Visual tracking in camera-switching outdoor sport videos: Benchmark and baselines for skiing
Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer vision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison...
Saved in:
Published in | Computer vision and image understanding Vol. 243; p. 103978 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.06.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer vision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison to other sports, primarily due to the limited availability of dedicated research studies and datasets. The present paper takes a significant stride towards bridging these gaps. It conducts a comprehensive examination of skier appearance tracking in videos capturing their entire performance—an essential step for more advanced performance analyses. To implement this investigation, we introduce SkiTB, the largest and most annotated dataset tailored for computer vision applications in skiing. We subject a range of visual object tracking algorithms to rigorous testing, including both well-established methodologies and a novel skier-specific baseline algorithm. The results yield valuable insights into the suitability of various tracking techniques for vision-based skiing analysis and into the generalization of state-of-the-art algorithms to complex target behaviors and conditions set by winter outdoor environments. To foster further development, we make SkiTB, the associated code, and the obtained results accessible through https://machinelearning.uniud.it/datasets/skitb.
[Display omitted]
•Athlete localization is fundamental for high-level sport performance analysis.•Skiing is a popular winter sport discipline subject to extreme outdoor conditions.•We study visual tracking to localize a skier continuously in camera-switching videos.•We release SkiTB, the largest dataset for computer vision-based research in skiing.•We describe promising directions for further algorithmic development. |
---|---|
AbstractList | Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer vision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison to other sports, primarily due to the limited availability of dedicated research studies and datasets. The present paper takes a significant stride towards bridging these gaps. It conducts a comprehensive examination of skier appearance tracking in videos capturing their entire performance—an essential step for more advanced performance analyses. To implement this investigation, we introduce SkiTB, the largest and most annotated dataset tailored for computer vision applications in skiing. We subject a range of visual object tracking algorithms to rigorous testing, including both well-established methodologies and a novel skier-specific baseline algorithm. The results yield valuable insights into the suitability of various tracking techniques for vision-based skiing analysis and into the generalization of state-of-the-art algorithms to complex target behaviors and conditions set by winter outdoor environments. To foster further development, we make SkiTB, the associated code, and the obtained results accessible through https://machinelearning.uniud.it/datasets/skitb.
[Display omitted]
•Athlete localization is fundamental for high-level sport performance analysis.•Skiing is a popular winter sport discipline subject to extreme outdoor conditions.•We study visual tracking to localize a skier continuously in camera-switching videos.•We release SkiTB, the largest dataset for computer vision-based research in skiing.•We describe promising directions for further algorithmic development. |
ArticleNumber | 103978 |
Author | Micheloni, Christian Dunnhofer, Matteo |
Author_xml | – sequence: 1 givenname: Matteo orcidid: 0000-0002-1672-667X surname: Dunnhofer fullname: Dunnhofer, Matteo email: matteo.dunnhofer@uniud.it – sequence: 2 givenname: Christian surname: Micheloni fullname: Micheloni, Christian |
BookMark | eNp9kMtKQzEQhoNUsK2-gKu8wKnJSc4l4kaLNyi4UXEhhDSZY9NLUpK04tubQ125KAQm_DPfkHwjNHDeAUKXlEwoofXVcqL3djcpSclzwETTnqAhJYIUJas-Bv29aQpGeXmGRjEuCaGUCzpEn-827tQap6D0yrovbB3WagNBFfHbJr3oM79LxvuA49aHhPfWgI_X-A6cXmxUWGHlDJ6rCGvrIOKun1zZDJ6j006tI1z81TF6e7h_nT4Vs5fH5-ntrNCM81TUhikjOlXPgdQcSuCa1VrQdk4ZE1VLQDeUUZVPmVtGaC4abaqqzSOcAhuj8rBXBx9jgE5ug80v-5GUyN6PXMrej-z9yIOfDLX_IG2TSta77MKuj6M3BxTyp_YWgozaZhtgbACdpPH2GP4LoxSElQ |
CitedBy_id | crossref_primary_10_1016_j_displa_2025_103020 |
Cites_doi | 10.1007/978-3-031-19803-8_43 10.1109/CVPR.2016.465 10.1109/TPAMI.2015.2509974 10.1016/j.imavis.2022.104448 10.1109/ICPR56361.2022.9956082 10.1007/978-3-031-20047-2_20 10.1016/j.cviu.2023.103819 10.1109/ICCV48922.2021.01056 10.1109/CVPRW56347.2022.00392 10.1109/WACV51458.2022.00220 10.1109/CVPRW53098.2021.00510 10.1007/978-3-030-68238-5_39 10.1109/CVPRW53098.2021.00516 10.1016/j.jsampl.2023.100034 10.1007/978-3-319-48881-3_56 10.1109/ICCV.2019.00628 10.1007/s11263-022-01694-6 10.1109/CVPR.2013.239 10.1007/978-3-642-41184-7_43 10.1016/j.cviu.2008.01.009 10.1109/ICCV48922.2021.01028 10.2139/ssrn.4504147 10.1016/j.cviu.2017.04.011 10.1016/j.cviu.2023.103634 10.1007/s11042-020-09414-3 10.1016/j.cviu.2022.103508 10.1109/CVPRW56347.2022.00389 10.1109/CVPRW53098.2021.00514 10.1109/CVPR52688.2022.00853 10.1007/978-3-319-46448-0_27 10.1145/3561613.3561625 10.1109/TPAMI.2014.2388226 10.1109/CVPR.2016.91 10.1109/WACVW54805.2022.00075 10.1145/3343031.3350910 10.1109/WACV.2019.00179 10.1109/CVPRW59228.2023.00547 10.1109/CVPR52729.2023.01400 10.1109/ICCV48922.2021.01319 10.1109/3DV.2019.00042 10.1109/CVPR.2019.00441 10.1007/s11263-020-01393-0 10.1007/978-3-319-46448-0_2 10.1109/CVPRW50498.2020.00455 10.1007/978-3-031-20047-2_37 10.1109/ICCV.2019.00247 10.1109/CVPR.2017.148 10.1109/ACCESS.2022.3166949 10.1109/CVPR.2019.00479 10.1109/WACVW54805.2022.00073 10.1109/CVPRW56347.2022.00393 10.1007/978-3-319-48881-3_2 10.1609/aaai.v34i07.6758 10.1109/CVPRW56347.2022.00394 10.1109/CVPR.2010.5539960 10.1109/CVPR.2016.90 10.1109/WACV51458.2022.00153 10.1109/TPAMI.2014.2345390 10.1109/ICCV.2017.239 10.1109/CVPR42600.2020.00633 10.1109/CVPR52688.2022.01324 10.1016/j.cviu.2016.12.002 10.1016/j.cviu.2018.05.009 10.1007/978-3-030-69532-3_38 10.1109/WACVW58289.2023.00051 10.1016/j.neucom.2018.05.083 10.1109/CVPR.2017.143 10.1145/2964284.2964286 10.1109/CVPR.2019.00552 10.1109/CVPR52729.2023.00935 10.1109/ICCVW.2019.00282 10.1109/ICIP.2016.7533003 10.1007/978-3-319-46448-0_45 10.1016/j.cviu.2016.12.003 10.1109/WACV.2018.00046 10.1109/ICCV51070.2023.00879 10.1109/WACV56688.2023.00122 10.1109/CVPR46437.2021.01309 10.1109/ICCV.2017.128 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.cviu.2024.103978 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
ExternalDocumentID | 10_1016_j_cviu_2024_103978 S1077314224000596 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION |
ID | FETCH-LOGICAL-c344t-6d3ad9fa6be064e2e4c36c918b1339580ec7131a31a24c3d9c497cd55818b41e3 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Tue Jul 01 04:32:10 EDT 2025 Thu Apr 24 23:07:17 EDT 2025 Sat May 04 15:43:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-6d3ad9fa6be064e2e4c36c918b1339580ec7131a31a24c3d9c497cd55818b41e3 |
ORCID | 0000-0002-1672-667X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1077314224000596 |
ParticipantIDs | crossref_primary_10_1016_j_cviu_2024_103978 crossref_citationtrail_10_1016_j_cviu_2024_103978 elsevier_sciencedirect_doi_10_1016_j_cviu_2024_103978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chappa, N.V.R., Nguyen, P., Nelson, A.H., Seo, H.-S., Li, X., Dobbs, P.D., Luu, K., 2023. SPARTAN: Self-Supervised Spatiotemporal Transformers Approach to Group Activity Recognition. In: CVPRW. Wei, X., Bai, Y., Zheng, Y., Shi, D., Gong, Y., 2023. Autoregressive Visual Tracking. In: CVPR. Chen, Wang, Zhao, Lv, Niu (b14) 2022 Jocher, Stoken, Borovec, NanoCode012, ChristopherSTAN, Changyu, Laughing, tkianai, Hogan, lorenzomammana, yxNONG, AlexWang1900, Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, Ingham, Frederik, Guilhen, Hatovix, Poznanski, Fang, Yu, changyu98, Wang, Gupta, Akhtar, PetrDvoracek, Rai (b50) 2020 Müller, Bibi, Giancola, Alsubaihi, Ghanem (b73) 2018 Pidaparthy, H., Elder, J., 2019. Keep your eye on the puck: Automatic hockey videography. In: WACV. Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: CVPR. The Nielsen Company (b86) 2022 Rhodin, Meyer, Spörri, Müller, Constantin, Fua, Katircioglu, Salzmann (b81) 2018 Fan, H., Miththanthaya, H.A., Harshit, Rajan, S.R., Liu, X., Zou, Z., Lin, Y., Ling, H., 2021. Transparent Object Tracking Benchmark. In: ICCV. Held, D., Thrun, S., Savarese, S., 2016. Learning to Track at 100 FPS with Deep Regression Networks. In: ECCV. Qi, Li, Zhang, Wang (b77) 2022 Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., et al., 2023. The Tenth Visual Object Tracking VOT2022 Challenge Results. In: ECCVW. ISBN: 978-3-031-25085-9. Wu, Lim, Yang (b100) 2015 Kou, Y., Gao, J., Li, B., Wang, G., Hu, W., Wang, Y., Li, L., 2023. ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking. In: NeurIPS. Lu, Li, Guo, Zhao, Yang, Liu, Zhou (b62) 2023 Fang, Li, Tang, Xu, Zhu, Xiu, Li, Lu (b34) 2022 Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., 2019. ATOM: Accurate Tracking by Overlap Maximization. In: CVPR. Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H., 2022. Swintrack: A simple and strong baseline for transformer tracking. In: NeurIPS. . Ludwig, K., Harzig, P., Lienhart, R., 2022. Detecting Arbitrary Intermediate Keypoints for Human Pose Estimation With Vision Transformers. In: WACVW. Dendorfer, Osep, Milan, Schindler, Cremers, Reid, Roth, Leal-Taixé (b23) 2021 Cui, Zeng, Zhao, Yang, Wu, Wang (b20) 2023 International Ski and Snowboard Federation, ., URL Feng, Song, Yu, Chen, Zhao, He, Guan (b35) 2020 Mayer, C., Danelljan, M., Paudel, D.P., Gool, L.V., 2021. Learning Target Candidate Association to Keep Track of What Not to Track. In: ICCV. Yan, B., Peng, H., Fu, J., Wang, D., Lu, H., 2021. Learning Spatio-Temporal Transformer for Visual Tracking. In: ICCV. Cai, Y., Liu, J., Tang, J., Wu, G., 2023. Robust object modeling for visual tracking. In: ICCV. Ludwig, K., Kienzle, D., Lorenz, J., Lienhart, R., 2023. Detecting Arbitrary Keypoints on Limbs and Skis With Sparse Partly Correct Segmentation Masks. In: WACVW. Matsumura, S., Mikami, D., Saijo, N., Kashino, M., 2021. Spatiotemporal Motion Synchronization for Snowboard Big Air. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022. Koshkina, M., Pidaparthy, H., Elder, J.H., 2021. Contrastive Learning for Sports Video: Unsupervised Player Classification. In: CVPRW. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H., 2016. Fully-convolutional siamese networks for object tracking. In: ECCVW. Hartley, Zisserman (b40) 2003 Huang, L., Zhao, X., Huang, K., 2020. GlobalTrack: A Simple and Strong Baseline for Long-term Tracking. In: AAAI. Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR. Comaniciu, Ramesh, Meer (b18) 2000 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016. Ssd: Single shot multibox detector. In: ECCV. Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR. Ye, B., Chang, H., Ma, B., Shan, S., Chen, X., 2022. Joint feature learning and relation modeling for tracking: A one-stream framework. In: ECCV. International Olympic Committee (b48) 2023 Choi, Kwon, Lee (b16) 2018 Kristan, Perš, Perše, Kovačič (b56) 2009 Hu, Zhao, Huang, Huang (b45) 2023 The Nielsen Company (b88) 2022 Cheng, Li, Chen, Zeng (b15) 2023 Dunnhofer, M., Micheloni, C., 2022. CoCoLoT: Combining Complementary Trackers in Long-Term Visual Tracking. In: ICPR. Dunnhofer, Martinel, Micheloni (b28) 2021 Dunnhofer, M., Martinel, N., Luca Foresti, G., Micheloni, C., 2019. Visual tracking by means of deep reinforcement learning and an expert demonstrator. In: ICCVW. Lukeźič, Zajc, Vojíř, Matas, Kristan (b65) 2020 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: CVPR. Zhu, Y., Yan, W.Q., 2022. Ski Fall Detection from Digital Images Using Deep Learning. In: International Conference on Control and Computer Vision. Štepec, D., Skočaj, D., 2022. Video-Based Ski Jump Style Scoring From Pose Trajectory. In: WACVW. Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X., 2020. High-Performance Long-Term Tracking With Meta-Updater. In: CVPR. Hare, Golodetz, Saffari, Vineet, Cheng, Hicks, Torr (b39) 2016 The Nielsen Company (b87) 2022 Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.K., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., He, L., Zhang, Y., Yan, S., Yang, J., Fernández, G., et al., 2020. The Eighth Visual Object Tracking VOT2020 Challenge Results. In: Bartoli, A., Fusiello, A. (Eds.), ECCVW. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J., 2019. SIAMRPN++: Evolution of siamese visual tracking with very deep networks. In: CVPR. Cioppa, A., Giancola, S., Deliège, A., Kang, L., Zhou, X., Cheng, Z., Ghanem, B., Van Droogenbroeck, M., 2022. SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos. In: CVPRW. Vandeghen, R., Cioppa, A., Van Droogenbroeck, M., 2022. Semi-Supervised Training to Improve Player and Ball Detection in Soccer. In: CVPRW. Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X., 2019. ’Skimming-perusal’ tracking: A framework for real-time and robust long-term tracking. In: ICCV. Thomas, Gade, Moeslund, Carr, Hilton (b91) 2017 Theiner, J., Gritz, W., Müller-Budack, E., Rein, R., Memmert, D., Ewerth, R., 2022. Extraction of Positional Player Data From Broadcast Soccer Videos. In: WACV. Drory, Zhu, Li, Hartley (b24) 2017 Mauthner, Koch, Tilp, Bischof (b68) 2007 Nam, H., Han, B., 2016. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. In: CVPR. (ISSN: 10636919) ISBN: 9781467388504. Mayer, C., Danelljan, M., Bhat, G., Paul, M., Paudel, D.P., Yu, F., Van Gool, L., 2022. Transforming model prediction for tracking. In: CVPR. Vats, K., Fani, M., Clausi, D.A., Zelek, J., 2021. Puck Localization and Multi-Task Event Recognition in Broadcast Hockey Videos. In: CVPRW. Chen, X., Peng, H., Wang, D., Lu, H., Hu, H., 2023. SeqTrack: Sequence to Sequence Learning for Visual Object Tracking. In: CVPR. Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H., 2019. LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking. In: CVPR. Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B., 2021. Canonpose: Self-supervised monocular 3d human pose estimation in the wild. In: CVPR. Wang, Deng (b97) 2018; 312 Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Cehovin, L., Lukežič, A., Drbohlav, O., Käpylä, J., Häger, G., Yan, S., Yang, J., Zhang, Z., Fernández, G., 2021. The Ninth Visual Object Tracking VOT2021 Challenge Results. In: ICCVW. Vats, K., McNally, W., Walters, P., Clausi, D.A., Zelek, J.S., 2022. Ice Hockey Player Identification via Transformers and Weakly Supervised Learning. In: CVPRW. Bachmann, R., Spörri, J., Fua, P., Rhodin, H., 2019. Motion Capture from Pan-Tilt Cameras with Unknown Orientation. In: International Conference on 3D Vision. 3DV. Quiroga, J., Carrillo, H., Maldonado, E., Ruiz, J., Zapata, L.M., 2020. As Seen on TV: Automatic Basketball Video Production Using Gaussian-Based Actionness and Game States Recognition. In: CVPRW. Borsuk, V., Vei, R., Kupyn, O., Martyniuk, T., Krashenyi, I., Matas, J., 2022. FEAR: Fast, efficient, accurate and robust visual tracker. In: ECCV. Dunnhofer, M., Martinel, N., Micheloni, C., 2020. Tracking-by-trackers with a distilled and reinforced model. In: ACCV. Morimitsu, Bloch, Cesar-Jr (b71) 2017 Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K., Naemura, T., 2022. Pass Receiver Prediction in Soccer Using Video and Players’ Trajectories. In: CVPRW. Theiner, J., Ewerth, R., 2023. TVCalib: Camera Calibration for Sports Field Registration in Soccer. In: WACV. Zwölfer, M., Heinrich, D., Schindelwig, K., Wandt, B., Rhodin, H., Spoerri, J., Nachbauer, W., 2021. Improved 2D Keypoint Detection in Out-of-Balance and Fall Situations – combining input rotations and a kinematic model. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022. Bettadapura, V., Pantofaru, C., Essa, I., 2016. Leveraging contextual cues for generating basketball highlights. In: ACM MM. Huang, Zhao, Huang (b46) 2019 Yan, B., Jiang, Y., Sun, P., Wang, D., Yuan, Z., Luo, P., Lu, H., 2022. Towards grand unification of object tracking. In: ECCV. Cui, Y., Jiang, C., Wang, L., Wu, G., 2022. Mixformer: End-to-end tracking with iterative mixed attention. In: CVPR. Sekachev, Manovich, Zhiltsov, Zhavoronkov, Kalinin, Hoff, TOsmanov, Kruchinin, Zankevich, DmitriySidnev, Markelov, Johannes222, Chenuet, a-andre, telenachos, Melnikov, Kim, Ilouz, Glazov, Priya4607, Tehrani, Jeong, Skubriev, Yonekura, vugia truong, zliang7, lizhming, Truong (b83) 2020 Ren, He, Girshick, Sun (b80) 2015 Wang, J., Qiu, K., Peng, H., Fu, J., Zhu, J., 2019. Ai coach: Deep human pose estimation and analysis for personalized athletic training assistance. In: ACM MM. Vanat (b92) 2022 Bhat, G., Danelljan, M., Van 10.1016/j.cviu.2024.103978_b63 10.1016/j.cviu.2024.103978_b107 10.1016/j.cviu.2024.103978_b64 10.1016/j.cviu.2024.103978_b61 10.1016/j.cviu.2024.103978_b60 Jocher (10.1016/j.cviu.2024.103978_b50) 2020 10.1016/j.cviu.2024.103978_b67 10.1016/j.cviu.2024.103978_b66 10.1016/j.cviu.2024.103978_b69 Sekachev (10.1016/j.cviu.2024.103978_b83) 2020 Mauthner (10.1016/j.cviu.2024.103978_b68) 2007 Lu (10.1016/j.cviu.2024.103978_b62) 2023 10.1016/j.cviu.2024.103978_b101 10.1016/j.cviu.2024.103978_b102 10.1016/j.cviu.2024.103978_b103 10.1016/j.cviu.2024.103978_b104 10.1016/j.cviu.2024.103978_b105 Hu (10.1016/j.cviu.2024.103978_b45) 2023 10.1016/j.cviu.2024.103978_b106 Drory (10.1016/j.cviu.2024.103978_b24) 2017 10.1016/j.cviu.2024.103978_b74 10.1016/j.cviu.2024.103978_b76 10.1016/j.cviu.2024.103978_b75 10.1016/j.cviu.2024.103978_b70 10.1016/j.cviu.2024.103978_b72 The Nielsen Company (10.1016/j.cviu.2024.103978_b86) 2022 10.1016/j.cviu.2024.103978_b78 10.1016/j.cviu.2024.103978_b79 Huang (10.1016/j.cviu.2024.103978_b46) 2019 International Olympic Committee (10.1016/j.cviu.2024.103978_b48) 2023 Ren (10.1016/j.cviu.2024.103978_b80) 2015 10.1016/j.cviu.2024.103978_b85 10.1016/j.cviu.2024.103978_b82 10.1016/j.cviu.2024.103978_b5 10.1016/j.cviu.2024.103978_b4 10.1016/j.cviu.2024.103978_b7 10.1016/j.cviu.2024.103978_b6 10.1016/j.cviu.2024.103978_b1 10.1016/j.cviu.2024.103978_b89 10.1016/j.cviu.2024.103978_b3 10.1016/j.cviu.2024.103978_b2 10.1016/j.cviu.2024.103978_b9 10.1016/j.cviu.2024.103978_b8 10.1016/j.cviu.2024.103978_b90 Chen (10.1016/j.cviu.2024.103978_b14) 2022 Fang (10.1016/j.cviu.2024.103978_b34) 2022 10.1016/j.cviu.2024.103978_b96 10.1016/j.cviu.2024.103978_b95 10.1016/j.cviu.2024.103978_b10 10.1016/j.cviu.2024.103978_b98 Dunnhofer (10.1016/j.cviu.2024.103978_b28) 2021 Kristan (10.1016/j.cviu.2024.103978_b56) 2009 10.1016/j.cviu.2024.103978_b94 10.1016/j.cviu.2024.103978_b93 10.1016/j.cviu.2024.103978_b17 10.1016/j.cviu.2024.103978_b12 10.1016/j.cviu.2024.103978_b99 10.1016/j.cviu.2024.103978_b13 Choi (10.1016/j.cviu.2024.103978_b16) 2018 The Nielsen Company (10.1016/j.cviu.2024.103978_b88) 2022 10.1016/j.cviu.2024.103978_b19 Henriques (10.1016/j.cviu.2024.103978_b43) 2015 Morimitsu (10.1016/j.cviu.2024.103978_b71) 2017 Hare (10.1016/j.cviu.2024.103978_b39) 2016 Qi (10.1016/j.cviu.2024.103978_b77) 2022 10.1016/j.cviu.2024.103978_b21 10.1016/j.cviu.2024.103978_b27 10.1016/j.cviu.2024.103978_b26 10.1016/j.cviu.2024.103978_b29 10.1016/j.cviu.2024.103978_b22 Cui (10.1016/j.cviu.2024.103978_b20) 2023 Dendorfer (10.1016/j.cviu.2024.103978_b23) 2021 Rhodin (10.1016/j.cviu.2024.103978_b81) 2018 The Nielsen Company (10.1016/j.cviu.2024.103978_b87) 2022 Čehovin (10.1016/j.cviu.2024.103978_b11) 2013 10.1016/j.cviu.2024.103978_b32 10.1016/j.cviu.2024.103978_b31 Wu (10.1016/j.cviu.2024.103978_b100) 2015 Ge (10.1016/j.cviu.2024.103978_b38) 2021 10.1016/j.cviu.2024.103978_b37 Müller (10.1016/j.cviu.2024.103978_b73) 2018 10.1016/j.cviu.2024.103978_b33 10.1016/j.cviu.2024.103978_b36 Wang (10.1016/j.cviu.2024.103978_b97) 2018; 312 Cheng (10.1016/j.cviu.2024.103978_b15) 2023 10.1016/j.cviu.2024.103978_b41 10.1016/j.cviu.2024.103978_b42 10.1016/j.cviu.2024.103978_b49 10.1016/j.cviu.2024.103978_b44 Dunnhofer (10.1016/j.cviu.2024.103978_b30) 2022 10.1016/j.cviu.2024.103978_b47 Hartley (10.1016/j.cviu.2024.103978_b40) 2003 10.1016/j.cviu.2024.103978_b52 10.1016/j.cviu.2024.103978_b51 10.1016/j.cviu.2024.103978_b54 10.1016/j.cviu.2024.103978_b53 Vanat (10.1016/j.cviu.2024.103978_b92) 2022 10.1016/j.cviu.2024.103978_b59 10.1016/j.cviu.2024.103978_b55 10.1016/j.cviu.2024.103978_b58 10.1016/j.cviu.2024.103978_b57 Lukeźič (10.1016/j.cviu.2024.103978_b65) 2020 Dunnhofer (10.1016/j.cviu.2024.103978_b25) 2023 Feng (10.1016/j.cviu.2024.103978_b35) 2020 Thomas (10.1016/j.cviu.2024.103978_b91) 2017 Comaniciu (10.1016/j.cviu.2024.103978_b18) 2000 Steinkellner (10.1016/j.cviu.2024.103978_b84) 2021 |
References_xml | – reference: Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime tracking. In: ICIP. – reference: Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M., 2010. Visual object tracking using adaptive correlation filters. In: CVPR. – year: 2023 ident: b25 article-title: Visual object tracking in first person vision publication-title: Int. J. Comput. Vis. – reference: Wei, X., Bai, Y., Zheng, Y., Shi, D., Gong, Y., 2023. Autoregressive Visual Tracking. In: CVPR. – reference: Li, X., Chuah, M.C., 2018. Rehar: Robust and efficient human activity recognition. In: WACV. – year: 2015 ident: b43 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Huang, L., Zhao, X., Huang, K., 2020. GlobalTrack: A Simple and Strong Baseline for Long-term Tracking. In: AAAI. – year: 2018 ident: b16 article-title: Real-time visual tracking by deep reinforced decision making publication-title: Comput. Vis. Image Underst. – year: 2009 ident: b56 article-title: Closed-world tracking of multiple interacting targets for indoor-sports applications publication-title: Comput. Vis. Image Underst. – year: 2018 ident: b81 article-title: Learning monocular 3D human pose estimation from multi-view images publication-title: CVPR – reference: Matsumura, S., Mikami, D., Saijo, N., Kashino, M., 2021. Spatiotemporal Motion Synchronization for Snowboard Big Air. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022. – reference: Quiroga, J., Carrillo, H., Maldonado, E., Ruiz, J., Zapata, L.M., 2020. As Seen on TV: Automatic Basketball Video Production Using Gaussian-Based Actionness and Game States Recognition. In: CVPRW. – year: 2013 ident: b11 article-title: Robust visual tracking using an adaptive coupled-layer visual model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Held, D., Thrun, S., Savarese, S., 2016. Learning to Track at 100 FPS with Deep Regression Networks. In: ECCV. – reference: Ludwig, K., Harzig, P., Lienhart, R., 2022. Detecting Arbitrary Intermediate Keypoints for Human Pose Estimation With Vision Transformers. In: WACVW. – reference: Vats, K., McNally, W., Walters, P., Clausi, D.A., Zelek, J.S., 2022. Ice Hockey Player Identification via Transformers and Weakly Supervised Learning. In: CVPRW. – reference: Gadde, C.A., Jawahar, C., 2022. Transductive Weakly-Supervised Player Detection Using Soccer Broadcast Videos. In: WACV. – year: 2018 ident: b73 article-title: TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild publication-title: ECCV – reference: Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K., Naemura, T., 2022. Pass Receiver Prediction in Soccer Using Video and Players’ Trajectories. In: CVPRW. – reference: Dunnhofer, M., Micheloni, C., 2022. CoCoLoT: Combining Complementary Trackers in Long-Term Visual Tracking. In: ICPR. – reference: Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X., 2019. ’Skimming-perusal’ tracking: A framework for real-time and robust long-term tracking. In: ICCV. – reference: Pidaparthy, H., Dowling, M.H., Elder, J.H., 2021. Automatic Play Segmentation of Hockey Videos. In: CVPRW. – reference: Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S., 2017. Need for Speed: A Benchmark for Higher Frame Rate Object Tracking. In: ICCV. – reference: Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B., 2021. Canonpose: Self-supervised monocular 3d human pose estimation in the wild. In: CVPR. – reference: Nam, H., Han, B., 2016. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. In: CVPR. (ISSN: 10636919) ISBN: 9781467388504. – year: 2021 ident: b38 article-title: Yolox: Exceeding yolo series in 2021 – reference: Yan, B., Jiang, Y., Sun, P., Wang, D., Yuan, Z., Luo, P., Lu, H., 2022. Towards grand unification of object tracking. In: ECCV. – year: 2016 ident: b39 article-title: Struck: Structured output tracking with kernels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: b65 article-title: Performance evaluation methodology for long-term single-object tracking publication-title: IEEE Trans. Cybern. – reference: Cui, Y., Jiang, C., Wang, L., Wu, G., 2022. Mixformer: End-to-end tracking with iterative mixed attention. In: CVPR. – reference: Vats, K., Fani, M., Clausi, D.A., Zelek, J., 2021. Puck Localization and Multi-Task Event Recognition in Broadcast Hockey Videos. In: CVPRW. – reference: Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.K., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., He, L., Zhang, Y., Yan, S., Yang, J., Fernández, G., et al., 2020. The Eighth Visual Object Tracking VOT2020 Challenge Results. In: Bartoli, A., Fusiello, A. (Eds.), ECCVW. – reference: Yan, B., Peng, H., Fu, J., Wang, D., Lu, H., 2021. Learning Spatio-Temporal Transformer for Visual Tracking. In: ICCV. – reference: Dunnhofer, M., Sordi, L., Micheloni, C., 2023b. Visualizing Skiers’ Trajectories in Monocular Videos. In: CVPRW. – reference: Kou, Y., Gao, J., Li, B., Wang, G., Hu, W., Wang, Y., Li, L., 2023. ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking. In: NeurIPS. – reference: Chen, X., Peng, H., Wang, D., Lu, H., Hu, H., 2023. SeqTrack: Sequence to Sequence Learning for Visual Object Tracking. In: CVPR. – reference: Mueller, M., Smith, N., Ghanem, B., 2016. A Benchmark and Simulator for UAV Tracking. In: ECCV. – reference: Dunnhofer, M., Martinel, N., Micheloni, C., 2020. Tracking-by-trackers with a distilled and reinforced model. In: ACCV. – year: 2023 ident: b62 article-title: Siamese graph attention networks for robust visual object tracking publication-title: Comput. Vis. Image Underst. – reference: Cioppa, A., Giancola, S., Deliège, A., Kang, L., Zhou, X., Cheng, Z., Ghanem, B., Van Droogenbroeck, M., 2022. SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos. In: CVPRW. – start-page: 28971 year: 2020 end-page: 28992 ident: b35 article-title: SSET: a dataset for shot segmentation, event detection, player tracking in soccer videos publication-title: Multimedia Tools Appl. – year: 2022 ident: b30 article-title: Combining complementary trackers for enhanced long-term visual object tracking publication-title: Image Vis. Comput. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: CVPR. – year: 2022 ident: b86 article-title: FIS alpine skiing world cup report 2021-22 – year: 2021 ident: b28 article-title: Weakly-supervised domain adaptation of deep regression trackers via reinforced knowledge distillation publication-title: IEEE RA-L – reference: Wang, J., Qiu, K., Peng, H., Fu, J., Zhu, J., 2019. Ai coach: Deep human pose estimation and analysis for personalized athletic training assistance. In: ACM MM. – year: 2021 ident: b84 article-title: Evaluation of object detection systems and video tracking in skiing videos publication-title: 2021 International Conference on Content-Based Multimedia Indexing – year: 2003 ident: b40 article-title: Multiple View Geometry in Computer Vision – reference: Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J., 2019. SIAMRPN++: Evolution of siamese visual tracking with very deep networks. In: CVPR. – reference: Mayer, C., Danelljan, M., Paudel, D.P., Gool, L.V., 2021. Learning Target Candidate Association to Keep Track of What Not to Track. In: ICCV. – reference: Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Cehovin, L., Lukežič, A., Drbohlav, O., Käpylä, J., Häger, G., Yan, S., Yang, J., Zhang, Z., Fernández, G., 2021. The Ninth Visual Object Tracking VOT2021 Challenge Results. In: ICCVW. – reference: Bettadapura, V., Pantofaru, C., Essa, I., 2016. Leveraging contextual cues for generating basketball highlights. In: ACM MM. – reference: Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X., 2020. High-Performance Long-Term Tracking With Meta-Updater. In: CVPR. – reference: Bachmann, R., Spörri, J., Fua, P., Rhodin, H., 2019. Motion Capture from Pan-Tilt Cameras with Unknown Orientation. In: International Conference on 3D Vision. 3DV. – reference: Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H., 2019. LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking. In: CVPR. – reference: Pidaparthy, H., Elder, J., 2019. Keep your eye on the puck: Automatic hockey videography. In: WACV. – year: 2022 ident: b88 article-title: Viessmann FIS ski jumping world cup men 2021–2022 – reference: Zhu, Y., Yan, W.Q., 2022. Ski Fall Detection from Digital Images Using Deep Learning. In: International Conference on Control and Computer Vision. – reference: Borsuk, V., Vei, R., Kupyn, O., Martyniuk, T., Krashenyi, I., Matas, J., 2022. FEAR: Fast, efficient, accurate and robust visual tracker. In: ECCV. – reference: Vandeghen, R., Cioppa, A., Van Droogenbroeck, M., 2022. Semi-Supervised Training to Improve Player and Ball Detection in Soccer. In: CVPRW. – year: 2015 ident: b80 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: NeurIPS – reference: Mayer, C., Danelljan, M., Bhat, G., Paul, M., Paudel, D.P., Yu, F., Van Gool, L., 2022. Transforming model prediction for tracking. In: CVPR. – reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: CVPR. – year: 2015 ident: b100 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Chappa, N.V.R., Nguyen, P., Nelson, A.H., Seo, H.-S., Li, X., Dobbs, P.D., Luu, K., 2023. SPARTAN: Self-Supervised Spatiotemporal Transformers Approach to Group Activity Recognition. In: CVPRW. – reference: Bhat, G., Danelljan, M., Van Gool, L., Timofte, R., 2019. Learning Discriminative Model Prediction for Tracking. In: ICCV. – year: 2023 ident: b48 article-title: History of alpine skiing – year: 2023 ident: b45 article-title: Global instance tracking: Locating target more like humans publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 312 year: 2018 ident: b97 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – reference: Dunnhofer, M., Martinel, N., Luca Foresti, G., Micheloni, C., 2019. Visual tracking by means of deep reinforcement learning and an expert demonstrator. In: ICCVW. – reference: Fan, H., Miththanthaya, H.A., Harshit, Rajan, S.R., Liu, X., Zou, Z., Lin, Y., Ling, H., 2021. Transparent Object Tracking Benchmark. In: ICCV. – reference: Theiner, J., Ewerth, R., 2023. TVCalib: Camera Calibration for Sports Field Registration in Soccer. In: WACV. – reference: International Ski and Snowboard Federation, ., URL: – reference: Cai, Y., Liu, J., Tang, J., Wu, G., 2023. Robust object modeling for visual tracking. In: ICCV. – reference: Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., et al., 2023. The Tenth Visual Object Tracking VOT2022 Challenge Results. In: ECCVW. ISBN: 978-3-031-25085-9. – year: 2017 ident: b24 article-title: Automated detection and tracking of slalom paddlers from broadcast image sequences using cascade classifiers and discriminative correlation filters publication-title: Comput. Vis. Image Underst. – year: 2023 ident: b15 article-title: Snow mask guided adaptive residual network for image snow removal publication-title: Comput. Vis. Image Underst. – reference: Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C., 2016. Performance measures and a data set for multi-target, multi-camera tracking. In: ECCV. – year: 2007 ident: b68 article-title: Visual tracking of athletes in beach volleyball using a single camera publication-title: Int. J. Comput. Sci. Sport – reference: Štepec, D., Skočaj, D., 2022. Video-Based Ski Jump Style Scoring From Pose Trajectory. In: WACVW. – year: 2020 ident: b83 article-title: Opencv/cvat: v1.1.0 – year: 2022 ident: b92 article-title: 2022 International report on snow & mountain tourism – reference: Ludwig, K., Kienzle, D., Lorenz, J., Lienhart, R., 2023. Detecting Arbitrary Keypoints on Limbs and Skis With Sparse Partly Correct Segmentation Masks. In: WACVW. – reference: Bertasius, G., Soo Park, H., Yu, S.X., Shi, J., 2017. Am I a baller? basketball performance assessment from first-person videos. In: CVPR. – year: 2022 ident: b14 article-title: Visual object tracking: A survey publication-title: Comput. Vis. Image Underst. – year: 2000 ident: b18 article-title: Real-time tracking of non-rigid objects using mean shift publication-title: CVPR – year: 2021 ident: b23 article-title: Motchallenge: A benchmark for single-camera multiple target tracking publication-title: Int. J. Comput. Vis. – reference: Theiner, J., Gritz, W., Müller-Budack, E., Rein, R., Memmert, D., Ewerth, R., 2022. Extraction of Positional Player Data From Broadcast Soccer Videos. In: WACV. – reference: Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H., 2016. Fully-convolutional siamese networks for object tracking. In: ECCVW. – reference: Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., 2019. ATOM: Accurate Tracking by Overlap Maximization. In: CVPR. – year: 2022 ident: b34 article-title: Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: b77 article-title: Alpine skiing tracking method based on deep learning and correlation filter publication-title: IEEE Access – reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016. Ssd: Single shot multibox detector. In: ECCV. – year: 2020 ident: b50 article-title: Ultralytics/yolov5: v3.1 - Bug fixes and performance improvements – reference: Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR. – reference: Ye, B., Chang, H., Ma, B., Shan, S., Chen, X., 2022. Joint feature learning and relation modeling for tracking: A one-stream framework. In: ECCV. – reference: Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H., 2022. Swintrack: A simple and strong baseline for transformer tracking. In: NeurIPS. – reference: Zwölfer, M., Heinrich, D., Schindelwig, K., Wandt, B., Rhodin, H., Spoerri, J., Nachbauer, W., 2021. Improved 2D Keypoint Detection in Out-of-Balance and Fall Situations – combining input rotations and a kinematic model. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022. – year: 2022 ident: b87 article-title: FIS freestyle ski world cup report 2021-22 – year: 2017 ident: b91 article-title: Computer vision for sports: Current applications and research topics publication-title: Comput. Vis. Image Underst. – reference: Maresca, M.E., Petrosino, A., 2013. MATRIOSKA: A multi-level approach to fast tracking by learning. In: International Conference on Image Analysis and Processing. ICIAP. – reference: . – year: 2023 ident: b20 article-title: SportsMOT: A large multi-object tracking dataset in multiple sports scenes – reference: Koshkina, M., Pidaparthy, H., Elder, J.H., 2021. Contrastive Learning for Sports Video: Unsupervised Player Classification. In: CVPRW. – reference: Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR. – year: 2017 ident: b71 article-title: Exploring structure for long-term tracking of multiple objects in sports videos publication-title: Comput. Vis. Image Underst. – year: 2019 ident: b46 article-title: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Liu, J., Carr, P., Collins, R.T., Liu, Y., 2013. Tracking Sports Players with Context-Conditioned Motion Models. In: CVPR. – ident: 10.1016/j.cviu.2024.103978_b101 doi: 10.1007/978-3-031-19803-8_43 – ident: 10.1016/j.cviu.2024.103978_b74 doi: 10.1109/CVPR.2016.465 – year: 2016 ident: 10.1016/j.cviu.2024.103978_b39 article-title: Struck: Structured output tracking with kernels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2509974 – year: 2003 ident: 10.1016/j.cviu.2024.103978_b40 – year: 2013 ident: 10.1016/j.cviu.2024.103978_b11 article-title: Robust visual tracking using an adaptive coupled-layer visual model publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: 10.1016/j.cviu.2024.103978_b30 article-title: Combining complementary trackers for enhanced long-term visual object tracking publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2022.104448 – ident: 10.1016/j.cviu.2024.103978_b29 doi: 10.1109/ICPR56361.2022.9956082 – ident: 10.1016/j.cviu.2024.103978_b104 doi: 10.1007/978-3-031-20047-2_20 – year: 2023 ident: 10.1016/j.cviu.2024.103978_b15 article-title: Snow mask guided adaptive residual network for image snow removal publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2023.103819 – ident: 10.1016/j.cviu.2024.103978_b33 doi: 10.1109/ICCV48922.2021.01056 – ident: 10.1016/j.cviu.2024.103978_b93 doi: 10.1109/CVPRW56347.2022.00392 – ident: 10.1016/j.cviu.2024.103978_b36 doi: 10.1109/WACV51458.2022.00220 – ident: 10.1016/j.cviu.2024.103978_b51 doi: 10.1109/CVPRW53098.2021.00510 – ident: 10.1016/j.cviu.2024.103978_b54 doi: 10.1007/978-3-030-68238-5_39 – year: 2020 ident: 10.1016/j.cviu.2024.103978_b65 article-title: Performance evaluation methodology for long-term single-object tracking publication-title: IEEE Trans. Cybern. – ident: 10.1016/j.cviu.2024.103978_b52 – ident: 10.1016/j.cviu.2024.103978_b75 doi: 10.1109/CVPRW53098.2021.00516 – ident: 10.1016/j.cviu.2024.103978_b107 doi: 10.1016/j.jsampl.2023.100034 – ident: 10.1016/j.cviu.2024.103978_b3 doi: 10.1007/978-3-319-48881-3_56 – ident: 10.1016/j.cviu.2024.103978_b6 doi: 10.1109/ICCV.2019.00628 – year: 2023 ident: 10.1016/j.cviu.2024.103978_b25 article-title: Visual object tracking in first person vision publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-022-01694-6 – ident: 10.1016/j.cviu.2024.103978_b61 doi: 10.1109/CVPR.2013.239 – ident: 10.1016/j.cviu.2024.103978_b66 doi: 10.1007/978-3-642-41184-7_43 – year: 2023 ident: 10.1016/j.cviu.2024.103978_b45 article-title: Global instance tracking: Locating target more like humans publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2009 ident: 10.1016/j.cviu.2024.103978_b56 article-title: Closed-world tracking of multiple interacting targets for indoor-sports applications publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2008.01.009 – year: 2015 ident: 10.1016/j.cviu.2024.103978_b80 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: NeurIPS – ident: 10.1016/j.cviu.2024.103978_b102 doi: 10.1109/ICCV48922.2021.01028 – ident: 10.1016/j.cviu.2024.103978_b12 doi: 10.2139/ssrn.4504147 – year: 2023 ident: 10.1016/j.cviu.2024.103978_b20 – ident: 10.1016/j.cviu.2024.103978_b49 – year: 2017 ident: 10.1016/j.cviu.2024.103978_b91 article-title: Computer vision for sports: Current applications and research topics publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.04.011 – year: 2023 ident: 10.1016/j.cviu.2024.103978_b62 article-title: Siamese graph attention networks for robust visual object tracking publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2023.103634 – start-page: 28971 year: 2020 ident: 10.1016/j.cviu.2024.103978_b35 article-title: SSET: a dataset for shot segmentation, event detection, player tracking in soccer videos publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-09414-3 – year: 2022 ident: 10.1016/j.cviu.2024.103978_b14 article-title: Visual object tracking: A survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2022.103508 – year: 2000 ident: 10.1016/j.cviu.2024.103978_b18 article-title: Real-time tracking of non-rigid objects using mean shift – ident: 10.1016/j.cviu.2024.103978_b95 doi: 10.1109/CVPRW56347.2022.00389 – year: 2007 ident: 10.1016/j.cviu.2024.103978_b68 article-title: Visual tracking of athletes in beach volleyball using a single camera publication-title: Int. J. Comput. Sci. Sport – ident: 10.1016/j.cviu.2024.103978_b55 – ident: 10.1016/j.cviu.2024.103978_b94 doi: 10.1109/CVPRW53098.2021.00514 – ident: 10.1016/j.cviu.2024.103978_b69 doi: 10.1109/CVPR52688.2022.00853 – ident: 10.1016/j.cviu.2024.103978_b72 doi: 10.1007/978-3-319-46448-0_27 – ident: 10.1016/j.cviu.2024.103978_b106 doi: 10.1145/3561613.3561625 – year: 2015 ident: 10.1016/j.cviu.2024.103978_b100 article-title: Object tracking benchmark publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2388226 – ident: 10.1016/j.cviu.2024.103978_b79 doi: 10.1109/CVPR.2016.91 – ident: 10.1016/j.cviu.2024.103978_b85 doi: 10.1109/WACVW54805.2022.00075 – ident: 10.1016/j.cviu.2024.103978_b98 doi: 10.1145/3343031.3350910 – ident: 10.1016/j.cviu.2024.103978_b76 doi: 10.1109/WACV.2019.00179 – ident: 10.1016/j.cviu.2024.103978_b31 doi: 10.1109/CVPRW59228.2023.00547 – ident: 10.1016/j.cviu.2024.103978_b13 doi: 10.1109/CVPR52729.2023.01400 – year: 2021 ident: 10.1016/j.cviu.2024.103978_b84 article-title: Evaluation of object detection systems and video tracking in skiing videos – ident: 10.1016/j.cviu.2024.103978_b70 doi: 10.1109/ICCV48922.2021.01319 – ident: 10.1016/j.cviu.2024.103978_b1 doi: 10.1109/3DV.2019.00042 – year: 2018 ident: 10.1016/j.cviu.2024.103978_b73 article-title: TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild – ident: 10.1016/j.cviu.2024.103978_b58 doi: 10.1109/CVPR.2019.00441 – year: 2021 ident: 10.1016/j.cviu.2024.103978_b23 article-title: Motchallenge: A benchmark for single-camera multiple target tracking publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-020-01393-0 – ident: 10.1016/j.cviu.2024.103978_b60 doi: 10.1007/978-3-319-46448-0_2 – ident: 10.1016/j.cviu.2024.103978_b78 doi: 10.1109/CVPRW50498.2020.00455 – year: 2022 ident: 10.1016/j.cviu.2024.103978_b88 – ident: 10.1016/j.cviu.2024.103978_b8 doi: 10.1007/978-3-031-20047-2_37 – ident: 10.1016/j.cviu.2024.103978_b103 doi: 10.1109/ICCV.2019.00247 – ident: 10.1016/j.cviu.2024.103978_b53 – year: 2023 ident: 10.1016/j.cviu.2024.103978_b48 – ident: 10.1016/j.cviu.2024.103978_b105 doi: 10.1109/CVPR.2017.148 – year: 2019 ident: 10.1016/j.cviu.2024.103978_b46 article-title: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: 10.1016/j.cviu.2024.103978_b77 article-title: Alpine skiing tracking method based on deep learning and correlation filter publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166949 – ident: 10.1016/j.cviu.2024.103978_b22 doi: 10.1109/CVPR.2019.00479 – ident: 10.1016/j.cviu.2024.103978_b67 – year: 2021 ident: 10.1016/j.cviu.2024.103978_b38 – ident: 10.1016/j.cviu.2024.103978_b63 doi: 10.1109/WACVW54805.2022.00073 – ident: 10.1016/j.cviu.2024.103978_b17 doi: 10.1109/CVPRW56347.2022.00393 – ident: 10.1016/j.cviu.2024.103978_b82 doi: 10.1007/978-3-319-48881-3_2 – ident: 10.1016/j.cviu.2024.103978_b47 doi: 10.1609/aaai.v34i07.6758 – ident: 10.1016/j.cviu.2024.103978_b44 doi: 10.1109/CVPRW56347.2022.00394 – ident: 10.1016/j.cviu.2024.103978_b7 doi: 10.1109/CVPR.2010.5539960 – year: 2022 ident: 10.1016/j.cviu.2024.103978_b87 – ident: 10.1016/j.cviu.2024.103978_b41 doi: 10.1109/CVPR.2016.90 – year: 2022 ident: 10.1016/j.cviu.2024.103978_b34 article-title: Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: 10.1016/j.cviu.2024.103978_b81 article-title: Learning monocular 3D human pose estimation from multi-view images – ident: 10.1016/j.cviu.2024.103978_b90 doi: 10.1109/WACV51458.2022.00153 – year: 2015 ident: 10.1016/j.cviu.2024.103978_b43 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345390 – ident: 10.1016/j.cviu.2024.103978_b2 doi: 10.1109/ICCV.2017.239 – ident: 10.1016/j.cviu.2024.103978_b21 doi: 10.1109/CVPR42600.2020.00633 – ident: 10.1016/j.cviu.2024.103978_b59 – year: 2020 ident: 10.1016/j.cviu.2024.103978_b83 – year: 2021 ident: 10.1016/j.cviu.2024.103978_b28 article-title: Weakly-supervised domain adaptation of deep regression trackers via reinforced knowledge distillation publication-title: IEEE RA-L – ident: 10.1016/j.cviu.2024.103978_b19 doi: 10.1109/CVPR52688.2022.01324 – year: 2017 ident: 10.1016/j.cviu.2024.103978_b24 article-title: Automated detection and tracking of slalom paddlers from broadcast image sequences using cascade classifiers and discriminative correlation filters publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.12.002 – year: 2018 ident: 10.1016/j.cviu.2024.103978_b16 article-title: Real-time visual tracking by deep reinforced decision making publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.05.009 – ident: 10.1016/j.cviu.2024.103978_b27 doi: 10.1007/978-3-030-69532-3_38 – ident: 10.1016/j.cviu.2024.103978_b64 doi: 10.1109/WACVW58289.2023.00051 – volume: 312 year: 2018 ident: 10.1016/j.cviu.2024.103978_b97 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – year: 2022 ident: 10.1016/j.cviu.2024.103978_b86 – year: 2022 ident: 10.1016/j.cviu.2024.103978_b92 – ident: 10.1016/j.cviu.2024.103978_b10 doi: 10.1109/CVPR.2017.143 – ident: 10.1016/j.cviu.2024.103978_b4 doi: 10.1145/2964284.2964286 – ident: 10.1016/j.cviu.2024.103978_b32 doi: 10.1109/CVPR.2019.00552 – year: 2020 ident: 10.1016/j.cviu.2024.103978_b50 – ident: 10.1016/j.cviu.2024.103978_b99 doi: 10.1109/CVPR52729.2023.00935 – ident: 10.1016/j.cviu.2024.103978_b26 doi: 10.1109/ICCVW.2019.00282 – ident: 10.1016/j.cviu.2024.103978_b5 doi: 10.1109/ICIP.2016.7533003 – ident: 10.1016/j.cviu.2024.103978_b42 doi: 10.1007/978-3-319-46448-0_45 – year: 2017 ident: 10.1016/j.cviu.2024.103978_b71 article-title: Exploring structure for long-term tracking of multiple objects in sports videos publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.12.003 – ident: 10.1016/j.cviu.2024.103978_b57 doi: 10.1109/WACV.2018.00046 – ident: 10.1016/j.cviu.2024.103978_b9 doi: 10.1109/ICCV51070.2023.00879 – ident: 10.1016/j.cviu.2024.103978_b89 doi: 10.1109/WACV56688.2023.00122 – ident: 10.1016/j.cviu.2024.103978_b96 doi: 10.1109/CVPR46437.2021.01309 – ident: 10.1016/j.cviu.2024.103978_b37 doi: 10.1109/ICCV.2017.128 |
SSID | ssj0011491 |
Score | 2.46133 |
Snippet | Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103978 |
Title | Visual tracking in camera-switching outdoor sport videos: Benchmark and baselines for skiing |
URI | https://dx.doi.org/10.1016/j.cviu.2024.103978 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR-WBDYU2ifNiKxVVAakLFHVAimzHEaGQVE0KG7-du8SpioQ6IGWJc2dZvovvPusehFxwYcYmGFoAORGm5IAaCxEEBndj35GeL70q2mLkDsfsfuJMGqRf58JgWKU--6szvTyt9UhH72ZnliSdRwAuno1XGKysMoJltxnzUMuvvpdhHuDul13zkNhAap04U8V4yc9kARjRYph7XrZa-8s4rRicwR7Z0Z4i7VWL2ScNlTbJrvYaqf4ncxiqGzPUY02yvVJl8IC8PCf5AmYq5lzixThNUio5XkYZ-VdSlMGUNFsUUZbNaYlyKSbnZfk1vYH5Xj_4fEp5GlG0eOiV5jRGymkCjIdkPLh96g8N3VTBkDZjheFGNo-CmLtCgTeiLMWk7crA9AWg1cDxu0oCbjU5PBZ8igLJAk9GjgOWXTBT2UdkI81SdUyoHXcj3-wqXynBAoDSMWw2t3zlWb4QTLSIWe9mKHXFcWx88R7WoWVvIUogRAmElQRa5HLJM6vqbayldmohhb-0JgSDsIbv5J98p2QL36pQsTOyUcwX6hyckkK0S61rk83e3cNw9AMmcODN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADjwLijQc2FLVJnBcbVKACpQsUdUCKbMcRoZBUTQp_n3PioCKhDkiZbJ8V3Tm--y73ADhj3IxNVLQIciKVkoPHmPMgMJgb-47wfOFV0RYDtzekdyNntATdOhdGhVXqu7-608vbWo-0NTfbkyRpPyJw8WzlwqBllRF3GZqqOpXTgObl7X1v8PMzAUGAWYUeKpcctXTuTBXmJT6TGcJEi6r087Lb2l_6aU7n3GzCujYWyWX1PluwJNMWbGjDkejPMsehujdDPdaCtblCg9vw8pzkM9ypmDKhfOMkSYlgyh9l5F9JUcZTkmxWRFk2JSXQJSo_L8svyBXu9_rBpmPC0ogopacM05zEauU4QcIdGN5cP3V7hu6rYAib0sJwI5tFQcxcLtEgkZakwnZFYPocAWvg-B0pELqaDB8Lp6JA0MATkeOgcufUlPYuNNIslXtA7LgT-WZH-lJyGiCajpHZzPKlZ_mcU74PZs3NUOii46r3xXtYR5e9hUoCoZJAWElgH85_aCZVyY2Fq51aSOGvgxOiTlhAd_BPulNY6T099MP-7eD-EFbVTBU5dgSNYjqTx2ijFPxEn8Fv43Tjfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+tracking+in+camera-switching+outdoor+sport+videos%3A+Benchmark+and+baselines+for+skiing&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Dunnhofer%2C+Matteo&rft.au=Micheloni%2C+Christian&rft.date=2024-06-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=243&rft_id=info:doi/10.1016%2Fj.cviu.2024.103978&rft.externalDocID=S1077314224000596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |