TOPOLOGICAL LEARNING FOR BRAIN NETWORKS
This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the...
Saved in:
Published in | The annals of applied statistics Vol. 17; no. 1; p. 403 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2023
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI. |
---|---|
AbstractList | This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI. |
Author | Chung, Moo K Songdechakraiwut, Tananun |
Author_xml | – sequence: 1 givenname: Tananun surname: Songdechakraiwut fullname: Songdechakraiwut, Tananun organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison – sequence: 2 givenname: Moo K surname: Chung fullname: Chung, Moo K organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36911168$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jjtPwzAURu9QRB8wda-yMRl8_fYYqrRERDEKQR0ru7ElEH2ogaH_vpUo05m-850xDHb7XQSYIn1EhuKJMeL3vkfF-QBGaDkjCqUewrjvvyiVwgi8hSFXFhGVGcFD695c5ZblPK-yqsibuqyX2cI12XOTl3VWF-3KNa_vd3CT_Hcf76-cwMeiaOcv5LolGy7ED9EyCeZN0ui9jZfDIKgIlNpgo40dmo1RFDULyBVGzWxHMYV0SfFUahnZBGZ_3sNv2MZufTh-bv3xtP4vZmf5kDym |
CitedBy_id | crossref_primary_10_1016_j_neuri_2023_100148 crossref_primary_10_1016_j_neuroimage_2023_120436 crossref_primary_10_1371_journal_pcbi_1011869 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/22-aoas1633 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 36911168 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB022856 – fundername: NIBIB NIH HHS grantid: R01 EB028753 |
GroupedDBID | 123 23M 2AX 6J9 AAKYL ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACMTB ACTMH ADODI ADULT AELLO AELPN AENEX AETVE AEUPB AFFOW AFVYC AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ BHOJU CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c344t-75f42a8f71aa9e005b404b009b9e9ed18c860172b1361e729d01fbf168a0575e2 |
ISSN | 1932-6157 |
IngestDate | Wed Feb 19 02:13:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | topological learning Wasserstein distance twin brain imaging study Topological data analysis birth-death decomposition persistent homology |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-75f42a8f71aa9e005b404b009b9e9ed18c860172b1361e729d01fbf168a0575e2 |
PMID | 36911168 |
ParticipantIDs | pubmed_primary_36911168 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2023 |
SSID | ssj0054841 |
Score | 2.3824177 |
Snippet | This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 403 |
Title | TOPOLOGICAL LEARNING FOR BRAIN NETWORKS |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36911168 |
Volume | 17 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG68JAYfjPe72YOJD2RKt7LLIxIMXgCDEHkjbdeqD24kQEz89Z523UBQo740S9s0bb-zc9vOOQid0gCEggiYDbIuson0HBuEoG_TyOc4wpiHug5Zo-nVu-SmV-5lFbJNdMmInfP3L-NK_oMq9AGuKkr2D8jmi0IHPAO-0ALC0P4O49Z9XszgrlZpN5XrCcy64mW7ct0sNmudx1b79mFaAVVkQfOkydTooCqsKM3YnHtckvgpElx_9H95G2tW3aExjcc5NVWfDaNoJInxlhr3geNO_p8yHA8UOLAf0yzROUv056BP-RvRCQnm-a6DiQotcWya0CGoeJ9mwaUNXjUErqd4a1pH5-fRmSTY2dAiWgRzQNU3VU6ZVOCCzaULlOYnMWGYsKeLqR0V0Eq2yowJoVWJzjpaMzaAVUkB3UALIt5Eq408ge5wC51NQWtl0FoAraWhtTJot1H3qtap1m0z1-YuISPbL0vi0ED6mNJQwOYZKRFgfSELRSgiHPDAU2Y5w66HBVg-UQlLJmHTVGnWwtlBS3ESiz1kycjxfc4dWQ5BqaWSUVyKGIeXDDqY8PfRbnrK_iBNXNLPzn_w7cghKkyI5AgtSyBHcQxq14id6Ev_AGf4IlQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TOPOLOGICAL+LEARNING+FOR+BRAIN+NETWORKS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Songdechakraiwut%2C+Tananun&rft.au=Chung%2C+Moo+K&rft.date=2023-03-01&rft.issn=1932-6157&rft.volume=17&rft.issue=1&rft.spage=403&rft_id=info:doi/10.1214%2F22-aoas1633&rft_id=info%3Apmid%2F36911168&rft_id=info%3Apmid%2F36911168&rft.externalDocID=36911168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |