Visual tracking in camera-switching outdoor sport videos: Benchmark and baselines for skiing

Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer vision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 243; p. 103978
Main Authors Dunnhofer, Matteo, Micheloni, Christian
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2024
Online AccessGet full text

Cover

Loading…
Abstract Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer vision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison to other sports, primarily due to the limited availability of dedicated research studies and datasets. The present paper takes a significant stride towards bridging these gaps. It conducts a comprehensive examination of skier appearance tracking in videos capturing their entire performance—an essential step for more advanced performance analyses. To implement this investigation, we introduce SkiTB, the largest and most annotated dataset tailored for computer vision applications in skiing. We subject a range of visual object tracking algorithms to rigorous testing, including both well-established methodologies and a novel skier-specific baseline algorithm. The results yield valuable insights into the suitability of various tracking techniques for vision-based skiing analysis and into the generalization of state-of-the-art algorithms to complex target behaviors and conditions set by winter outdoor environments. To foster further development, we make SkiTB, the associated code, and the obtained results accessible through https://machinelearning.uniud.it/datasets/skitb. [Display omitted] •Athlete localization is fundamental for high-level sport performance analysis.•Skiing is a popular winter sport discipline subject to extreme outdoor conditions.•We study visual tracking to localize a skier continuously in camera-switching videos.•We release SkiTB, the largest dataset for computer vision-based research in skiing.•We describe promising directions for further algorithmic development.
AbstractList Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of computer vision to enhance the understanding of athletes’ performances. However, this potential has remained relatively untapped in comparison to other sports, primarily due to the limited availability of dedicated research studies and datasets. The present paper takes a significant stride towards bridging these gaps. It conducts a comprehensive examination of skier appearance tracking in videos capturing their entire performance—an essential step for more advanced performance analyses. To implement this investigation, we introduce SkiTB, the largest and most annotated dataset tailored for computer vision applications in skiing. We subject a range of visual object tracking algorithms to rigorous testing, including both well-established methodologies and a novel skier-specific baseline algorithm. The results yield valuable insights into the suitability of various tracking techniques for vision-based skiing analysis and into the generalization of state-of-the-art algorithms to complex target behaviors and conditions set by winter outdoor environments. To foster further development, we make SkiTB, the associated code, and the obtained results accessible through https://machinelearning.uniud.it/datasets/skitb. [Display omitted] •Athlete localization is fundamental for high-level sport performance analysis.•Skiing is a popular winter sport discipline subject to extreme outdoor conditions.•We study visual tracking to localize a skier continuously in camera-switching videos.•We release SkiTB, the largest dataset for computer vision-based research in skiing.•We describe promising directions for further algorithmic development.
ArticleNumber 103978
Author Micheloni, Christian
Dunnhofer, Matteo
Author_xml – sequence: 1
  givenname: Matteo
  orcidid: 0000-0002-1672-667X
  surname: Dunnhofer
  fullname: Dunnhofer, Matteo
  email: matteo.dunnhofer@uniud.it
– sequence: 2
  givenname: Christian
  surname: Micheloni
  fullname: Micheloni, Christian
BookMark eNp9kMtKQzEQhoNUsK2-gKu8wKnJSc4l4kaLNyi4UXEhhDSZY9NLUpK04tubQ125KAQm_DPfkHwjNHDeAUKXlEwoofXVcqL3djcpSclzwETTnqAhJYIUJas-Bv29aQpGeXmGRjEuCaGUCzpEn-827tQap6D0yrovbB3WagNBFfHbJr3oM79LxvuA49aHhPfWgI_X-A6cXmxUWGHlDJ6rCGvrIOKun1zZDJ6j006tI1z81TF6e7h_nT4Vs5fH5-ntrNCM81TUhikjOlXPgdQcSuCa1VrQdk4ZE1VLQDeUUZVPmVtGaC4abaqqzSOcAhuj8rBXBx9jgE5ug80v-5GUyN6PXMrej-z9yIOfDLX_IG2TSta77MKuj6M3BxTyp_YWgozaZhtgbACdpPH2GP4LoxSElQ
CitedBy_id crossref_primary_10_1016_j_displa_2025_103020
Cites_doi 10.1007/978-3-031-19803-8_43
10.1109/CVPR.2016.465
10.1109/TPAMI.2015.2509974
10.1016/j.imavis.2022.104448
10.1109/ICPR56361.2022.9956082
10.1007/978-3-031-20047-2_20
10.1016/j.cviu.2023.103819
10.1109/ICCV48922.2021.01056
10.1109/CVPRW56347.2022.00392
10.1109/WACV51458.2022.00220
10.1109/CVPRW53098.2021.00510
10.1007/978-3-030-68238-5_39
10.1109/CVPRW53098.2021.00516
10.1016/j.jsampl.2023.100034
10.1007/978-3-319-48881-3_56
10.1109/ICCV.2019.00628
10.1007/s11263-022-01694-6
10.1109/CVPR.2013.239
10.1007/978-3-642-41184-7_43
10.1016/j.cviu.2008.01.009
10.1109/ICCV48922.2021.01028
10.2139/ssrn.4504147
10.1016/j.cviu.2017.04.011
10.1016/j.cviu.2023.103634
10.1007/s11042-020-09414-3
10.1016/j.cviu.2022.103508
10.1109/CVPRW56347.2022.00389
10.1109/CVPRW53098.2021.00514
10.1109/CVPR52688.2022.00853
10.1007/978-3-319-46448-0_27
10.1145/3561613.3561625
10.1109/TPAMI.2014.2388226
10.1109/CVPR.2016.91
10.1109/WACVW54805.2022.00075
10.1145/3343031.3350910
10.1109/WACV.2019.00179
10.1109/CVPRW59228.2023.00547
10.1109/CVPR52729.2023.01400
10.1109/ICCV48922.2021.01319
10.1109/3DV.2019.00042
10.1109/CVPR.2019.00441
10.1007/s11263-020-01393-0
10.1007/978-3-319-46448-0_2
10.1109/CVPRW50498.2020.00455
10.1007/978-3-031-20047-2_37
10.1109/ICCV.2019.00247
10.1109/CVPR.2017.148
10.1109/ACCESS.2022.3166949
10.1109/CVPR.2019.00479
10.1109/WACVW54805.2022.00073
10.1109/CVPRW56347.2022.00393
10.1007/978-3-319-48881-3_2
10.1609/aaai.v34i07.6758
10.1109/CVPRW56347.2022.00394
10.1109/CVPR.2010.5539960
10.1109/CVPR.2016.90
10.1109/WACV51458.2022.00153
10.1109/TPAMI.2014.2345390
10.1109/ICCV.2017.239
10.1109/CVPR42600.2020.00633
10.1109/CVPR52688.2022.01324
10.1016/j.cviu.2016.12.002
10.1016/j.cviu.2018.05.009
10.1007/978-3-030-69532-3_38
10.1109/WACVW58289.2023.00051
10.1016/j.neucom.2018.05.083
10.1109/CVPR.2017.143
10.1145/2964284.2964286
10.1109/CVPR.2019.00552
10.1109/CVPR52729.2023.00935
10.1109/ICCVW.2019.00282
10.1109/ICIP.2016.7533003
10.1007/978-3-319-46448-0_45
10.1016/j.cviu.2016.12.003
10.1109/WACV.2018.00046
10.1109/ICCV51070.2023.00879
10.1109/WACV56688.2023.00122
10.1109/CVPR46437.2021.01309
10.1109/ICCV.2017.128
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cviu.2024.103978
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID 10_1016_j_cviu_2024_103978
S1077314224000596
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
ID FETCH-LOGICAL-c344t-6d3ad9fa6be064e2e4c36c918b1339580ec7131a31a24c3d9c497cd55818b41e3
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Tue Jul 01 04:32:10 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Sat May 04 15:43:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-6d3ad9fa6be064e2e4c36c918b1339580ec7131a31a24c3d9c497cd55818b41e3
ORCID 0000-0002-1672-667X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1077314224000596
ParticipantIDs crossref_primary_10_1016_j_cviu_2024_103978
crossref_citationtrail_10_1016_j_cviu_2024_103978
elsevier_sciencedirect_doi_10_1016_j_cviu_2024_103978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chappa, N.V.R., Nguyen, P., Nelson, A.H., Seo, H.-S., Li, X., Dobbs, P.D., Luu, K., 2023. SPARTAN: Self-Supervised Spatiotemporal Transformers Approach to Group Activity Recognition. In: CVPRW.
Wei, X., Bai, Y., Zheng, Y., Shi, D., Gong, Y., 2023. Autoregressive Visual Tracking. In: CVPR.
Chen, Wang, Zhao, Lv, Niu (b14) 2022
Jocher, Stoken, Borovec, NanoCode012, ChristopherSTAN, Changyu, Laughing, tkianai, Hogan, lorenzomammana, yxNONG, AlexWang1900, Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, Ingham, Frederik, Guilhen, Hatovix, Poznanski, Fang, Yu, changyu98, Wang, Gupta, Akhtar, PetrDvoracek, Rai (b50) 2020
Müller, Bibi, Giancola, Alsubaihi, Ghanem (b73) 2018
Pidaparthy, H., Elder, J., 2019. Keep your eye on the puck: Automatic hockey videography. In: WACV.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: CVPR.
The Nielsen Company (b86) 2022
Rhodin, Meyer, Spörri, Müller, Constantin, Fua, Katircioglu, Salzmann (b81) 2018
Fan, H., Miththanthaya, H.A., Harshit, Rajan, S.R., Liu, X., Zou, Z., Lin, Y., Ling, H., 2021. Transparent Object Tracking Benchmark. In: ICCV.
Held, D., Thrun, S., Savarese, S., 2016. Learning to Track at 100 FPS with Deep Regression Networks. In: ECCV.
Qi, Li, Zhang, Wang (b77) 2022
Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., et al., 2023. The Tenth Visual Object Tracking VOT2022 Challenge Results. In: ECCVW. ISBN: 978-3-031-25085-9.
Wu, Lim, Yang (b100) 2015
Kou, Y., Gao, J., Li, B., Wang, G., Hu, W., Wang, Y., Li, L., 2023. ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking. In: NeurIPS.
Lu, Li, Guo, Zhao, Yang, Liu, Zhou (b62) 2023
Fang, Li, Tang, Xu, Zhu, Xiu, Li, Lu (b34) 2022
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., 2019. ATOM: Accurate Tracking by Overlap Maximization. In: CVPR.
Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H., 2022. Swintrack: A simple and strong baseline for transformer tracking. In: NeurIPS.
.
Ludwig, K., Harzig, P., Lienhart, R., 2022. Detecting Arbitrary Intermediate Keypoints for Human Pose Estimation With Vision Transformers. In: WACVW.
Dendorfer, Osep, Milan, Schindler, Cremers, Reid, Roth, Leal-Taixé (b23) 2021
Cui, Zeng, Zhao, Yang, Wu, Wang (b20) 2023
International Ski and Snowboard Federation, ., URL
Feng, Song, Yu, Chen, Zhao, He, Guan (b35) 2020
Mayer, C., Danelljan, M., Paudel, D.P., Gool, L.V., 2021. Learning Target Candidate Association to Keep Track of What Not to Track. In: ICCV.
Yan, B., Peng, H., Fu, J., Wang, D., Lu, H., 2021. Learning Spatio-Temporal Transformer for Visual Tracking. In: ICCV.
Cai, Y., Liu, J., Tang, J., Wu, G., 2023. Robust object modeling for visual tracking. In: ICCV.
Ludwig, K., Kienzle, D., Lorenz, J., Lienhart, R., 2023. Detecting Arbitrary Keypoints on Limbs and Skis With Sparse Partly Correct Segmentation Masks. In: WACVW.
Matsumura, S., Mikami, D., Saijo, N., Kashino, M., 2021. Spatiotemporal Motion Synchronization for Snowboard Big Air. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022.
Koshkina, M., Pidaparthy, H., Elder, J.H., 2021. Contrastive Learning for Sports Video: Unsupervised Player Classification. In: CVPRW.
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H., 2016. Fully-convolutional siamese networks for object tracking. In: ECCVW.
Hartley, Zisserman (b40) 2003
Huang, L., Zhao, X., Huang, K., 2020. GlobalTrack: A Simple and Strong Baseline for Long-term Tracking. In: AAAI.
Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR.
Comaniciu, Ramesh, Meer (b18) 2000
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016. Ssd: Single shot multibox detector. In: ECCV.
Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR.
Ye, B., Chang, H., Ma, B., Shan, S., Chen, X., 2022. Joint feature learning and relation modeling for tracking: A one-stream framework. In: ECCV.
International Olympic Committee (b48) 2023
Choi, Kwon, Lee (b16) 2018
Kristan, Perš, Perše, Kovačič (b56) 2009
Hu, Zhao, Huang, Huang (b45) 2023
The Nielsen Company (b88) 2022
Cheng, Li, Chen, Zeng (b15) 2023
Dunnhofer, M., Micheloni, C., 2022. CoCoLoT: Combining Complementary Trackers in Long-Term Visual Tracking. In: ICPR.
Dunnhofer, Martinel, Micheloni (b28) 2021
Dunnhofer, M., Martinel, N., Luca Foresti, G., Micheloni, C., 2019. Visual tracking by means of deep reinforcement learning and an expert demonstrator. In: ICCVW.
Lukeźič, Zajc, Vojíř, Matas, Kristan (b65) 2020
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: CVPR.
Zhu, Y., Yan, W.Q., 2022. Ski Fall Detection from Digital Images Using Deep Learning. In: International Conference on Control and Computer Vision.
Štepec, D., Skočaj, D., 2022. Video-Based Ski Jump Style Scoring From Pose Trajectory. In: WACVW.
Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X., 2020. High-Performance Long-Term Tracking With Meta-Updater. In: CVPR.
Hare, Golodetz, Saffari, Vineet, Cheng, Hicks, Torr (b39) 2016
The Nielsen Company (b87) 2022
Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.K., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., He, L., Zhang, Y., Yan, S., Yang, J., Fernández, G., et al., 2020. The Eighth Visual Object Tracking VOT2020 Challenge Results. In: Bartoli, A., Fusiello, A. (Eds.), ECCVW.
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J., 2019. SIAMRPN++: Evolution of siamese visual tracking with very deep networks. In: CVPR.
Cioppa, A., Giancola, S., Deliège, A., Kang, L., Zhou, X., Cheng, Z., Ghanem, B., Van Droogenbroeck, M., 2022. SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos. In: CVPRW.
Vandeghen, R., Cioppa, A., Van Droogenbroeck, M., 2022. Semi-Supervised Training to Improve Player and Ball Detection in Soccer. In: CVPRW.
Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X., 2019. ’Skimming-perusal’ tracking: A framework for real-time and robust long-term tracking. In: ICCV.
Thomas, Gade, Moeslund, Carr, Hilton (b91) 2017
Theiner, J., Gritz, W., Müller-Budack, E., Rein, R., Memmert, D., Ewerth, R., 2022. Extraction of Positional Player Data From Broadcast Soccer Videos. In: WACV.
Drory, Zhu, Li, Hartley (b24) 2017
Mauthner, Koch, Tilp, Bischof (b68) 2007
Nam, H., Han, B., 2016. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. In: CVPR. (ISSN: 10636919) ISBN: 9781467388504.
Mayer, C., Danelljan, M., Bhat, G., Paul, M., Paudel, D.P., Yu, F., Van Gool, L., 2022. Transforming model prediction for tracking. In: CVPR.
Vats, K., Fani, M., Clausi, D.A., Zelek, J., 2021. Puck Localization and Multi-Task Event Recognition in Broadcast Hockey Videos. In: CVPRW.
Chen, X., Peng, H., Wang, D., Lu, H., Hu, H., 2023. SeqTrack: Sequence to Sequence Learning for Visual Object Tracking. In: CVPR.
Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H., 2019. LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking. In: CVPR.
Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B., 2021. Canonpose: Self-supervised monocular 3d human pose estimation in the wild. In: CVPR.
Wang, Deng (b97) 2018; 312
Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Cehovin, L., Lukežič, A., Drbohlav, O., Käpylä, J., Häger, G., Yan, S., Yang, J., Zhang, Z., Fernández, G., 2021. The Ninth Visual Object Tracking VOT2021 Challenge Results. In: ICCVW.
Vats, K., McNally, W., Walters, P., Clausi, D.A., Zelek, J.S., 2022. Ice Hockey Player Identification via Transformers and Weakly Supervised Learning. In: CVPRW.
Bachmann, R., Spörri, J., Fua, P., Rhodin, H., 2019. Motion Capture from Pan-Tilt Cameras with Unknown Orientation. In: International Conference on 3D Vision. 3DV.
Quiroga, J., Carrillo, H., Maldonado, E., Ruiz, J., Zapata, L.M., 2020. As Seen on TV: Automatic Basketball Video Production Using Gaussian-Based Actionness and Game States Recognition. In: CVPRW.
Borsuk, V., Vei, R., Kupyn, O., Martyniuk, T., Krashenyi, I., Matas, J., 2022. FEAR: Fast, efficient, accurate and robust visual tracker. In: ECCV.
Dunnhofer, M., Martinel, N., Micheloni, C., 2020. Tracking-by-trackers with a distilled and reinforced model. In: ACCV.
Morimitsu, Bloch, Cesar-Jr (b71) 2017
Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K., Naemura, T., 2022. Pass Receiver Prediction in Soccer Using Video and Players’ Trajectories. In: CVPRW.
Theiner, J., Ewerth, R., 2023. TVCalib: Camera Calibration for Sports Field Registration in Soccer. In: WACV.
Zwölfer, M., Heinrich, D., Schindelwig, K., Wandt, B., Rhodin, H., Spoerri, J., Nachbauer, W., 2021. Improved 2D Keypoint Detection in Out-of-Balance and Fall Situations – combining input rotations and a kinematic model. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022.
Bettadapura, V., Pantofaru, C., Essa, I., 2016. Leveraging contextual cues for generating basketball highlights. In: ACM MM.
Huang, Zhao, Huang (b46) 2019
Yan, B., Jiang, Y., Sun, P., Wang, D., Yuan, Z., Luo, P., Lu, H., 2022. Towards grand unification of object tracking. In: ECCV.
Cui, Y., Jiang, C., Wang, L., Wu, G., 2022. Mixformer: End-to-end tracking with iterative mixed attention. In: CVPR.
Sekachev, Manovich, Zhiltsov, Zhavoronkov, Kalinin, Hoff, TOsmanov, Kruchinin, Zankevich, DmitriySidnev, Markelov, Johannes222, Chenuet, a-andre, telenachos, Melnikov, Kim, Ilouz, Glazov, Priya4607, Tehrani, Jeong, Skubriev, Yonekura, vugia truong, zliang7, lizhming, Truong (b83) 2020
Ren, He, Girshick, Sun (b80) 2015
Wang, J., Qiu, K., Peng, H., Fu, J., Zhu, J., 2019. Ai coach: Deep human pose estimation and analysis for personalized athletic training assistance. In: ACM MM.
Vanat (b92) 2022
Bhat, G., Danelljan, M., Van
10.1016/j.cviu.2024.103978_b63
10.1016/j.cviu.2024.103978_b107
10.1016/j.cviu.2024.103978_b64
10.1016/j.cviu.2024.103978_b61
10.1016/j.cviu.2024.103978_b60
Jocher (10.1016/j.cviu.2024.103978_b50) 2020
10.1016/j.cviu.2024.103978_b67
10.1016/j.cviu.2024.103978_b66
10.1016/j.cviu.2024.103978_b69
Sekachev (10.1016/j.cviu.2024.103978_b83) 2020
Mauthner (10.1016/j.cviu.2024.103978_b68) 2007
Lu (10.1016/j.cviu.2024.103978_b62) 2023
10.1016/j.cviu.2024.103978_b101
10.1016/j.cviu.2024.103978_b102
10.1016/j.cviu.2024.103978_b103
10.1016/j.cviu.2024.103978_b104
10.1016/j.cviu.2024.103978_b105
Hu (10.1016/j.cviu.2024.103978_b45) 2023
10.1016/j.cviu.2024.103978_b106
Drory (10.1016/j.cviu.2024.103978_b24) 2017
10.1016/j.cviu.2024.103978_b74
10.1016/j.cviu.2024.103978_b76
10.1016/j.cviu.2024.103978_b75
10.1016/j.cviu.2024.103978_b70
10.1016/j.cviu.2024.103978_b72
The Nielsen Company (10.1016/j.cviu.2024.103978_b86) 2022
10.1016/j.cviu.2024.103978_b78
10.1016/j.cviu.2024.103978_b79
Huang (10.1016/j.cviu.2024.103978_b46) 2019
International Olympic Committee (10.1016/j.cviu.2024.103978_b48) 2023
Ren (10.1016/j.cviu.2024.103978_b80) 2015
10.1016/j.cviu.2024.103978_b85
10.1016/j.cviu.2024.103978_b82
10.1016/j.cviu.2024.103978_b5
10.1016/j.cviu.2024.103978_b4
10.1016/j.cviu.2024.103978_b7
10.1016/j.cviu.2024.103978_b6
10.1016/j.cviu.2024.103978_b1
10.1016/j.cviu.2024.103978_b89
10.1016/j.cviu.2024.103978_b3
10.1016/j.cviu.2024.103978_b2
10.1016/j.cviu.2024.103978_b9
10.1016/j.cviu.2024.103978_b8
10.1016/j.cviu.2024.103978_b90
Chen (10.1016/j.cviu.2024.103978_b14) 2022
Fang (10.1016/j.cviu.2024.103978_b34) 2022
10.1016/j.cviu.2024.103978_b96
10.1016/j.cviu.2024.103978_b95
10.1016/j.cviu.2024.103978_b10
10.1016/j.cviu.2024.103978_b98
Dunnhofer (10.1016/j.cviu.2024.103978_b28) 2021
Kristan (10.1016/j.cviu.2024.103978_b56) 2009
10.1016/j.cviu.2024.103978_b94
10.1016/j.cviu.2024.103978_b93
10.1016/j.cviu.2024.103978_b17
10.1016/j.cviu.2024.103978_b12
10.1016/j.cviu.2024.103978_b99
10.1016/j.cviu.2024.103978_b13
Choi (10.1016/j.cviu.2024.103978_b16) 2018
The Nielsen Company (10.1016/j.cviu.2024.103978_b88) 2022
10.1016/j.cviu.2024.103978_b19
Henriques (10.1016/j.cviu.2024.103978_b43) 2015
Morimitsu (10.1016/j.cviu.2024.103978_b71) 2017
Hare (10.1016/j.cviu.2024.103978_b39) 2016
Qi (10.1016/j.cviu.2024.103978_b77) 2022
10.1016/j.cviu.2024.103978_b21
10.1016/j.cviu.2024.103978_b27
10.1016/j.cviu.2024.103978_b26
10.1016/j.cviu.2024.103978_b29
10.1016/j.cviu.2024.103978_b22
Cui (10.1016/j.cviu.2024.103978_b20) 2023
Dendorfer (10.1016/j.cviu.2024.103978_b23) 2021
Rhodin (10.1016/j.cviu.2024.103978_b81) 2018
The Nielsen Company (10.1016/j.cviu.2024.103978_b87) 2022
Čehovin (10.1016/j.cviu.2024.103978_b11) 2013
10.1016/j.cviu.2024.103978_b32
10.1016/j.cviu.2024.103978_b31
Wu (10.1016/j.cviu.2024.103978_b100) 2015
Ge (10.1016/j.cviu.2024.103978_b38) 2021
10.1016/j.cviu.2024.103978_b37
Müller (10.1016/j.cviu.2024.103978_b73) 2018
10.1016/j.cviu.2024.103978_b33
10.1016/j.cviu.2024.103978_b36
Wang (10.1016/j.cviu.2024.103978_b97) 2018; 312
Cheng (10.1016/j.cviu.2024.103978_b15) 2023
10.1016/j.cviu.2024.103978_b41
10.1016/j.cviu.2024.103978_b42
10.1016/j.cviu.2024.103978_b49
10.1016/j.cviu.2024.103978_b44
Dunnhofer (10.1016/j.cviu.2024.103978_b30) 2022
10.1016/j.cviu.2024.103978_b47
Hartley (10.1016/j.cviu.2024.103978_b40) 2003
10.1016/j.cviu.2024.103978_b52
10.1016/j.cviu.2024.103978_b51
10.1016/j.cviu.2024.103978_b54
10.1016/j.cviu.2024.103978_b53
Vanat (10.1016/j.cviu.2024.103978_b92) 2022
10.1016/j.cviu.2024.103978_b59
10.1016/j.cviu.2024.103978_b55
10.1016/j.cviu.2024.103978_b58
10.1016/j.cviu.2024.103978_b57
Lukeźič (10.1016/j.cviu.2024.103978_b65) 2020
Dunnhofer (10.1016/j.cviu.2024.103978_b25) 2023
Feng (10.1016/j.cviu.2024.103978_b35) 2020
Thomas (10.1016/j.cviu.2024.103978_b91) 2017
Comaniciu (10.1016/j.cviu.2024.103978_b18) 2000
Steinkellner (10.1016/j.cviu.2024.103978_b84) 2021
References_xml – reference: Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and realtime tracking. In: ICIP.
– reference: Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M., 2010. Visual object tracking using adaptive correlation filters. In: CVPR.
– year: 2023
  ident: b25
  article-title: Visual object tracking in first person vision
  publication-title: Int. J. Comput. Vis.
– reference: Wei, X., Bai, Y., Zheng, Y., Shi, D., Gong, Y., 2023. Autoregressive Visual Tracking. In: CVPR.
– reference: Li, X., Chuah, M.C., 2018. Rehar: Robust and efficient human activity recognition. In: WACV.
– year: 2015
  ident: b43
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Huang, L., Zhao, X., Huang, K., 2020. GlobalTrack: A Simple and Strong Baseline for Long-term Tracking. In: AAAI.
– year: 2018
  ident: b16
  article-title: Real-time visual tracking by deep reinforced decision making
  publication-title: Comput. Vis. Image Underst.
– year: 2009
  ident: b56
  article-title: Closed-world tracking of multiple interacting targets for indoor-sports applications
  publication-title: Comput. Vis. Image Underst.
– year: 2018
  ident: b81
  article-title: Learning monocular 3D human pose estimation from multi-view images
  publication-title: CVPR
– reference: Matsumura, S., Mikami, D., Saijo, N., Kashino, M., 2021. Spatiotemporal Motion Synchronization for Snowboard Big Air. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022.
– reference: Quiroga, J., Carrillo, H., Maldonado, E., Ruiz, J., Zapata, L.M., 2020. As Seen on TV: Automatic Basketball Video Production Using Gaussian-Based Actionness and Game States Recognition. In: CVPRW.
– year: 2013
  ident: b11
  article-title: Robust visual tracking using an adaptive coupled-layer visual model
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Held, D., Thrun, S., Savarese, S., 2016. Learning to Track at 100 FPS with Deep Regression Networks. In: ECCV.
– reference: Ludwig, K., Harzig, P., Lienhart, R., 2022. Detecting Arbitrary Intermediate Keypoints for Human Pose Estimation With Vision Transformers. In: WACVW.
– reference: Vats, K., McNally, W., Walters, P., Clausi, D.A., Zelek, J.S., 2022. Ice Hockey Player Identification via Transformers and Weakly Supervised Learning. In: CVPRW.
– reference: Gadde, C.A., Jawahar, C., 2022. Transductive Weakly-Supervised Player Detection Using Soccer Broadcast Videos. In: WACV.
– year: 2018
  ident: b73
  article-title: TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild
  publication-title: ECCV
– reference: Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K., Naemura, T., 2022. Pass Receiver Prediction in Soccer Using Video and Players’ Trajectories. In: CVPRW.
– reference: Dunnhofer, M., Micheloni, C., 2022. CoCoLoT: Combining Complementary Trackers in Long-Term Visual Tracking. In: ICPR.
– reference: Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X., 2019. ’Skimming-perusal’ tracking: A framework for real-time and robust long-term tracking. In: ICCV.
– reference: Pidaparthy, H., Dowling, M.H., Elder, J.H., 2021. Automatic Play Segmentation of Hockey Videos. In: CVPRW.
– reference: Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S., 2017. Need for Speed: A Benchmark for Higher Frame Rate Object Tracking. In: ICCV.
– reference: Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B., 2021. Canonpose: Self-supervised monocular 3d human pose estimation in the wild. In: CVPR.
– reference: Nam, H., Han, B., 2016. Learning Multi-domain Convolutional Neural Networks for Visual Tracking. In: CVPR. (ISSN: 10636919) ISBN: 9781467388504.
– year: 2021
  ident: b38
  article-title: Yolox: Exceeding yolo series in 2021
– reference: Yan, B., Jiang, Y., Sun, P., Wang, D., Yuan, Z., Luo, P., Lu, H., 2022. Towards grand unification of object tracking. In: ECCV.
– year: 2016
  ident: b39
  article-title: Struck: Structured output tracking with kernels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: b65
  article-title: Performance evaluation methodology for long-term single-object tracking
  publication-title: IEEE Trans. Cybern.
– reference: Cui, Y., Jiang, C., Wang, L., Wu, G., 2022. Mixformer: End-to-end tracking with iterative mixed attention. In: CVPR.
– reference: Vats, K., Fani, M., Clausi, D.A., Zelek, J., 2021. Puck Localization and Multi-Task Event Recognition in Broadcast Hockey Videos. In: CVPRW.
– reference: Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.K., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., He, L., Zhang, Y., Yan, S., Yang, J., Fernández, G., et al., 2020. The Eighth Visual Object Tracking VOT2020 Challenge Results. In: Bartoli, A., Fusiello, A. (Eds.), ECCVW.
– reference: Yan, B., Peng, H., Fu, J., Wang, D., Lu, H., 2021. Learning Spatio-Temporal Transformer for Visual Tracking. In: ICCV.
– reference: Dunnhofer, M., Sordi, L., Micheloni, C., 2023b. Visualizing Skiers’ Trajectories in Monocular Videos. In: CVPRW.
– reference: Kou, Y., Gao, J., Li, B., Wang, G., Hu, W., Wang, Y., Li, L., 2023. ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking. In: NeurIPS.
– reference: Chen, X., Peng, H., Wang, D., Lu, H., Hu, H., 2023. SeqTrack: Sequence to Sequence Learning for Visual Object Tracking. In: CVPR.
– reference: Mueller, M., Smith, N., Ghanem, B., 2016. A Benchmark and Simulator for UAV Tracking. In: ECCV.
– reference: Dunnhofer, M., Martinel, N., Micheloni, C., 2020. Tracking-by-trackers with a distilled and reinforced model. In: ACCV.
– year: 2023
  ident: b62
  article-title: Siamese graph attention networks for robust visual object tracking
  publication-title: Comput. Vis. Image Underst.
– reference: Cioppa, A., Giancola, S., Deliège, A., Kang, L., Zhou, X., Cheng, Z., Ghanem, B., Van Droogenbroeck, M., 2022. SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in Soccer Videos. In: CVPRW.
– start-page: 28971
  year: 2020
  end-page: 28992
  ident: b35
  article-title: SSET: a dataset for shot segmentation, event detection, player tracking in soccer videos
  publication-title: Multimedia Tools Appl.
– year: 2022
  ident: b30
  article-title: Combining complementary trackers for enhanced long-term visual object tracking
  publication-title: Image Vis. Comput.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: CVPR.
– year: 2022
  ident: b86
  article-title: FIS alpine skiing world cup report 2021-22
– year: 2021
  ident: b28
  article-title: Weakly-supervised domain adaptation of deep regression trackers via reinforced knowledge distillation
  publication-title: IEEE RA-L
– reference: Wang, J., Qiu, K., Peng, H., Fu, J., Zhu, J., 2019. Ai coach: Deep human pose estimation and analysis for personalized athletic training assistance. In: ACM MM.
– year: 2021
  ident: b84
  article-title: Evaluation of object detection systems and video tracking in skiing videos
  publication-title: 2021 International Conference on Content-Based Multimedia Indexing
– year: 2003
  ident: b40
  article-title: Multiple View Geometry in Computer Vision
– reference: Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J., 2019. SIAMRPN++: Evolution of siamese visual tracking with very deep networks. In: CVPR.
– reference: Mayer, C., Danelljan, M., Paudel, D.P., Gool, L.V., 2021. Learning Target Candidate Association to Keep Track of What Not to Track. In: ICCV.
– reference: Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Cehovin, L., Lukežič, A., Drbohlav, O., Käpylä, J., Häger, G., Yan, S., Yang, J., Zhang, Z., Fernández, G., 2021. The Ninth Visual Object Tracking VOT2021 Challenge Results. In: ICCVW.
– reference: Bettadapura, V., Pantofaru, C., Essa, I., 2016. Leveraging contextual cues for generating basketball highlights. In: ACM MM.
– reference: Dai, K., Zhang, Y., Wang, D., Li, J., Lu, H., Yang, X., 2020. High-Performance Long-Term Tracking With Meta-Updater. In: CVPR.
– reference: Bachmann, R., Spörri, J., Fua, P., Rhodin, H., 2019. Motion Capture from Pan-Tilt Cameras with Unknown Orientation. In: International Conference on 3D Vision. 3DV.
– reference: Fan, H., Lin, L., Yang, F., Chu, P., Deng, G., Yu, S., Bai, H., Xu, Y., Liao, C., Ling, H., 2019. LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking. In: CVPR.
– reference: Pidaparthy, H., Elder, J., 2019. Keep your eye on the puck: Automatic hockey videography. In: WACV.
– year: 2022
  ident: b88
  article-title: Viessmann FIS ski jumping world cup men 2021–2022
– reference: Zhu, Y., Yan, W.Q., 2022. Ski Fall Detection from Digital Images Using Deep Learning. In: International Conference on Control and Computer Vision.
– reference: Borsuk, V., Vei, R., Kupyn, O., Martyniuk, T., Krashenyi, I., Matas, J., 2022. FEAR: Fast, efficient, accurate and robust visual tracker. In: ECCV.
– reference: Vandeghen, R., Cioppa, A., Van Droogenbroeck, M., 2022. Semi-Supervised Training to Improve Player and Ball Detection in Soccer. In: CVPRW.
– year: 2015
  ident: b80
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: NeurIPS
– reference: Mayer, C., Danelljan, M., Bhat, G., Paul, M., Paudel, D.P., Yu, F., Van Gool, L., 2022. Transforming model prediction for tracking. In: CVPR.
– reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: CVPR.
– year: 2015
  ident: b100
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Chappa, N.V.R., Nguyen, P., Nelson, A.H., Seo, H.-S., Li, X., Dobbs, P.D., Luu, K., 2023. SPARTAN: Self-Supervised Spatiotemporal Transformers Approach to Group Activity Recognition. In: CVPRW.
– reference: Bhat, G., Danelljan, M., Van Gool, L., Timofte, R., 2019. Learning Discriminative Model Prediction for Tracking. In: ICCV.
– year: 2023
  ident: b48
  article-title: History of alpine skiing
– year: 2023
  ident: b45
  article-title: Global instance tracking: Locating target more like humans
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 312
  year: 2018
  ident: b97
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– reference: Dunnhofer, M., Martinel, N., Luca Foresti, G., Micheloni, C., 2019. Visual tracking by means of deep reinforcement learning and an expert demonstrator. In: ICCVW.
– reference: Fan, H., Miththanthaya, H.A., Harshit, Rajan, S.R., Liu, X., Zou, Z., Lin, Y., Ling, H., 2021. Transparent Object Tracking Benchmark. In: ICCV.
– reference: Theiner, J., Ewerth, R., 2023. TVCalib: Camera Calibration for Sports Field Registration in Soccer. In: WACV.
– reference: International Ski and Snowboard Federation, ., URL:
– reference: Cai, Y., Liu, J., Tang, J., Wu, G., 2023. Robust object modeling for visual tracking. In: ICCV.
– reference: Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R., Kämäräinen, J.-K., Chang, H.J., Danelljan, M., Zajc, L.Č., Lukežič, A., Drbohlav, O., et al., 2023. The Tenth Visual Object Tracking VOT2022 Challenge Results. In: ECCVW. ISBN: 978-3-031-25085-9.
– year: 2017
  ident: b24
  article-title: Automated detection and tracking of slalom paddlers from broadcast image sequences using cascade classifiers and discriminative correlation filters
  publication-title: Comput. Vis. Image Underst.
– year: 2023
  ident: b15
  article-title: Snow mask guided adaptive residual network for image snow removal
  publication-title: Comput. Vis. Image Underst.
– reference: Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C., 2016. Performance measures and a data set for multi-target, multi-camera tracking. In: ECCV.
– year: 2007
  ident: b68
  article-title: Visual tracking of athletes in beach volleyball using a single camera
  publication-title: Int. J. Comput. Sci. Sport
– reference: Štepec, D., Skočaj, D., 2022. Video-Based Ski Jump Style Scoring From Pose Trajectory. In: WACVW.
– year: 2020
  ident: b83
  article-title: Opencv/cvat: v1.1.0
– year: 2022
  ident: b92
  article-title: 2022 International report on snow & mountain tourism
– reference: Ludwig, K., Kienzle, D., Lorenz, J., Lienhart, R., 2023. Detecting Arbitrary Keypoints on Limbs and Skis With Sparse Partly Correct Segmentation Masks. In: WACVW.
– reference: Bertasius, G., Soo Park, H., Yu, S.X., Shi, J., 2017. Am I a baller? basketball performance assessment from first-person videos. In: CVPR.
– year: 2022
  ident: b14
  article-title: Visual object tracking: A survey
  publication-title: Comput. Vis. Image Underst.
– year: 2000
  ident: b18
  article-title: Real-time tracking of non-rigid objects using mean shift
  publication-title: CVPR
– year: 2021
  ident: b23
  article-title: Motchallenge: A benchmark for single-camera multiple target tracking
  publication-title: Int. J. Comput. Vis.
– reference: Theiner, J., Gritz, W., Müller-Budack, E., Rein, R., Memmert, D., Ewerth, R., 2022. Extraction of Positional Player Data From Broadcast Soccer Videos. In: WACV.
– reference: Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H., 2016. Fully-convolutional siamese networks for object tracking. In: ECCVW.
– reference: Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M., 2019. ATOM: Accurate Tracking by Overlap Maximization. In: CVPR.
– year: 2022
  ident: b34
  article-title: Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2022
  ident: b77
  article-title: Alpine skiing tracking method based on deep learning and correlation filter
  publication-title: IEEE Access
– reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016. Ssd: Single shot multibox detector. In: ECCV.
– year: 2020
  ident: b50
  article-title: Ultralytics/yolov5: v3.1 - Bug fixes and performance improvements
– reference: Yun, S., Choi, J., Yoo, Y., Yun, K., Choi, J.Y., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR.
– reference: Ye, B., Chang, H., Ma, B., Shan, S., Chen, X., 2022. Joint feature learning and relation modeling for tracking: A one-stream framework. In: ECCV.
– reference: Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H., 2022. Swintrack: A simple and strong baseline for transformer tracking. In: NeurIPS.
– reference: Zwölfer, M., Heinrich, D., Schindelwig, K., Wandt, B., Rhodin, H., Spoerri, J., Nachbauer, W., 2021. Improved 2D Keypoint Detection in Out-of-Balance and Fall Situations – combining input rotations and a kinematic model. In: 1st Workshop on Computer Vision for Winter Sports at WACV 2022.
– year: 2022
  ident: b87
  article-title: FIS freestyle ski world cup report 2021-22
– year: 2017
  ident: b91
  article-title: Computer vision for sports: Current applications and research topics
  publication-title: Comput. Vis. Image Underst.
– reference: Maresca, M.E., Petrosino, A., 2013. MATRIOSKA: A multi-level approach to fast tracking by learning. In: International Conference on Image Analysis and Processing. ICIAP.
– reference: .
– year: 2023
  ident: b20
  article-title: SportsMOT: A large multi-object tracking dataset in multiple sports scenes
– reference: Koshkina, M., Pidaparthy, H., Elder, J.H., 2021. Contrastive Learning for Sports Video: Unsupervised Player Classification. In: CVPRW.
– reference: Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR.
– year: 2017
  ident: b71
  article-title: Exploring structure for long-term tracking of multiple objects in sports videos
  publication-title: Comput. Vis. Image Underst.
– year: 2019
  ident: b46
  article-title: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Liu, J., Carr, P., Collins, R.T., Liu, Y., 2013. Tracking Sports Players with Context-Conditioned Motion Models. In: CVPR.
– ident: 10.1016/j.cviu.2024.103978_b101
  doi: 10.1007/978-3-031-19803-8_43
– ident: 10.1016/j.cviu.2024.103978_b74
  doi: 10.1109/CVPR.2016.465
– year: 2016
  ident: 10.1016/j.cviu.2024.103978_b39
  article-title: Struck: Structured output tracking with kernels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2509974
– year: 2003
  ident: 10.1016/j.cviu.2024.103978_b40
– year: 2013
  ident: 10.1016/j.cviu.2024.103978_b11
  article-title: Robust visual tracking using an adaptive coupled-layer visual model
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b30
  article-title: Combining complementary trackers for enhanced long-term visual object tracking
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2022.104448
– ident: 10.1016/j.cviu.2024.103978_b29
  doi: 10.1109/ICPR56361.2022.9956082
– ident: 10.1016/j.cviu.2024.103978_b104
  doi: 10.1007/978-3-031-20047-2_20
– year: 2023
  ident: 10.1016/j.cviu.2024.103978_b15
  article-title: Snow mask guided adaptive residual network for image snow removal
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2023.103819
– ident: 10.1016/j.cviu.2024.103978_b33
  doi: 10.1109/ICCV48922.2021.01056
– ident: 10.1016/j.cviu.2024.103978_b93
  doi: 10.1109/CVPRW56347.2022.00392
– ident: 10.1016/j.cviu.2024.103978_b36
  doi: 10.1109/WACV51458.2022.00220
– ident: 10.1016/j.cviu.2024.103978_b51
  doi: 10.1109/CVPRW53098.2021.00510
– ident: 10.1016/j.cviu.2024.103978_b54
  doi: 10.1007/978-3-030-68238-5_39
– year: 2020
  ident: 10.1016/j.cviu.2024.103978_b65
  article-title: Performance evaluation methodology for long-term single-object tracking
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.cviu.2024.103978_b52
– ident: 10.1016/j.cviu.2024.103978_b75
  doi: 10.1109/CVPRW53098.2021.00516
– ident: 10.1016/j.cviu.2024.103978_b107
  doi: 10.1016/j.jsampl.2023.100034
– ident: 10.1016/j.cviu.2024.103978_b3
  doi: 10.1007/978-3-319-48881-3_56
– ident: 10.1016/j.cviu.2024.103978_b6
  doi: 10.1109/ICCV.2019.00628
– year: 2023
  ident: 10.1016/j.cviu.2024.103978_b25
  article-title: Visual object tracking in first person vision
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01694-6
– ident: 10.1016/j.cviu.2024.103978_b61
  doi: 10.1109/CVPR.2013.239
– ident: 10.1016/j.cviu.2024.103978_b66
  doi: 10.1007/978-3-642-41184-7_43
– year: 2023
  ident: 10.1016/j.cviu.2024.103978_b45
  article-title: Global instance tracking: Locating target more like humans
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2009
  ident: 10.1016/j.cviu.2024.103978_b56
  article-title: Closed-world tracking of multiple interacting targets for indoor-sports applications
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2008.01.009
– year: 2015
  ident: 10.1016/j.cviu.2024.103978_b80
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: NeurIPS
– ident: 10.1016/j.cviu.2024.103978_b102
  doi: 10.1109/ICCV48922.2021.01028
– ident: 10.1016/j.cviu.2024.103978_b12
  doi: 10.2139/ssrn.4504147
– year: 2023
  ident: 10.1016/j.cviu.2024.103978_b20
– ident: 10.1016/j.cviu.2024.103978_b49
– year: 2017
  ident: 10.1016/j.cviu.2024.103978_b91
  article-title: Computer vision for sports: Current applications and research topics
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.04.011
– year: 2023
  ident: 10.1016/j.cviu.2024.103978_b62
  article-title: Siamese graph attention networks for robust visual object tracking
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2023.103634
– start-page: 28971
  year: 2020
  ident: 10.1016/j.cviu.2024.103978_b35
  article-title: SSET: a dataset for shot segmentation, event detection, player tracking in soccer videos
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09414-3
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b14
  article-title: Visual object tracking: A survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2022.103508
– year: 2000
  ident: 10.1016/j.cviu.2024.103978_b18
  article-title: Real-time tracking of non-rigid objects using mean shift
– ident: 10.1016/j.cviu.2024.103978_b95
  doi: 10.1109/CVPRW56347.2022.00389
– year: 2007
  ident: 10.1016/j.cviu.2024.103978_b68
  article-title: Visual tracking of athletes in beach volleyball using a single camera
  publication-title: Int. J. Comput. Sci. Sport
– ident: 10.1016/j.cviu.2024.103978_b55
– ident: 10.1016/j.cviu.2024.103978_b94
  doi: 10.1109/CVPRW53098.2021.00514
– ident: 10.1016/j.cviu.2024.103978_b69
  doi: 10.1109/CVPR52688.2022.00853
– ident: 10.1016/j.cviu.2024.103978_b72
  doi: 10.1007/978-3-319-46448-0_27
– ident: 10.1016/j.cviu.2024.103978_b106
  doi: 10.1145/3561613.3561625
– year: 2015
  ident: 10.1016/j.cviu.2024.103978_b100
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2388226
– ident: 10.1016/j.cviu.2024.103978_b79
  doi: 10.1109/CVPR.2016.91
– ident: 10.1016/j.cviu.2024.103978_b85
  doi: 10.1109/WACVW54805.2022.00075
– ident: 10.1016/j.cviu.2024.103978_b98
  doi: 10.1145/3343031.3350910
– ident: 10.1016/j.cviu.2024.103978_b76
  doi: 10.1109/WACV.2019.00179
– ident: 10.1016/j.cviu.2024.103978_b31
  doi: 10.1109/CVPRW59228.2023.00547
– ident: 10.1016/j.cviu.2024.103978_b13
  doi: 10.1109/CVPR52729.2023.01400
– year: 2021
  ident: 10.1016/j.cviu.2024.103978_b84
  article-title: Evaluation of object detection systems and video tracking in skiing videos
– ident: 10.1016/j.cviu.2024.103978_b70
  doi: 10.1109/ICCV48922.2021.01319
– ident: 10.1016/j.cviu.2024.103978_b1
  doi: 10.1109/3DV.2019.00042
– year: 2018
  ident: 10.1016/j.cviu.2024.103978_b73
  article-title: TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild
– ident: 10.1016/j.cviu.2024.103978_b58
  doi: 10.1109/CVPR.2019.00441
– year: 2021
  ident: 10.1016/j.cviu.2024.103978_b23
  article-title: Motchallenge: A benchmark for single-camera multiple target tracking
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01393-0
– ident: 10.1016/j.cviu.2024.103978_b60
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.1016/j.cviu.2024.103978_b78
  doi: 10.1109/CVPRW50498.2020.00455
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b88
– ident: 10.1016/j.cviu.2024.103978_b8
  doi: 10.1007/978-3-031-20047-2_37
– ident: 10.1016/j.cviu.2024.103978_b103
  doi: 10.1109/ICCV.2019.00247
– ident: 10.1016/j.cviu.2024.103978_b53
– year: 2023
  ident: 10.1016/j.cviu.2024.103978_b48
– ident: 10.1016/j.cviu.2024.103978_b105
  doi: 10.1109/CVPR.2017.148
– year: 2019
  ident: 10.1016/j.cviu.2024.103978_b46
  article-title: GOT-10k: A large high-diversity benchmark for generic object tracking in the wild
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b77
  article-title: Alpine skiing tracking method based on deep learning and correlation filter
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166949
– ident: 10.1016/j.cviu.2024.103978_b22
  doi: 10.1109/CVPR.2019.00479
– ident: 10.1016/j.cviu.2024.103978_b67
– year: 2021
  ident: 10.1016/j.cviu.2024.103978_b38
– ident: 10.1016/j.cviu.2024.103978_b63
  doi: 10.1109/WACVW54805.2022.00073
– ident: 10.1016/j.cviu.2024.103978_b17
  doi: 10.1109/CVPRW56347.2022.00393
– ident: 10.1016/j.cviu.2024.103978_b82
  doi: 10.1007/978-3-319-48881-3_2
– ident: 10.1016/j.cviu.2024.103978_b47
  doi: 10.1609/aaai.v34i07.6758
– ident: 10.1016/j.cviu.2024.103978_b44
  doi: 10.1109/CVPRW56347.2022.00394
– ident: 10.1016/j.cviu.2024.103978_b7
  doi: 10.1109/CVPR.2010.5539960
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b87
– ident: 10.1016/j.cviu.2024.103978_b41
  doi: 10.1109/CVPR.2016.90
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b34
  article-title: Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: 10.1016/j.cviu.2024.103978_b81
  article-title: Learning monocular 3D human pose estimation from multi-view images
– ident: 10.1016/j.cviu.2024.103978_b90
  doi: 10.1109/WACV51458.2022.00153
– year: 2015
  ident: 10.1016/j.cviu.2024.103978_b43
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345390
– ident: 10.1016/j.cviu.2024.103978_b2
  doi: 10.1109/ICCV.2017.239
– ident: 10.1016/j.cviu.2024.103978_b21
  doi: 10.1109/CVPR42600.2020.00633
– ident: 10.1016/j.cviu.2024.103978_b59
– year: 2020
  ident: 10.1016/j.cviu.2024.103978_b83
– year: 2021
  ident: 10.1016/j.cviu.2024.103978_b28
  article-title: Weakly-supervised domain adaptation of deep regression trackers via reinforced knowledge distillation
  publication-title: IEEE RA-L
– ident: 10.1016/j.cviu.2024.103978_b19
  doi: 10.1109/CVPR52688.2022.01324
– year: 2017
  ident: 10.1016/j.cviu.2024.103978_b24
  article-title: Automated detection and tracking of slalom paddlers from broadcast image sequences using cascade classifiers and discriminative correlation filters
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.12.002
– year: 2018
  ident: 10.1016/j.cviu.2024.103978_b16
  article-title: Real-time visual tracking by deep reinforced decision making
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.05.009
– ident: 10.1016/j.cviu.2024.103978_b27
  doi: 10.1007/978-3-030-69532-3_38
– ident: 10.1016/j.cviu.2024.103978_b64
  doi: 10.1109/WACVW58289.2023.00051
– volume: 312
  year: 2018
  ident: 10.1016/j.cviu.2024.103978_b97
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b86
– year: 2022
  ident: 10.1016/j.cviu.2024.103978_b92
– ident: 10.1016/j.cviu.2024.103978_b10
  doi: 10.1109/CVPR.2017.143
– ident: 10.1016/j.cviu.2024.103978_b4
  doi: 10.1145/2964284.2964286
– ident: 10.1016/j.cviu.2024.103978_b32
  doi: 10.1109/CVPR.2019.00552
– year: 2020
  ident: 10.1016/j.cviu.2024.103978_b50
– ident: 10.1016/j.cviu.2024.103978_b99
  doi: 10.1109/CVPR52729.2023.00935
– ident: 10.1016/j.cviu.2024.103978_b26
  doi: 10.1109/ICCVW.2019.00282
– ident: 10.1016/j.cviu.2024.103978_b5
  doi: 10.1109/ICIP.2016.7533003
– ident: 10.1016/j.cviu.2024.103978_b42
  doi: 10.1007/978-3-319-46448-0_45
– year: 2017
  ident: 10.1016/j.cviu.2024.103978_b71
  article-title: Exploring structure for long-term tracking of multiple objects in sports videos
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.12.003
– ident: 10.1016/j.cviu.2024.103978_b57
  doi: 10.1109/WACV.2018.00046
– ident: 10.1016/j.cviu.2024.103978_b9
  doi: 10.1109/ICCV51070.2023.00879
– ident: 10.1016/j.cviu.2024.103978_b89
  doi: 10.1109/WACV56688.2023.00122
– ident: 10.1016/j.cviu.2024.103978_b96
  doi: 10.1109/CVPR46437.2021.01309
– ident: 10.1016/j.cviu.2024.103978_b37
  doi: 10.1109/ICCV.2017.128
SSID ssj0011491
Score 2.46133
Snippet Skiing is a globally popular winter sport discipline with a rich history of competitive events. This domain offers ample opportunities for the application of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103978
Title Visual tracking in camera-switching outdoor sport videos: Benchmark and baselines for skiing
URI https://dx.doi.org/10.1016/j.cviu.2024.103978
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUR-WBDYU2ifNiKxVVAakLFHVAimzHEaGQVE0KG7-du8SpioQ6IGWJc2dZvovvPusehFxwYcYmGFoAORGm5IAaCxEEBndj35GeL70q2mLkDsfsfuJMGqRf58JgWKU--6szvTyt9UhH72ZnliSdRwAuno1XGKysMoJltxnzUMuvvpdhHuDul13zkNhAap04U8V4yc9kARjRYph7XrZa-8s4rRicwR7Z0Z4i7VWL2ScNlTbJrvYaqf4ncxiqGzPUY02yvVJl8IC8PCf5AmYq5lzixThNUio5XkYZ-VdSlMGUNFsUUZbNaYlyKSbnZfk1vYH5Xj_4fEp5GlG0eOiV5jRGymkCjIdkPLh96g8N3VTBkDZjheFGNo-CmLtCgTeiLMWk7crA9AWg1cDxu0oCbjU5PBZ8igLJAk9GjgOWXTBT2UdkI81SdUyoHXcj3-wqXynBAoDSMWw2t3zlWb4QTLSIWe9mKHXFcWx88R7WoWVvIUogRAmElQRa5HLJM6vqbayldmohhb-0JgSDsIbv5J98p2QL36pQsTOyUcwX6hyckkK0S61rk83e3cNw9AMmcODN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BOwADjwLijQc2FLVJnBcbVKACpQsUdUCKbMcRoZBUTQp_n3PioCKhDkiZbJ8V3Tm--y73ADhj3IxNVLQIciKVkoPHmPMgMJgb-47wfOFV0RYDtzekdyNntATdOhdGhVXqu7-608vbWo-0NTfbkyRpPyJw8WzlwqBllRF3GZqqOpXTgObl7X1v8PMzAUGAWYUeKpcctXTuTBXmJT6TGcJEi6r087Lb2l_6aU7n3GzCujYWyWX1PluwJNMWbGjDkejPMsehujdDPdaCtblCg9vw8pzkM9ypmDKhfOMkSYlgyh9l5F9JUcZTkmxWRFk2JSXQJSo_L8svyBXu9_rBpmPC0ogopacM05zEauU4QcIdGN5cP3V7hu6rYAib0sJwI5tFQcxcLtEgkZakwnZFYPocAWvg-B0pELqaDB8Lp6JA0MATkeOgcufUlPYuNNIslXtA7LgT-WZH-lJyGiCajpHZzPKlZ_mcU74PZs3NUOii46r3xXtYR5e9hUoCoZJAWElgH85_aCZVyY2Fq51aSOGvgxOiTlhAd_BPulNY6T099MP-7eD-EFbVTBU5dgSNYjqTx2ijFPxEn8Fv43Tjfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+tracking+in+camera-switching+outdoor+sport+videos%3A+Benchmark+and+baselines+for+skiing&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Dunnhofer%2C+Matteo&rft.au=Micheloni%2C+Christian&rft.date=2024-06-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=243&rft_id=info:doi/10.1016%2Fj.cviu.2024.103978&rft.externalDocID=S1077314224000596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon