Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target

This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynami...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 92; no. 3; pp. 1023 - 1043
Main Authors Wang, Mingming, Luo, Jianjun, Yuan, Jianping, Walter, Ulrich
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B e ´ zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method.
AbstractList This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B e ´ zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method.
This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic B\[\acute{\text{ e }}\]zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method.
This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct a detumbling strategy for the target and a coordination control scheme for the space robotic system in post-capture phase. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling strategy for the post-capture phase is proposed based on the quartic Be´zier curves and adaptive particle swarm optimization algorithm subject to the specific constraints. Both detumbling time and control torques were taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is designed to track the designed reference path while regulating the attitude of the chaser to a desired value. The space robot successfully dumps the initial velocity of the tumbling satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a seven degree-of-freedom redundant space manipulator, which demonstrates the feasibility and effectiveness of the proposed method.
Author Luo, Jianjun
Wang, Mingming
Yuan, Jianping
Walter, Ulrich
Author_xml – sequence: 1
  givenname: Mingming
  orcidid: 0000-0002-1287-2733
  surname: Wang
  fullname: Wang, Mingming
  organization: Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Research Institute of Northwestern Polytechnical University in Shenzhen
– sequence: 2
  givenname: Jianjun
  surname: Luo
  fullname: Luo, Jianjun
  email: jjluo@nwpu.edu.cn
  organization: Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Research Institute of Northwestern Polytechnical University in Shenzhen
– sequence: 3
  givenname: Jianping
  surname: Yuan
  fullname: Yuan, Jianping
  organization: Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Research Institute of Northwestern Polytechnical University in Shenzhen
– sequence: 4
  givenname: Ulrich
  surname: Walter
  fullname: Walter, Ulrich
  organization: Institute of Astronautics, Technical University of Munich
BookMark eNp9kU1rGzEQhkVJoHaaH5CbIOdNRx_7dSxu0xYMuaSQm5iVZs26a2kraQ_-913HpYFAchpmeJ-Z4X3X7MIHT4zdCLgTAPXnJATUogDRFFpAVegPbCXKWhWyap8u2ApaqQto4ekjW6e0BwAloVmx-Svl-dCNg9_xlCNm2h05esdtCNENHvMQ_NL4HMPIQ89_D54Oy9TiOB55JDd7hz7zNKElHkMXMsc-U-QWpzzH02Lk_29kjDvKn9hlj2Oi63_1iv26__a4-VFsH77_3HzZFlZpnYu6QtGRa51y0JfClVWPUiiEkppOCSusbkpdlZW2PWlE2dU9tdZV5FwjbKeu2O157xTDn5lSNvswR7-cNFKWrS5VXcO7KpBKq6pVclHVZ5WNIaVIvbFDfrZnsW0YjQBzSsKckzBLEuaUhNELKV6RUxwOGI_vMvLMpOlkIcWXn96G_gLQtp-p
CitedBy_id crossref_primary_10_1016_j_neucom_2018_07_025
crossref_primary_10_1007_s11071_020_05615_5
crossref_primary_10_1177_09544062241277315
crossref_primary_10_1109_ACCESS_2023_3237565
crossref_primary_10_1016_j_asr_2020_04_043
crossref_primary_10_1016_j_ast_2020_105822
crossref_primary_10_1016_j_cja_2019_04_019
crossref_primary_10_2514_1_G006306
crossref_primary_10_1016_j_actaastro_2021_12_045
crossref_primary_10_1016_j_ast_2019_01_004
crossref_primary_10_1061__ASCE_AS_1943_5525_0000946
crossref_primary_10_1109_ACCESS_2020_2967796
crossref_primary_10_1155_2019_3451864
crossref_primary_10_1016_j_actaastro_2022_10_030
crossref_primary_10_1109_TAES_2024_3398600
crossref_primary_10_1007_s11431_024_2841_y
crossref_primary_10_1016_j_asr_2022_02_039
crossref_primary_10_1007_s11044_022_09835_y
crossref_primary_10_3390_aerospace10010013
crossref_primary_10_1016_j_neucom_2021_07_099
crossref_primary_10_1007_s11044_020_09774_6
crossref_primary_10_3390_aerospace9020105
crossref_primary_10_1016_j_ast_2021_107156
crossref_primary_10_1016_j_amc_2019_01_068
crossref_primary_10_1108_AEAT_07_2023_0176
crossref_primary_10_1016_j_asr_2020_06_022
crossref_primary_10_1007_s11071_019_04798_w
crossref_primary_10_1155_2022_9626569
crossref_primary_10_1016_j_actaastro_2021_03_029
crossref_primary_10_1177_0954410020964983
crossref_primary_10_1016_j_asr_2020_06_025
crossref_primary_10_1016_j_ast_2021_106626
crossref_primary_10_1109_TAES_2019_2934371
crossref_primary_10_1016_j_robot_2020_103548
crossref_primary_10_1016_j_neucom_2021_04_132
crossref_primary_10_1016_j_actaastro_2019_11_002
crossref_primary_10_1007_s12567_022_00438_z
crossref_primary_10_1016_j_actaastro_2020_02_028
crossref_primary_10_1016_j_asr_2022_09_033
crossref_primary_10_1016_j_actaastro_2018_04_016
crossref_primary_10_1007_s11071_022_07414_6
crossref_primary_10_1007_s11071_023_09265_1
crossref_primary_10_1109_ACCESS_2022_3186996
crossref_primary_10_1155_2019_8678473
crossref_primary_10_2514_1_G004758
crossref_primary_10_1016_j_cja_2019_01_018
crossref_primary_10_1109_ACCESS_2021_3129835
crossref_primary_10_3389_frobt_2021_686723
crossref_primary_10_1109_ACCESS_2019_2937908
crossref_primary_10_1016_j_actaastro_2018_09_023
crossref_primary_10_1007_s40295_022_00334_y
Cites_doi 10.1017/S0263574713000702
10.2514/2.4491
10.1109/ROBOT.2001.932806
10.1007/s11071-013-1050-1
10.1016/j.actaastro.2015.03.008
10.1007/s11071-013-0983-8
10.1109/TIE.2015.2464176
10.1002/rnc.3726
10.1109/ROBOT.2001.932590
10.1016/j.asr.2015.06.012
10.1109/IROS.2009.5353968
10.1016/S0020-0190(02)00447-7
10.1109/4235.985692
10.1109/IROS.2006.281900
10.1007/s11071-013-1123-1
10.1109/SIS.2007.368035
10.1109/IROS.2006.281785
10.1017/S0263574713000283
10.2514/6.2013-4521
10.1109/ROBOT.1992.219986
10.1109/ROBOT.1994.351121
10.1109/IROS.2011.6095159
10.1007/BF01833290
10.1007/s11071-016-2641-4
10.1109/70.768186
10.1109/WCICA.2014.7053267
10.1109/ICRA.2011.5980398
10.2514/1.G001219
10.1163/156855308X392708
10.1109/TAES.2015.140752
10.1145/1569901.1570140
10.1007/BFb0040810
10.1007/s11071-016-3245-8
10.1109/TRO.2011.2179581
10.1002/rob.20194
10.1016/j.actaastro.2017.01.041
10.1109/CDC.2011.6160342
10.1109/70.585902
10.1109/ICRA.2011.5980114
10.1007/s10846-016-0417-1
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-018-4106-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1043
ExternalDocumentID 10_1007_s11071_018_4106_4
GrantInformation_xml – fundername: Shenzhen Future Industry Special Fund
  grantid: JCYJ20160531174213774
– fundername: National Natural Science Foundation of China
  grantid: 61603304; 61690211
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c344t-76a1bed9d3d0f51d56fa213a05e8b31c1c48546564cfe4aa2b7fe9cd6edd81cb3
IEDL.DBID U2A
ISSN 0924-090X
IngestDate Fri Jul 25 11:10:30 EDT 2025
Fri Jul 25 11:15:27 EDT 2025
Thu Jul 03 08:34:46 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Fri Feb 21 02:32:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Post-capture
Coordination control
Tumbling target
Detumbling strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-76a1bed9d3d0f51d56fa213a05e8b31c1c48546564cfe4aa2b7fe9cd6edd81cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1287-2733
PQID 2259453770
PQPubID 2043746
PageCount 21
ParticipantIDs proquest_journals_2259453770
proquest_journals_2023436932
crossref_citationtrail_10_1007_s11071_018_4106_4
crossref_primary_10_1007_s11071_018_4106_4
springer_journals_10_1007_s11071_018_4106_4
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References KhoobanMAlfiAAbadiDTeaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robotsRobotica20133171059107110.1017/S0263574713000283
WangMLuoJWalterUA non-linear model predictive control with obstacle avoidance for a space robotAdv. Space Res.20165781737174610.1016/j.asr.2015.06.012
ZhangBLiangBWangZMiYZhangYChenZCoordinated stabilization for space robot after capturing a noncooperative target with large inertiaActa Astronaut.2017134758410.1016/j.actaastro.2017.01.041
Kentzoglanakis, K., Poole, M.: Particle swarm optimization with an oscillating inertia weight. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1749–1750. Montreal, Canada (2009)
Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1020–1025. Beijing, China (2006)
RigatosGSianoPRaffoGA nonlinear h-infinity control method for multi-DOF robotic manipulatorsNonliear Dyn.201788329348362277310.1007/s11071-016-3245-81373.93251
Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2365–2372. St. Louis, MO (2009)
Wang, M., Walter, U.: Joint-space dynamics algorithm for tree structure space manipulators by using inertia mapping matrix. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, pp. 819–829. Zagreb, Croatia (2013)
Ren, Y., Zhou, Y., Liu, Y., Jin, M., Liu, H.: Adaptive objective impedance control of dual-arm cooperative humanoid manipulators. In: Proceedings of the 11th World Conference on Intelligent Control and Automation, pp. 3333–3339. Shenyang, China (2014)
AgrawalSGarimellaRDesmierGFree-floating closed-chain planar robots: kinematics and path planningNonlinear Dyn.1996911910.1007/BF01833290
ClercMKennedyJThe particle swarm explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans. Evol. Comput.200261587310.1109/4235.985692
ZadehSKhorashadizadehSFatehMHadadzarifMOptimal sliding mode control of a robot manipulator under uncertainty using PSONonlinear Dyn.20168422272239350429410.1007/s11071-016-2641-4
TreleaIThe particle swarm optimization algorithm: convergence analysis and parameter selectionInform. Process. Lett.200385317325195645410.1016/S0020-0190(02)00447-71156.90463
SoltanpourMKhoobanMSoltaniMRobust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertaintiesRobotica201432343344610.1017/S0263574713000702
XuWZhangJLiangBLiBSingularity analysis and avoidance for robot manipulators with non-spherical wristIEEE Trans. Ind. Electron.201663127729010.1109/TIE.2015.2464176
WangMLuoJWalterUTrajectory planning of free-floating space robot using particle swarm optimization (PSO)Acta Astronaut.2015112778810.1016/j.actaastro.2015.03.008
Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: ROTEX—the first remotely controlled robot in space. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2604–2611. San Diego, CA (1994)
Yoshida, K., Hashizume, K., Abiko, S.: Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–446. Seoul, Korea (2001)
Kai, T.: A Model predictive control approach to attitude stabilization and trajectory tracking control of 3D universal joint space with an initial angular momentum. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3547–3552. St. Orlando, FL (2011)
Shi, Y., Everhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Conference on Evolutionary Programming VII, pp. 591–600. San Diego, CA (1998)
Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1169–1174. San Francisco, CA (2000)
NenchevDYoshidaKImpact analysis and post-impact motion control issue of a free-floating space robot subject to a force impulseIEEE Trans. Robot. Autom.19991554855710.1109/70.768186
CyrilXMisraAInghamMJaarGPostcapture dynamics of a spacecraft-manipulator-payload systemJ. Guid. Control Dyn.2000239510010.2514/2.4491
WeiCLuoJDaiHYinZMaWYuanJGlobally robust explicit model predictive control of constrained systems exploiting SVM-based approximationInt. J. Robust Nonlinear Control20172730003027371377610.1002/rnc.372606822049
Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 120–127. Honolulu, HI (2007)
RekleitisIMartinERouleauGL’ArchevequeRParsaKDupuisEAutonomous capture of a tumbling satelliteJ. Field Robot.20072327529610.1002/rob.20194
WangMLuoJWalterUNovel synthesis method for minimizing attitude disturbance of the free-floating space robotsJ. Guid. Control Dyn.201639369570410.2514/1.G001219
Helwig, S.: Particle swarms for constrained optimization. Doctoral diss, Erlangen University, Erlangen, Germany (2010)
SicilianoBSciaviccoLVillaniLOrioloGRobotics modelling, planning and control20091LondonSpringer
Shah, S., Sharf, I., Misra, A.: Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Conference on Guidance, Navigation, and Control, Boston, MA (2013)
NiknamTKhoobanMKavousifardASoltanpourMAn optimal type II fuzzy sliding mode control design for a class of nonlinear systemsNonlinear Dyn.2014757383314483710.1007/s11071-013-1050-1
Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 4127–4132. Beijing, China (2006)
Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS, pp. 25–29. Los Angeles, CA (2008)
Nguyen-Huynh, T., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 4202–4207. Shanghai, China (2011)
ChiaveriniSSingularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulatorsIEEE Trans. Robot. Autom.19971339841010.1109/70.585902
Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3719–3726. Shanghai, China (2011)
Matsuno, F., Saito, K.: Attitude control of a space robot with initial angular momentum. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1400–1405. Seoul, Korea (2001)
Xu, Y., Shum, H., Lee, J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992)
Oki, T., Abiko, S., Nakanishi, H., Yoshida, K.: Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 625–630. San Francisco, CA (2011)
SoltanpourMKhoobanMA particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulatorNonlinear Dyn.201374467478310520710.1007/s11071-013-0983-81281.93067
XuWLiCWangXLiangBStudy on non-holonomic cartesian path planning of a free-floating space robotic systemAdv. Robot.2009231–211314310.1163/156855308X392708
XuWPengJLiangBMuZHybrid modeling and analysis method for dynamic coupling of space robotsIEEE Trans. Aerosp. Electron. Syst.2016521859810.1109/TAES.2015.140752
AghiliFA prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamicsIEEE Trans. Robot.201228363464910.1109/TRO.2011.2179581
PanHXinMNonlinear robust and optimal control of robot manipulatorsNonlinear Dyn.201476237254318916810.1007/s11071-013-1123-11319.93033
Flores-AbadAZhangLWeiZMaOOptimal capture of a tumbling object in orbit using a space manipulatorJ. Intell. Robot. Syst.20178619921110.1007/s10846-016-0417-1
B Zhang (4106_CR32) 2017; 134
4106_CR43
M Wang (4106_CR16) 2016; 57
4106_CR41
4106_CR26
4106_CR25
W Xu (4106_CR36) 2016; 52
4106_CR40
S Chiaverini (4106_CR44) 1997; 13
X Cyril (4106_CR34) 2000; 23
G Rigatos (4106_CR22) 2017; 88
F Aghili (4106_CR29) 2012; 28
4106_CR28
4106_CR27
C Wei (4106_CR23) 2017; 27
D Nenchev (4106_CR24) 1999; 15
4106_CR10
4106_CR30
4106_CR15
4106_CR14
I Trelea (4106_CR42) 2003; 85
4106_CR13
4106_CR35
W Xu (4106_CR9) 2016; 63
B Siciliano (4106_CR45) 2009
I Rekleitis (4106_CR4) 2007; 23
M Soltanpour (4106_CR21) 2014; 32
M Wang (4106_CR12) 2016; 39
4106_CR7
M Wang (4106_CR11) 2015; 112
S Zadeh (4106_CR20) 2016; 84
M Soltanpour (4106_CR37) 2013; 74
4106_CR3
4106_CR5
4106_CR6
T Niknam (4106_CR18) 2014; 75
4106_CR1
M Khooban (4106_CR17) 2013; 31
4106_CR39
4106_CR2
M Clerc (4106_CR38) 2002; 6
H Pan (4106_CR19) 2014; 76
S Agrawal (4106_CR33) 1996; 9
W Xu (4106_CR8) 2009; 23
A Flores-Abad (4106_CR31) 2017; 86
References_xml – reference: ZadehSKhorashadizadehSFatehMHadadzarifMOptimal sliding mode control of a robot manipulator under uncertainty using PSONonlinear Dyn.20168422272239350429410.1007/s11071-016-2641-4
– reference: Flores-AbadAZhangLWeiZMaOOptimal capture of a tumbling object in orbit using a space manipulatorJ. Intell. Robot. Syst.20178619921110.1007/s10846-016-0417-1
– reference: Lampariello, R., Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory planning for optimal robot catching in real-time. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 3719–3726. Shanghai, China (2011)
– reference: XuWZhangJLiangBLiBSingularity analysis and avoidance for robot manipulators with non-spherical wristIEEE Trans. Ind. Electron.201663127729010.1109/TIE.2015.2464176
– reference: RigatosGSianoPRaffoGA nonlinear h-infinity control method for multi-DOF robotic manipulatorsNonliear Dyn.201788329348362277310.1007/s11071-016-3245-81373.93251
– reference: PanHXinMNonlinear robust and optimal control of robot manipulatorsNonlinear Dyn.201476237254318916810.1007/s11071-013-1123-11319.93033
– reference: SicilianoBSciaviccoLVillaniLOrioloGRobotics modelling, planning and control20091LondonSpringer
– reference: WangMLuoJWalterUTrajectory planning of free-floating space robot using particle swarm optimization (PSO)Acta Astronaut.2015112778810.1016/j.actaastro.2015.03.008
– reference: XuWPengJLiangBMuZHybrid modeling and analysis method for dynamic coupling of space robotsIEEE Trans. Aerosp. Electron. Syst.2016521859810.1109/TAES.2015.140752
– reference: XuWLiCWangXLiangBStudy on non-holonomic cartesian path planning of a free-floating space robotic systemAdv. Robot.2009231–211314310.1163/156855308X392708
– reference: Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 2365–2372. St. Louis, MO (2009)
– reference: NenchevDYoshidaKImpact analysis and post-impact motion control issue of a free-floating space robot subject to a force impulseIEEE Trans. Robot. Autom.19991554855710.1109/70.768186
– reference: Shi, Y., Everhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th Conference on Evolutionary Programming VII, pp. 591–600. San Diego, CA (1998)
– reference: Kai, T.: A Model predictive control approach to attitude stabilization and trajectory tracking control of 3D universal joint space with an initial angular momentum. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3547–3552. St. Orlando, FL (2011)
– reference: Nguyen-Huynh, T., Sharf, I.: Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 4202–4207. Shanghai, China (2011)
– reference: Inaba, N., Oda, M.: Autonomous satellite capture by a space robot. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1169–1174. San Francisco, CA (2000)
– reference: Yoshida, K., Hashizume, K., Abiko, S.: Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–446. Seoul, Korea (2001)
– reference: Wang, M., Walter, U.: Joint-space dynamics algorithm for tree structure space manipulators by using inertia mapping matrix. In: Proceedings ECCOMAS Thematic Conference on Multibody Dynamics, pp. 819–829. Zagreb, Croatia (2013)
– reference: WeiCLuoJDaiHYinZMaWYuanJGlobally robust explicit model predictive control of constrained systems exploiting SVM-based approximationInt. J. Robust Nonlinear Control20172730003027371377610.1002/rnc.372606822049
– reference: AghiliFA prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamicsIEEE Trans. Robot.201228363464910.1109/TRO.2011.2179581
– reference: Yoshida, K., Dimitrov, D., Nakanishi, H.: On the capture of tumbling satellite by a space robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 4127–4132. Beijing, China (2006)
– reference: Shah, S., Sharf, I., Misra, A.: Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Conference on Guidance, Navigation, and Control, Boston, MA (2013)
– reference: WangMLuoJWalterUNovel synthesis method for minimizing attitude disturbance of the free-floating space robotsJ. Guid. Control Dyn.201639369570410.2514/1.G001219
– reference: ZhangBLiangBWangZMiYZhangYChenZCoordinated stabilization for space robot after capturing a noncooperative target with large inertiaActa Astronaut.2017134758410.1016/j.actaastro.2017.01.041
– reference: Helwig, S.: Particle swarms for constrained optimization. Doctoral diss, Erlangen University, Erlangen, Germany (2010)
– reference: Matsuno, F., Saito, K.: Attitude control of a space robot with initial angular momentum. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 1400–1405. Seoul, Korea (2001)
– reference: Ren, Y., Zhou, Y., Liu, Y., Jin, M., Liu, H.: Adaptive objective impedance control of dual-arm cooperative humanoid manipulators. In: Proceedings of the 11th World Conference on Intelligent Control and Automation, pp. 3333–3339. Shenyang, China (2014)
– reference: Kentzoglanakis, K., Poole, M.: Particle swarm optimization with an oscillating inertia weight. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1749–1750. Montreal, Canada (2009)
– reference: TreleaIThe particle swarm optimization algorithm: convergence analysis and parameter selectionInform. Process. Lett.200385317325195645410.1016/S0020-0190(02)00447-71156.90463
– reference: RekleitisIMartinERouleauGL’ArchevequeRParsaKDupuisEAutonomous capture of a tumbling satelliteJ. Field Robot.20072327529610.1002/rob.20194
– reference: Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proceedings IEEE Swarm Intelligence Symposium, pp. 120–127. Honolulu, HI (2007)
– reference: Oki, T., Abiko, S., Nakanishi, H., Yoshida, K.: Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 625–630. San Francisco, CA (2011)
– reference: Abiko, S., Lampariello, R., Hirzinger, G.: Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty. In: Proceedings IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1020–1025. Beijing, China (2006)
– reference: SoltanpourMKhoobanMA particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulatorNonlinear Dyn.201374467478310520710.1007/s11071-013-0983-81281.93067
– reference: WangMLuoJWalterUA non-linear model predictive control with obstacle avoidance for a space robotAdv. Space Res.20165781737174610.1016/j.asr.2015.06.012
– reference: AgrawalSGarimellaRDesmierGFree-floating closed-chain planar robots: kinematics and path planningNonlinear Dyn.1996911910.1007/BF01833290
– reference: SoltanpourMKhoobanMSoltaniMRobust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertaintiesRobotica201432343344610.1017/S0263574713000702
– reference: ClercMKennedyJThe particle swarm explosion, stability, and convergence in a multidimensional complex spaceIEEE Trans. Evol. Comput.200261587310.1109/4235.985692
– reference: ChiaveriniSSingularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulatorsIEEE Trans. Robot. Autom.19971339841010.1109/70.585902
– reference: Ogilvie, A., Allport, J., Hannah, M., Lymer, J.: Autonomous satellite servicing using the orbital express demonstration manipulator system. In: Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, iSAIRAS, pp. 25–29. Los Angeles, CA (2008)
– reference: KhoobanMAlfiAAbadiDTeaching-learning-based optimal interval type-2 fuzzy PID controller design: a nonholonomic wheeled mobile robotsRobotica20133171059107110.1017/S0263574713000283
– reference: NiknamTKhoobanMKavousifardASoltanpourMAn optimal type II fuzzy sliding mode control design for a class of nonlinear systemsNonlinear Dyn.2014757383314483710.1007/s11071-013-1050-1
– reference: Hirzinger, G., Brunner, B., Dietrich, J., Heindl, J.: ROTEX—the first remotely controlled robot in space. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2604–2611. San Diego, CA (1994)
– reference: CyrilXMisraAInghamMJaarGPostcapture dynamics of a spacecraft-manipulator-payload systemJ. Guid. Control Dyn.2000239510010.2514/2.4491
– reference: Xu, Y., Shum, H., Lee, J., Kanade, T.: Adaptive control of space robot system with an attitude controlled base. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 2005–2010. Nice, France (1992)
– volume: 32
  start-page: 433
  issue: 3
  year: 2014
  ident: 4106_CR21
  publication-title: Robotica
  doi: 10.1017/S0263574713000702
– volume: 23
  start-page: 95
  year: 2000
  ident: 4106_CR34
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4491
– ident: 4106_CR14
  doi: 10.1109/ROBOT.2001.932806
– ident: 4106_CR43
– ident: 4106_CR3
– volume: 75
  start-page: 73
  year: 2014
  ident: 4106_CR18
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1050-1
– volume: 112
  start-page: 77
  year: 2015
  ident: 4106_CR11
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2015.03.008
– volume: 74
  start-page: 467
  year: 2013
  ident: 4106_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0983-8
– volume: 63
  start-page: 277
  issue: 1
  year: 2016
  ident: 4106_CR9
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2464176
– volume: 27
  start-page: 3000
  year: 2017
  ident: 4106_CR23
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3726
– ident: 4106_CR5
  doi: 10.1109/ROBOT.2001.932590
– volume: 57
  start-page: 1737
  issue: 8
  year: 2016
  ident: 4106_CR16
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2015.06.012
– ident: 4106_CR28
  doi: 10.1109/IROS.2009.5353968
– volume: 85
  start-page: 317
  year: 2003
  ident: 4106_CR42
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(02)00447-7
– volume-title: Robotics modelling, planning and control
  year: 2009
  ident: 4106_CR45
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 4106_CR38
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– ident: 4106_CR25
  doi: 10.1109/IROS.2006.281900
– volume: 76
  start-page: 237
  year: 2014
  ident: 4106_CR19
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1123-1
– ident: 4106_CR40
  doi: 10.1109/SIS.2007.368035
– ident: 4106_CR26
  doi: 10.1109/IROS.2006.281785
– volume: 31
  start-page: 1059
  issue: 7
  year: 2013
  ident: 4106_CR17
  publication-title: Robotica
  doi: 10.1017/S0263574713000283
– ident: 4106_CR7
  doi: 10.2514/6.2013-4521
– ident: 4106_CR13
  doi: 10.1109/ROBOT.1992.219986
– ident: 4106_CR1
  doi: 10.1109/ROBOT.1994.351121
– ident: 4106_CR30
  doi: 10.1109/IROS.2011.6095159
– volume: 9
  start-page: 1
  year: 1996
  ident: 4106_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/BF01833290
– volume: 84
  start-page: 2227
  year: 2016
  ident: 4106_CR20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2641-4
– volume: 15
  start-page: 548
  year: 1999
  ident: 4106_CR24
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.768186
– ident: 4106_CR2
– ident: 4106_CR27
  doi: 10.1109/WCICA.2014.7053267
– ident: 4106_CR6
  doi: 10.1109/ICRA.2011.5980398
– volume: 39
  start-page: 695
  issue: 3
  year: 2016
  ident: 4106_CR12
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G001219
– volume: 23
  start-page: 113
  issue: 1–2
  year: 2009
  ident: 4106_CR8
  publication-title: Adv. Robot.
  doi: 10.1163/156855308X392708
– volume: 52
  start-page: 85
  issue: 1
  year: 2016
  ident: 4106_CR36
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2015.140752
– ident: 4106_CR41
  doi: 10.1145/1569901.1570140
– ident: 4106_CR39
  doi: 10.1007/BFb0040810
– volume: 88
  start-page: 329
  year: 2017
  ident: 4106_CR22
  publication-title: Nonliear Dyn.
  doi: 10.1007/s11071-016-3245-8
– volume: 28
  start-page: 634
  issue: 3
  year: 2012
  ident: 4106_CR29
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2011.2179581
– ident: 4106_CR35
– volume: 23
  start-page: 275
  year: 2007
  ident: 4106_CR4
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20194
– volume: 134
  start-page: 75
  year: 2017
  ident: 4106_CR32
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.01.041
– ident: 4106_CR15
  doi: 10.1109/CDC.2011.6160342
– volume: 13
  start-page: 398
  year: 1997
  ident: 4106_CR44
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.585902
– ident: 4106_CR10
  doi: 10.1109/ICRA.2011.5980114
– volume: 86
  start-page: 199
  year: 2017
  ident: 4106_CR31
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-016-0417-1
SSID ssj0003208
Score 2.4384484
Snippet This paper focuses on the motion planning to detumble and control of a space robot to capture a non-cooperative target satellite. The objective is to construct...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1023
SubjectTerms Adaptive algorithms
Attitudes
Automotive Engineering
Classical Mechanics
Computer simulation
Control
Control systems design
Coordination
Dynamical Systems
Engineering
Grasping (robotics)
Mechanical Engineering
Motion planning
Original Paper
Particle swarm optimization
Redundancy
Robot control
Robots
Space robots
Strategy
Tumbling
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gXODAG_EYKAdOoIi2SV8nxFMICYQQSLtVbpJKiLGOrTvw77HbdAMEnNM0Uuw4tmN_H2OHXh4WgLZXpBowQJFpJPCeBxHbgsDao6Aporm7j26e1W0v7LmE29iVVbY2sTbUptSUIz9BvUtVKOPYOx2-C2KNotdVR6ExzxbQBCcYfC2cX90_PE5tsQxqTjoPowzKSPTad826eQ4jHwqlE6EwLhLq-800czd_vJDWF8_1Klt2HiM_a0S8xubsYJ2tOO-Ru7M5XmdLX6AFN9jk0laTt5yazfm4QaD94DAwXJcYbr40OUDuCtV5WfBXnFvDt0K__8FHlrrLcNc5Whxt-ajMy4rXhOJcw7Cqmxs58OkaTUX5Jnu-vnq6uBGOYkFoqVQl4gj83JrUSOMVoW_CqIDAl-CFNsmlr32tEqJLj5QurAII8riwqTaRNSbxdS63WGdQDuw24xIjmQB8IERCBQkAEUgoU3hGG4Ib3WFeu72ZdvjjRIPRz2bIySSRDCWSkUQynHI0nTJswDf--7jbyixz53CcETm8khE6qb8PT5Vqhx23Yp4N_7nW7v8_22OLAelVXRfZZZ1qNLH76LtU-YFT0E_ZgOxj
  priority: 102
  providerName: ProQuest
Title Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target
URI https://link.springer.com/article/10.1007/s11071-018-4106-4
https://www.proquest.com/docview/2023436932
https://www.proquest.com/docview/2259453770
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAGzEYUw6cQJXaJn3sOGAbAoEQYtI4VW6SSoixTlt32L_H6WMDNJA49ZCkkeLE8RfbnwHO7dhLkHSv1ZJIAIW3fIvuebQCnRiydt8tgmgeHv3bvrgbeIMyj3taRbtXLslcUy-T3QipGOgbWoJwjCXWYcMz0J02cd9tL9Qvd_MydDYBC_MIMahcmat-8f0yWlqYP5yi-V3T3YXt0khk7UKqe7CmR_uwUxqMrDyO033Y-sImeACzG53NPmKTX86mBensnOFIMZkSwnwrnv1YGZvO0oS909icsRWHwzmbaJNQRgvNSMlIzSZpnGYsryHOJI6zPJ-RIVvMUQSRH0K_23m5vrXKqgqW5EJkVuCjE2vVUlzZiecoz0_QdTjang5j7khHitBUSPeFTLRAdOMg0S2pfK1U6MiYH0FtlI70MTBO4MVFBw0JocAQ0dSMECqxlVSGYbQOdrW8kSwpx03li2G0JEs2EolIIpGRSERDLhZDxgXfxl-dG5XMovLoTSNTD15wn-zS1c2E94THg8Cuw2Ul5mXzr3Od_Kv3KWy6ZpvlkZENqGWTmT4j6yWLm7AedntN2Gj3Xu879L3qPD49N_M9_AnTceuA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOBQoVLS34ABeQRRI7r0NVoZZlSx-nVtpbmNiOhFg2y25WaP8Uv5EZJ9kFBL317NhWPOPxjD3zfQCvgjKukGyvzA1SgKLyRNI5jzJ1FYO1J1GbRHNxmQyv9adRPNqAn30tDKdV9jbRG2pbG74jf0d6l-tYpWlwNP0umTWKX1d7Co1WLc7c8geFbPPD0xOS7-soGny4Oh7KjlVAGqV1I9MEw9LZ3CobVHFo46TCKFQYxC4rVWhCozNmCE-0qZxGjMq0crmxibM2C02paNw7cFcr-i-uTB98XFl-FXkGvIBiGr7_GPWvqL5Uj-IsDtwzqSkKk_rPc3Dt3P71HuuPucEj2Or8U_G-VajHsOEm2_Cw81VFZwnm2_DgNyDDJ7A4cc3iW8ml7WLe4t0uBU6sMDWt1Jf2xlF0afGirsRX6uvBYnE8XoqZ41o2krEg-2acmNVl3QhPXy4MThtfSilQrOZo89efwvWtLP0ObE7qiXsGQlHcFGGIjH-oMUNkugptq8Aay-CmuxD0y1uYDu2cSTfGxRqnmSVSkEQKlkhBXd6sukxbqI-bPt7vZVZ0u35eMBW9Vgm5xP9uXqnwLrztxbxu_u9cezcP9hLuDa8uzovz08uz53A_Yh3zGZn7sNnMFu6AvKamfOFVVcDn294bvwDBeCni
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOLAVEoYAPnEARSewsPVaUqmwVByr1Fk28SIiSVG166N8zztICKkicbceSxx7Pi2feI-TSjj0N6HutlgAEKKzlW3jPgxUobcjafbdIonnu-70Bfxh6w1LndFplu1dPkkVNg2FpSrKbsdQ3y8I3RC0GBocWR0xj8XWygd7YMdt64LYXrpi5uSSdjSDD_JAYVs-aqz7x_WJaRps_Hkjze6e7R3bKgJG2CwvvkzWV1MluGTzS8mhO62T7C7PgAZl1VDb7iE2tOZ0WBLRzComkIkW0-Vb8AqRlnjpNNX3HsTl7K4xGczpRprgMF52iwxGKTtI4zWiuJ04FjLO8tpECXcxRJJQfkkH37vW2Z5UKC5ZgnGdW4IMTK9mSTNrac6Tna3AdBranwpg5whE8NGrpPhdacQA3DrRqCekrKUNHxOyI1JI0UceEMgQyLjhgCAk5hABGP4JLbUshDdtog9jV8kaipB83KhijaEmcbCwSoUUiY5EIh1wthowL7o2_Ojcrm0XlMZxGRhueMx9j1NXNiP24x4LAbpDryszL5l_nOvlX7wuy-dLpRk_3_cdTsuWaHZcnTDZJLZvM1BkGNVl8nm_cT0mn7ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detumbling+strategy+and+coordination+control+of+kinematically+redundant+space+robot+after+capturing+a+tumbling+target&rft.jtitle=Nonlinear+dynamics&rft.au=Wang%2C+Mingming&rft.au=Luo%2C+Jianjun&rft.au=Yuan%2C+Jianping&rft.au=Walter%2C+Ulrich&rft.date=2018-05-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=92&rft.issue=3&rft.spage=1023&rft.epage=1043&rft_id=info:doi/10.1007%2Fs11071-018-4106-4&rft.externalDocID=10_1007_s11071_018_4106_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon