Chen (10.1016/j.envpol.2025.125916_bib7) 2016; 204 Cicero-Fernández (10.1016/j.envpol.2025.125916_bib8) 2017; 38 Ma (10.1016/j.envpol.2025.125916_bib26) 2025; 271 Leng (10.1016/j.envpol.2025.125916_bib15) 2023; 387 Sun (10.1016/j.envpol.2025.125916_bib40) 2021; 35 Semedo (10.1016/j.envpol.2025.125916_bib38) 2018; 9 Vásquez-Murrieta (10.1016/j.envpol.2025.125916_bib41) 2006; 38 Betlach (10.1016/j.envpol.2025.125916_bib3) 1981; 42 Wu (10.1016/j.envpol.2025.125916_bib46) 2023; 239 Magalhaes (10.1016/j.envpol.2025.125916_bib30) 2005; 39 Wrage (10.1016/j.envpol.2025.125916_bib45) 2001; 33 Biswas (10.1016/j.envpol.2025.125916_bib4) 2021; 203 Lu (10.1016/j.envpol.2025.125916_bib24) 2022; 830 Zhao (10.1016/j.envpol.2025.125916_bib52) 2021; 299 Severini (10.1016/j.envpol.2025.125916_bib39) 2018; 77 Mosley (10.1016/j.envpol.2025.125916_bib33) 2023; 188 Li (10.1016/j.envpol.2025.125916_bib18) 2024; 245 Wang (10.1016/j.envpol.2025.125916_bib44) 2012; 314 Mohiuddin (10.1016/j.envpol.2025.125916_bib32) 2011; 8 Li (10.1016/j.envpol.2025.125916_bib16) 2014; 85 Ma (10.1016/j.envpol.2025.125916_bib27) 2023; 186 Richards (10.1016/j.envpol.2025.125916_bib36) 1995; 17 Zhang (10.1016/j.envpol.2025.125916_bib50) 2015; 6 Bradley (10.1016/j.envpol.2025.125916_bib5) 1993; 25 Ruan (10.1016/j.envpol.2025.125916_bib37) 2020; 313 Sheng (10.1016/j.envpol.2025.125916_bib55) 2021; 341 Butterbach-Bahl (10.1016/j.envpol.2025.125916_bib6) 2011; 3 Dong (10.1016/j.envpol.2025.125916_bib11) 2022; 806 Gadda (10.1016/j.envpol.2025.125916_bib12) 2010; 493 Almeida (10.1016/j.envpol.2025.125916_bib2) 2014; 21 Li (10.1016/j.envpol.2025.125916_bib19) 2022; 10 Hall (10.1016/j.envpol.2025.125916_bib14) 2020; 11 Li (10.1016/j.envpol.2025.125916_bib17) 2019; 109 Magalhaes (10.1016/j.envpol.2025.125916_bib29) 2007; 107 Zheng (10.1016/j.envpol.2025.125916_bib53) 2014; 48 Zhong (10.1016/j.envpol.2025.125916_bib54) 2020; 736 Ding (10.1016/j.envpol.2025.125916_bib10) 2024; 258 Liu (10.1016/j.envpol.2025.125916_bib22) 2025; 489 Ma (10.1016/j.envpol.2025.125916_bib28) 2023; 387 Murray (10.1016/j.envpol.2025.125916_bib34) 2015; 21 Gang (10.1016/j.envpol.2025.125916_bib13) 2013; 825 |
References_xml | – volume: 387 year: 2023 ident: bib15 article-title: Exploring influence mechanism of small-molecule carbon source on heterotrophic nitrification-aerobic denitrification process from carbon metabolism, nitrogen metabolism and electron transport process publication-title: Bioresour. Technol. – volume: 175 year: 2022 ident: bib23 article-title: Arsenic (As) contamination in sediments from coastal areas of China publication-title: Mar. Pollut. Bull. – volume: 736 year: 2020 ident: bib54 article-title: Cadmium isotopes as tracers in environmental studies: a review publication-title: Sci. Total Environ. – volume: 806 year: 2022 ident: bib11 article-title: Weak electrical stimulation on biological denitrification: insights from the denitrifying enzymes publication-title: Sci. Total Environ. – volume: 33 start-page: 1723 year: 2001 end-page: 1732 ident: bib45 article-title: Role of nitrifier denitrification in the production of nitrous oxide publication-title: Soil Biol. Biochem. – volume: 493 start-page: 53 year: 2010 end-page: 61 ident: bib12 article-title: Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis publication-title: Arch. Biochem. Biophys. – volume: 387 year: 2023 ident: bib28 article-title: Low-level cadmium alleviates the disturbance of doxycycline on nitrogen removal and N publication-title: J. Clean. Prod. – volume: 188 year: 2023 ident: bib33 article-title: Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia's largest river basin (Murray-Darling) publication-title: Mar. Pollut. Bull. – volume: 17 start-page: 39 year: 1995 end-page: 46 ident: bib36 article-title: Inhibition of Nitrous-Oxide reduction by a component of Hamilton Harbor sediment publication-title: FEMS Microbiol. Ecol. – volume: 341 start-page: 125822 year: 2021 ident: bib55 article-title: The coupling of mixotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) promoting