Effect of doping of layers surrounding GaN/InGaN multiple quantum wells on their thermal stability

GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures above 900 °C. The degradation process is initiated by the diffusion and clustering of gallium vacancies (VGa). The aim of this work is to determ...

Full description

Saved in:
Bibliographic Details
Published inMaterials science in semiconductor processing Vol. 166; p. 107752
Main Authors Lachowski, Artur, Grzanka, Ewa, Czernecki, Robert, Grabowski, Mikołaj, Grzanka, Szymon, Leszczyński, Mike, Smalc-Koziorowska, Julita
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures above 900 °C. The degradation process is initiated by the diffusion and clustering of gallium vacancies (VGa). The aim of this work is to determine how the vacancy population in different layers surrounding the QWs affects their thermal stability. Silicon and magnesium doping was used to manipulate the vacancy concentrations. Experimental results showed that the availability of VGa in the high-temperature (HT) GaN layer below the QWs has a clear effect on the degradation process. No effect of the vacancy concentration in the layer above the active region indicates that the VGa diffusion associated with QW degradation mainly occurs in the [0001] direction. Magnesium doping (2 × 1019 cm−3) in the HT underlayer reduces the VGa concentration, which improves the thermal stability of the closest QW, showing that vacancies in the barriers also contribute to the degradation process. By using heavy magnesium doping (1019 cm−3) in the barriers alone, the thermal stability of the QWs is significantly improved even when a typical HT n-type GaN underlayer is used. This shows that Mg atoms not only increase the formation energy of VGa, but also limit its diffusivity, enabling the use of GaN:Mg layers as diffusion barriers for VGa.
AbstractList GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures above 900 °C. The degradation process is initiated by the diffusion and clustering of gallium vacancies (VGa). The aim of this work is to determine how the vacancy population in different layers surrounding the QWs affects their thermal stability. Silicon and magnesium doping was used to manipulate the vacancy concentrations. Experimental results showed that the availability of VGa in the high-temperature (HT) GaN layer below the QWs has a clear effect on the degradation process. No effect of the vacancy concentration in the layer above the active region indicates that the VGa diffusion associated with QW degradation mainly occurs in the [0001] direction. Magnesium doping (2 × 1019 cm−3) in the HT underlayer reduces the VGa concentration, which improves the thermal stability of the closest QW, showing that vacancies in the barriers also contribute to the degradation process. By using heavy magnesium doping (1019 cm−3) in the barriers alone, the thermal stability of the QWs is significantly improved even when a typical HT n-type GaN underlayer is used. This shows that Mg atoms not only increase the formation energy of VGa, but also limit its diffusivity, enabling the use of GaN:Mg layers as diffusion barriers for VGa.
ArticleNumber 107752
Author Grzanka, Ewa
Grzanka, Szymon
Czernecki, Robert
Smalc-Koziorowska, Julita
Leszczyński, Mike
Lachowski, Artur
Grabowski, Mikołaj
Author_xml – sequence: 1
  givenname: Artur
  orcidid: 0000-0002-3633-5027
  surname: Lachowski
  fullname: Lachowski, Artur
  email: artur@unipress.waw.pl
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
– sequence: 2
  givenname: Ewa
  surname: Grzanka
  fullname: Grzanka, Ewa
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
– sequence: 3
  givenname: Robert
  surname: Czernecki
  fullname: Czernecki, Robert
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
– sequence: 4
  givenname: Mikołaj
  surname: Grabowski
  fullname: Grabowski, Mikołaj
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
– sequence: 5
  givenname: Szymon
  surname: Grzanka
  fullname: Grzanka, Szymon
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
– sequence: 6
  givenname: Mike
  surname: Leszczyński
  fullname: Leszczyński, Mike
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
– sequence: 7
  givenname: Julita
  surname: Smalc-Koziorowska
  fullname: Smalc-Koziorowska, Julita
  organization: Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland
BookMark eNp9kF9LwzAUxYNMcJt-AZ_yBboladNm4IuMOQdDX_Q55M-tZqRpTVpl396W-ezLOYcD53L5LdAstAEQuqdkRQkt16dVk1K3YoTlY1FVnF2hORVVnhVE0NmY83KTCULoDVqkdCKEcEbLOdK7ugbT47bGtu1c-JiSV2eICachxnYIdmr36mV9CKPiZvC96zzgr0GFfmjwD3ifcBtw_wkuThob5XHqlXbe9edbdF0rn-Duz5fo_Wn3tn3Ojq_7w_bxmJm8KPqs4rzUlmlFhd4wJkhhKCPlRnMzpVrlwnAQHBRQbo1itqy1JZXWkJMSTL5E7HLXxDalCLXsomtUPEtK5ERJnuRESU6U5IXSOHq4jGD87NtBlMk4CAasiyMXaVv33_wXFKh0gA
CitedBy_id crossref_primary_10_3390_ma16237386
crossref_primary_10_1088_1361_6463_ad337b
crossref_primary_10_3390_mi15030321
crossref_primary_10_1016_j_jallcom_2024_173909
Cites_doi 10.1063/5.0040326
10.1016/j.jallcom.2021.163519
10.1038/s41598-021-81017-w
10.1016/j.commatsci.2020.110039
10.1063/1.5048010
10.1063/1.4916727
10.1063/1.5007616
10.1021/acsami.0c21293
10.7567/1882-0786/ab0147
10.1103/PhysRevB.63.045205
10.1088/1361-6463/50/3/035108
10.1063/1.4792662
10.1038/s41524-017-0014-2
10.1021/acs.nanolett.1c01295
10.1103/PhysRevB.93.245201
10.1103/PhysRevB.72.165303
10.1103/PhysRevLett.90.137402
10.1063/1.2988324
10.1103/PhysRevB.69.035207
10.1063/1.1901836
10.1063/1.5094356
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.mssp.2023.107752
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4081
ExternalDocumentID 10_1016_j_mssp_2023_107752
S1369800123004456
GroupedDBID --M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XPP
ZMT
~G-
--K
29M
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
HZ~
IHE
OZT
R2-
RIG
ID FETCH-LOGICAL-c344t-7556bd2ba18b922804c12069b5c4c12fa38c5e85eae15dca2d6fbd07bbe306ec3
IEDL.DBID .~1
ISSN 1369-8001
IngestDate Thu Sep 26 16:10:23 EDT 2024
Fri Feb 23 02:35:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords LED
Point defects
Vacancies
InGaN quantum wells
Thermal stability
Doping
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-7556bd2ba18b922804c12069b5c4c12fa38c5e85eae15dca2d6fbd07bbe306ec3
ORCID 0000-0002-3633-5027
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1369800123004456
ParticipantIDs crossref_primary_10_1016_j_mssp_2023_107752
elsevier_sciencedirect_doi_10_1016_j_mssp_2023_107752
PublicationCentury 2000
PublicationDate 2023-11-01
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials science in semiconductor processing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Ni, Fan, Shimada, Özgür, Morko (bib21) 2008; 93
Oila, Ranki, Kivioja, Saarinen, Hautojärvi, Likonen, Baranowski, Pakula, Suski, Leszczynski, Grzegory (bib19) 2001; 63
Hautakangas, Oila, Alatalo, Saarinen, Liszkay, Seghier, Gislason (bib23) 2003; 90
Lachowski, Grzanka, Grzanka, Czernecki, Grabowski, Hrytsak, Nowak, Leszczyński, Smalc-Koziorowska (bib9) 2022; 900
Gao, Sun, Jiang, Zhao (bib13) 2019; 125
Hrytsak, Kempisty, Grzanka, Leszczynski, Sznajder (bib10) 2021; 186
Weatherley, Liu, Osokin, Alexander, Taylor, Carlin, Butté, Grandjean (bib2) 2021; 21
Hautakangas, Saarinen, Liszkay, Freitas, Henry (bib14) 2005; 72
Köhler, Gutt, Wiegert, Kirste (bib16) 2013; 113
Lyons, Van de Walle (bib18) 2017; 3
Sirkeli, Yilmazoglu, Al-Daffaie, Oprea, Ong, Küppers, Hartnagel (bib22) 2017; 50
Smalc-Koziorowska, Grzanka, Lachowski, Hrytsak, Grabowski, Grzanka, Kret, Czernecki, Turski, Marona, Markurt, Schulz, Albrecht, Leszczynski (bib6) 2021; 13
Liu, Yang (bib17) 2016; 25
Haller, Carlin, Jacopin, Liu, Martin, Butté, Grandjean (bib3) 2018; 113
Haller, Carlin, Mosca, Rossell, Erni, Grandjean (bib5) 2019; 12
Haller, Carlin, Jacopin, Martin, Butté, Grandjean (bib1) 2017; 111
Grabowski, Grzanka, Grzanka, Lachowski, Smalc-Koziorowska, Czernecki, Hrytsak, Moneta, Gawlik, Turos, Leszczyński (bib7) 2021; 11
Chen, Haller, Liu, Karpov, Carlin, Grandjean (bib8) 2021; 118
Limpijumnong, Van de Walle (bib12) 2004; 69
Kyrtsos, Matsubara, Bellotti (bib11) 2016; 93
Köhler, Stephan, Perona, Wiegert, Maier, Kunzer, Wagner (bib15) 2005; 97
Armstrong, Bryant, Crawford, Koleske, Lee, Wierer (bib4) 2015; 117
Park, Han, Cho, Lee, Park, Kim, Park, Won Kang, Won Kim, Kim (bib20) 2010; 96
Grabowski (10.1016/j.mssp.2023.107752_bib7) 2021; 11
Oila (10.1016/j.mssp.2023.107752_bib19) 2001; 63
Hautakangas (10.1016/j.mssp.2023.107752_bib23) 2003; 90
Hrytsak (10.1016/j.mssp.2023.107752_bib10) 2021; 186
Haller (10.1016/j.mssp.2023.107752_bib5) 2019; 12
Gao (10.1016/j.mssp.2023.107752_bib13) 2019; 125
Kyrtsos (10.1016/j.mssp.2023.107752_bib11) 2016; 93
Köhler (10.1016/j.mssp.2023.107752_bib15) 2005; 97
Liu (10.1016/j.mssp.2023.107752_bib17) 2016; 25
Xie (10.1016/j.mssp.2023.107752_bib21) 2008; 93
Park (10.1016/j.mssp.2023.107752_bib20) 2010; 96
Chen (10.1016/j.mssp.2023.107752_bib8) 2021; 118
Armstrong (10.1016/j.mssp.2023.107752_bib4) 2015; 117
Weatherley (10.1016/j.mssp.2023.107752_bib2) 2021; 21
Haller (10.1016/j.mssp.2023.107752_bib1) 2017; 111
Limpijumnong (10.1016/j.mssp.2023.107752_bib12) 2004; 69
Lyons (10.1016/j.mssp.2023.107752_bib18) 2017; 3
Sirkeli (10.1016/j.mssp.2023.107752_bib22) 2017; 50
Hautakangas (10.1016/j.mssp.2023.107752_bib14) 2005; 72
Lachowski (10.1016/j.mssp.2023.107752_bib9) 2022; 900
Smalc-Koziorowska (10.1016/j.mssp.2023.107752_bib6) 2021; 13
Köhler (10.1016/j.mssp.2023.107752_bib16) 2013; 113
Haller (10.1016/j.mssp.2023.107752_bib3) 2018; 113
References_xml – volume: 12
  year: 2019
  ident: bib5
  article-title: InAlN underlayer for near ultraviolet InGaN based light emitting diodes
  publication-title: Appl. Phys. Express.
  contributor:
    fullname: Grandjean
– volume: 50
  year: 2017
  ident: bib22
  article-title: Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier
  publication-title: J. Phys. D Appl. Phys.
  contributor:
    fullname: Hartnagel
– volume: 118
  year: 2021
  ident: bib8
  article-title: GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells: the critical role of nitrogen vacancies at the GaN surface
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Grandjean
– volume: 11
  start-page: 2458
  year: 2021
  ident: bib7
  article-title: The impact of point defects in n-type GaN layers on thermal decomposition of InGaN/GaN QWs
  publication-title: Sci. Rep.
  contributor:
    fullname: Leszczyński
– volume: 90
  start-page: 4
  year: 2003
  ident: bib23
  article-title: Vacancy defects as compensating centers in Mg-doped GaN
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Gislason
– volume: 111
  year: 2017
  ident: bib1
  article-title: Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Grandjean
– volume: 3
  start-page: 12
  year: 2017
  ident: bib18
  article-title: Computationally predicted energies and properties of defects in GaN
  publication-title: npj Comput. Mater.
  contributor:
    fullname: Van de Walle
– volume: 25
  year: 2016
  ident: bib17
  article-title: Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes
  publication-title: Chinese Phys. B.
  contributor:
    fullname: Yang
– volume: 93
  year: 2016
  ident: bib11
  article-title: Migration mechanisms and diffusion barriers of carbon and native point defects in GaN
  publication-title: Phys. Rev. B
  contributor:
    fullname: Bellotti
– volume: 117
  year: 2015
  ident: bib4
  article-title: Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Wierer
– volume: 186
  year: 2021
  ident: bib10
  article-title: DFT study on point defects migration through the pseudomorphic and lattice-matched InN/GaN interfaces
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Sznajder
– volume: 13
  start-page: 7476
  year: 2021
  end-page: 7484
  ident: bib6
  article-title: Role of metal vacancies in the mechanism of thermal degradation of InGaN quantum wells
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Leszczynski
– volume: 113
  year: 2013
  ident: bib16
  article-title: Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and Al x Ga 1−x N
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Kirste
– volume: 72
  year: 2005
  ident: bib14
  article-title: Role of open volume defects in Mg-doped GaN films studied by positron annihilation spectroscopy
  publication-title: Phys. Rev. B
  contributor:
    fullname: Henry
– volume: 21
  start-page: 5217
  year: 2021
  end-page: 5224
  ident: bib2
  article-title: Imaging nonradiative point defects buried in quantum wells using cathodoluminescence
  publication-title: Nano Lett.
  contributor:
    fullname: Grandjean
– volume: 69
  year: 2004
  ident: bib12
  article-title: Diffusivity of native defects in GaN
  publication-title: Phys. Rev. B
  contributor:
    fullname: Van de Walle
– volume: 97
  year: 2005
  ident: bib15
  article-title: Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Wagner
– volume: 93
  year: 2008
  ident: bib21
  article-title: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p -doped quantum well barriers
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Morko
– volume: 113
  year: 2018
  ident: bib3
  article-title: GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Grandjean
– volume: 900
  year: 2022
  ident: bib9
  article-title: Improving thermal stability of InGaN quantum wells by doping of GaN barrier layers
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Smalc-Koziorowska
– volume: 63
  year: 2001
  ident: bib19
  article-title: Influence of dopants and substrate material on the formation of Ga vacancies in epitaxial GaN layers
  publication-title: Phys. Rev. B
  contributor:
    fullname: Grzegory
– volume: 96
  year: 2010
  ident: bib20
  article-title: Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Kim
– volume: 125
  year: 2019
  ident: bib13
  article-title: Point defects in group III nitrides: a comparative first-principles study
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Zhao
– volume: 118
  year: 2021
  ident: 10.1016/j.mssp.2023.107752_bib8
  article-title: GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells: the critical role of nitrogen vacancies at the GaN surface
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0040326
  contributor:
    fullname: Chen
– volume: 900
  year: 2022
  ident: 10.1016/j.mssp.2023.107752_bib9
  article-title: Improving thermal stability of InGaN quantum wells by doping of GaN barrier layers
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.163519
  contributor:
    fullname: Lachowski
– volume: 11
  start-page: 2458
  year: 2021
  ident: 10.1016/j.mssp.2023.107752_bib7
  article-title: The impact of point defects in n-type GaN layers on thermal decomposition of InGaN/GaN QWs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81017-w
  contributor:
    fullname: Grabowski
– volume: 186
  year: 2021
  ident: 10.1016/j.mssp.2023.107752_bib10
  article-title: DFT study on point defects migration through the pseudomorphic and lattice-matched InN/GaN interfaces
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2020.110039
  contributor:
    fullname: Hrytsak
– volume: 113
  year: 2018
  ident: 10.1016/j.mssp.2023.107752_bib3
  article-title: GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5048010
  contributor:
    fullname: Haller
– volume: 117
  year: 2015
  ident: 10.1016/j.mssp.2023.107752_bib4
  article-title: Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4916727
  contributor:
    fullname: Armstrong
– volume: 111
  year: 2017
  ident: 10.1016/j.mssp.2023.107752_bib1
  article-title: Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5007616
  contributor:
    fullname: Haller
– volume: 96
  year: 2010
  ident: 10.1016/j.mssp.2023.107752_bib20
  article-title: Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Park
– volume: 13
  start-page: 7476
  year: 2021
  ident: 10.1016/j.mssp.2023.107752_bib6
  article-title: Role of metal vacancies in the mechanism of thermal degradation of InGaN quantum wells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21293
  contributor:
    fullname: Smalc-Koziorowska
– volume: 12
  year: 2019
  ident: 10.1016/j.mssp.2023.107752_bib5
  article-title: InAlN underlayer for near ultraviolet InGaN based light emitting diodes
  publication-title: Appl. Phys. Express.
  doi: 10.7567/1882-0786/ab0147
  contributor:
    fullname: Haller
– volume: 63
  year: 2001
  ident: 10.1016/j.mssp.2023.107752_bib19
  article-title: Influence of dopants and substrate material on the formation of Ga vacancies in epitaxial GaN layers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.045205
  contributor:
    fullname: Oila
– volume: 50
  year: 2017
  ident: 10.1016/j.mssp.2023.107752_bib22
  article-title: Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/50/3/035108
  contributor:
    fullname: Sirkeli
– volume: 113
  year: 2013
  ident: 10.1016/j.mssp.2023.107752_bib16
  article-title: Diffusion of Mg dopant in metal-organic vapor-phase epitaxy grown GaN and Al x Ga 1−x N
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4792662
  contributor:
    fullname: Köhler
– volume: 3
  start-page: 12
  year: 2017
  ident: 10.1016/j.mssp.2023.107752_bib18
  article-title: Computationally predicted energies and properties of defects in GaN
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0014-2
  contributor:
    fullname: Lyons
– volume: 21
  start-page: 5217
  year: 2021
  ident: 10.1016/j.mssp.2023.107752_bib2
  article-title: Imaging nonradiative point defects buried in quantum wells using cathodoluminescence
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c01295
  contributor:
    fullname: Weatherley
– volume: 93
  year: 2016
  ident: 10.1016/j.mssp.2023.107752_bib11
  article-title: Migration mechanisms and diffusion barriers of carbon and native point defects in GaN
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.245201
  contributor:
    fullname: Kyrtsos
– volume: 72
  year: 2005
  ident: 10.1016/j.mssp.2023.107752_bib14
  article-title: Role of open volume defects in Mg-doped GaN films studied by positron annihilation spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.165303
  contributor:
    fullname: Hautakangas
– volume: 25
  year: 2016
  ident: 10.1016/j.mssp.2023.107752_bib17
  article-title: Effects of Mg doping in the quantum barriers on the efficiency droop of GaN based light emitting diodes
  publication-title: Chinese Phys. B.
  contributor:
    fullname: Liu
– volume: 90
  start-page: 4
  year: 2003
  ident: 10.1016/j.mssp.2023.107752_bib23
  article-title: Vacancy defects as compensating centers in Mg-doped GaN
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.137402
  contributor:
    fullname: Hautakangas
– volume: 93
  year: 2008
  ident: 10.1016/j.mssp.2023.107752_bib21
  article-title: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p -doped quantum well barriers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988324
  contributor:
    fullname: Xie
– volume: 69
  year: 2004
  ident: 10.1016/j.mssp.2023.107752_bib12
  article-title: Diffusivity of native defects in GaN
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.035207
  contributor:
    fullname: Limpijumnong
– volume: 97
  year: 2005
  ident: 10.1016/j.mssp.2023.107752_bib15
  article-title: Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1901836
  contributor:
    fullname: Köhler
– volume: 125
  year: 2019
  ident: 10.1016/j.mssp.2023.107752_bib13
  article-title: Point defects in group III nitrides: a comparative first-principles study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5094356
  contributor:
    fullname: Gao
SSID ssj0005216
Score 2.404397
Snippet GaN/InGaN quantum wells (QWs), widely used as the active region in blue and green light emitters, are susceptible to structural degradation at temperatures...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107752
SubjectTerms Doping
InGaN quantum wells
LED
Point defects
Thermal stability
Vacancies
Title Effect of doping of layers surrounding GaN/InGaN multiple quantum wells on their thermal stability
URI https://dx.doi.org/10.1016/j.mssp.2023.107752
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB7YUEjs2Ek8VhWlpaIDUNEtsh1HKmrT0jQDC78dXx5SkRADi-OczlL0xbo7-14I3TApBZchcVKufYdRmjiCae6Q0IuSUiFKOCg-jYPBhD1O-bSFek0uDIRV1rK_kumltK4pbo2mu5rN3BfiByIqbQLwSnIou82s-rN7-u5rO8yjbH8KzA5w14kzVYzXIs-hZiX1LSEMOf1dOW0pnP4hOqgtRdytPuYItUx2jPa36geeIFXVHsbLFCdl4hPM5hKsaJwX6zW0TALqgxy7w8yOuIkfxB-FhbRYYLi7y_Eyw6XHAEYrqefY2oxl1OznKZr07197A6dumuBon7GNE3IeqIQqSSIloNYN04R6gVBcwyyVfqS5ibiRhvBES5oEqUq8UCljTw9G-2doJ1tm5hxhkwoOzvJQkYRZdiGo9L00YtoQKhlpo9sGrXhV1caIm6Cx9xiwjQHbuMK2jXgDaPzjD8dWeP-x7uKf6y7RHrxVeYNXaGezLsy1NSA2qlPukA7a7Q5HgzE8R89vo29zWscx
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YENmdSOnceIKkoLbRdaqVtkO44EatPSNAMLvx1fHlKREAOLZTlnKfpi3Z1z390hdMulDIX0KUmEdglnLCYh14JQvx3EhUGUcFEcjrzehD9PxbSBOnUuDNAqK91f6vRCW1crToWms3x7c16p64VB4RNAVFJ4W2ibg39sD_X91ybPo-h_CtIExKvMmZLkNc8yKFrJXLvg-4L9bp02LE73AO1XriJ-KN_mEDVMeoT2NgoIHiNVFh_GiwTHReYTzGYS3Gic5asV9EyC1Sc5cvqpHXFNIMQfucU0n2P4eZfhRYqLkAGMVlXPsHUaC9rs5wmadB_HnR6puiYQ7XK-Jr4QnoqZkjRQIRS74ZqythcqoWGWSDfQwgTCSENFrCWLvUTFbV8pY68PRrunqJkuUnOGsElCAdFyX9GYW_EwZNJtJwHXhjLJaQvd1WhFy7I4RlSzxt4jwDYCbKMS2xYSNaDRj08cWe39x77zf-67QTu98XAQDfqjlwu0C0_KJMJL1FyvcnNlvYm1ui5OyzcXUMcn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+doping+of+layers+surrounding+GaN%2FInGaN+multiple+quantum+wells+on+their+thermal+stability&rft.jtitle=Materials+science+in+semiconductor+processing&rft.au=Lachowski%2C+Artur&rft.au=Grzanka%2C+Ewa&rft.au=Czernecki%2C+Robert&rft.au=Grabowski%2C+Miko%C5%82aj&rft.date=2023-11-01&rft.issn=1369-8001&rft.volume=166&rft.spage=107752&rft_id=info:doi/10.1016%2Fj.mssp.2023.107752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mssp_2023_107752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-8001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-8001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-8001&client=summon