Effect of doping of layers surrounding GaN/InGaN multiple quantum wells on their thermal stability
GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures above 900 °C. The degradation process is initiated by the diffusion and clustering of gallium vacancies (VGa). The aim of this work is to determ...
Saved in:
Published in | Materials science in semiconductor processing Vol. 166; p. 107752 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures above 900 °C. The degradation process is initiated by the diffusion and clustering of gallium vacancies (VGa). The aim of this work is to determine how the vacancy population in different layers surrounding the QWs affects their thermal stability. Silicon and magnesium doping was used to manipulate the vacancy concentrations. Experimental results showed that the availability of VGa in the high-temperature (HT) GaN layer below the QWs has a clear effect on the degradation process. No effect of the vacancy concentration in the layer above the active region indicates that the VGa diffusion associated with QW degradation mainly occurs in the [0001] direction. Magnesium doping (2 × 1019 cm−3) in the HT underlayer reduces the VGa concentration, which improves the thermal stability of the closest QW, showing that vacancies in the barriers also contribute to the degradation process. By using heavy magnesium doping (1019 cm−3) in the barriers alone, the thermal stability of the QWs is significantly improved even when a typical HT n-type GaN underlayer is used. This shows that Mg atoms not only increase the formation energy of VGa, but also limit its diffusivity, enabling the use of GaN:Mg layers as diffusion barriers for VGa. |
---|---|
AbstractList | GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures above 900 °C. The degradation process is initiated by the diffusion and clustering of gallium vacancies (VGa). The aim of this work is to determine how the vacancy population in different layers surrounding the QWs affects their thermal stability. Silicon and magnesium doping was used to manipulate the vacancy concentrations. Experimental results showed that the availability of VGa in the high-temperature (HT) GaN layer below the QWs has a clear effect on the degradation process. No effect of the vacancy concentration in the layer above the active region indicates that the VGa diffusion associated with QW degradation mainly occurs in the [0001] direction. Magnesium doping (2 × 1019 cm−3) in the HT underlayer reduces the VGa concentration, which improves the thermal stability of the closest QW, showing that vacancies in the barriers also contribute to the degradation process. By using heavy magnesium doping (1019 cm−3) in the barriers alone, the thermal stability of the QWs is significantly improved even when a typical HT n-type GaN underlayer is used. This shows that Mg atoms not only increase the formation energy of VGa, but also limit its diffusivity, enabling the use of GaN:Mg layers as diffusion barriers for VGa. |
ArticleNumber | 107752 |
Author | Grzanka, Ewa Grzanka, Szymon Czernecki, Robert Smalc-Koziorowska, Julita Leszczyński, Mike Lachowski, Artur Grabowski, Mikołaj |
Author_xml | – sequence: 1 givenname: Artur orcidid: 0000-0002-3633-5027 surname: Lachowski fullname: Lachowski, Artur email: artur@unipress.waw.pl organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland – sequence: 2 givenname: Ewa surname: Grzanka fullname: Grzanka, Ewa organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland – sequence: 3 givenname: Robert surname: Czernecki fullname: Czernecki, Robert organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland – sequence: 4 givenname: Mikołaj surname: Grabowski fullname: Grabowski, Mikołaj organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland – sequence: 5 givenname: Szymon surname: Grzanka fullname: Grzanka, Szymon organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland – sequence: 6 givenname: Mike surname: Leszczyński fullname: Leszczyński, Mike organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland – sequence: 7 givenname: Julita surname: Smalc-Koziorowska fullname: Smalc-Koziorowska, Julita organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland |
BookMark | eNp9kF9LwzAUxYNMcJt-AZ_yBboladNm4IuMOQdDX_Q55M-tZqRpTVpl396W-ezLOYcD53L5LdAstAEQuqdkRQkt16dVk1K3YoTlY1FVnF2hORVVnhVE0NmY83KTCULoDVqkdCKEcEbLOdK7ugbT47bGtu1c-JiSV2eICachxnYIdmr36mV9CKPiZvC96zzgr0GFfmjwD3ifcBtw_wkuThob5XHqlXbe9edbdF0rn-Duz5fo_Wn3tn3Ojq_7w_bxmJm8KPqs4rzUlmlFhd4wJkhhKCPlRnMzpVrlwnAQHBRQbo1itqy1JZXWkJMSTL5E7HLXxDalCLXsomtUPEtK5ERJnuRESU6U5IXSOHq4jGD87NtBlMk4CAasiyMXaVv33_wXFKh0gA |
CitedBy_id | crossref_primary_10_3390_ma16237386 crossref_primary_10_1088_1361_6463_ad337b crossref_primary_10_3390_mi15030321 crossref_primary_10_1016_j_jallcom_2024_173909 |
Cites_doi | 10.1063/5.0040326 10.1016/j.jallcom.2021.163519 10.1038/s41598-021-81017-w 10.1016/j.commatsci.2020.110039 10.1063/1.5048010 10.1063/1.4916727 10.1063/1.5007616 10.1021/acsami.0c21293 10.7567/1882-0786/ab0147 10.1103/PhysRevB.63.045205 10.1088/1361-6463/50/3/035108 10.1063/1.4792662 10.1038/s41524-017-0014-2 10.1021/acs.nanolett.1c01295 10.1103/PhysRevB.93.245201 10.1103/PhysRevB.72.165303 10.1103/PhysRevLett.90.137402 10.1063/1.2988324 10.1103/PhysRevB.69.035207 10.1063/1.1901836 10.1063/1.5094356 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.mssp.2023.107752 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4081 |
ExternalDocumentID | 10_1016_j_mssp_2023_107752 S1369800123004456 |
GroupedDBID | --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACBEA ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SST SSZ T5K UNMZH XPP ZMT ~G- --K 29M AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FGOYB HZ~ IHE OZT R2- RIG |
ID | FETCH-LOGICAL-c344t-7556bd2ba18b922804c12069b5c4c12fa38c5e85eae15dca2d6fbd07bbe306ec3 |
IEDL.DBID | .~1 |
ISSN | 1369-8001 |
IngestDate | Thu Sep 26 16:10:23 EDT 2024 Fri Feb 23 02:35:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LED Point defects Vacancies InGaN quantum wells Thermal stability Doping |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-7556bd2ba18b922804c12069b5c4c12fa38c5e85eae15dca2d6fbd07bbe306ec3 |
ORCID | 0000-0002-3633-5027 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1369800123004456 |
ParticipantIDs | crossref_primary_10_1016_j_mssp_2023_107752 elsevier_sciencedirect_doi_10_1016_j_mssp_2023_107752 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials science in semiconductor processing |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xie, Ni, Fan, Shimada, Özgür, Morko (bib21) 2008; 93 Oila, Ranki, Kivioja, Saarinen, Hautojärvi, Likonen, Baranowski, Pakula, Suski, Leszczynski, Grzegory (bib19) 2001; 63 Hautakangas, Oila, Alatalo, Saarinen, Liszkay, Seghier, Gislason (bib23) 2003; 90 Lachowski, Grzanka, Grzanka, Czernecki, Grabowski, Hrytsak, Nowak, Leszczyński, Smalc-Koziorowska (bib9) 2022; 900 Gao, Sun, Jiang, Zhao (bib13) 2019; 125 Hrytsak, Kempisty, Grzanka, Leszczynski, Sznajder (bib10) 2021; 186 Weatherley, Liu, Osokin, Alexander, Taylor, Carlin, Butté, Grandjean (bib2) 2021; 21 Hautakangas, Saarinen, Liszkay, Freitas, Henry (bib14) 2005; 72 Köhler, Gutt, Wiegert, Kirste (bib16) 2013; 113 Lyons, Van de Walle (bib18) 2017; 3 Sirkeli, Yilmazoglu, Al-Daffaie, Oprea, Ong, Küppers, Hartnagel (bib22) 2017; 50 Smalc-Koziorowska, Grzanka, Lachowski, Hrytsak, Grabowski, Grzanka, Kret, Czernecki, Turski, Marona, Markurt, Schulz, Albrecht, Leszczynski (bib6) 2021; 13 Liu, Yang (bib17) 2016; 25 Haller, Carlin, Jacopin, Liu, Martin, Butté, Grandjean (bib3) 2018; 113 Haller, Carlin, Mosca, Rossell, Erni, Grandjean (bib5) 2019; 12 Haller, Carlin, Jacopin, Martin, Butté, Grandjean (bib1) 2017; 111 Grabowski, Grzanka, Grzanka, Lachowski, Smalc-Koziorowska, Czernecki, Hrytsak, Moneta, Gawlik, Turos, Leszczyński (bib7) 2021; 11 Chen, Haller, Liu, Karpov, Carlin, Grandjean (bib8) 2021; 118 Limpijumnong, Van de Walle (bib12) 2004; 69 Kyrtsos, Matsubara, Bellotti (bib11) 2016; 93 Köhler, Stephan, Perona, Wiegert, Maier, Kunzer, Wagner (bib15) 2005; 97 Armstrong, Bryant, Crawford, Koleske, Lee, Wierer (bib4) 2015; 117 Park, Han, Cho, Lee, Park, Kim, Park, Won Kang, Won Kim, Kim (bib20) 2010; 96 Grabowski (10.1016/j.mssp.2023.107752_bib7) 2021; 11 Oila (10.1016/j.mssp.2023.107752_bib19) 2001; 63 Hautakangas (10.1016/j.mssp.2023.107752_bib23) 2003; 90 Hrytsak (10.1016/j.mssp.2023.107752_bib10) 2021; 186 Haller (10.1016/j.mssp.2023.107752_bib5) 2019; 12 Gao (10.1016/j.mssp.2023.107752_bib13) 2019; 125 Kyrtsos (10.1016/j.mssp.2023.107752_bib11) 2016; 93 Köhler (10.1016/j.mssp.2023.107752_bib15) 2005; 97 Liu (10.1016/j.mssp.2023.107752_bib17) 2016; 25 Xie (10.1016/j.mssp.2023.107752_bib21) 2008; 93 Park (10.1016/j.mssp.2023.107752_bib20) 2010; 96 Chen (10.1016/j.mssp.2023.107752_bib8) 2021; 118 Armstrong (10.1016/j.mssp.2023.107752_bib4) 2015; 117 Weatherley (10.1016/j.mssp.2023.107752_bib2) 2021; 21 Haller (10.1016/j.mssp.2023.107752_bib1) 2017; 111 Limpijumnong (10.1016/j.mssp.2023.107752_bib12) 2004; 69 Lyons (10.1016/j.mssp.2023.107752_bib18) 2017; 3 Sirkeli (10.1016/j.mssp.2023.107752_bib22) 2017; 50 Hautakangas (10.1016/j.mssp.2023.107752_bib14) 2005; 72 Lachowski (10.1016/j.mssp.2023.107752_bib9) 2022; 900 Smalc-Koziorowska (10.1016/j.mssp.2023.107752_bib6) 2021; 13 Köhler (10.1016/j.mssp.2023.107752_bib16) 2013; 113 Haller (10.1016/j.mssp.2023.107752_bib3) 2018; 113 |
References_xml | – volume: 12 year: 2019 ident: bib5 article-title: InAlN underlayer for near ultraviolet InGaN based light emitting diodes publication-title: Appl. Phys. Express. contributor: fullname: Grandjean – volume: 50 year: 2017 ident: bib22 article-title: Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier publication-title: J. Phys. D Appl. Phys. contributor: fullname: Hartnagel – volume: 118 year: 2021 ident: bib8 article-title: GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells: the critical role of nitrogen vacancies at the GaN surface publication-title: Appl. Phys. Lett. contributor: fullname: Grandjean – volume: 11 start-page: 2458 year: 2021 ident: bib7 article-title: The impact of point defects in n-type GaN layers on thermal decomposition of InGaN/GaN QWs publication-title: Sci. Rep. contributor: fullname: Leszczyński – volume: 90 start-page: 4 year: 2003 ident: bib23 article-title: Vacancy defects as compensating centers in Mg-doped GaN publication-title: Phys. Rev. Lett. contributor: fullname: Gislason – volume: 111 year: 2017 ident: bib1 article-title: Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency publication-title: Appl. Phys. Lett. contributor: fullname: Grandjean – volume: 3 start-page: 12 year: 2017 ident: bib18 article-title: Computationally predicted energies and properties of defects in GaN publication-title: npj Comput. Mater. contributor: fullname: Van de Walle – volume: 25 year: 2016 ident: bib17 article-title: Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes publication-title: Chinese Phys. B. contributor: fullname: Yang – volume: 93 year: 2016 ident: bib11 article-title: Migration mechanisms and diffusion barriers of carbon and native point defects in GaN publication-title: Phys. Rev. B contributor: fullname: Bellotti – volume: 117 year: 2015 ident: bib4 article-title: Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers publication-title: J. Appl. Phys. contributor: fullname: Wierer – volume: 186 year: 2021 ident: bib10 article-title: DFT study on point defects migration through the pseudomorphic and lattice-matched InN/GaN interfaces publication-title: Comput. Mater. Sci. contributor: fullname: Sznajder – volume: 13 start-page: 7476 year: 2021 end-page: 7484 ident: bib6 article-title: Role of metal vacancies in the mechanism of thermal degradation of InGaN quantum wells publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Leszczynski – volume: 113 year: 2013 ident: bib16 article-title: Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and Al x Ga 1−x N publication-title: J. Appl. Phys. contributor: fullname: Kirste – volume: 72 year: 2005 ident: bib14 article-title: Role of open volume defects in Mg-doped GaN films studied by positron annihilation spectroscopy publication-title: Phys. Rev. B contributor: fullname: Henry – volume: 21 start-page: 5217 year: 2021 end-page: 5224 ident: bib2 article-title: Imaging nonradiative point defects buried in quantum wells using cathodoluminescence publication-title: Nano Lett. contributor: fullname: Grandjean – volume: 69 year: 2004 ident: bib12 article-title: Diffusivity of native defects in GaN publication-title: Phys. Rev. B contributor: fullname: Van de Walle – volume: 97 year: 2005 ident: bib15 article-title: Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency publication-title: J. Appl. Phys. contributor: fullname: Wagner – volume: 93 year: 2008 ident: bib21 article-title: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p -doped quantum well barriers publication-title: Appl. Phys. Lett. contributor: fullname: Morko – volume: 113 year: 2018 ident: bib3 article-title: GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells publication-title: Appl. Phys. Lett. contributor: fullname: Grandjean – volume: 900 year: 2022 ident: bib9 article-title: Improving thermal stability of InGaN quantum wells by doping of GaN barrier layers publication-title: J. Alloys Compd. contributor: fullname: Smalc-Koziorowska – volume: 63 year: 2001 ident: bib19 article-title: Influence of dopants and substrate material on the formation of Ga vacancies in epitaxial GaN layers publication-title: Phys. Rev. B contributor: fullname: Grzegory – volume: 96 year: 2010 ident: bib20 article-title: Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes publication-title: Appl. Phys. Lett. contributor: fullname: Kim – volume: 125 year: 2019 ident: bib13 article-title: Point defects in group III nitrides: a comparative first-principles study publication-title: J. Appl. Phys. contributor: fullname: Zhao – volume: 118 year: 2021 ident: 10.1016/j.mssp.2023.107752_bib8 article-title: GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells: the critical role of nitrogen vacancies at the GaN surface publication-title: Appl. Phys. Lett. doi: 10.1063/5.0040326 contributor: fullname: Chen – volume: 900 year: 2022 ident: 10.1016/j.mssp.2023.107752_bib9 article-title: Improving thermal stability of InGaN quantum wells by doping of GaN barrier layers publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.163519 contributor: fullname: Lachowski – volume: 11 start-page: 2458 year: 2021 ident: 10.1016/j.mssp.2023.107752_bib7 article-title: The impact of point defects in n-type GaN layers on thermal decomposition of InGaN/GaN QWs publication-title: Sci. Rep. doi: 10.1038/s41598-021-81017-w contributor: fullname: Grabowski – volume: 186 year: 2021 ident: 10.1016/j.mssp.2023.107752_bib10 article-title: DFT study on point defects migration through the pseudomorphic and lattice-matched InN/GaN interfaces publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2020.110039 contributor: fullname: Hrytsak – volume: 113 year: 2018 ident: 10.1016/j.mssp.2023.107752_bib3 article-title: GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.5048010 contributor: fullname: Haller – volume: 117 year: 2015 ident: 10.1016/j.mssp.2023.107752_bib4 article-title: Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers publication-title: J. Appl. Phys. doi: 10.1063/1.4916727 contributor: fullname: Armstrong – volume: 111 year: 2017 ident: 10.1016/j.mssp.2023.107752_bib1 article-title: Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency publication-title: Appl. Phys. Lett. doi: 10.1063/1.5007616 contributor: fullname: Haller – volume: 96 year: 2010 ident: 10.1016/j.mssp.2023.107752_bib20 article-title: Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes publication-title: Appl. Phys. Lett. contributor: fullname: Park – volume: 13 start-page: 7476 year: 2021 ident: 10.1016/j.mssp.2023.107752_bib6 article-title: Role of metal vacancies in the mechanism of thermal degradation of InGaN quantum wells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21293 contributor: fullname: Smalc-Koziorowska – volume: 12 year: 2019 ident: 10.1016/j.mssp.2023.107752_bib5 article-title: InAlN underlayer for near ultraviolet InGaN based light emitting diodes publication-title: Appl. Phys. Express. doi: 10.7567/1882-0786/ab0147 contributor: fullname: Haller – volume: 63 year: 2001 ident: 10.1016/j.mssp.2023.107752_bib19 article-title: Influence of dopants and substrate material on the formation of Ga vacancies in epitaxial GaN layers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.045205 contributor: fullname: Oila – volume: 50 year: 2017 ident: 10.1016/j.mssp.2023.107752_bib22 article-title: Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/50/3/035108 contributor: fullname: Sirkeli – volume: 113 year: 2013 ident: 10.1016/j.mssp.2023.107752_bib16 article-title: Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and Al x Ga 1−x N publication-title: J. Appl. Phys. doi: 10.1063/1.4792662 contributor: fullname: Köhler – volume: 3 start-page: 12 year: 2017 ident: 10.1016/j.mssp.2023.107752_bib18 article-title: Computationally predicted energies and properties of defects in GaN publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0014-2 contributor: fullname: Lyons – volume: 21 start-page: 5217 year: 2021 ident: 10.1016/j.mssp.2023.107752_bib2 article-title: Imaging nonradiative point defects buried in quantum wells using cathodoluminescence publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01295 contributor: fullname: Weatherley – volume: 93 year: 2016 ident: 10.1016/j.mssp.2023.107752_bib11 article-title: Migration mechanisms and diffusion barriers of carbon and native point defects in GaN publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.245201 contributor: fullname: Kyrtsos – volume: 72 year: 2005 ident: 10.1016/j.mssp.2023.107752_bib14 article-title: Role of open volume defects in Mg-doped GaN films studied by positron annihilation spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.165303 contributor: fullname: Hautakangas – volume: 25 year: 2016 ident: 10.1016/j.mssp.2023.107752_bib17 article-title: Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes publication-title: Chinese Phys. B. contributor: fullname: Liu – volume: 90 start-page: 4 year: 2003 ident: 10.1016/j.mssp.2023.107752_bib23 article-title: Vacancy defects as compensating centers in Mg-doped GaN publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.137402 contributor: fullname: Hautakangas – volume: 93 year: 2008 ident: 10.1016/j.mssp.2023.107752_bib21 article-title: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p -doped quantum well barriers publication-title: Appl. Phys. Lett. doi: 10.1063/1.2988324 contributor: fullname: Xie – volume: 69 year: 2004 ident: 10.1016/j.mssp.2023.107752_bib12 article-title: Diffusivity of native defects in GaN publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.035207 contributor: fullname: Limpijumnong – volume: 97 year: 2005 ident: 10.1016/j.mssp.2023.107752_bib15 article-title: Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency publication-title: J. Appl. Phys. doi: 10.1063/1.1901836 contributor: fullname: Köhler – volume: 125 year: 2019 ident: 10.1016/j.mssp.2023.107752_bib13 article-title: Point defects in group III nitrides: a comparative first-principles study publication-title: J. Appl. Phys. doi: 10.1063/1.5094356 contributor: fullname: Gao |
SSID | ssj0005216 |
Score | 2.404397 |
Snippet | GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 107752 |
SubjectTerms | Doping InGaN quantum wells LED Point defects Thermal stability Vacancies |
Title | Effect of doping of layers surrounding GaN/InGaN multiple quantum wells on their thermal stability |
URI | https://dx.doi.org/10.1016/j.mssp.2023.107752 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB7YUEjs2Ek8VhWlpaIDUNEtsh1HKmrT0jQDC78dXx5SkRADi-OczlL0xbo7-14I3TApBZchcVKufYdRmjiCae6Q0IuSUiFKOCg-jYPBhD1O-bSFek0uDIRV1rK_kumltK4pbo2mu5rN3BfiByIqbQLwSnIou82s-rN7-u5rO8yjbH8KzA5w14kzVYzXIs-hZiX1LSEMOf1dOW0pnP4hOqgtRdytPuYItUx2jPa36geeIFXVHsbLFCdl4hPM5hKsaJwX6zW0TALqgxy7w8yOuIkfxB-FhbRYYLi7y_Eyw6XHAEYrqefY2oxl1OznKZr07197A6dumuBon7GNE3IeqIQqSSIloNYN04R6gVBcwyyVfqS5ibiRhvBES5oEqUq8UCljTw9G-2doJ1tm5hxhkwoOzvJQkYRZdiGo9L00YtoQKhlpo9sGrXhV1caIm6Cx9xiwjQHbuMK2jXgDaPzjD8dWeP-x7uKf6y7RHrxVeYNXaGezLsy1NSA2qlPukA7a7Q5HgzE8R89vo29zWscx |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YENmdSOnceIKkoLbRdaqVtkO44EatPSNAMLvx1fHlKREAOLZTlnKfpi3Z1z390hdMulDIX0KUmEdglnLCYh14JQvx3EhUGUcFEcjrzehD9PxbSBOnUuDNAqK91f6vRCW1crToWms3x7c16p64VB4RNAVFJ4W2ibg39sD_X91ybPo-h_CtIExKvMmZLkNc8yKFrJXLvg-4L9bp02LE73AO1XriJ-KN_mEDVMeoT2NgoIHiNVFh_GiwTHReYTzGYS3Gic5asV9EyC1Sc5cvqpHXFNIMQfucU0n2P4eZfhRYqLkAGMVlXPsHUaC9rs5wmadB_HnR6puiYQ7XK-Jr4QnoqZkjRQIRS74ZqythcqoWGWSDfQwgTCSENFrCWLvUTFbV8pY68PRrunqJkuUnOGsElCAdFyX9GYW_EwZNJtJwHXhjLJaQvd1WhFy7I4RlSzxt4jwDYCbKMS2xYSNaDRj08cWe39x77zf-67QTu98XAQDfqjlwu0C0_KJMJL1FyvcnNlvYm1ui5OyzcXUMcn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+doping+of+layers+surrounding+GaN%2FInGaN+multiple+quantum+wells+on+their+thermal+stability&rft.jtitle=Materials+science+in+semiconductor+processing&rft.au=Lachowski%2C+Artur&rft.au=Grzanka%2C+Ewa&rft.au=Czernecki%2C+Robert&rft.au=Grabowski%2C+Miko%C5%82aj&rft.date=2023-11-01&rft.issn=1369-8001&rft.volume=166&rft.spage=107752&rft_id=info:doi/10.1016%2Fj.mssp.2023.107752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mssp_2023_107752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-8001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-8001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-8001&client=summon |