the start-up of anammox by addition of calcium nitrate publication-title: Bioresour. Technol. – volume: 299 year: 2021 ident: bib52 article-title: Bioremediation of wastewater containing mercury using three newly isolated bacterial strains publication-title: J. Clean. Prod. – volume: 15 start-page: 147 year: 2023 ident: bib43 article-title: Arsenic occurrence and cycling in the aquatic environment: a comparison between freshwater and seawater publication-title: Water – volume: 315 year: 2022 ident: bib47 article-title: Response of soil protists to antimony and arsenic contamination publication-title: Environ. Pollut. – volume: 886 year: 2023 ident: bib49 article-title: Diversity, functional potential, and assembly of bacterial communities in metal(loid)-contaminated sediments from a coastal industrial basin publication-title: Sci. Total Environ. – volume: 204 start-page: 26 year: 2016 end-page: 31 ident: bib7 article-title: Metabolic biotransformation of copper-benzo[a]pyrene combined pollutant on the cellular interface of publication-title: Bioresour. Technol. – volume: 77 year: 2018 ident: bib39 article-title: Toxic metals in a highly urbanized industry-impacted estuary (Bahia Blanca Estuary, Argentina): spatio-temporal analysis based on GIS publication-title: Environ. Earth Sci. – volume: 11 start-page: 1846 year: 2020 ident: bib14 article-title: The impact of mercury selection and conjugative genetic elements on community structure and resistance gene transfer publication-title: Front. Microbiol. – volume: 245 year: 2024 ident: bib18 article-title: Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay publication-title: Environ. Res. – volume: 271 year: 2025 ident: bib26 article-title: Diverse adaptation strategies of generalists and specialists to metal and salinity stress in the coastal sediments publication-title: Environ. Res. – volume: 314 start-page: 57 year: 2012 end-page: 65 ident: bib44 article-title: Arsenic retention and remobilization in muddy sediments with high iron and sulfur contents from a heavily contaminated estuary in China publication-title: Chem. Geol. – volume: 8 start-page: 723 year: 2011 end-page: 736 ident: bib32 article-title: Heavy metals contamination in water and sediments of polluted urban rivers in developing countries publication-title: Int. J. Environ. Sci. Technol. – volume: 313 year: 2020 ident: bib37 article-title: Simultaneous aerobic denitrification and antibiotics degradation by strain publication-title: Bioresour. Technol. – volume: 87 start-page: 333 year: 2016 end-page: 339 ident: bib42 article-title: Potential risk assessment of heavy metals in sediments during the denitrification process enhanced by calcium nitrate addition: effect of AVS residual publication-title: Ecol. Eng. – volume: 48 start-page: 13800 year: 2014 end-page: 13807 ident: bib53 article-title: Zinc Oxide Nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity publication-title: Environ. Sci. Technol. – volume: 923 year: 2024 ident: bib21 article-title: Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: impacts and adaptations publication-title: Sci. Total Environ. – volume: 39 start-page: 1783 year: 2005 end-page: 1794 ident: bib30 article-title: Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal publication-title: Water Res. – volume: 38 start-page: 221 year: 1985 end-page: 233 ident: bib31 article-title: Effect of cadmium contamination on denitrification processes in Brookston clay and fox sandy loam publication-title: Environ. Pollut. Ecol. Biol. – volume: 38 start-page: 56 year: 2017 end-page: 64 ident: bib8 article-title: Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis publication-title: N. Biotech. – volume: 291 year: 2022 ident: bib9 article-title: Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes publication-title: Chemosphere – volume: 14 start-page: 1504 year: 2017 ident: bib35 article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review publication-title: Int. J. Environ. Res. Publ. Health – volume: 107 start-page: 332 year: 2007 end-page: 341 ident: bib29 article-title: Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal publication-title: Mar. Chem. – volume: 21 start-page: 3219 year: 2015 end-page: 3245 ident: bib34 article-title: Nitrous oxide fluxes in estuarine environments: response to global change publication-title: Glob. Change Biol. – volume: 21 start-page: 10270 year: 2014 end-page: 10278 ident: bib2 article-title: Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification publication-title: Environ. Sci. Pollut. Control Ser. – volume: 39 start-page: 367 year: 2010 end-page: 375 ident: bib25 article-title: Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China publication-title: Ambio – volume: 35 start-page: 1 year: 2021 end-page: 13 ident: bib40 article-title: Biotic and abiotic controls on dinitrogen production in coastal sediments publication-title: Glob. Biogeochem. Cycles – volume: 85 start-page: 659 year: 2014 end-page: 664 ident: bib16 article-title: Modeling total maximum allocated loads for heavy metals in Jinzhou Bay, China publication-title: Mar. Pollut. Bull. – volume: 129 start-page: 451 year: 2019 end-page: 460 ident: bib1 article-title: The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions publication-title: Environ. Int. – volume: 830 year: 2022 ident: bib24 article-title: Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils publication-title: Sci. Total Environ. – volume: 156 year: 2020 ident: bib48 article-title: The contribution of nitrate-reducing bacterium publication-title: Biochem. Eng. J. – volume: 10 start-page: 186 year: 2022 ident: bib19 article-title: Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis) publication-title: Microbiome – volume: 239 year: 2023 ident: bib46 article-title: Insights into heavy metals shock on anammox systems: cell structure-based mechanisms and new challenges publication-title: Water Res. – volume: 203 start-page: 2761 year: 2021 end-page: 2770 ident: bib4 article-title: Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria publication-title: Arch. Microbiol. – volume: 38 start-page: 931 year: 2006 end-page: 940 ident: bib41 article-title: Nitrous oxide production of heavy metal contaminated soil publication-title: Soil Biol. Biochem. – volume: 9 year: 2018 ident: bib38 article-title: Antibiotic effects on microbial communities responsible for denitrification and N publication-title: Front. Microbiol. – volume: 489 year: 2025 ident: bib22 article-title: Large-scale distribution and ecological risk assessment of inorganic arsenic in surface sediments of Chinese marginal seas publication-title: J. Hazard Mater. – volume: 51 start-page: 4377 year: 2017 end-page: 4386 ident: bib51 article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils publication-title: Environ. Sci. Technol. – volume: 153 year: 2021 ident: bib20 article-title: Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling publication-title: Environ. Int. – volume: 3 start-page: 389 year: 2011 end-page: 395 ident: bib6 article-title: Denitrification and associated soil NO publication-title: Curr. Opin. Environ. Sustain. – volume: 825 start-page: 500 year: 2013 end-page: 503 ident: bib13 article-title: Impact of heavy metals on denitrification of simulated mining wastewaters publication-title: Integr. Sci. Ind. Knowl. Biohydrometall. – volume: 42 start-page: 1074 year: 1981 end-page: 1084 ident: bib3 article-title: Kinetic explanation for accumulation of Nitrite, Nitric-Oxide, and Nitrous-Oxide during bacterial denitrification publication-title: Appl. Environ. Microbiol. – volume: 186 year: 2023 ident: bib27 article-title: Factors affecting N publication-title: Mar. Pollut. Bull. – volume: 6 year: 2015 ident: bib50 article-title: Effects of marine actinomycete on the removal of a toxicity alga in Phaeocystis globose eutrophication waters publication-title: Front. Microbiol. – volume: 109 start-page: 421 year: 2019 end-page: 427 ident: bib17 article-title: Increased copper levels inhibit denitrification in urban soils publication-title: Earth Environ. Sci. Trans. Roy. Soc. Edinburgh – volume: 258 year: 2024 ident: bib10 article-title: Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments publication-title: Water Res. – volume: 25 start-page: 1459 year: 1993 end-page: 1462 ident: bib5 article-title: Arsenate inhibition of denitrification in nitrate contaminated sediments publication-title: Soil Biol. Biochem. – volume: 153 year: 2021 ident: 10.1016/j.envpol.2025.125916_bib20 article-title: Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106522 – volume: 825 start-page: 500 year: 2013 ident: 10.1016/j.envpol.2025.125916_bib13 article-title: Impact of heavy metals on denitrification of simulated mining wastewaters publication-title: Integr. Sci. Ind. Knowl. Biohydrometall. – volume: 313 year: 2020 ident: 10.1016/j.envpol.2025.125916_bib37 article-title: Simultaneous aerobic denitrification and antibiotics degradation by strain Marinobacter hydrocarbonoclasticus RAD-2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123609 – volume: 186 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib27 article-title: Factors affecting N2O fluxes from heavy metal-contaminated mangrove soils in a subtropical estuary publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.114425 – volume: 107 start-page: 332 year: 2007 ident: 10.1016/j.envpol.2025.125916_bib29 article-title: Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal publication-title: Mar. Chem. doi: 10.1016/j.marchem.2007.02.005 – volume: 17 start-page: 39 year: 1995 ident: 10.1016/j.envpol.2025.125916_bib36 article-title: Inhibition of Nitrous-Oxide reduction by a component of Hamilton Harbor sediment publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.1995.tb00125.x – volume: 35 start-page: 1 year: 2021 ident: 10.1016/j.envpol.2025.125916_bib40 article-title: Biotic and abiotic controls on dinitrogen production in coastal sediments publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2021GB007069 – volume: 245 year: 2024 ident: 10.1016/j.envpol.2025.125916_bib18 article-title: Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay publication-title: Environ. Res. doi: 10.1016/j.envres.2023.118030 – volume: 923 year: 2024 ident: 10.1016/j.envpol.2025.125916_bib21 article-title: Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: impacts and adaptations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.171180 – volume: 387 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib28 article-title: Low-level cadmium alleviates the disturbance of doxycycline on nitrogen removal and N2O emissions in ditch wetlands by altering microbial community and enzymatic activity publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135807 – volume: 299 year: 2021 ident: 10.1016/j.envpol.2025.125916_bib52 article-title: Bioremediation of wastewater containing mercury using three newly isolated bacterial strains publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126869 – volume: 129 start-page: 451 year: 2019 ident: 10.1016/j.envpol.2025.125916_bib1 article-title: The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions publication-title: Environ. Int. doi: 10.1016/j.envint.2019.05.058 – volume: 3 start-page: 389 year: 2011 ident: 10.1016/j.envpol.2025.125916_bib6 article-title: Denitrification and associated soil NO2 emissions due to agricultural activities in a changing climate publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2011.08.004 – volume: 10 start-page: 186 year: 2022 ident: 10.1016/j.envpol.2025.125916_bib19 article-title: Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis) publication-title: Microbiome doi: 10.1186/s40168-022-01379-9 – volume: 156 year: 2020 ident: 10.1016/j.envpol.2025.125916_bib48 article-title: The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2020.107520 – volume: 87 start-page: 333 year: 2016 ident: 10.1016/j.envpol.2025.125916_bib42 article-title: Potential risk assessment of heavy metals in sediments during the denitrification process enhanced by calcium nitrate addition: effect of AVS residual publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2015.12.002 – volume: 38 start-page: 931 year: 2006 ident: 10.1016/j.envpol.2025.125916_bib41 article-title: Nitrous oxide production of heavy metal contaminated soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.08.007 – volume: 341 start-page: 125822 year: 2021 ident: 10.1016/j.envpol.2025.125916_bib55 article-title: The coupling of mixotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) promoting the start-up of anammox by addition of calcium nitrate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125822 – volume: 736 year: 2020 ident: 10.1016/j.envpol.2025.125916_bib54 article-title: Cadmium isotopes as tracers in environmental studies: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139585 – volume: 314 start-page: 57 year: 2012 ident: 10.1016/j.envpol.2025.125916_bib44 article-title: Arsenic retention and remobilization in muddy sediments with high iron and sulfur contents from a heavily contaminated estuary in China publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2012.05.005 – volume: 258 year: 2024 ident: 10.1016/j.envpol.2025.125916_bib10 article-title: Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments publication-title: Water Res. doi: 10.1016/j.watres.2024.121766 – volume: 315 year: 2022 ident: 10.1016/j.envpol.2025.125916_bib47 article-title: Response of soil protists to antimony and arsenic contamination publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120387 – volume: 239 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib46 article-title: Insights into heavy metals shock on anammox systems: cell structure-based mechanisms and new challenges publication-title: Water Res. doi: 10.1016/j.watres.2023.120031 – volume: 109 start-page: 421 year: 2019 ident: 10.1016/j.envpol.2025.125916_bib17 article-title: Increased copper levels inhibit denitrification in urban soils publication-title: Earth Environ. Sci. Trans. Roy. Soc. Edinburgh doi: 10.1017/S1755691018000592 – volume: 204 start-page: 26 year: 2016 ident: 10.1016/j.envpol.2025.125916_bib7 article-title: Metabolic biotransformation of copper-benzo[a]pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.068 – volume: 489 year: 2025 ident: 10.1016/j.envpol.2025.125916_bib22 article-title: Large-scale distribution and ecological risk assessment of inorganic arsenic in surface sediments of Chinese marginal seas publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2025.137569 – volume: 830 year: 2022 ident: 10.1016/j.envpol.2025.125916_bib24 article-title: Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154732 – volume: 175 year: 2022 ident: 10.1016/j.envpol.2025.125916_bib23 article-title: Arsenic (As) contamination in sediments from coastal areas of China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.113350 – volume: 9 year: 2018 ident: 10.1016/j.envpol.2025.125916_bib38 article-title: Antibiotic effects on microbial communities responsible for denitrification and N2O production in Grassland soils publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02121 – volume: 203 start-page: 2761 year: 2021 ident: 10.1016/j.envpol.2025.125916_bib4 article-title: Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria publication-title: Arch. Microbiol. doi: 10.1007/s00203-021-02275-w – volume: 493 start-page: 53 year: 2010 ident: 10.1016/j.envpol.2025.125916_bib12 article-title: Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2009.06.018 – volume: 387 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib15 article-title: Exploring influence mechanism of small-molecule carbon source on heterotrophic nitrification-aerobic denitrification process from carbon metabolism, nitrogen metabolism and electron transport process publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2023.129681 – volume: 886 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib49 article-title: Diversity, functional potential, and assembly of bacterial communities in metal(loid)-contaminated sediments from a coastal industrial basin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.163831 – volume: 271 year: 2025 ident: 10.1016/j.envpol.2025.125916_bib26 article-title: Diverse adaptation strategies of generalists and specialists to metal and salinity stress in the coastal sediments publication-title: Environ. Res. doi: 10.1016/j.envres.2025.121073 – volume: 25 start-page: 1459 year: 1993 ident: 10.1016/j.envpol.2025.125916_bib5 article-title: Arsenate inhibition of denitrification in nitrate contaminated sediments publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(93)90062-G – volume: 8 start-page: 723 year: 2011 ident: 10.1016/j.envpol.2025.125916_bib32 article-title: Heavy metals contamination in water and sediments of polluted urban rivers in developing countries publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03326257 – volume: 77 year: 2018 ident: 10.1016/j.envpol.2025.125916_bib39 article-title: Toxic metals in a highly urbanized industry-impacted estuary (Bahia Blanca Estuary, Argentina): spatio-temporal analysis based on GIS publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7565-5 – volume: 806 year: 2022 ident: 10.1016/j.envpol.2025.125916_bib11 article-title: Weak electrical stimulation on biological denitrification: insights from the denitrifying enzymes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150926 – volume: 51 start-page: 4377 year: 2017 ident: 10.1016/j.envpol.2025.125916_bib51 article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06255 – volume: 85 start-page: 659 year: 2014 ident: 10.1016/j.envpol.2025.125916_bib16 article-title: Modeling total maximum allocated loads for heavy metals in Jinzhou Bay, China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.11.014 – volume: 21 start-page: 3219 year: 2015 ident: 10.1016/j.envpol.2025.125916_bib34 article-title: Nitrous oxide fluxes in estuarine environments: response to global change publication-title: Glob. Change Biol. doi: 10.1111/gcb.12923 – volume: 6 year: 2015 ident: 10.1016/j.envpol.2025.125916_bib50 article-title: Effects of marine actinomycete on the removal of a toxicity alga in Phaeocystis globose eutrophication waters publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00474 – volume: 38 start-page: 221 year: 1985 ident: 10.1016/j.envpol.2025.125916_bib31 article-title: Effect of cadmium contamination on denitrification processes in Brookston clay and fox sandy loam publication-title: Environ. Pollut. Ecol. Biol. doi: 10.1016/0143-1471(85)90128-X – volume: 291 year: 2022 ident: 10.1016/j.envpol.2025.125916_bib9 article-title: Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132948 – volume: 39 start-page: 367 year: 2010 ident: 10.1016/j.envpol.2025.125916_bib25 article-title: Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China publication-title: Ambio doi: 10.1007/s13280-010-0077-5 – volume: 15 start-page: 147 issue: 1 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib43 article-title: Arsenic occurrence and cycling in the aquatic environment: a comparison between freshwater and seawater publication-title: Water doi: 10.3390/w15010147 – volume: 38 start-page: 56 year: 2017 ident: 10.1016/j.envpol.2025.125916_bib8 article-title: Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis publication-title: N. Biotech. doi: 10.1016/j.nbt.2016.07.011 – volume: 21 start-page: 10270 year: 2014 ident: 10.1016/j.envpol.2025.125916_bib2 article-title: Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification publication-title: Environ. Sci. Pollut. Control Ser. doi: 10.1007/s11356-014-2953-1 – volume: 188 year: 2023 ident: 10.1016/j.envpol.2025.125916_bib33 article-title: Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia's largest river basin (Murray-Darling) publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2023.114648 – volume: 39 start-page: 1783 year: 2005 ident: 10.1016/j.envpol.2025.125916_bib30 article-title: Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal publication-title: Water Res. doi: 10.1016/j.watres.2005.03.008 – volume: 42 start-page: 1074 year: 1981 ident: 10.1016/j.envpol.2025.125916_bib3 article-title: Kinetic explanation for accumulation of Nitrite, Nitric-Oxide, and Nitrous-Oxide during bacterial denitrification publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.42.6.1074-1084.1981 – volume: 14 start-page: 1504 year: 2017 ident: 10.1016/j.envpol.2025.125916_bib35 article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph14121504 – volume: 33 start-page: 1723 year: 2001 ident: 10.1016/j.envpol.2025.125916_bib45 article-title: Role of nitrifier denitrification in the production of nitrous oxide publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00096-7 – volume: 11 start-page: 1846 year: 2020 ident: 10.1016/j.envpol.2025.125916_bib14 article-title: The impact of mercury selection and conjugative genetic elements on community structure and resistance gene transfer publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01846 – volume: 48 start-page: 13800 year: 2014 ident: 10.1016/j.envpol.2025.125916_bib53 article-title: Zinc Oxide Nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity publication-title: Environ. Sci. Technol. doi: 10.1021/es504251v |
SSID | ssj0004333 |
Score | 2.4755163 |
Snippet | Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 125916 |
SubjectTerms | arsenic Arsenic - toxicity Bacteria - metabolism cadmium Co-exposure copper Denitrification Denitrification - drug effects Estuaries Geologic Sediments - chemistry Geologic Sediments - microbiology greenhouse gases lead Marinobacter mercury N2O reductase nitrates nitrites nitrous oxide Nitrous Oxide - analysis Nitrous Oxide - metabolism nitrous oxide production oxidoreductases pollution Trace Elements - toxicity Trace metal exposure Water Pollutants, Chemical - toxicity zinc |
Title | Effects of arsenic and trace metals on bacterial denitrification process from estuarine sediments and associated nitrous oxide emission |
URI | https://dx.doi.org/10.1016/j.envpol.2025.125916 https://www.ncbi.nlm.nih.gov/pubmed/39993703 https://www.proquest.com/docview/3170932560 https://www.proquest.com/docview/3242045662 |
Volume | 372 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHBFsKS2llJMQt3d04jpPjqmq1bUUvUKk3y_FDClK9q920ggtX_nZn7IRSiYfUY5KxM_FMPJ_teQB8MJILawqZlTz3GVook1V6hgKRmlNta0QoFCj86aJcXBZnV-JqC46GWBhyq-zn_jSnx9m6vzPpR3OyatvJZ1w9IBiu0ULH47IYwV5I0vLDH_duHgVP5eSROCPqIXwu-ni5cLta0gFELg6xn5qqnv_ZPP0NfkYzdPICnvf4kc0Tiy9hy4UR7MwDrp2vv7OPLHp0xq3yETz7LdngCHaP72PasIf-p97swM-UwXjDlp7hMteF1jAdLOvW2jh27ZAanwXWpMTO2BbnqrZbk5NRlCtbpWgDRrEqDLlHtcP3sg0Oboygi93pXhGcZdR6eYOdfmutY1RxjvbsXsHlyfGXo0XW12fIDC-KLpO1bMqpbTSiJCOmvhEGwU7e2NI4tPrCSMsb_MP9TOelLaTJhXa2FtIbX3md813YDsvg3gBrZs4gkfeSAF5dVJRFv6pKx31ZzYQZQzaIRa1SGg41-Kd9VUmMisSokhjHIAfZqQfqpNBS_Kfl-0HUCj-fjk90cDgmCpHWFNEuQsR_0CD3BJLLfAyvk5784hehIA7PlL99NG978JSukr_lO9ju1jduHzFR1xxEpT-AJ_PT88XFHXk_Dg8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V2wNwQGVLYdsCRkLcwu7GcZwcV1WrLW33Qiv1Zjl-SKnU7Go3RfQX8LeZsZMWJB4S12Q8mXhsz2d7HgAfjOTCmkwmOU99ghbKJIWeokKk5lTbGhEKBQpfLPL5Vfb5WlxvwVEfC0Nuld3aH9f0sFp3T8Zdb45XdT3-grsHBMMlWuhwXYZboG3KTiUGsD07PZsvHsMjeawoj_QJNegj6IKbl2u-rpZ0B5GKT8iqpMLnv7dQf0KgwRKd7MDzDkKyWZTyBWy5Zgi7swa3z7f37CMLTp3htHwIz37KNziEvePHsDbk0M3rzS58j0mMN2zpGe50XVMbphvL2rU2jt06pMZ3Datibmdsi8tV3a7Jzyiolq1iwAGjcBWG0uPIw--yDfZvCKIL7HQ3Fpxl1Hp5h0y_1dYxKjpHx3Yv4erk-PJonnQlGhLDs6xNZCmrfGIrjUDJiImvhEG8k1Y2Nw4NvzDS8gonuZ_qNLeZNKnQzpZCeuMLr1O-B4Nm2bjXwKqpM0jkvSSMV2YFJdIvitxxnxdTYUaQ9GpRq5iJQ_UuajcqqlGRGlVU4whkrzv1y4hSaCz-0fJ9r2qFv083KLpx2CcKwdYEAS-ixL_QoPSEk_N0BK_iOHmQF9Egds-E7_-3bO_gyfzy4lydny7ODuApvYnul4cwaNd37g1CpLZ6202BH6Y6EMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+arsenic+and+trace+metals+on+bacterial+denitrification+process+from+estuarine+sediments+and+associated+nitrous+oxide+emission&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ding%2C+Yu&rft.au=Li%2C+Yongbin&rft.au=Zeng%2C+Xiangfeng&rft.au=Wang%2C+Jun&rft.date=2025-05-01&rft.issn=0269-7491&rft_id=info:doi/10.1016%2Fj.envpol.2025.125916&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |