Effects of arsenic and trace metals on bacterial denitrification process from estuarine sediments and associated nitrous oxide emission

Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 372; p. 125916
Main Authors Ding, Yu, Li, Yongbin, Zeng, Xiangfeng, Wang, Jun, Huang, Zhangxun, Li, Haozheng, Peng, Zetao, Wang, Xinjie, Zhu, Xiayu, Sang, Changpeng, Wang, Shaofeng, Jia, Yongfeng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5–10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3−) and nitrite (NO2−). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution. [Display omitted] •Marinobacter sp. with As(III)-oxidizing and denitrifying ability was isolated.•Only Cd significantly induced the accumulation of N2O of Marinobacter sp.•As addition will further inhibit the N2O reduction process when Cd is present.•Cd primarily induced the accumulation of N2O by inhibiting of NO2R activity.
AbstractList Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N O, while not significantly affecting the reduction of nitrate (NO ) and nitrite (NO ). The presence of As(III) further inhibited the N O reduction under Cd exposure, but it had no significant effect on the N O reduction after exposure to other trace metals. A negative correlation was observed between N O reductase (NO R) activity and N O emissions, indicating that Cd(II) inhibits the reduction process of N O mainly by suppressing the activity of NO R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution.
Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N₂O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N₂O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N₂O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N₂O, while not significantly affecting the reduction of nitrate (NO₃⁻) and nitrite (NO₂⁻). The presence of As(III) further inhibited the N₂O reduction under Cd exposure, but it had no significant effect on the N₂O reduction after exposure to other trace metals. A negative correlation was observed between N₂O reductase (NO₂R) activity and N₂O emissions, indicating that Cd(II) inhibits the reduction process of N₂O mainly by suppressing the activity of NO₂R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N₂O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution.
Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3-) and nitrite (NO2-). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution.Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5-10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3-) and nitrite (NO2-). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution.
Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and other trace metals (copper, lead, zinc, cadmium, mercury) on denitrification processes and nitrous oxide (N2O) emissions in estuarine sediments remain poorly understood. Here, we examined the influence of As and other trace metals on denitrification and N2O emissions in a single denitrifying strain, Marinobacter sp. MSD-1, isolated from metal-contaminated estuarine sediments based on its As(III)-oxidizing and denitrifying abilities and functional microbial composition. The results showed that As did not significantly affect the denitrification or N2O emission of MSD-1. However, Cd(II) at concentrations of 5–10 mg/L significantly induced the accumulation of N2O, while not significantly affecting the reduction of nitrate (NO3−) and nitrite (NO2−). The presence of As(III) further inhibited the N2O reduction under Cd exposure, but it had no significant effect on the N2O reduction after exposure to other trace metals. A negative correlation was observed between N2O reductase (NO2R) activity and N2O emissions, indicating that Cd(II) inhibits the reduction process of N2O mainly by suppressing the activity of NO2R. This study highlights the detrimental effects of cadmium on microbial denitrification and subsequent emissions of the greenhouse gas N2O, thereby improving our understanding of how estuarine and coastal ecosystems respond and adapt to trace metal pollution. [Display omitted] •Marinobacter sp. with As(III)-oxidizing and denitrifying ability was isolated.•Only Cd significantly induced the accumulation of N2O of Marinobacter sp.•As addition will further inhibit the N2O reduction process when Cd is present.•Cd primarily induced the accumulation of N2O by inhibiting of NO2R activity.
ArticleNumber 125916
Author Li, Haozheng
Huang, Zhangxun
Jia, Yongfeng
Wang, Shaofeng
Peng, Zetao
Li, Yongbin
Zeng, Xiangfeng
Wang, Jun
Sang, Changpeng
Ding, Yu
Wang, Xinjie
Zhu, Xiayu
Author_xml – sequence: 1
  givenname: Yu
  surname: Ding
  fullname: Ding, Yu
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 2
  givenname: Yongbin
  surname: Li
  fullname: Li, Yongbin
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 3
  givenname: Xiangfeng
  surname: Zeng
  fullname: Zeng, Xiangfeng
  email: zengxf@iae.ac.cn
  organization: Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 4
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110136, China
– sequence: 5
  givenname: Zhangxun
  orcidid: 0000-0002-7570-9693
  surname: Huang
  fullname: Huang, Zhangxun
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 6
  givenname: Haozheng
  surname: Li
  fullname: Li, Haozheng
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 7
  givenname: Zetao
  surname: Peng
  fullname: Peng, Zetao
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 8
  givenname: Xinjie
  surname: Wang
  fullname: Wang, Xinjie
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 9
  givenname: Xiayu
  surname: Zhu
  fullname: Zhu, Xiayu
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 10
  givenname: Changpeng
  surname: Sang
  fullname: Sang, Changpeng
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 11
  givenname: Shaofeng
  surname: Wang
  fullname: Wang, Shaofeng
  organization: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
– sequence: 12
  givenname: Yongfeng
  surname: Jia
  fullname: Jia, Yongfeng
  organization: Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39993703$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2KFDEUhYOMOD2jbyCSpZtq85_JRpBh_IEBN7oOqeQG0lQlbZIe9Al87UlTo0txlcX9zsm591yhi1wyIPSakj0lVL077CE_HMuyZ4TJPWXSUPUM7eiN5pMSTFygHWHKTFoYeomuWjsQQgTn_AW65MYYrgnfod93MYLvDZeIXW2Qk8cuB9yr84BX6G4Zs4xn5zvU5BYcBtNrism7nsbkWIuH1nCsZcXQ-snVlAE3CGmFPJzPdq614pPrEPBZXU7D9GcKgGFNrQ2bl-h5HF_Bq6f3Gn3_ePft9vN0__XTl9sP95PnQvRJGz0rEmanKPOSxFn6sQibg_KgqJBeBz5ToyJ1TAWhPZMOgpE6-ngTHePX6O3mO2L_OI24dgTwsCwuw0hlOROMCKnUf6BUE8OZVGSgb57Q07xCsMeaVld_2T93HoDYAF9LaxXiX4QSe67THuxWpz3Xabc6h-z9JoNxkocE1TafIPtx2zpas6Gkfxs8AvflrOo
Cites_doi 10.1016/j.envint.2021.106522
10.1016/j.biortech.2020.123609
10.1016/j.marpolbul.2022.114425
10.1016/j.marchem.2007.02.005
10.1111/j.1574-6941.1995.tb00125.x
10.1029/2021GB007069
10.1016/j.envres.2023.118030
10.1016/j.scitotenv.2024.171180
10.1016/j.jclepro.2022.135807
10.1016/j.jclepro.2021.126869
10.1016/j.envint.2019.05.058
10.1016/j.cosust.2011.08.004
10.1186/s40168-022-01379-9
10.1016/j.bej.2020.107520
10.1016/j.ecoleng.2015.12.002
10.1016/j.soilbio.2005.08.007
10.1016/j.biortech.2021.125822
10.1016/j.scitotenv.2020.139585
10.1016/j.chemgeo.2012.05.005
10.1016/j.watres.2024.121766
10.1016/j.envpol.2022.120387
10.1016/j.watres.2023.120031
10.1017/S1755691018000592
10.1016/j.biortech.2015.12.068
10.1016/j.jhazmat.2025.137569
10.1016/j.scitotenv.2022.154732
10.1016/j.marpolbul.2022.113350
10.3389/fmicb.2018.02121
10.1007/s00203-021-02275-w
10.1016/j.abb.2009.06.018
10.1016/j.biortech.2023.129681
10.1016/j.scitotenv.2023.163831
10.1016/j.envres.2025.121073
10.1016/0038-0717(93)90062-G
10.1007/BF03326257
10.1007/s12665-018-7565-5
10.1016/j.scitotenv.2021.150926
10.1021/acs.est.6b06255
10.1016/j.marpolbul.2013.11.014
10.1111/gcb.12923
10.3389/fmicb.2015.00474
10.1016/0143-1471(85)90128-X
10.1016/j.chemosphere.2021.132948
10.1007/s13280-010-0077-5
10.3390/w15010147
10.1016/j.nbt.2016.07.011
10.1007/s11356-014-2953-1
10.1016/j.marpolbul.2023.114648
10.1016/j.watres.2005.03.008
10.1128/aem.42.6.1074-1084.1981
10.3390/ijerph14121504
10.1016/S0038-0717(01)00096-7
10.3389/fmicb.2020.01846
10.1021/es504251v
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2025.125916
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 39993703
10_1016_j_envpol_2025_125916
S0269749125002891
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFFNX
AFPUW
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
LW9
LY9
OHT
R2-
RIG
SEN
VH1
WUQ
XJT
XOL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AFXIZ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c344t-797b60dba612c50fb5c9372bd6ce6145c7d3b196f1a26d47c25aed957fcf8fa23
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Fri Aug 22 20:36:25 EDT 2025
Fri Jul 11 00:36:44 EDT 2025
Sun May 11 01:41:38 EDT 2025
Tue Jul 01 05:10:14 EDT 2025
Sat May 03 15:55:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Denitrification
Marinobacter
Trace metal exposure
Co-exposure
N2O reductase
NO reductase
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-797b60dba612c50fb5c9372bd6ce6145c7d3b196f1a26d47c25aed957fcf8fa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7570-9693
PMID 39993703
PQID 3170932560
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3242045662
proquest_miscellaneous_3170932560
pubmed_primary_39993703
crossref_primary_10_1016_j_envpol_2025_125916
elsevier_sciencedirect_doi_10_1016_j_envpol_2025_125916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Li, Liu, Liu (bib28) 2023; 387
Hall, Harrison, Pärnänen, Virta, Brockhurst (bib14) 2020; 11
Mohiuddin, Ogawa, Zakir, Otomo, Shikazono (bib32) 2011; 8
Wang, Xu, Zhao, Wang, Jia, Wang, Wang (bib44) 2012; 314
Gadda, Francis (bib12) 2010; 493
Bradley, Chapelle (bib5) 1993; 25
Ma, Niu, Liao, Qin, Xu, Lin (bib27) 2023; 186
Ding, Li, You, Liu, Wang, Zeng, Jia (bib10) 2024; 258
Magalhaes, Joye, Moreira, Wiebe, Bordalo (bib30) 2005; 39
Ojuederie, Babalola (bib35) 2017; 14
Mosley, Priestley, Brookes, Dittmann, Farkas, Farrell, Ferguson, Gibbs, Hipsey, Huang, Lam-Gordillo, Simpson, Tyler, Waycott, Welsh (bib33) 2023; 188
Deng, Zhang, Yang, Li, Lu, Wang, Fan, Zhu, Li, Zhang (bib9) 2022; 291
Magalhaes, Costa, Teixeira, Bordalo (bib29) 2007; 107
Betlach, Tiedje (bib3) 1981; 42
Murray, Erler, Eyre (bib34) 2015; 21
Wang, Long, Chong, Yu (bib42) 2016; 87
Chen, Yin, Tang, Peng, Liu, Dang (bib7) 2016; 204
Richards, Knowles (bib36) 1995; 17
Biswas, Haider, Kabiraj, Mondal, Bandopadhyay (bib4) 2021; 203
Ruan, Awasthi, Cai, Lu, Xu, Li (bib37) 2020; 313
Liu, Zhang, Yan, Wu, Wang, Zhao, Shi, Yuan, Zeng, Zhou, Sang, Li, Wu, Jia (bib22) 2025; 489
Li, Ma, Xi, Wang, Zeng, Jia (bib18) 2024; 245
Wang, Ye, Huang, Zhang, Guo, Zhang (bib43) 2023; 15
Mckenney, Vriesacker (bib31) 1985; 38
Sheng, Weng, He, Wei, Yang, Chen, Huang, Zhou (bib55) 2021; 341
Yang, Sun, Guo, Li, Wang, Huang, Gao, Xu, Li (bib47) 2022; 315
Leng, Lu, Hai, Liu, Wu, Sun, Yuan, Zhao, Hu (bib15) 2023; 387
Zhang, Zhao, Xu, Zhou, Huang, Tang, Zhao (bib51) 2017; 51
Wrage, Velthof, van Beusichem, Oenema (bib45) 2001; 33
Severini, Carbone, Villagran, Marcovecchio (bib39) 2018; 77
Semedo, Song, Sparrer, Phillips (bib38) 2018; 9
Zhang, Zhang, Peng, Li, Chen, Xu, Yu, Zheng, Zheng (bib50) 2015; 6
Li, Zhang, Xu, Lin, Sun, Xu, Gao, Kong, Xiao, Yang, Sun (bib20) 2021; 153
Sun, Wang, Yu, Liu, Houlton, Wang, Zeng, Bai, Fang, Jia (bib40) 2021; 35
Li, Zhang, Ma, Shi, Xi, Li, Wang, Zeng, Jia (bib21) 2024; 923
Yuk, Kamarisima, Miyanaga, Tanji (bib48) 2020; 156
Wu, Zhao, Liu, Niu, Zhao, Bai, Hussain, Li (bib46) 2023; 239
Lu, Chen, Ke, Wang, Sima, Huang (bib24) 2022; 830
Cicero-Fernández, Peña-Fernández, Expósito-Camargo, Antizar-Ladislao (bib8) 2017; 38
Butterbach-Bahl, Dannenmann (bib6) 2011; 3
Gang, Ylinen, Di Capua, Papirio, Lakaniemi, Puhakka (bib13) 2013; 825
Liu, Zeng, Lin (bib23) 2022; 175
Ma, Shi, Li, Wang, Zeng, Jia (bib26) 2025; 271
Almeida, Mucha, da Silva, Monteiro, Salgado, Necrasov, Magalhes (bib2) 2014; 21
Li, Shi, Bao, Ma, Wang (bib16) 2014; 85
Li, Yang, Häggblom, Li, Guo, Li, Kolton, Cao, Soleimani, Chen, Xu, Gao, Yan, Sun (bib19) 2022; 10
Zhong, Zhou, Tsang, Liu, Yang, Yin, Wu, Wang, Xiao, Zhang (bib54) 2020; 736
Zheng, Su, Chen, Wan, Liu, Li, Yin (bib53) 2014; 48
Zhao, Kou, Chen, Xue, Fan, Wang (bib52) 2021; 299
Li, Yang, Buchner, Wang, Xu, Haderlein, Zhu (bib17) 2019; 109
Vásquez-Murrieta, Cruz-Mondragón, Trujillo-Tapia, Heffera-Arreola, Govaerts, Van Cleemput, Dendooven (bib41) 2006; 38
Afzal, Yu, Tang, Zhang, Muhammad, Zhao, Feng, Yu, Xu (bib1) 2019; 129
Zeng, Li, Wang, Jia, Zhu (bib49) 2023; 886
Dong, Liu, Long, Xu, Lichtfouse (bib11) 2022; 806
Luo, Lu, Wang, Hu, Jiao, Naile, Khim, Giesy (bib25) 2010; 39
Yang (10.1016/j.envpol.2025.125916_bib47) 2022; 315
Mckenney (10.1016/j.envpol.2025.125916_bib31) 1985; 38
Wang (10.1016/j.envpol.2025.125916_bib43) 2023; 15
Li (10.1016/j.envpol.2025.125916_bib21) 2024; 923
Ojuederie (10.1016/j.envpol.2025.125916_bib35) 2017; 14
Luo (10.1016/j.envpol.2025.125916_bib25) 2010; 39
Yuk (10.1016/j.envpol.2025.125916_bib48) 2020; 156
Deng (10.1016/j.envpol.2025.125916_bib9) 2022; 291
Li (10.1016/j.envpol.2025.125916_bib20) 2021; 153
Wang (10.1016/j.envpol.2025.125916_bib42) 2016; 87
Liu (10.1016/j.envpol.2025.125916_bib23) 2022; 175
Zeng (10.1016/j.envpol.2025.125916_bib49) 2023; 886
Zhang (10.1016/j.envpol.2025.125916_bib51) 2017; 51
Afzal (10.1016/j.envpol.2025.125916_bib1) 2019; 129
Chen (10.1016/j.envpol.2025.125916_bib7) 2016; 204
Cicero-Fernández (10.1016/j.envpol.2025.125916_bib8) 2017; 38
Ma (10.1016/j.envpol.2025.125916_bib26) 2025; 271
Leng (10.1016/j.envpol.2025.125916_bib15) 2023; 387
Sun (10.1016/j.envpol.2025.125916_bib40) 2021; 35
Semedo (10.1016/j.envpol.2025.125916_bib38) 2018; 9
Vásquez-Murrieta (10.1016/j.envpol.2025.125916_bib41) 2006; 38
Betlach (10.1016/j.envpol.2025.125916_bib3) 1981; 42
Wu (10.1016/j.envpol.2025.125916_bib46) 2023; 239
Magalhaes (10.1016/j.envpol.2025.125916_bib30) 2005; 39
Wrage (10.1016/j.envpol.2025.125916_bib45) 2001; 33
Biswas (10.1016/j.envpol.2025.125916_bib4) 2021; 203
Lu (10.1016/j.envpol.2025.125916_bib24) 2022; 830
Zhao (10.1016/j.envpol.2025.125916_bib52) 2021; 299
Severini (10.1016/j.envpol.2025.125916_bib39) 2018; 77
Mosley (10.1016/j.envpol.2025.125916_bib33) 2023; 188
Li (10.1016/j.envpol.2025.125916_bib18) 2024; 245
Wang (10.1016/j.envpol.2025.125916_bib44) 2012; 314
Mohiuddin (10.1016/j.envpol.2025.125916_bib32) 2011; 8
Li (10.1016/j.envpol.2025.125916_bib16) 2014; 85
Ma (10.1016/j.envpol.2025.125916_bib27) 2023; 186
Richards (10.1016/j.envpol.2025.125916_bib36) 1995; 17
Zhang (10.1016/j.envpol.2025.125916_bib50) 2015; 6
Bradley (10.1016/j.envpol.2025.125916_bib5) 1993; 25
Ruan (10.1016/j.envpol.2025.125916_bib37) 2020; 313
Sheng (10.1016/j.envpol.2025.125916_bib55) 2021; 341
Butterbach-Bahl (10.1016/j.envpol.2025.125916_bib6) 2011; 3
Dong (10.1016/j.envpol.2025.125916_bib11) 2022; 806
Gadda (10.1016/j.envpol.2025.125916_bib12) 2010; 493
Almeida (10.1016/j.envpol.2025.125916_bib2) 2014; 21
Li (10.1016/j.envpol.2025.125916_bib19) 2022; 10
Hall (10.1016/j.envpol.2025.125916_bib14) 2020; 11
Li (10.1016/j.envpol.2025.125916_bib17) 2019; 109
Magalhaes (10.1016/j.envpol.2025.125916_bib29) 2007; 107
Zheng (10.1016/j.envpol.2025.125916_bib53) 2014; 48
Zhong (10.1016/j.envpol.2025.125916_bib54) 2020; 736
Ding (10.1016/j.envpol.2025.125916_bib10) 2024; 258
Liu (10.1016/j.envpol.2025.125916_bib22) 2025; 489
Ma (10.1016/j.envpol.2025.125916_bib28) 2023; 387
Murray (10.1016/j.envpol.2025.125916_bib34) 2015; 21
Gang (10.1016/j.envpol.2025.125916_bib13) 2013; 825
References_xml – volume: 387
  year: 2023
  ident: bib15
  article-title: Exploring influence mechanism of small-molecule carbon source on heterotrophic nitrification-aerobic denitrification process from carbon metabolism, nitrogen metabolism and electron transport process
  publication-title: Bioresour. Technol.
– volume: 175
  year: 2022
  ident: bib23
  article-title: Arsenic (As) contamination in sediments from coastal areas of China
  publication-title: Mar. Pollut. Bull.
– volume: 736
  year: 2020
  ident: bib54
  article-title: Cadmium isotopes as tracers in environmental studies: a review
  publication-title: Sci. Total Environ.
– volume: 806
  year: 2022
  ident: bib11
  article-title: Weak electrical stimulation on biological denitrification: insights from the denitrifying enzymes
  publication-title: Sci. Total Environ.
– volume: 33
  start-page: 1723
  year: 2001
  end-page: 1732
  ident: bib45
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
– volume: 493
  start-page: 53
  year: 2010
  end-page: 61
  ident: bib12
  article-title: Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis
  publication-title: Arch. Biochem. Biophys.
– volume: 387
  year: 2023
  ident: bib28
  article-title: Low-level cadmium alleviates the disturbance of doxycycline on nitrogen removal and N
  publication-title: J. Clean. Prod.
– volume: 188
  year: 2023
  ident: bib33
  article-title: Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia's largest river basin (Murray-Darling)
  publication-title: Mar. Pollut. Bull.
– volume: 17
  start-page: 39
  year: 1995
  end-page: 46
  ident: bib36
  article-title: Inhibition of Nitrous-Oxide reduction by a component of Hamilton Harbor sediment
  publication-title: FEMS Microbiol. Ecol.
– volume: 341
  start-page: 125822
  year: 2021
  ident: bib55
  article-title: The coupling of mixotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) promoting the start-up of anammox by addition of calcium nitrate
  publication-title: Bioresour. Technol.
– volume: 299
  year: 2021
  ident: bib52
  article-title: Bioremediation of wastewater containing mercury using three newly isolated bacterial strains
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 147
  year: 2023
  ident: bib43
  article-title: Arsenic occurrence and cycling in the aquatic environment: a comparison between freshwater and seawater
  publication-title: Water
– volume: 315
  year: 2022
  ident: bib47
  article-title: Response of soil protists to antimony and arsenic contamination
  publication-title: Environ. Pollut.
– volume: 886
  year: 2023
  ident: bib49
  article-title: Diversity, functional potential, and assembly of bacterial communities in metal(loid)-contaminated sediments from a coastal industrial basin
  publication-title: Sci. Total Environ.
– volume: 204
  start-page: 26
  year: 2016
  end-page: 31
  ident: bib7
  article-title: Metabolic biotransformation of copper-benzo[a]pyrene combined pollutant on the cellular interface of
  publication-title: Bioresour. Technol.
– volume: 77
  year: 2018
  ident: bib39
  article-title: Toxic metals in a highly urbanized industry-impacted estuary (Bahia Blanca Estuary, Argentina): spatio-temporal analysis based on GIS
  publication-title: Environ. Earth Sci.
– volume: 11
  start-page: 1846
  year: 2020
  ident: bib14
  article-title: The impact of mercury selection and conjugative genetic elements on community structure and resistance gene transfer
  publication-title: Front. Microbiol.
– volume: 245
  year: 2024
  ident: bib18
  article-title: Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay
  publication-title: Environ. Res.
– volume: 271
  year: 2025
  ident: bib26
  article-title: Diverse adaptation strategies of generalists and specialists to metal and salinity stress in the coastal sediments
  publication-title: Environ. Res.
– volume: 314
  start-page: 57
  year: 2012
  end-page: 65
  ident: bib44
  article-title: Arsenic retention and remobilization in muddy sediments with high iron and sulfur contents from a heavily contaminated estuary in China
  publication-title: Chem. Geol.
– volume: 8
  start-page: 723
  year: 2011
  end-page: 736
  ident: bib32
  article-title: Heavy metals contamination in water and sediments of polluted urban rivers in developing countries
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 313
  year: 2020
  ident: bib37
  article-title: Simultaneous aerobic denitrification and antibiotics degradation by strain
  publication-title: Bioresour. Technol.
– volume: 87
  start-page: 333
  year: 2016
  end-page: 339
  ident: bib42
  article-title: Potential risk assessment of heavy metals in sediments during the denitrification process enhanced by calcium nitrate addition: effect of AVS residual
  publication-title: Ecol. Eng.
– volume: 48
  start-page: 13800
  year: 2014
  end-page: 13807
  ident: bib53
  article-title: Zinc Oxide Nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity
  publication-title: Environ. Sci. Technol.
– volume: 923
  year: 2024
  ident: bib21
  article-title: Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: impacts and adaptations
  publication-title: Sci. Total Environ.
– volume: 39
  start-page: 1783
  year: 2005
  end-page: 1794
  ident: bib30
  article-title: Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal
  publication-title: Water Res.
– volume: 38
  start-page: 221
  year: 1985
  end-page: 233
  ident: bib31
  article-title: Effect of cadmium contamination on denitrification processes in Brookston clay and fox sandy loam
  publication-title: Environ. Pollut. Ecol. Biol.
– volume: 38
  start-page: 56
  year: 2017
  end-page: 64
  ident: bib8
  article-title: Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis
  publication-title: N. Biotech.
– volume: 291
  year: 2022
  ident: bib9
  article-title: Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes
  publication-title: Chemosphere
– volume: 14
  start-page: 1504
  year: 2017
  ident: bib35
  article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 107
  start-page: 332
  year: 2007
  end-page: 341
  ident: bib29
  article-title: Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal
  publication-title: Mar. Chem.
– volume: 21
  start-page: 3219
  year: 2015
  end-page: 3245
  ident: bib34
  article-title: Nitrous oxide fluxes in estuarine environments: response to global change
  publication-title: Glob. Change Biol.
– volume: 21
  start-page: 10270
  year: 2014
  end-page: 10278
  ident: bib2
  article-title: Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification
  publication-title: Environ. Sci. Pollut. Control Ser.
– volume: 39
  start-page: 367
  year: 2010
  end-page: 375
  ident: bib25
  article-title: Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China
  publication-title: Ambio
– volume: 35
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib40
  article-title: Biotic and abiotic controls on dinitrogen production in coastal sediments
  publication-title: Glob. Biogeochem. Cycles
– volume: 85
  start-page: 659
  year: 2014
  end-page: 664
  ident: bib16
  article-title: Modeling total maximum allocated loads for heavy metals in Jinzhou Bay, China
  publication-title: Mar. Pollut. Bull.
– volume: 129
  start-page: 451
  year: 2019
  end-page: 460
  ident: bib1
  article-title: The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions
  publication-title: Environ. Int.
– volume: 830
  year: 2022
  ident: bib24
  article-title: Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils
  publication-title: Sci. Total Environ.
– volume: 156
  year: 2020
  ident: bib48
  article-title: The contribution of nitrate-reducing bacterium
  publication-title: Biochem. Eng. J.
– volume: 10
  start-page: 186
  year: 2022
  ident: bib19
  article-title: Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis)
  publication-title: Microbiome
– volume: 239
  year: 2023
  ident: bib46
  article-title: Insights into heavy metals shock on anammox systems: cell structure-based mechanisms and new challenges
  publication-title: Water Res.
– volume: 203
  start-page: 2761
  year: 2021
  end-page: 2770
  ident: bib4
  article-title: Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria
  publication-title: Arch. Microbiol.
– volume: 38
  start-page: 931
  year: 2006
  end-page: 940
  ident: bib41
  article-title: Nitrous oxide production of heavy metal contaminated soil
  publication-title: Soil Biol. Biochem.
– volume: 9
  year: 2018
  ident: bib38
  article-title: Antibiotic effects on microbial communities responsible for denitrification and N
  publication-title: Front. Microbiol.
– volume: 489
  year: 2025
  ident: bib22
  article-title: Large-scale distribution and ecological risk assessment of inorganic arsenic in surface sediments of Chinese marginal seas
  publication-title: J. Hazard Mater.
– volume: 51
  start-page: 4377
  year: 2017
  end-page: 4386
  ident: bib51
  article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils
  publication-title: Environ. Sci. Technol.
– volume: 153
  year: 2021
  ident: bib20
  article-title: Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling
  publication-title: Environ. Int.
– volume: 3
  start-page: 389
  year: 2011
  end-page: 395
  ident: bib6
  article-title: Denitrification and associated soil NO
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 825
  start-page: 500
  year: 2013
  end-page: 503
  ident: bib13
  article-title: Impact of heavy metals on denitrification of simulated mining wastewaters
  publication-title: Integr. Sci. Ind. Knowl. Biohydrometall.
– volume: 42
  start-page: 1074
  year: 1981
  end-page: 1084
  ident: bib3
  article-title: Kinetic explanation for accumulation of Nitrite, Nitric-Oxide, and Nitrous-Oxide during bacterial denitrification
  publication-title: Appl. Environ. Microbiol.
– volume: 186
  year: 2023
  ident: bib27
  article-title: Factors affecting N
  publication-title: Mar. Pollut. Bull.
– volume: 6
  year: 2015
  ident: bib50
  article-title: Effects of marine actinomycete on the removal of a toxicity alga in Phaeocystis globose eutrophication waters
  publication-title: Front. Microbiol.
– volume: 109
  start-page: 421
  year: 2019
  end-page: 427
  ident: bib17
  article-title: Increased copper levels inhibit denitrification in urban soils
  publication-title: Earth Environ. Sci. Trans. Roy. Soc. Edinburgh
– volume: 258
  year: 2024
  ident: bib10
  article-title: Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments
  publication-title: Water Res.
– volume: 25
  start-page: 1459
  year: 1993
  end-page: 1462
  ident: bib5
  article-title: Arsenate inhibition of denitrification in nitrate contaminated sediments
  publication-title: Soil Biol. Biochem.
– volume: 153
  year: 2021
  ident: 10.1016/j.envpol.2025.125916_bib20
  article-title: Arsenic and antimony co-contamination influences on soil microbial community composition and functions: relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.106522
– volume: 825
  start-page: 500
  year: 2013
  ident: 10.1016/j.envpol.2025.125916_bib13
  article-title: Impact of heavy metals on denitrification of simulated mining wastewaters
  publication-title: Integr. Sci. Ind. Knowl. Biohydrometall.
– volume: 313
  year: 2020
  ident: 10.1016/j.envpol.2025.125916_bib37
  article-title: Simultaneous aerobic denitrification and antibiotics degradation by strain Marinobacter hydrocarbonoclasticus RAD-2
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123609
– volume: 186
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib27
  article-title: Factors affecting N2O fluxes from heavy metal-contaminated mangrove soils in a subtropical estuary
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2022.114425
– volume: 107
  start-page: 332
  year: 2007
  ident: 10.1016/j.envpol.2025.125916_bib29
  article-title: Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2007.02.005
– volume: 17
  start-page: 39
  year: 1995
  ident: 10.1016/j.envpol.2025.125916_bib36
  article-title: Inhibition of Nitrous-Oxide reduction by a component of Hamilton Harbor sediment
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.1995.tb00125.x
– volume: 35
  start-page: 1
  year: 2021
  ident: 10.1016/j.envpol.2025.125916_bib40
  article-title: Biotic and abiotic controls on dinitrogen production in coastal sediments
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2021GB007069
– volume: 245
  year: 2024
  ident: 10.1016/j.envpol.2025.125916_bib18
  article-title: Divergent adaptation strategies of abundant and rare bacteria to salinity stress and metal stress in polluted Jinzhou Bay
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2023.118030
– volume: 923
  year: 2024
  ident: 10.1016/j.envpol.2025.125916_bib21
  article-title: Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: impacts and adaptations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.171180
– volume: 387
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib28
  article-title: Low-level cadmium alleviates the disturbance of doxycycline on nitrogen removal and N2O emissions in ditch wetlands by altering microbial community and enzymatic activity
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.135807
– volume: 299
  year: 2021
  ident: 10.1016/j.envpol.2025.125916_bib52
  article-title: Bioremediation of wastewater containing mercury using three newly isolated bacterial strains
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126869
– volume: 129
  start-page: 451
  year: 2019
  ident: 10.1016/j.envpol.2025.125916_bib1
  article-title: The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.05.058
– volume: 3
  start-page: 389
  year: 2011
  ident: 10.1016/j.envpol.2025.125916_bib6
  article-title: Denitrification and associated soil NO2 emissions due to agricultural activities in a changing climate
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2011.08.004
– volume: 10
  start-page: 186
  year: 2022
  ident: 10.1016/j.envpol.2025.125916_bib19
  article-title: Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis)
  publication-title: Microbiome
  doi: 10.1186/s40168-022-01379-9
– volume: 156
  year: 2020
  ident: 10.1016/j.envpol.2025.125916_bib48
  article-title: The contribution of nitrate-reducing bacterium Marinobacter YB03 to biological souring and microbiologically influenced corrosion of carbon steel
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2020.107520
– volume: 87
  start-page: 333
  year: 2016
  ident: 10.1016/j.envpol.2025.125916_bib42
  article-title: Potential risk assessment of heavy metals in sediments during the denitrification process enhanced by calcium nitrate addition: effect of AVS residual
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2015.12.002
– volume: 38
  start-page: 931
  year: 2006
  ident: 10.1016/j.envpol.2025.125916_bib41
  article-title: Nitrous oxide production of heavy metal contaminated soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.08.007
– volume: 341
  start-page: 125822
  year: 2021
  ident: 10.1016/j.envpol.2025.125916_bib55
  article-title: The coupling of mixotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) promoting the start-up of anammox by addition of calcium nitrate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125822
– volume: 736
  year: 2020
  ident: 10.1016/j.envpol.2025.125916_bib54
  article-title: Cadmium isotopes as tracers in environmental studies: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139585
– volume: 314
  start-page: 57
  year: 2012
  ident: 10.1016/j.envpol.2025.125916_bib44
  article-title: Arsenic retention and remobilization in muddy sediments with high iron and sulfur contents from a heavily contaminated estuary in China
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2012.05.005
– volume: 258
  year: 2024
  ident: 10.1016/j.envpol.2025.125916_bib10
  article-title: Effects of denitrification on speciation and redistribution of arsenic in estuarine sediments
  publication-title: Water Res.
  doi: 10.1016/j.watres.2024.121766
– volume: 315
  year: 2022
  ident: 10.1016/j.envpol.2025.125916_bib47
  article-title: Response of soil protists to antimony and arsenic contamination
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120387
– volume: 239
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib46
  article-title: Insights into heavy metals shock on anammox systems: cell structure-based mechanisms and new challenges
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120031
– volume: 109
  start-page: 421
  year: 2019
  ident: 10.1016/j.envpol.2025.125916_bib17
  article-title: Increased copper levels inhibit denitrification in urban soils
  publication-title: Earth Environ. Sci. Trans. Roy. Soc. Edinburgh
  doi: 10.1017/S1755691018000592
– volume: 204
  start-page: 26
  year: 2016
  ident: 10.1016/j.envpol.2025.125916_bib7
  article-title: Metabolic biotransformation of copper-benzo[a]pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.068
– volume: 489
  year: 2025
  ident: 10.1016/j.envpol.2025.125916_bib22
  article-title: Large-scale distribution and ecological risk assessment of inorganic arsenic in surface sediments of Chinese marginal seas
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2025.137569
– volume: 830
  year: 2022
  ident: 10.1016/j.envpol.2025.125916_bib24
  article-title: Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154732
– volume: 175
  year: 2022
  ident: 10.1016/j.envpol.2025.125916_bib23
  article-title: Arsenic (As) contamination in sediments from coastal areas of China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2022.113350
– volume: 9
  year: 2018
  ident: 10.1016/j.envpol.2025.125916_bib38
  article-title: Antibiotic effects on microbial communities responsible for denitrification and N2O production in Grassland soils
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02121
– volume: 203
  start-page: 2761
  year: 2021
  ident: 10.1016/j.envpol.2025.125916_bib4
  article-title: Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-021-02275-w
– volume: 493
  start-page: 53
  year: 2010
  ident: 10.1016/j.envpol.2025.125916_bib12
  article-title: Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2009.06.018
– volume: 387
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib15
  article-title: Exploring influence mechanism of small-molecule carbon source on heterotrophic nitrification-aerobic denitrification process from carbon metabolism, nitrogen metabolism and electron transport process
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2023.129681
– volume: 886
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib49
  article-title: Diversity, functional potential, and assembly of bacterial communities in metal(loid)-contaminated sediments from a coastal industrial basin
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.163831
– volume: 271
  year: 2025
  ident: 10.1016/j.envpol.2025.125916_bib26
  article-title: Diverse adaptation strategies of generalists and specialists to metal and salinity stress in the coastal sediments
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2025.121073
– volume: 25
  start-page: 1459
  year: 1993
  ident: 10.1016/j.envpol.2025.125916_bib5
  article-title: Arsenate inhibition of denitrification in nitrate contaminated sediments
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(93)90062-G
– volume: 8
  start-page: 723
  year: 2011
  ident: 10.1016/j.envpol.2025.125916_bib32
  article-title: Heavy metals contamination in water and sediments of polluted urban rivers in developing countries
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/BF03326257
– volume: 77
  year: 2018
  ident: 10.1016/j.envpol.2025.125916_bib39
  article-title: Toxic metals in a highly urbanized industry-impacted estuary (Bahia Blanca Estuary, Argentina): spatio-temporal analysis based on GIS
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7565-5
– volume: 806
  year: 2022
  ident: 10.1016/j.envpol.2025.125916_bib11
  article-title: Weak electrical stimulation on biological denitrification: insights from the denitrifying enzymes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150926
– volume: 51
  start-page: 4377
  year: 2017
  ident: 10.1016/j.envpol.2025.125916_bib51
  article-title: Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06255
– volume: 85
  start-page: 659
  year: 2014
  ident: 10.1016/j.envpol.2025.125916_bib16
  article-title: Modeling total maximum allocated loads for heavy metals in Jinzhou Bay, China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.11.014
– volume: 21
  start-page: 3219
  year: 2015
  ident: 10.1016/j.envpol.2025.125916_bib34
  article-title: Nitrous oxide fluxes in estuarine environments: response to global change
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12923
– volume: 6
  year: 2015
  ident: 10.1016/j.envpol.2025.125916_bib50
  article-title: Effects of marine actinomycete on the removal of a toxicity alga in Phaeocystis globose eutrophication waters
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00474
– volume: 38
  start-page: 221
  year: 1985
  ident: 10.1016/j.envpol.2025.125916_bib31
  article-title: Effect of cadmium contamination on denitrification processes in Brookston clay and fox sandy loam
  publication-title: Environ. Pollut. Ecol. Biol.
  doi: 10.1016/0143-1471(85)90128-X
– volume: 291
  year: 2022
  ident: 10.1016/j.envpol.2025.125916_bib9
  article-title: Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132948
– volume: 39
  start-page: 367
  year: 2010
  ident: 10.1016/j.envpol.2025.125916_bib25
  article-title: Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China
  publication-title: Ambio
  doi: 10.1007/s13280-010-0077-5
– volume: 15
  start-page: 147
  issue: 1
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib43
  article-title: Arsenic occurrence and cycling in the aquatic environment: a comparison between freshwater and seawater
  publication-title: Water
  doi: 10.3390/w15010147
– volume: 38
  start-page: 56
  year: 2017
  ident: 10.1016/j.envpol.2025.125916_bib8
  article-title: Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis
  publication-title: N. Biotech.
  doi: 10.1016/j.nbt.2016.07.011
– volume: 21
  start-page: 10270
  year: 2014
  ident: 10.1016/j.envpol.2025.125916_bib2
  article-title: Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification
  publication-title: Environ. Sci. Pollut. Control Ser.
  doi: 10.1007/s11356-014-2953-1
– volume: 188
  year: 2023
  ident: 10.1016/j.envpol.2025.125916_bib33
  article-title: Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia's largest river basin (Murray-Darling)
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2023.114648
– volume: 39
  start-page: 1783
  year: 2005
  ident: 10.1016/j.envpol.2025.125916_bib30
  article-title: Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.03.008
– volume: 42
  start-page: 1074
  year: 1981
  ident: 10.1016/j.envpol.2025.125916_bib3
  article-title: Kinetic explanation for accumulation of Nitrite, Nitric-Oxide, and Nitrous-Oxide during bacterial denitrification
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.42.6.1074-1084.1981
– volume: 14
  start-page: 1504
  year: 2017
  ident: 10.1016/j.envpol.2025.125916_bib35
  article-title: Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph14121504
– volume: 33
  start-page: 1723
  year: 2001
  ident: 10.1016/j.envpol.2025.125916_bib45
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00096-7
– volume: 11
  start-page: 1846
  year: 2020
  ident: 10.1016/j.envpol.2025.125916_bib14
  article-title: The impact of mercury selection and conjugative genetic elements on community structure and resistance gene transfer
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01846
– volume: 48
  start-page: 13800
  year: 2014
  ident: 10.1016/j.envpol.2025.125916_bib53
  article-title: Zinc Oxide Nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es504251v
SSID ssj0004333
Score 2.4755163
Snippet Coastal ecosystems currently face significant challenges due to nutrient enrichment and trace metal contamination. However, the effects of arsenic (As) and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 125916
SubjectTerms arsenic
Arsenic - toxicity
Bacteria - metabolism
cadmium
Co-exposure
copper
Denitrification
Denitrification - drug effects
Estuaries
Geologic Sediments - chemistry
Geologic Sediments - microbiology
greenhouse gases
lead
Marinobacter
mercury
N2O reductase
nitrates
nitrites
nitrous oxide
Nitrous Oxide - analysis
Nitrous Oxide - metabolism
nitrous oxide production
oxidoreductases
pollution
Trace Elements - toxicity
Trace metal exposure
Water Pollutants, Chemical - toxicity
zinc
Title Effects of arsenic and trace metals on bacterial denitrification process from estuarine sediments and associated nitrous oxide emission
URI https://dx.doi.org/10.1016/j.envpol.2025.125916
https://www.ncbi.nlm.nih.gov/pubmed/39993703
https://www.proquest.com/docview/3170932560
https://www.proquest.com/docview/3242045662
Volume 372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHBFsKS2llJMQt3d04jpPjqmq1bUUvUKk3y_FDClK9q920ggtX_nZn7IRSiYfUY5KxM_FMPJ_teQB8MJILawqZlTz3GVook1V6hgKRmlNta0QoFCj86aJcXBZnV-JqC46GWBhyq-zn_jSnx9m6vzPpR3OyatvJZ1w9IBiu0ULH47IYwV5I0vLDH_duHgVP5eSROCPqIXwu-ni5cLta0gFELg6xn5qqnv_ZPP0NfkYzdPICnvf4kc0Tiy9hy4UR7MwDrp2vv7OPLHp0xq3yETz7LdngCHaP72PasIf-p97swM-UwXjDlp7hMteF1jAdLOvW2jh27ZAanwXWpMTO2BbnqrZbk5NRlCtbpWgDRrEqDLlHtcP3sg0Oboygi93pXhGcZdR6eYOdfmutY1RxjvbsXsHlyfGXo0XW12fIDC-KLpO1bMqpbTSiJCOmvhEGwU7e2NI4tPrCSMsb_MP9TOelLaTJhXa2FtIbX3md813YDsvg3gBrZs4gkfeSAF5dVJRFv6pKx31ZzYQZQzaIRa1SGg41-Kd9VUmMisSokhjHIAfZqQfqpNBS_Kfl-0HUCj-fjk90cDgmCpHWFNEuQsR_0CD3BJLLfAyvk5784hehIA7PlL99NG978JSukr_lO9ju1jduHzFR1xxEpT-AJ_PT88XFHXk_Dg8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V2wNwQGVLYdsCRkLcwu7GcZwcV1WrLW33Qiv1Zjl-SKnU7Go3RfQX8LeZsZMWJB4S12Q8mXhsz2d7HgAfjOTCmkwmOU99ghbKJIWeokKk5lTbGhEKBQpfLPL5Vfb5WlxvwVEfC0Nuld3aH9f0sFp3T8Zdb45XdT3-grsHBMMlWuhwXYZboG3KTiUGsD07PZsvHsMjeawoj_QJNegj6IKbl2u-rpZ0B5GKT8iqpMLnv7dQf0KgwRKd7MDzDkKyWZTyBWy5Zgi7swa3z7f37CMLTp3htHwIz37KNziEvePHsDbk0M3rzS58j0mMN2zpGe50XVMbphvL2rU2jt06pMZ3Datibmdsi8tV3a7Jzyiolq1iwAGjcBWG0uPIw--yDfZvCKIL7HQ3Fpxl1Hp5h0y_1dYxKjpHx3Yv4erk-PJonnQlGhLDs6xNZCmrfGIrjUDJiImvhEG8k1Y2Nw4NvzDS8gonuZ_qNLeZNKnQzpZCeuMLr1O-B4Nm2bjXwKqpM0jkvSSMV2YFJdIvitxxnxdTYUaQ9GpRq5iJQ_UuajcqqlGRGlVU4whkrzv1y4hSaCz-0fJ9r2qFv083KLpx2CcKwdYEAS-ixL_QoPSEk_N0BK_iOHmQF9Egds-E7_-3bO_gyfzy4lydny7ODuApvYnul4cwaNd37g1CpLZ6202BH6Y6EMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+arsenic+and+trace+metals+on+bacterial+denitrification+process+from+estuarine+sediments+and+associated+nitrous+oxide+emission&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Ding%2C+Yu&rft.au=Li%2C+Yongbin&rft.au=Zeng%2C+Xiangfeng&rft.au=Wang%2C+Jun&rft.date=2025-05-01&rft.issn=0269-7491&rft_id=info:doi/10.1016%2Fj.envpol.2025.125916&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon