Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target
This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynami...
Saved in:
Published in | Nonlinear dynamics Vol. 92; no. 3; pp. 1023 - 1043 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B
e
´
zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method. |
---|---|
AbstractList | This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B
e
´
zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method. This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B\[\acute{\text{ e }}\]zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method. This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic Be´zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method. |
Author | Luo, Jianjun Wang, Mingming Yuan, Jianping Walter, Ulrich |
Author_xml | – sequence: 1 givenname: Mingming orcidid: 0000-0002-1287-2733 surname: Wang fullname: Wang, Mingming organization: Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Research Institute of Northwestern Polytechnical University in Shenzhen – sequence: 2 givenname: Jianjun surname: Luo fullname: Luo, Jianjun email: jjluo@nwpu.edu.cn organization: Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Research Institute of Northwestern Polytechnical University in Shenzhen – sequence: 3 givenname: Jianping surname: Yuan fullname: Yuan, Jianping organization: Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Research Institute of Northwestern Polytechnical University in Shenzhen – sequence: 4 givenname: Ulrich surname: Walter fullname: Walter, Ulrich organization: Institute of Astronautics, Technical University of Munich |
BookMark | eNp9kU1rGzEQhkVJoHaaH5CbIOdNRx_7dSxu0xYMuaSQm5iVZs26a2kraQ_-913HpYFAchpmeJ-Z4X3X7MIHT4zdCLgTAPXnJATUogDRFFpAVegPbCXKWhWyap8u2ApaqQto4ekjW6e0BwAloVmx-Svl-dCNg9_xlCNm2h05esdtCNENHvMQ_NL4HMPIQ89_D54Oy9TiOB55JDd7hz7zNKElHkMXMsc-U-QWpzzH02Lk_29kjDvKn9hlj2Oi63_1iv26__a4-VFsH77_3HzZFlZpnYu6QtGRa51y0JfClVWPUiiEkppOCSusbkpdlZW2PWlE2dU9tdZV5FwjbKeu2O157xTDn5lSNvswR7-cNFKWrS5VXcO7KpBKq6pVclHVZ5WNIaVIvbFDfrZnsW0YjQBzSsKckzBLEuaUhNELKV6RUxwOGI_vMvLMpOlkIcWXn96G_gLQtp-p |
CitedBy_id | crossref_primary_10_1016_j_neucom_2018_07_025 crossref_primary_10_1007_s11071_020_05615_5 crossref_primary_10_1177_09544062241277315 crossref_primary_10_1109_ACCESS_2023_3237565 crossref_primary_10_1016_j_asr_2020_04_043 crossref_primary_10_1016_j_ast_2020_105822 crossref_primary_10_1016_j_cja_2019_04_019 crossref_primary_10_2514_1_G006306 crossref_primary_10_1016_j_actaastro_2021_12_045 crossref_primary_10_1016_j_ast_2019_01_004 crossref_primary_10_1061__ASCE_AS_1943_5525_0000946 crossref_primary_10_1109_ACCESS_2020_2967796 crossref_primary_10_1155_2019_3451864 crossref_primary_10_1016_j_actaastro_2022_10_030 crossref_primary_10_1109_TAES_2024_3398600 crossref_primary_10_1007_s11431_024_2841_y crossref_primary_10_1016_j_asr_2022_02_039 crossref_primary_10_1007_s11044_022_09835_y crossref_primary_10_3390_aerospace10010013 crossref_primary_10_1016_j_neucom_2021_07_099 crossref_primary_10_1007_s11044_020_09774_6 crossref_primary_10_3390_aerospace9020105 crossref_primary_10_1016_j_ast_2021_107156 crossref_primary_10_1016_j_amc_2019_01_068 crossref_primary_10_1108_AEAT_07_2023_0176 crossref_primary_10_1016_j_asr_2020_06_022 crossref_primary_10_1007_s11071_019_04798_w crossref_primary_10_1155_2022_9626569 crossref_primary_10_1016_j_actaastro_2021_03_029 crossref_primary_10_1177_0954410020964983 crossref_primary_10_1016_j_asr_2020_06_025 crossref_primary_10_1016_j_ast_2021_106626 crossref_primary_10_1109_TAES_2019_2934371 crossref_primary_10_1016_j_robot_2020_103548 crossref_primary_10_1016_j_neucom_2021_04_132 crossref_primary_10_1016_j_actaastro_2019_11_002 crossref_primary_10_1007_s12567_022_00438_z crossref_primary_10_1016_j_actaastro_2020_02_028 crossref_primary_10_1016_j_asr_2022_09_033 crossref_primary_10_1016_j_actaastro_2018_04_016 crossref_primary_10_1007_s11071_022_07414_6 crossref_primary_10_1007_s11071_023_09265_1 crossref_primary_10_1109_ACCESS_2022_3186996 crossref_primary_10_1155_2019_8678473 crossref_primary_10_2514_1_G004758 crossref_primary_10_1016_j_cja_2019_01_018 crossref_primary_10_1109_ACCESS_2021_3129835 crossref_primary_10_3389_frobt_2021_686723 crossref_primary_10_1109_ACCESS_2019_2937908 crossref_primary_10_1016_j_actaastro_2018_09_023 crossref_primary_10_1007_s40295_022_00334_y |
Cites_doi | 10.1017/S0263574713000702 10.2514/2.4491 10.1109/ROBOT.2001.932806 10.1007/s11071-013-1050-1 10.1016/j.actaastro.2015.03.008 10.1007/s11071-013-0983-8 10.1109/TIE.2015.2464176 10.1002/rnc.3726 10.1109/ROBOT.2001.932590 10.1016/j.asr.2015.06.012 10.1109/IROS.2009.5353968 10.1016/S0020-0190(02)00447-7 10.1109/4235.985692 10.1109/IROS.2006.281900 10.1007/s11071-013-1123-1 10.1109/SIS.2007.368035 10.1109/IROS.2006.281785 10.1017/S0263574713000283 10.2514/6.2013-4521 10.1109/ROBOT.1992.219986 10.1109/ROBOT.1994.351121 10.1109/IROS.2011.6095159 10.1007/BF01833290 10.1007/s11071-016-2641-4 10.1109/70.768186 10.1109/WCICA.2014.7053267 10.1109/ICRA.2011.5980398 10.2514/1.G001219 10.1163/156855308X392708 10.1109/TAES.2015.140752 10.1145/1569901.1570140 10.1007/BFb0040810 10.1007/s11071-016-3245-8 10.1109/TRO.2011.2179581 10.1002/rob.20194 10.1016/j.actaastro.2017.01.041 10.1109/CDC.2011.6160342 10.1109/70.585902 10.1109/ICRA.2011.5980114 10.1007/s10846-016-0417-1 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V., part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media B.V., part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 – notice: Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s11071-018-4106-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1043 |
ExternalDocumentID | 10_1007_s11071_018_4106_4 |
GrantInformation_xml | – fundername: Shenzhen Future Industry Special Fund grantid: JCYJ20160531174213774 – fundername: National Natural Science Foundation of China grantid: 61603304; 61690211 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c344t-76a1bed9d3d0f51d56fa213a05e8b31c1c48546564cfe4aa2b7fe9cd6edd81cb3 |
IEDL.DBID | U2A |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:10:30 EDT 2025 Fri Jul 25 11:15:27 EDT 2025 Thu Jul 03 08:34:46 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Fri Feb 21 02:32:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Post-capture Coordination control Tumbling target Detumbling strategy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-76a1bed9d3d0f51d56fa213a05e8b31c1c48546564cfe4aa2b7fe9cd6edd81cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1287-2733 |
PQID | 2259453770 |
PQPubID | 2043746 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2259453770 proquest_journals_2023436932 crossref_citationtrail_10_1007_s11071_018_4106_4 crossref_primary_10_1007_s11071_018_4106_4 springer_journals_10_1007_s11071_018_4106_4 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2018 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | KhoobanMAlfiAAbadiDTeaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robotsRobotica20133171059107110.1017/S0263574713000283 WangMLuoJWalterUA non-linear model predictive control with obstacle avoidance for a space robotAdv. Space Res.20165781737174610.1016/j.asr.2015.06.012 ZhangBLiangBWangZMiYZhangYChenZCoordinated stabilization for space robot after capturing a noncooperative target with large inertiaActa Astronaut.2017134758410.1016/j.actaastro.2017.01.041 Kentzoglanakis, K., Poole, M.: Particle swarm optimization with an oscillating inertia weight. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1749–1750. Montreal, Canada (2009) Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1020–1025. Beijing, China (2006) RigatosGSianoPRaffoGA nonlinear h-infinity control method for multi-DOF robotic manipulatorsNonliear Dyn.201788329348362277310.1007/s11071-016-3245-81373.93251 Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2365–2372. St. Louis, MO (2009) Wang, M., Walter, U.: Joint-space dynamics algorithm for tree structure space manipulators by using inertia mapping matrix. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, pp. 819–829. Zagreb, Croatia (2013) Ren, Y., Zhou, Y., Liu, Y., Jin, M., Liu, H.: Adaptive objective impedance control of dual-arm cooperative humanoid manipulators. In: Proceedings of the 11th World Conference on Intelligent Control and Automation, pp. 3333–3339. Shenyang, China (2014) AgrawalSGarimellaRDesmierGFree-floating closed-chain planar robots: kinematics and path planningNonlinear Dyn.1996911910.1007/BF01833290 ClercMKennedyJThe particle swarm explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans. Evol. Comput.200261587310.1109/4235.985692 ZadehSKhorashadizadehSFatehMHadadzarifMOptimal sliding mode control of a robot manipulator under uncertainty using PSONonlinear Dyn.20168422272239350429410.1007/s11071-016-2641-4 TreleaIThe particle swarm optimization algorithm: convergence analysis and parameter selectionInform. Process. Lett.200385317325195645410.1016/S0020-0190(02)00447-71156.90463 SoltanpourMKhoobanMSoltaniMRobust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertaintiesRobotica201432343344610.1017/S0263574713000702 XuWZhangJLiangBLiBSingularity analysis and avoidance for robot manipulators with non-spherical wristIEEE Trans. Ind. Electron.201663127729010.1109/TIE.2015.2464176 WangMLuoJWalterUTrajectory planning of free-floating space robot using particle swarm optimization (PSO)Acta Astronaut.2015112778810.1016/j.actaastro.2015.03.008 Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: ROTEX—the first remotely controlled robot in space. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2604–2611. San Diego, CA (1994) Yoshida, K., Hashizume, K., Abiko, S.: Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–446. Seoul, Korea (2001) Kai, T.: A Model predictive control approach to attitude stabilization and trajectory tracking control of 3D universal joint space with an initial angular momentum. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3547–3552. St. Orlando, FL (2011) Shi, Y., Everhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Conference on Evolutionary Programming VII, pp. 591–600. San Diego, CA (1998) Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1169–1174. San Francisco, CA (2000) NenchevDYoshidaKImpact analysis and post-impact motion control issue of a free-floating space robot subject to a force impulseIEEE Trans. Robot. Autom.19991554855710.1109/70.768186 CyrilXMisraAInghamMJaarGPostcapture dynamics of a spacecraft-manipulator-payload systemJ. Guid. Control Dyn.2000239510010.2514/2.4491 WeiCLuoJDaiHYinZMaWYuanJGlobally robust explicit model predictive control of constrained systems exploiting SVM-based approximationInt. J. Robust Nonlinear Control20172730003027371377610.1002/rnc.372606822049 Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 120–127. Honolulu, HI (2007) RekleitisIMartinERouleauGL’ArchevequeRParsaKDupuisEAutonomous capture of a tumbling satelliteJ. Field Robot.20072327529610.1002/rob.20194 WangMLuoJWalterUNovel synthesis method for minimizing attitude disturbance of the free-floating space robotsJ. Guid. Control Dyn.201639369570410.2514/1.G001219 Helwig, S.: Particle swarms for constrained optimization. Doctoral diss, Erlangen University, Erlangen, Germany (2010) SicilianoBSciaviccoLVillaniLOrioloGRobotics modelling, planning and control20091LondonSpringer Shah, S., Sharf, I., Misra, A.: Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Conference on Guidance, Navigation, and Control, Boston, MA (2013) NiknamTKhoobanMKavousifardASoltanpourMAn optimal type II fuzzy sliding mode control design for a class of nonlinear systemsNonlinear Dyn.2014757383314483710.1007/s11071-013-1050-1 Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 4127–4132. Beijing, China (2006) Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS, pp. 25–29. Los Angeles, CA (2008) Nguyen-Huynh, T., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 4202–4207. Shanghai, China (2011) ChiaveriniSSingularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulatorsIEEE Trans. Robot. Autom.19971339841010.1109/70.585902 Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3719–3726. Shanghai, China (2011) Matsuno, F., Saito, K.: Attitude control of a space robot with initial angular momentum. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1400–1405. Seoul, Korea (2001) Xu, Y., Shum, H., Lee, J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992) Oki, T., Abiko, S., Nakanishi, H., Yoshida, K.: Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 625–630. San Francisco, CA (2011) SoltanpourMKhoobanMA particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulatorNonlinear Dyn.201374467478310520710.1007/s11071-013-0983-81281.93067 XuWLiCWangXLiangBStudy on non-holonomic cartesian path planning of a free-floating space robotic systemAdv. Robot.2009231–211314310.1163/156855308X392708 XuWPengJLiangBMuZHybrid modeling and analysis method for dynamic coupling of space robotsIEEE Trans. Aerosp. Electron. Syst.2016521859810.1109/TAES.2015.140752 AghiliFA prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamicsIEEE Trans. Robot.201228363464910.1109/TRO.2011.2179581 PanHXinMNonlinear robust and optimal control of robot manipulatorsNonlinear Dyn.201476237254318916810.1007/s11071-013-1123-11319.93033 Flores-AbadAZhangLWeiZMaOOptimal capture of a tumbling object in orbit using a space manipulatorJ. Intell. Robot. Syst.20178619921110.1007/s10846-016-0417-1 B Zhang (4106_CR32) 2017; 134 4106_CR43 M Wang (4106_CR16) 2016; 57 4106_CR41 4106_CR26 4106_CR25 W Xu (4106_CR36) 2016; 52 4106_CR40 S Chiaverini (4106_CR44) 1997; 13 X Cyril (4106_CR34) 2000; 23 G Rigatos (4106_CR22) 2017; 88 F Aghili (4106_CR29) 2012; 28 4106_CR28 4106_CR27 C Wei (4106_CR23) 2017; 27 D Nenchev (4106_CR24) 1999; 15 4106_CR10 4106_CR30 4106_CR15 4106_CR14 I Trelea (4106_CR42) 2003; 85 4106_CR13 4106_CR35 W Xu (4106_CR9) 2016; 63 B Siciliano (4106_CR45) 2009 I Rekleitis (4106_CR4) 2007; 23 M Soltanpour (4106_CR21) 2014; 32 M Wang (4106_CR12) 2016; 39 4106_CR7 M Wang (4106_CR11) 2015; 112 S Zadeh (4106_CR20) 2016; 84 M Soltanpour (4106_CR37) 2013; 74 4106_CR3 4106_CR5 4106_CR6 T Niknam (4106_CR18) 2014; 75 4106_CR1 M Khooban (4106_CR17) 2013; 31 4106_CR39 4106_CR2 M Clerc (4106_CR38) 2002; 6 H Pan (4106_CR19) 2014; 76 S Agrawal (4106_CR33) 1996; 9 W Xu (4106_CR8) 2009; 23 A Flores-Abad (4106_CR31) 2017; 86 |
References_xml | – reference: ZadehSKhorashadizadehSFatehMHadadzarifMOptimal sliding mode control of a robot manipulator under uncertainty using PSONonlinear Dyn.20168422272239350429410.1007/s11071-016-2641-4 – reference: Flores-AbadAZhangLWeiZMaOOptimal capture of a tumbling object in orbit using a space manipulatorJ. Intell. Robot. Syst.20178619921110.1007/s10846-016-0417-1 – reference: Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3719–3726. Shanghai, China (2011) – reference: XuWZhangJLiangBLiBSingularity analysis and avoidance for robot manipulators with non-spherical wristIEEE Trans. Ind. Electron.201663127729010.1109/TIE.2015.2464176 – reference: RigatosGSianoPRaffoGA nonlinear h-infinity control method for multi-DOF robotic manipulatorsNonliear Dyn.201788329348362277310.1007/s11071-016-3245-81373.93251 – reference: PanHXinMNonlinear robust and optimal control of robot manipulatorsNonlinear Dyn.201476237254318916810.1007/s11071-013-1123-11319.93033 – reference: SicilianoBSciaviccoLVillaniLOrioloGRobotics modelling, planning and control20091LondonSpringer – reference: WangMLuoJWalterUTrajectory planning of free-floating space robot using particle swarm optimization (PSO)Acta Astronaut.2015112778810.1016/j.actaastro.2015.03.008 – reference: XuWPengJLiangBMuZHybrid modeling and analysis method for dynamic coupling of space robotsIEEE Trans. Aerosp. Electron. Syst.2016521859810.1109/TAES.2015.140752 – reference: XuWLiCWangXLiangBStudy on non-holonomic cartesian path planning of a free-floating space robotic systemAdv. Robot.2009231–211314310.1163/156855308X392708 – reference: Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2365–2372. St. Louis, MO (2009) – reference: NenchevDYoshidaKImpact analysis and post-impact motion control issue of a free-floating space robot subject to a force impulseIEEE Trans. Robot. Autom.19991554855710.1109/70.768186 – reference: Shi, Y., Everhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Conference on Evolutionary Programming VII, pp. 591–600. San Diego, CA (1998) – reference: Kai, T.: A Model predictive control approach to attitude stabilization and trajectory tracking control of 3D universal joint space with an initial angular momentum. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3547–3552. St. Orlando, FL (2011) – reference: Nguyen-Huynh, T., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 4202–4207. Shanghai, China (2011) – reference: Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1169–1174. San Francisco, CA (2000) – reference: Yoshida, K., Hashizume, K., Abiko, S.: Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–446. Seoul, Korea (2001) – reference: Wang, M., Walter, U.: Joint-space dynamics algorithm for tree structure space manipulators by using inertia mapping matrix. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, pp. 819–829. Zagreb, Croatia (2013) – reference: WeiCLuoJDaiHYinZMaWYuanJGlobally robust explicit model predictive control of constrained systems exploiting SVM-based approximationInt. J. Robust Nonlinear Control20172730003027371377610.1002/rnc.372606822049 – reference: AghiliFA prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamicsIEEE Trans. Robot.201228363464910.1109/TRO.2011.2179581 – reference: Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 4127–4132. Beijing, China (2006) – reference: Shah, S., Sharf, I., Misra, A.: Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Conference on Guidance, Navigation, and Control, Boston, MA (2013) – reference: WangMLuoJWalterUNovel synthesis method for minimizing attitude disturbance of the free-floating space robotsJ. Guid. Control Dyn.201639369570410.2514/1.G001219 – reference: ZhangBLiangBWangZMiYZhangYChenZCoordinated stabilization for space robot after capturing a noncooperative target with large inertiaActa Astronaut.2017134758410.1016/j.actaastro.2017.01.041 – reference: Helwig, S.: Particle swarms for constrained optimization. Doctoral diss, Erlangen University, Erlangen, Germany (2010) – reference: Matsuno, F., Saito, K.: Attitude control of a space robot with initial angular momentum. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1400–1405. Seoul, Korea (2001) – reference: Ren, Y., Zhou, Y., Liu, Y., Jin, M., Liu, H.: Adaptive objective impedance control of dual-arm cooperative humanoid manipulators. In: Proceedings of the 11th World Conference on Intelligent Control and Automation, pp. 3333–3339. Shenyang, China (2014) – reference: Kentzoglanakis, K., Poole, M.: Particle swarm optimization with an oscillating inertia weight. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1749–1750. Montreal, Canada (2009) – reference: TreleaIThe particle swarm optimization algorithm: convergence analysis and parameter selectionInform. Process. Lett.200385317325195645410.1016/S0020-0190(02)00447-71156.90463 – reference: RekleitisIMartinERouleauGL’ArchevequeRParsaKDupuisEAutonomous capture of a tumbling satelliteJ. Field Robot.20072327529610.1002/rob.20194 – reference: Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 120–127. Honolulu, HI (2007) – reference: Oki, T., Abiko, S., Nakanishi, H., Yoshida, K.: Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 625–630. San Francisco, CA (2011) – reference: Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1020–1025. Beijing, China (2006) – reference: SoltanpourMKhoobanMA particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulatorNonlinear Dyn.201374467478310520710.1007/s11071-013-0983-81281.93067 – reference: WangMLuoJWalterUA non-linear model predictive control with obstacle avoidance for a space robotAdv. Space Res.20165781737174610.1016/j.asr.2015.06.012 – reference: AgrawalSGarimellaRDesmierGFree-floating closed-chain planar robots: kinematics and path planningNonlinear Dyn.1996911910.1007/BF01833290 – reference: SoltanpourMKhoobanMSoltaniMRobust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertaintiesRobotica201432343344610.1017/S0263574713000702 – reference: ClercMKennedyJThe particle swarm explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans. Evol. Comput.200261587310.1109/4235.985692 – reference: ChiaveriniSSingularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulatorsIEEE Trans. Robot. Autom.19971339841010.1109/70.585902 – reference: Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS, pp. 25–29. Los Angeles, CA (2008) – reference: KhoobanMAlfiAAbadiDTeaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robotsRobotica20133171059107110.1017/S0263574713000283 – reference: NiknamTKhoobanMKavousifardASoltanpourMAn optimal type II fuzzy sliding mode control design for a class of nonlinear systemsNonlinear Dyn.2014757383314483710.1007/s11071-013-1050-1 – reference: Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: ROTEX—the first remotely controlled robot in space. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2604–2611. San Diego, CA (1994) – reference: CyrilXMisraAInghamMJaarGPostcapture dynamics of a spacecraft-manipulator-payload systemJ. Guid. Control Dyn.2000239510010.2514/2.4491 – reference: Xu, Y., Shum, H., Lee, J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992) – volume: 32 start-page: 433 issue: 3 year: 2014 ident: 4106_CR21 publication-title: Robotica doi: 10.1017/S0263574713000702 – volume: 23 start-page: 95 year: 2000 ident: 4106_CR34 publication-title: J. Guid. Control Dyn. doi: 10.2514/2.4491 – ident: 4106_CR14 doi: 10.1109/ROBOT.2001.932806 – ident: 4106_CR43 – ident: 4106_CR3 – volume: 75 start-page: 73 year: 2014 ident: 4106_CR18 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1050-1 – volume: 112 start-page: 77 year: 2015 ident: 4106_CR11 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2015.03.008 – volume: 74 start-page: 467 year: 2013 ident: 4106_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-0983-8 – volume: 63 start-page: 277 issue: 1 year: 2016 ident: 4106_CR9 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2464176 – volume: 27 start-page: 3000 year: 2017 ident: 4106_CR23 publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3726 – ident: 4106_CR5 doi: 10.1109/ROBOT.2001.932590 – volume: 57 start-page: 1737 issue: 8 year: 2016 ident: 4106_CR16 publication-title: Adv. Space Res. doi: 10.1016/j.asr.2015.06.012 – ident: 4106_CR28 doi: 10.1109/IROS.2009.5353968 – volume: 85 start-page: 317 year: 2003 ident: 4106_CR42 publication-title: Inform. Process. Lett. doi: 10.1016/S0020-0190(02)00447-7 – volume-title: Robotics modelling, planning and control year: 2009 ident: 4106_CR45 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 4106_CR38 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – ident: 4106_CR25 doi: 10.1109/IROS.2006.281900 – volume: 76 start-page: 237 year: 2014 ident: 4106_CR19 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1123-1 – ident: 4106_CR40 doi: 10.1109/SIS.2007.368035 – ident: 4106_CR26 doi: 10.1109/IROS.2006.281785 – volume: 31 start-page: 1059 issue: 7 year: 2013 ident: 4106_CR17 publication-title: Robotica doi: 10.1017/S0263574713000283 – ident: 4106_CR7 doi: 10.2514/6.2013-4521 – ident: 4106_CR13 doi: 10.1109/ROBOT.1992.219986 – ident: 4106_CR1 doi: 10.1109/ROBOT.1994.351121 – ident: 4106_CR30 doi: 10.1109/IROS.2011.6095159 – volume: 9 start-page: 1 year: 1996 ident: 4106_CR33 publication-title: Nonlinear Dyn. doi: 10.1007/BF01833290 – volume: 84 start-page: 2227 year: 2016 ident: 4106_CR20 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2641-4 – volume: 15 start-page: 548 year: 1999 ident: 4106_CR24 publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.768186 – ident: 4106_CR2 – ident: 4106_CR27 doi: 10.1109/WCICA.2014.7053267 – ident: 4106_CR6 doi: 10.1109/ICRA.2011.5980398 – volume: 39 start-page: 695 issue: 3 year: 2016 ident: 4106_CR12 publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G001219 – volume: 23 start-page: 113 issue: 1–2 year: 2009 ident: 4106_CR8 publication-title: Adv. Robot. doi: 10.1163/156855308X392708 – volume: 52 start-page: 85 issue: 1 year: 2016 ident: 4106_CR36 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2015.140752 – ident: 4106_CR41 doi: 10.1145/1569901.1570140 – ident: 4106_CR39 doi: 10.1007/BFb0040810 – volume: 88 start-page: 329 year: 2017 ident: 4106_CR22 publication-title: Nonliear Dyn. doi: 10.1007/s11071-016-3245-8 – volume: 28 start-page: 634 issue: 3 year: 2012 ident: 4106_CR29 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2011.2179581 – ident: 4106_CR35 – volume: 23 start-page: 275 year: 2007 ident: 4106_CR4 publication-title: J. Field Robot. doi: 10.1002/rob.20194 – volume: 134 start-page: 75 year: 2017 ident: 4106_CR32 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.01.041 – ident: 4106_CR15 doi: 10.1109/CDC.2011.6160342 – volume: 13 start-page: 398 year: 1997 ident: 4106_CR44 publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.585902 – ident: 4106_CR10 doi: 10.1109/ICRA.2011.5980114 – volume: 86 start-page: 199 year: 2017 ident: 4106_CR31 publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-016-0417-1 |
SSID | ssj0003208 |
Score | 2.4384484 |
Snippet | This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1023 |
SubjectTerms | Adaptive algorithms Attitudes Automotive Engineering Classical Mechanics Computer simulation Control Control systems design Coordination Dynamical Systems Engineering Grasping (robotics) Mechanical Engineering Motion planning Original Paper Particle swarm optimization Redundancy Robot control Robots Space robots Strategy Tumbling Vibration |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXODAG_EYKAdOoIi2SV8nxFMICYQQSLtVbpJKiLGOrTvw77HbdAMEnNM0Uuw4tmN_H2OHXh4WgLZXpBowQJFpJPCeBxHbgsDao6Aporm7j26e1W0v7LmE29iVVbY2sTbUptSUIz9BvUtVKOPYOx2-C2KNotdVR6ExzxbQBCcYfC2cX90_PE5tsQxqTjoPowzKSPTad826eQ4jHwqlE6EwLhLq-800czd_vJDWF8_1Klt2HiM_a0S8xubsYJ2tOO-Ru7M5XmdLX6AFN9jk0laTt5yazfm4QaD94DAwXJcYbr40OUDuCtV5WfBXnFvDt0K__8FHlrrLcNc5Whxt-ajMy4rXhOJcw7Cqmxs58OkaTUX5Jnu-vnq6uBGOYkFoqVQl4gj83JrUSOMVoW_CqIDAl-CFNsmlr32tEqJLj5QurAII8riwqTaRNSbxdS63WGdQDuw24xIjmQB8IERCBQkAEUgoU3hGG4Ib3WFeu72ZdvjjRIPRz2bIySSRDCWSkUQynHI0nTJswDf--7jbyixz53CcETm8khE6qb8PT5Vqhx23Yp4N_7nW7v8_22OLAelVXRfZZZ1qNLH76LtU-YFT0E_ZgOxj priority: 102 providerName: ProQuest |
Title | Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target |
URI | https://link.springer.com/article/10.1007/s11071-018-4106-4 https://www.proquest.com/docview/2023436932 https://www.proquest.com/docview/2259453770 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAGzEYUw6cQJXaJn3sOGAbAoEQYtI4VW6SSoixTlt32L_H6WMDNJA49ZCkkeLE8RfbnwHO7dhLkHSv1ZJIAIW3fIvuebQCnRiydt8tgmgeHv3bvrgbeIMyj3taRbtXLslcUy-T3QipGOgbWoJwjCXWYcMz0J02cd9tL9Qvd_MydDYBC_MIMahcmat-8f0yWlqYP5yi-V3T3YXt0khk7UKqe7CmR_uwUxqMrDyO033Y-sImeACzG53NPmKTX86mBensnOFIMZkSwnwrnv1YGZvO0oS909icsRWHwzmbaJNQRgvNSMlIzSZpnGYsryHOJI6zPJ-RIVvMUQSRH0K_23m5vrXKqgqW5EJkVuCjE2vVUlzZiecoz0_QdTjang5j7khHitBUSPeFTLRAdOMg0S2pfK1U6MiYH0FtlI70MTBO4MVFBw0JocAQ0dSMECqxlVSGYbQOdrW8kSwpx03li2G0JEs2EolIIpGRSERDLhZDxgXfxl-dG5XMovLoTSNTD15wn-zS1c2E94THg8Cuw2Ul5mXzr3Od_Kv3KWy6ZpvlkZENqGWTmT4j6yWLm7AedntN2Gj3Xu879L3qPD49N_M9_AnTceuA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOBQoVLS34ABeQRRI7r0NVoZZlSx-nVtpbmNiOhFg2y25WaP8Uv5EZJ9kFBL317NhWPOPxjD3zfQCvgjKukGyvzA1SgKLyRNI5jzJ1FYO1J1GbRHNxmQyv9adRPNqAn30tDKdV9jbRG2pbG74jf0d6l-tYpWlwNP0umTWKX1d7Co1WLc7c8geFbPPD0xOS7-soGny4Oh7KjlVAGqV1I9MEw9LZ3CobVHFo46TCKFQYxC4rVWhCozNmCE-0qZxGjMq0crmxibM2C02paNw7cFcr-i-uTB98XFl-FXkGvIBiGr7_GPWvqL5Uj-IsDtwzqSkKk_rPc3Dt3P71HuuPucEj2Or8U_G-VajHsOEm2_Cw81VFZwnm2_DgNyDDJ7A4cc3iW8ml7WLe4t0uBU6sMDWt1Jf2xlF0afGirsRX6uvBYnE8XoqZ41o2krEg-2acmNVl3QhPXy4MThtfSilQrOZo89efwvWtLP0ObE7qiXsGQlHcFGGIjH-oMUNkugptq8Aay-CmuxD0y1uYDu2cSTfGxRqnmSVSkEQKlkhBXd6sukxbqI-bPt7vZVZ0u35eMBW9Vgm5xP9uXqnwLrztxbxu_u9cezcP9hLuDa8uzovz08uz53A_Yh3zGZn7sNnMFu6AvKamfOFVVcDn294bvwDBeCni |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOLAVEoYAPnEARSewsPVaUqmwVByr1Fk28SIiSVG166N8zztICKkicbceSxx7Pi2feI-TSjj0N6HutlgAEKKzlW3jPgxUobcjafbdIonnu-70Bfxh6w1LndFplu1dPkkVNg2FpSrKbsdQ3y8I3RC0GBocWR0xj8XWygd7YMdt64LYXrpi5uSSdjSDD_JAYVs-aqz7x_WJaRps_Hkjze6e7R3bKgJG2CwvvkzWV1MluGTzS8mhO62T7C7PgAZl1VDb7iE2tOZ0WBLRzComkIkW0-Vb8AqRlnjpNNX3HsTl7K4xGczpRprgMF52iwxGKTtI4zWiuJ04FjLO8tpECXcxRJJQfkkH37vW2Z5UKC5ZgnGdW4IMTK9mSTNrac6Tna3AdBranwpg5whE8NGrpPhdacQA3DrRqCekrKUNHxOyI1JI0UceEMgQyLjhgCAk5hABGP4JLbUshDdtog9jV8kaipB83KhijaEmcbCwSoUUiY5EIh1wthowL7o2_Ojcrm0XlMZxGRhueMx9j1NXNiP24x4LAbpDryszL5l_nOvlX7wuy-dLpRk_3_cdTsuWaHZcnTDZJLZvM1BkGNVl8nm_cT0mn7ps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detumbling+strategy+and+coordination+control+of+kinematically+redundant+space+robot+after+capturing+a+tumbling+target&rft.jtitle=Nonlinear+dynamics&rft.au=Wang%2C+Mingming&rft.au=Luo%2C+Jianjun&rft.au=Yuan%2C+Jianping&rft.au=Walter%2C+Ulrich&rft.date=2018-05-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=92&rft.issue=3&rft.spage=1023&rft.epage=1043&rft_id=info:doi/10.1007%2Fs11071-018-4106-4&rft.externalDocID=10_1007_s11071_018_4106_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |