TOPOLOGICAL LEARNING FOR BRAIN NETWORKS

This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 17; no. 1; p. 403
Main Authors Songdechakraiwut, Tananun, Chung, Moo K
Format Journal Article
LanguageEnglish
Published United States 01.03.2023
Subjects
Online AccessGet more information

Cover

Loading…
Abstract This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.
AbstractList This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.
Author Chung, Moo K
Songdechakraiwut, Tananun
Author_xml – sequence: 1
  givenname: Tananun
  surname: Songdechakraiwut
  fullname: Songdechakraiwut, Tananun
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
– sequence: 2
  givenname: Moo K
  surname: Chung
  fullname: Chung, Moo K
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36911168$$D View this record in MEDLINE/PubMed
BookMark eNo1jjtPwzAURu9QRB8wda-yMRl8_fYYqrRERDEKQR0ru7ElEH2ogaH_vpUo05m-850xDHb7XQSYIn1EhuKJMeL3vkfF-QBGaDkjCqUewrjvvyiVwgi8hSFXFhGVGcFD695c5ZblPK-yqsibuqyX2cI12XOTl3VWF-3KNa_vd3CT_Hcf76-cwMeiaOcv5LolGy7ED9EyCeZN0ui9jZfDIKgIlNpgo40dmo1RFDULyBVGzWxHMYV0SfFUahnZBGZ_3sNv2MZufTh-bv3xtP4vZmf5kDym
CitedBy_id crossref_primary_10_1016_j_neuri_2023_100148
crossref_primary_10_1016_j_neuroimage_2023_120436
crossref_primary_10_1371_journal_pcbi_1011869
ContentType Journal Article
DBID NPM
DOI 10.1214/22-aoas1633
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 36911168
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB022856
– fundername: NIBIB NIH HHS
  grantid: R01 EB028753
GroupedDBID 123
23M
2AX
6J9
AAKYL
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AELPN
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
BHOJU
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c344t-75f42a8f71aa9e005b404b009b9e9ed18c860172b1361e729d01fbf168a0575e2
ISSN 1932-6157
IngestDate Wed Feb 19 02:13:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords topological learning
Wasserstein distance
twin brain imaging study
Topological data analysis
birth-death decomposition
persistent homology
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-75f42a8f71aa9e005b404b009b9e9ed18c860172b1361e729d01fbf168a0575e2
PMID 36911168
ParticipantIDs pubmed_primary_36911168
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2023
SSID ssj0054841
Score 2.3824177
Snippet This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such...
SourceID pubmed
SourceType Index Database
StartPage 403
Title TOPOLOGICAL LEARNING FOR BRAIN NETWORKS
URI https://www.ncbi.nlm.nih.gov/pubmed/36911168
Volume 17
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG68JAYfjPe72YOJD2RKt7LLIxIMXgCDEHkjbdeqD24kQEz89Z523UBQo740S9s0bb-zc9vOOQid0gCEggiYDbIuson0HBuEoG_TyOc4wpiHug5Zo-nVu-SmV-5lFbJNdMmInfP3L-NK_oMq9AGuKkr2D8jmi0IHPAO-0ALC0P4O49Z9XszgrlZpN5XrCcy64mW7ct0sNmudx1b79mFaAVVkQfOkydTooCqsKM3YnHtckvgpElx_9H95G2tW3aExjcc5NVWfDaNoJInxlhr3geNO_p8yHA8UOLAf0yzROUv056BP-RvRCQnm-a6DiQotcWya0CGoeJ9mwaUNXjUErqd4a1pH5-fRmSTY2dAiWgRzQNU3VU6ZVOCCzaULlOYnMWGYsKeLqR0V0Eq2yowJoVWJzjpaMzaAVUkB3UALIt5Eq408ge5wC51NQWtl0FoAraWhtTJot1H3qtap1m0z1-YuISPbL0vi0ED6mNJQwOYZKRFgfSELRSgiHPDAU2Y5w66HBVg-UQlLJmHTVGnWwtlBS3ESiz1kycjxfc4dWQ5BqaWSUVyKGIeXDDqY8PfRbnrK_iBNXNLPzn_w7cghKkyI5AgtSyBHcQxq14id6Ev_AGf4IlQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TOPOLOGICAL+LEARNING+FOR+BRAIN+NETWORKS&rft.jtitle=The+annals+of+applied+statistics&rft.au=Songdechakraiwut%2C+Tananun&rft.au=Chung%2C+Moo+K&rft.date=2023-03-01&rft.issn=1932-6157&rft.volume=17&rft.issue=1&rft.spage=403&rft_id=info:doi/10.1214%2F22-aoas1633&rft_id=info%3Apmid%2F36911168&rft_id=info%3Apmid%2F36911168&rft.externalDocID=36911168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon