Federated Bayesian optimization XGBoost model for cyberattack detection in internet of medical things
•Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the performance of detecting attacks in IoMT.•Executes routine IoMT functions in a decentralized environment without compromising the confidentiality o...
Saved in:
Published in | Journal of parallel and distributed computing Vol. 193; p. 104964 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the performance of detecting attacks in IoMT.•Executes routine IoMT functions in a decentralized environment without compromising the confidentiality of patient information or the security of the network.•The proposed model is a good solution in the IoMT domain to efficiently detect malicious patterns while maintaining data privacy and confidentiality.
Hospitals and medical facilities are increasingly concerned about network security and patient data privacy as the Internet of Medical Things (IoMT) infrastructures continue to develop. Researchers have studied customized network security frameworks and cyberattack detection tools driven by Artificial Intelligence (AI) to counter different types of attacks, such as spoofing, data alteration, and botnet attacks. However, carrying out routine IoMT services and tasks during an under-attack scenario is challenging. Machine Learning has been extensively suggested for detecting cyberattacks in IoMT and IoT infrastructures. However, the conventional centralized approach in ML cannot effectively detect newly emerging attacks without compromising patient data privacy and network flow data confidentiality.
This study discusses a Federated Bayesian Optimization XGBoost framework that employs multimodal sensory signals from patient vital signs and network flow data to detect attack patterns and malicious network traffic in IoMT infrastructure while ensuring data privacy and detecting previously unknown attacks.
The proposed model employs a Federated Bayesian Optimisation XGBoost approach, which allows us to search the parameter space quickly and find an optimal solution from each local server while aggregating the model parameters from each local server to the centralised server. The XGBoost algorithm generates a new tree by taking into account the previously estimated value for the tree's input data and then optimizing the prediction gain. This study used a dataset with 44 attributes and 16 318 instances. During the preprocessing phase, 10 features were dropped, and the remaining 34 features were used to evaluate the network flows and biometric data (patient vital signs).
The performance evaluation reveals that the proposed model predicts data alteration, malware, and spoofing attacks in patients' vital signs and network flow data with a prediction accuracy of 0.96. The results obtained from the experiment demonstrate that both the centralized and federated models are synchronized, with the latter occasionally being slightly reduced.
The findings indicate that the suggested model can be incorporated into the IoMT domain to detect malicious patterns while maintaining data privacy and confidentiality efficiently. |
---|---|
AbstractList | •Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the performance of detecting attacks in IoMT.•Executes routine IoMT functions in a decentralized environment without compromising the confidentiality of patient information or the security of the network.•The proposed model is a good solution in the IoMT domain to efficiently detect malicious patterns while maintaining data privacy and confidentiality.
Hospitals and medical facilities are increasingly concerned about network security and patient data privacy as the Internet of Medical Things (IoMT) infrastructures continue to develop. Researchers have studied customized network security frameworks and cyberattack detection tools driven by Artificial Intelligence (AI) to counter different types of attacks, such as spoofing, data alteration, and botnet attacks. However, carrying out routine IoMT services and tasks during an under-attack scenario is challenging. Machine Learning has been extensively suggested for detecting cyberattacks in IoMT and IoT infrastructures. However, the conventional centralized approach in ML cannot effectively detect newly emerging attacks without compromising patient data privacy and network flow data confidentiality.
This study discusses a Federated Bayesian Optimization XGBoost framework that employs multimodal sensory signals from patient vital signs and network flow data to detect attack patterns and malicious network traffic in IoMT infrastructure while ensuring data privacy and detecting previously unknown attacks.
The proposed model employs a Federated Bayesian Optimisation XGBoost approach, which allows us to search the parameter space quickly and find an optimal solution from each local server while aggregating the model parameters from each local server to the centralised server. The XGBoost algorithm generates a new tree by taking into account the previously estimated value for the tree's input data and then optimizing the prediction gain. This study used a dataset with 44 attributes and 16 318 instances. During the preprocessing phase, 10 features were dropped, and the remaining 34 features were used to evaluate the network flows and biometric data (patient vital signs).
The performance evaluation reveals that the proposed model predicts data alteration, malware, and spoofing attacks in patients' vital signs and network flow data with a prediction accuracy of 0.96. The results obtained from the experiment demonstrate that both the centralized and federated models are synchronized, with the latter occasionally being slightly reduced.
The findings indicate that the suggested model can be incorporated into the IoMT domain to detect malicious patterns while maintaining data privacy and confidentiality efficiently. |
ArticleNumber | 104964 |
Author | Misra, Sanjay Azeta, Ambrose Guembe, Blessing |
Author_xml | – sequence: 1 givenname: Blessing orcidid: 0000-0002-7576-9127 surname: Guembe fullname: Guembe, Blessing organization: Department of Computer Science, Covenant University1, Nigeria – sequence: 2 givenname: Sanjay orcidid: 0000-0002-3556-9331 surname: Misra fullname: Misra, Sanjay email: sanjay.misra@ife.no organization: Department of Applied Data Science, Institute for Energy Technology, Halden, Norway – sequence: 3 givenname: Ambrose surname: Azeta fullname: Azeta, Ambrose organization: Department of Computer Science, Namibia University of Science and Technology, Namibia |
BookMark | eNp9kMtKAzEUhrOoYFt9AVd5gam5zQ3c2GJVKLhRcBcyyYlmnJmUJAj16Z1pXbkoHDhw-L8D_7dAs8EPgNANJStKaHHbrtq90StGmBgPoi7EDM1JKXhWcppfokWMLSGU5mU1R7AFA0ElMHitDhCdGrDfJ9e7H5WcH_D749r7mHDvDXTY-oD1oZmIpPQXNpBAH3NumgRhgIS9xT0Yp1WH06cbPuIVurCqi3D9t5fobfvwunnKdi-Pz5v7Xaa5ECkrtOZ1owmDwnALugKmrQUlclUrm7OcsqKsrK5VQ5ShnApuealqa_OG1SLnS1Sd_urgYwxgpXbp2CMF5TpJiZwUyVZOiuSkSJ4UjSj7h-6D61U4nIfuThCMpb4dBBm1g0GP5cPoRRrvzuG_j2mG2g |
CitedBy_id | crossref_primary_10_3390_s24185937 |
Cites_doi | 10.1109/JBHI.2022.3173947 10.1109/MCOM.2017.1700547 10.1109/JIOT.2021.3074382 10.1145/3501813 10.1016/j.procs.2018.01.136 10.1109/MCE.2021.3116917 10.1016/j.adhoc.2013.04.014 10.1109/MNET.001.1900105 10.3390/su14148707 10.1109/TNSE.2022.3175945 10.1109/TII.2021.3119038 10.1109/TSMCC.2008.923876 10.3390/math11010151 10.1109/JBHI.2022.3178660 10.1109/ACCESS.2021.3128837 10.3390/s20174828 10.1109/TCE.2019.2917895 10.1016/j.tcs.2022.05.018 10.1109/JIOT.2021.3100755 10.1109/COMST.2020.2986024 10.1016/j.comcom.2020.05.048 10.1016/j.asoc.2023.110227 10.1016/j.tcs.2019.12.002 10.3390/s22041377 10.1109/JBHI.2022.3171852 10.1007/s11227-022-04453-z 10.1109/JBHI.2022.3181823 10.1109/JBHI.2022.3187471 10.1109/JBHI.2021.3103404 10.1109/JBHI.2022.3165945 10.1109/JBHI.2022.3186250 10.1109/MNET.011.2000286 10.1109/ACCESS.2020.3000421 10.1109/JBHI.2022.3183644 10.1109/JBHI.2022.3185418 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jpdc.2024.104964 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_jpdc_2024_104964 S074373152400128X |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-6cc39bc02e6d3fec8e2cffea45a9af52512678fc9ab0ad13143f37a9ff5b29453 |
IEDL.DBID | .~1 |
ISSN | 0743-7315 |
IngestDate | Tue Jul 01 03:20:53 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Sat Aug 24 15:42:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian optimization Artificial intelligence XGBoost IoMT |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-6cc39bc02e6d3fec8e2cffea45a9af52512678fc9ab0ad13143f37a9ff5b29453 |
ORCID | 0000-0002-7576-9127 0000-0002-3556-9331 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S074373152400128X |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpdc_2024_104964 crossref_primary_10_1016_j_jpdc_2024_104964 elsevier_sciencedirect_doi_10_1016_j_jpdc_2024_104964 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of parallel and distributed computing |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Le, Oktian, Kim (bib0025) 2022; 14 Ali, Naeem, Tariq, Kaddoum (bib0004) 2023; 27 Xu, Guo, Chakraborty, Hua, Chen, Yu (bib0052) 2023; 27 Guembe, Azeta, Misra, Osamor, Fernandez-Sanz, Pospelova (bib0010) 2022 Wang, Garg, Lin, Hu, Kaddoum, Jalil Piran, Hossain (bib0049) 2022; 9 Argus, (2020). Argus + ml. Retrieved January 02, 2023, from Lakhan, Mohammed, Rashid, Kadry, Abdulkareem, Nedoma, Martinek, Razzak (bib0023) 2023; 27 Verma, Bhattacharya, Zuhair, Tanwar, Kumar (bib0048) 2022; 26 Lakhan, Mohammed, Nedoma, Martinek, Tiwari, Vidyarthi, Alkhayyat, Wang (bib0024) 2023; 27 Antunes, André da Costa, Küderle, Yari, Eskofier (bib0005) 2022; 13 Rahman, Tout, Talhi, Mourad (bib0037) 2020; 34 Xavier-Junior, Freitas, Ludermir, Feitosa-Neto, Barreto (bib0053) 2020; 805 Gunduz, Yahaya (bib0015) 2018; 7 Singh, Gaba, Kaur, Hedabou, Gurtov (bib0047) 2023; 27 Si-Ahmed, A., Al-Garadi, M., & Boustia, N. (2022). Survey of machine learning based intrusion detection methods for internet of medical things. Retrieved January 13, 2023, from . McMahan, Moore, Ramage, Hampson, Arcas (bib0030) 2017; 54 Alazab, RM, M, Maddikunta, Gadekallu, Pham (bib0003) 2022; 18 Newaz, Haque, Sikder, Rahman, Uluagac (bib0032) 2020 Razdan, Sharma (bib0039) 2021 Jain, Singh, Sharma (bib0017) 2021; 16 Arikumar, Prathiba, Alazab, Gadekallu, Pandya, Khan, Moorthy (bib0007) 2022; 22 Nayak, Meher, Souri, Naik, Vimal (bib0031) 2022; 78 Saheed, Arowolo (bib0043) 2021; 9 Lim, Luong, Hoang, Jiao, Liang, Yang, Miao (bib0028) 2020; 22 Wang, Memon, Lian, Yin, Gadekallu, Pham, D, Su (bib0050) 2023; 12 Sayeed, Mohanty, Kougianos, Zaveri (bib0045) 2019; 65 Popoola, Ande, Adebisi, Gui, Hammoudeh, Jogunola (bib0034) 2022; 9 Alabdulatif, Khalil, Forkan, Atiquzzaman (bib0002) 2019; 57 Marwan, Kartit, Ouahmane (bib0029) 2018; 127 Ruby, Yang, Wu (bib0042) 2023; 27 Bertino, Islam (bib0009) 2017; 50 Lian, Yang, Wang, Zeng, Alazab, Zhao, Su (bib0026) 2022; 9 Otoum, Wan, Nayak (bib0033) 2021 Zhang, Zulkernine, Haque (bib0054) 2008; 38 Wagan, Koo, Siddiqui, Qureshi, Attique, Shin (bib0051) 2023; 35 Ahmed, Nguyen, Ali, Javed, Mirza (bib0001) 2023; 27 Hady, Ghubaish, Salman, Unal, Jain (bib0012) 2020; 8 Raza, Wallgren, Voigt (bib0038) 2013; 11 He, Qiao, Gao, Zheng, Chan, Li, Guizani (bib0014) 2019; 33 Deebak, Hwang (bib0011) 2023; 12 Rachakonda, Moorthy, Jain, Bukharev, Bucur, Manni, Quiterio, Joosten, Mendez (bib0036) 2023; 27 Kolokotronis, Dareioti, Shiaeles, Bellini (bib0018) 2022 Prasad, Bhattacharya, Maru, Tanwar, Verma, Singh, Tiwari, Sharma, Alkhayyat, Țurcanu, Raboaca (bib0035) 2022; 11 Kumar, Revathy (bib0020) 2022; 927 Lakhan, Mohammed, Kozlov, Rodrigues (bib0021) 2021 Koutras, Stergiopoulos, Dasaklis, Kotzanikolaou, Glynos, Douligeris (bib0019) 2020; 20 Begli, Derakhshan, Karimipour (bib0008) 2019 Rehman, Razzak, Xu (bib0040) 2023; 27 R.M, Maddikunta, M, Koppu, Gadekallu, Chowdhary, Alazab (bib0041) 2020; 160 Ali (10.1016/j.jpdc.2024.104964_bib0004) 2023; 27 10.1016/j.jpdc.2024.104964_bib0046 Koutras (10.1016/j.jpdc.2024.104964_bib0019) 2020; 20 Ruby (10.1016/j.jpdc.2024.104964_bib0042) 2023; 27 10.1016/j.jpdc.2024.104964_bib0006 Xavier-Junior (10.1016/j.jpdc.2024.104964_bib0053) 2020; 805 Lakhan (10.1016/j.jpdc.2024.104964_bib0024) 2023; 27 Wagan (10.1016/j.jpdc.2024.104964_bib0051) 2023; 35 Gunduz (10.1016/j.jpdc.2024.104964_bib0015) 2018; 7 Zhang (10.1016/j.jpdc.2024.104964_bib0054) 2008; 38 Kumar (10.1016/j.jpdc.2024.104964_bib0020) 2022; 927 R.M (10.1016/j.jpdc.2024.104964_bib0041) 2020; 160 Ahmed (10.1016/j.jpdc.2024.104964_bib0001) 2023; 27 Rachakonda (10.1016/j.jpdc.2024.104964_bib0036) 2023; 27 Sayeed (10.1016/j.jpdc.2024.104964_bib0045) 2019; 65 Otoum (10.1016/j.jpdc.2024.104964_bib0033) 2021 Raza (10.1016/j.jpdc.2024.104964_bib0038) 2013; 11 Xu (10.1016/j.jpdc.2024.104964_bib0052) 2023; 27 Lian (10.1016/j.jpdc.2024.104964_bib0026) 2022; 9 Bertino (10.1016/j.jpdc.2024.104964_bib0009) 2017; 50 Verma (10.1016/j.jpdc.2024.104964_bib0048) 2022; 26 Razdan (10.1016/j.jpdc.2024.104964_bib0039) 2021 Rahman (10.1016/j.jpdc.2024.104964_bib0037) 2020; 34 Alazab (10.1016/j.jpdc.2024.104964_bib0003) 2022; 18 Marwan (10.1016/j.jpdc.2024.104964_bib0029) 2018; 127 Wang (10.1016/j.jpdc.2024.104964_bib0049) 2022; 9 Guembe (10.1016/j.jpdc.2024.104964_bib0010) 2022 Kolokotronis (10.1016/j.jpdc.2024.104964_bib0018) 2022 Lim (10.1016/j.jpdc.2024.104964_bib0028) 2020; 22 Newaz (10.1016/j.jpdc.2024.104964_bib0032) 2020 Arikumar (10.1016/j.jpdc.2024.104964_bib0007) 2022; 22 Jain (10.1016/j.jpdc.2024.104964_bib0017) 2021; 16 Singh (10.1016/j.jpdc.2024.104964_bib0047) 2023; 27 Deebak (10.1016/j.jpdc.2024.104964_bib0011) 2023; 12 Rehman (10.1016/j.jpdc.2024.104964_bib0040) 2023; 27 He (10.1016/j.jpdc.2024.104964_bib0014) 2019; 33 Wang (10.1016/j.jpdc.2024.104964_bib0050) 2023; 12 Saheed (10.1016/j.jpdc.2024.104964_bib0043) 2021; 9 Nayak (10.1016/j.jpdc.2024.104964_bib0031) 2022; 78 Le (10.1016/j.jpdc.2024.104964_bib0025) 2022; 14 Prasad (10.1016/j.jpdc.2024.104964_bib0035) 2022; 11 Hady (10.1016/j.jpdc.2024.104964_bib0012) 2020; 8 Begli (10.1016/j.jpdc.2024.104964_bib0008) 2019 Alabdulatif (10.1016/j.jpdc.2024.104964_bib0002) 2019; 57 McMahan (10.1016/j.jpdc.2024.104964_bib0030) 2017; 54 Antunes (10.1016/j.jpdc.2024.104964_bib0005) 2022; 13 Lakhan (10.1016/j.jpdc.2024.104964_bib0023) 2023; 27 Popoola (10.1016/j.jpdc.2024.104964_bib0034) 2022; 9 Lakhan (10.1016/j.jpdc.2024.104964_bib0021) 2021 |
References_xml | – volume: 27 start-page: 691 year: 2023 end-page: 697 ident: bib0001 article-title: On the physical layer security of federated learning based IOMT networks publication-title: IEEE J. Biomed. Health Inform. – year: 2021 ident: bib0021 article-title: Mobile-fog-Cloud assisted deep reinforcement learning and blockchain-enable IOMT system for healthcare workflows publication-title: Trans. Emerging Telecommun. Technol. – volume: 20 start-page: 4828 year: 2020 ident: bib0019 article-title: Security in IoMT communications: a survey publication-title: Sensors – volume: 65 start-page: 359 year: 2019 end-page: 368 ident: bib0045 article-title: Neuro-detect: a machine learning-based fast and accurate seizure detection system in the IOMT publication-title: IEEE Trans. Consumer Electr. – volume: 927 start-page: 15 year: 2022 end-page: 30 ident: bib0020 article-title: A hybrid soft computing with big data analytics-based protection and recovery strategy for security enhancement in large scale real world online social networks publication-title: Theor. Comput. Sci. – year: 2020 ident: bib0032 article-title: Adversarial attacks to machine learning-based Smart Healthcare Systems publication-title: GLOBECOM 2020 - 2020 IEEE Global Communications Conference – volume: 50 start-page: 76 year: 2017 end-page: 79 ident: bib0009 article-title: Botnets and internet of things security publication-title: Computer. (Long. Beach. Calif) – volume: 9 start-page: 3558 year: 2022 end-page: 3569 ident: bib0026 article-title: Deep-FEL: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems publication-title: IEEE Trans. Netw. Sci. Eng. – year: 2019 ident: bib0008 article-title: A layered intrusion detection system for critical infrastructure using machine learning publication-title: 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE) – volume: 160 start-page: 139 year: 2020 end-page: 149 ident: bib0041 article-title: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IOMT architecture publication-title: Comput. Commun. – volume: 34 start-page: 310 year: 2020 end-page: 317 ident: bib0037 article-title: Internet of things intrusion detection: centralized, on-device, or federated learning? publication-title: IEEE Netw. – volume: 27 start-page: 652 year: 2023 end-page: 663 ident: bib0052 article-title: A simple federated learning-based scheme for security enhancement over internet of medical things publication-title: IEEE J. Biomed. Health Inform. – volume: 9 start-page: 161546 year: 2021 end-page: 161554 ident: bib0043 article-title: Efficient cyber attack detection on the Internet of Medical Things-smart environment based on deep recurrent neural network and machine learning algorithms publication-title: IEEE Access. – volume: 8 start-page: 106576 year: 2020 end-page: 106584 ident: bib0012 article-title: Intrusion detection system for healthcare systems using medical and network data: a comparison study publication-title: IEEE Access – reference: Si-Ahmed, A., Al-Garadi, M., & Boustia, N. (2022). Survey of machine learning based intrusion detection methods for internet of medical things. Retrieved January 13, 2023, from – year: 2022 ident: bib0010 article-title: The emerging threat of AI-driven Attacks: a review publication-title: Applied Artificial Intelligence – volume: 11 start-page: 2661 year: 2013 end-page: 2674 ident: bib0038 article-title: Svelte: real-time intrusion detection in the internet of things publication-title: Ad. Hoc. Netw. – volume: 27 start-page: 722 year: 2023 end-page: 731 ident: bib0047 article-title: Dew-cloud-based hierarchical federated learning for intrusion detection in IOMT publication-title: IEEE J. Biomed. Health Inform. – volume: 9 start-page: 3930 year: 2022 end-page: 3944 ident: bib0034 article-title: Federated deep learning for Zero-Day botnet attack detection in IOT-edge devices publication-title: IEEE Internet. Things. J. – volume: 57 start-page: 122 year: 2019 end-page: 129 ident: bib0002 article-title: Real-time secure health surveillance for smarter health communities publication-title: IEEE Commun. Magazine – volume: 127 start-page: 388 year: 2018 end-page: 397 ident: bib0029 article-title: Security enhancement in Healthcare Cloud using machine learning publication-title: Procedia Comput. Sci. – volume: 7 start-page: 63 year: 2018 ident: bib0015 article-title: The importance of healthy human life on economic development publication-title: Soc. Sci. – volume: 27 start-page: 778 year: 2023 end-page: 789 ident: bib0004 article-title: Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey publication-title: IEEE J. Biomed. Health Inform. – volume: 18 start-page: 3501 year: 2022 end-page: 3509 ident: bib0003 article-title: Federated learning for cybersecurity: concepts, challenges, and future directions publication-title: IEEE Trans. Industr. Inform. – volume: 27 start-page: 684 year: 2023 end-page: 690 ident: bib0040 article-title: Federated Learning for Privacy Preservation of healthcare data from smartphone-based side-channel attacks publication-title: IEEE J. Biomed. Health Inform. – volume: 22 start-page: 1377 year: 2022 ident: bib0007 article-title: FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems publication-title: Sensors – start-page: 1 year: 2021 end-page: 14 ident: bib0039 article-title: Internet of medical things (IOMT): overview, emerging technologies, and case studies publication-title: IETE Tech. Rev. – volume: 12 start-page: 1250 year: 2023 ident: bib0011 article-title: Federated learning-based lightweight two-factor authentication framework with privacy preservation for mobile sink in the social IOMT publication-title: Electronics. (Basel) – volume: 78 start-page: 14866 year: 2022 end-page: 14891 ident: bib0031 article-title: Extreme learning machine and Bayesian optimization-driven intelligent framework for IOMT cyber-attack detection publication-title: J. Supercomput. – volume: 11 start-page: 151 year: 2022 ident: bib0035 article-title: Federated learning for the the internet-of-medical-things: a survey publication-title: Mathematics – volume: 35 start-page: 131 year: 2023 end-page: 144 ident: bib0051 article-title: A fuzzy-based duo-secure multi-modal framework for IOMT anomaly detection publication-title: J. King Saud Univ. - Comput. Inf. Sci. – year: 2021 ident: bib0033 article-title: Federated transfer learning-based ids for the internet of medical things (IOMT) publication-title: 2021 IEEE Globecom Workshops (GC Wkshps) – year: 2022 ident: bib0018 article-title: An intelligent platform for threat assessment and Cyber-Attack mitigation in IOMT ecosystems publication-title: 2022 IEEE Globecom Workshops (GC Wkshps) – volume: 27 start-page: 673 year: 2023 end-page: 683 ident: bib0023 article-title: Restricted boltzmann machine assisted secure serverless edge system for internet of medical things publication-title: IEEE J. Biomed. Health Inform. – volume: 14 start-page: 8707 year: 2022 ident: bib0025 article-title: XGBoost for imbalanced multiclass classification-based industrial internet of things intrusion detection systems publication-title: Sustainability – volume: 805 start-page: 1 year: 2020 end-page: 18 ident: bib0053 article-title: An evolutionary algorithm for automated machine learning focusing on classifier ensembles: an improved algorithm and extended results publication-title: Theor. Comput. Sci. – volume: 33 start-page: 64 year: 2019 end-page: 69 ident: bib0014 article-title: Intrusion detection based on stacked Autoencoder for connected Healthcare Systems publication-title: IEEE Netw. – volume: 13 start-page: 1 year: 2022 end-page: 23 ident: bib0005 article-title: Federated learning for healthcare: systematic review and architecture proposal publication-title: ACM. Trans. Intell. Syst. Technol. – reference: Argus, (2020). Argus + ml. Retrieved January 02, 2023, from – volume: 27 start-page: 888 year: 2023 end-page: 899 ident: bib0042 article-title: Anti-jamming strategy for Federated Learning in internet of medical things: a game approach publication-title: IEEE J. Biomed. Health Inform. – volume: 16 start-page: 331 year: 2021 end-page: 369 ident: bib0017 article-title: Security as a solution: an intrusion detection system using a neural network for IOT enabled Healthcare Ecosystem publication-title: Interdiscipl. J. Inf., Knowl. Manage. – reference: . – volume: 26 start-page: 1997 year: 2022 end-page: 2007 ident: bib0048 article-title: blockchain-based 5G-assisted UAV vaccine distribution scheme for future pandemics publication-title: IEEE J. Biomed. Health Inform. – volume: 27 start-page: 664 year: 2023 end-page: 672 ident: bib0024 article-title: Federated-learning based privacy preservation and fraud-enabled blockchain IOMT system for Healthcare publication-title: IEEE J. Biomed. Health Inform. – volume: 9 start-page: 7110 year: 2022 end-page: 7119 ident: bib0049 article-title: Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning publication-title: IEEE Internet. Things. J. – volume: 54 year: 2017 ident: bib0030 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: International Conference on Artificial Intelligence and Statistics (AISTATS) – volume: 22 start-page: 2031 year: 2020 end-page: 2063 ident: bib0028 article-title: Federated learning in mobile edge networks: a comprehensive survey publication-title: IEEE Commun. Surveys Tutorials – volume: 12 start-page: 27 year: 2023 end-page: 34 ident: bib0050 article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction publication-title: IEEE Consumer Electr. Magazine – volume: 38 start-page: 649 year: 2008 end-page: 659 ident: bib0054 article-title: Random-forests-based network intrusion detection systems publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) – volume: 27 start-page: 744 year: 2023 end-page: 755 ident: bib0036 article-title: Privacy enhancing and Scalable Federated Learning to accelerate AI implementation in Cross-Silo and IOMT environments publication-title: IEEE J. Biomed. Health Inform. – volume: 27 start-page: 691 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0001 article-title: On the physical layer security of federated learning based IOMT networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3173947 – volume: 57 start-page: 122 issue: 1 year: 2019 ident: 10.1016/j.jpdc.2024.104964_bib0002 article-title: Real-time secure health surveillance for smarter health communities publication-title: IEEE Commun. Magazine doi: 10.1109/MCOM.2017.1700547 – volume: 9 start-page: 7110 issue: 10 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0049 article-title: Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning publication-title: IEEE Internet. Things. J. doi: 10.1109/JIOT.2021.3074382 – volume: 13 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0005 article-title: Federated learning for healthcare: systematic review and architecture proposal publication-title: ACM. Trans. Intell. Syst. Technol. doi: 10.1145/3501813 – year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0018 article-title: An intelligent platform for threat assessment and Cyber-Attack mitigation in IOMT ecosystems – volume: 127 start-page: 388 year: 2018 ident: 10.1016/j.jpdc.2024.104964_bib0029 article-title: Security enhancement in Healthcare Cloud using machine learning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.136 – volume: 12 start-page: 27 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0050 article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction publication-title: IEEE Consumer Electr. Magazine doi: 10.1109/MCE.2021.3116917 – volume: 11 start-page: 2661 issue: 8 year: 2013 ident: 10.1016/j.jpdc.2024.104964_bib0038 article-title: Svelte: real-time intrusion detection in the internet of things publication-title: Ad. Hoc. Netw. doi: 10.1016/j.adhoc.2013.04.014 – volume: 33 start-page: 64 issue: 6 year: 2019 ident: 10.1016/j.jpdc.2024.104964_bib0014 article-title: Intrusion detection based on stacked Autoencoder for connected Healthcare Systems publication-title: IEEE Netw. doi: 10.1109/MNET.001.1900105 – volume: 14 start-page: 8707 issue: 14 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0025 article-title: XGBoost for imbalanced multiclass classification-based industrial internet of things intrusion detection systems publication-title: Sustainability doi: 10.3390/su14148707 – volume: 9 start-page: 3558 issue: 5 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0026 article-title: Deep-FEL: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3175945 – volume: 18 start-page: 3501 issue: 5 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0003 article-title: Federated learning for cybersecurity: concepts, challenges, and future directions publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2021.3119038 – volume: 38 start-page: 649 issue: 5 year: 2008 ident: 10.1016/j.jpdc.2024.104964_bib0054 article-title: Random-forests-based network intrusion detection systems publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) doi: 10.1109/TSMCC.2008.923876 – volume: 11 start-page: 151 issue: 1 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0035 article-title: Federated learning for the the internet-of-medical-things: a survey publication-title: Mathematics doi: 10.3390/math11010151 – volume: 7 start-page: 63 issue: 2 year: 2018 ident: 10.1016/j.jpdc.2024.104964_bib0015 article-title: The importance of healthy human life on economic development publication-title: Soc. Sci. – volume: 27 start-page: 673 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0023 article-title: Restricted boltzmann machine assisted secure serverless edge system for internet of medical things publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3178660 – volume: 9 start-page: 161546 year: 2021 ident: 10.1016/j.jpdc.2024.104964_bib0043 article-title: Efficient cyber attack detection on the Internet of Medical Things-smart environment based on deep recurrent neural network and machine learning algorithms publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3128837 – volume: 16 start-page: 331 year: 2021 ident: 10.1016/j.jpdc.2024.104964_bib0017 article-title: Security as a solution: an intrusion detection system using a neural network for IOT enabled Healthcare Ecosystem publication-title: Interdiscipl. J. Inf., Knowl. Manage. – year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0010 article-title: The emerging threat of AI-driven Attacks: a review – volume: 50 start-page: 76 issue: 2 year: 2017 ident: 10.1016/j.jpdc.2024.104964_bib0009 article-title: Botnets and internet of things security publication-title: Computer. (Long. Beach. Calif) – volume: 20 start-page: 4828 issue: 17 year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0019 article-title: Security in IoMT communications: a survey publication-title: Sensors doi: 10.3390/s20174828 – volume: 65 start-page: 359 issue: 3 year: 2019 ident: 10.1016/j.jpdc.2024.104964_bib0045 article-title: Neuro-detect: a machine learning-based fast and accurate seizure detection system in the IOMT publication-title: IEEE Trans. Consumer Electr. doi: 10.1109/TCE.2019.2917895 – volume: 927 start-page: 15 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0020 article-title: A hybrid soft computing with big data analytics-based protection and recovery strategy for security enhancement in large scale real world online social networks publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2022.05.018 – volume: 9 start-page: 3930 issue: 5 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0034 article-title: Federated deep learning for Zero-Day botnet attack detection in IOT-edge devices publication-title: IEEE Internet. Things. J. doi: 10.1109/JIOT.2021.3100755 – volume: 22 start-page: 2031 issue: 3 year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0028 article-title: Federated learning in mobile edge networks: a comprehensive survey publication-title: IEEE Commun. Surveys Tutorials doi: 10.1109/COMST.2020.2986024 – volume: 160 start-page: 139 year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0041 article-title: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IOMT architecture publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.05.048 – volume: 35 start-page: 131 issue: 1 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0051 article-title: A fuzzy-based duo-secure multi-modal framework for IOMT anomaly detection publication-title: J. King Saud Univ. - Comput. Inf. Sci. – year: 2021 ident: 10.1016/j.jpdc.2024.104964_bib0033 article-title: Federated transfer learning-based ids for the internet of medical things (IOMT) – ident: 10.1016/j.jpdc.2024.104964_bib0046 doi: 10.1016/j.asoc.2023.110227 – volume: 805 start-page: 1 year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0053 article-title: An evolutionary algorithm for automated machine learning focusing on classifier ensembles: an improved algorithm and extended results publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2019.12.002 – volume: 54 year: 2017 ident: 10.1016/j.jpdc.2024.104964_bib0030 article-title: Communication-efficient learning of deep networks from decentralized data – volume: 22 start-page: 1377 issue: 4 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0007 article-title: FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems publication-title: Sensors doi: 10.3390/s22041377 – volume: 27 start-page: 684 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0040 article-title: Federated Learning for Privacy Preservation of healthcare data from smartphone-based side-channel attacks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3171852 – ident: 10.1016/j.jpdc.2024.104964_bib0006 – year: 2021 ident: 10.1016/j.jpdc.2024.104964_bib0021 article-title: Mobile-fog-Cloud assisted deep reinforcement learning and blockchain-enable IOMT system for healthcare workflows publication-title: Trans. Emerging Telecommun. Technol. – volume: 78 start-page: 14866 issue: 13 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0031 article-title: Extreme learning machine and Bayesian optimization-driven intelligent framework for IOMT cyber-attack detection publication-title: J. Supercomput. doi: 10.1007/s11227-022-04453-z – volume: 27 start-page: 778 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0004 article-title: Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3181823 – volume: 27 start-page: 652 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0052 article-title: A simple federated learning-based scheme for security enhancement over internet of medical things publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3187471 – volume: 26 start-page: 1997 issue: 5 year: 2022 ident: 10.1016/j.jpdc.2024.104964_bib0048 article-title: Vacochain: blockchain-based 5G-assisted UAV vaccine distribution scheme for future pandemics publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3103404 – volume: 27 start-page: 664 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0024 article-title: Federated-learning based privacy preservation and fraud-enabled blockchain IOMT system for Healthcare publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3165945 – volume: 27 start-page: 722 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0047 article-title: Dew-cloud-based hierarchical federated learning for intrusion detection in IOMT publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3186250 – start-page: 1 year: 2021 ident: 10.1016/j.jpdc.2024.104964_bib0039 article-title: Internet of medical things (IOMT): overview, emerging technologies, and case studies publication-title: IETE Tech. Rev. – volume: 34 start-page: 310 issue: 6 year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0037 article-title: Internet of things intrusion detection: centralized, on-device, or federated learning? publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000286 – volume: 8 start-page: 106576 year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0012 article-title: Intrusion detection system for healthcare systems using medical and network data: a comparison study publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000421 – volume: 27 start-page: 888 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0042 article-title: Anti-jamming strategy for Federated Learning in internet of medical things: a game approach publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3183644 – volume: 12 start-page: 1250 issue: 5 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0011 article-title: Federated learning-based lightweight two-factor authentication framework with privacy preservation for mobile sink in the social IOMT publication-title: Electronics. (Basel) – year: 2019 ident: 10.1016/j.jpdc.2024.104964_bib0008 article-title: A layered intrusion detection system for critical infrastructure using machine learning – volume: 27 start-page: 744 issue: 2 year: 2023 ident: 10.1016/j.jpdc.2024.104964_bib0036 article-title: Privacy enhancing and Scalable Federated Learning to accelerate AI implementation in Cross-Silo and IOMT environments publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3185418 – year: 2020 ident: 10.1016/j.jpdc.2024.104964_bib0032 article-title: Adversarial attacks to machine learning-based Smart Healthcare Systems |
SSID | ssj0011578 |
Score | 2.4256265 |
Snippet | •Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104964 |
SubjectTerms | Artificial intelligence Bayesian optimization IoMT XGBoost |
Title | Federated Bayesian optimization XGBoost model for cyberattack detection in internet of medical things |
URI | https://dx.doi.org/10.1016/j.jpdc.2024.104964 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCGQpvYeXhsK0oB0QUqZbMcx5ZaaFKBGbrw2_ElTgUS6oCUJZFPis7O3Xe5--4QuoJAR2U2TKVKJzZAsXshfMa8QGVSBjIhhAEb-WkSjaf0IQ3TFho2XBgoq3S2v7bplbV2T7pOm93lbNZ9BucXE-t_aJUPSoHBTmM45Tdf6zIP6CWTNK04YbUjztQ1XvNlDm0MAwqpThbRv53TD4cz2ke7Dinifv0yB6ilikO010xhwO6jPEJqBP0gLGTM8UCsFJAicWkNwcIxLHF6NyjLD4OroTfYglQsVxlIGCFfca5MVY1V4Blc8H9QGVxqvKhTONhUkz2P0XR0-zIce254gicJpcaLpLRqlr1ARTnRSiYqkForQUPBhA4B1lg_pSUTWU_kPrG4SZNYMK3DLGA0JCdoqygLdYqwr4PEwjIiZU_ThEQi85ndnhjIlxZAkjbyG61x6TqLw4CLN96UkM05aJqDpnmt6Ta6Xsss674aG1eHzWbwX6eDW8O_Qe7sn3LnaAfuas7hBdoy75_q0oIPk3Wq09VB2_37x_HkG-LU2dg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqGGDhjXjjASZU2thOGg8MFCjlURZaqVtwHFsqj6aCINSFP8Uf5C5xEEioAxJShijJScn59N138T0I2cNAx8QQpgpjQwhQYC2UJ2WVmVhrpkPOJVYjd26Cdk9c9v1-hXyUtTCYVumwv8D0HK3dlZrTZm00GNRu0fk1OPgfke8H9V1m5ZUZv0Hc9nJ0cQqLvM9Y66x70q660QJVzYXIqoHW8BK6zkyQcGt0aJi21ijhK6msj04fUNxqqeK6SjwOrMLyhpLW-jGTAkdFAO5Pw0mIYxMO37_ySrB5TVj2_sTXc5U6RVLZ_SjBvolM4N6qDMTv3vCbh2stkDlHTelx8fWLpGKGS2S-HPtAHQosE9PCBhTAURPaVGODVZg0BeR5ciWdtH_eTNOXjOZTdiiwYqrHMUpkSj_QxGR5-teQDvDAH5Imo6mlT8WeEc3yUaIrpPcvKl0lU8N0aNYI9SwLgQdyretWhDxQsSfBHhpY7QmMla8Tr9RapF0rc5yo8RiVOWv3EWo6Qk1HhabXycGXzKho5DHxab9cjOiHOUbgaSbIbfxRbpfMtLud6-j64uZqk8zinaLgcYtMZc-vZhuYTxbv5JZGyd1_m_YnbXwXMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Bayesian+optimization+XGBoost+model+for+cyberattack+detection+in+internet+of+medical+things&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Guembe%2C+Blessing&rft.au=Misra%2C+Sanjay&rft.au=Azeta%2C+Ambrose&rft.date=2024-11-01&rft.issn=0743-7315&rft.volume=193&rft.spage=104964&rft_id=info:doi/10.1016%2Fj.jpdc.2024.104964&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2024_104964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |