Federated Bayesian optimization XGBoost model for cyberattack detection in internet of medical things

•Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the performance of detecting attacks in IoMT.•Executes routine IoMT functions in a decentralized environment without compromising the confidentiality o...

Full description

Saved in:
Bibliographic Details
Published inJournal of parallel and distributed computing Vol. 193; p. 104964
Main Authors Guembe, Blessing, Misra, Sanjay, Azeta, Ambrose
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the performance of detecting attacks in IoMT.•Executes routine IoMT functions in a decentralized environment without compromising the confidentiality of patient information or the security of the network.•The proposed model is a good solution in the IoMT domain to efficiently detect malicious patterns while maintaining data privacy and confidentiality. Hospitals and medical facilities are increasingly concerned about network security and patient data privacy as the Internet of Medical Things (IoMT) infrastructures continue to develop. Researchers have studied customized network security frameworks and cyberattack detection tools driven by Artificial Intelligence (AI) to counter different types of attacks, such as spoofing, data alteration, and botnet attacks. However, carrying out routine IoMT services and tasks during an under-attack scenario is challenging. Machine Learning has been extensively suggested for detecting cyberattacks in IoMT and IoT infrastructures. However, the conventional centralized approach in ML cannot effectively detect newly emerging attacks without compromising patient data privacy and network flow data confidentiality. This study discusses a Federated Bayesian Optimization XGBoost framework that employs multimodal sensory signals from patient vital signs and network flow data to detect attack patterns and malicious network traffic in IoMT infrastructure while ensuring data privacy and detecting previously unknown attacks. The proposed model employs a Federated Bayesian Optimisation XGBoost approach, which allows us to search the parameter space quickly and find an optimal solution from each local server while aggregating the model parameters from each local server to the centralised server. The XGBoost algorithm generates a new tree by taking into account the previously estimated value for the tree's input data and then optimizing the prediction gain. This study used a dataset with 44 attributes and 16 318 instances. During the preprocessing phase, 10 features were dropped, and the remaining 34 features were used to evaluate the network flows and biometric data (patient vital signs). The performance evaluation reveals that the proposed model predicts data alteration, malware, and spoofing attacks in patients' vital signs and network flow data with a prediction accuracy of 0.96. The results obtained from the experiment demonstrate that both the centralized and federated models are synchronized, with the latter occasionally being slightly reduced. The findings indicate that the suggested model can be incorporated into the IoMT domain to detect malicious patterns while maintaining data privacy and confidentiality efficiently.
AbstractList •Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the performance of detecting attacks in IoMT.•Executes routine IoMT functions in a decentralized environment without compromising the confidentiality of patient information or the security of the network.•The proposed model is a good solution in the IoMT domain to efficiently detect malicious patterns while maintaining data privacy and confidentiality. Hospitals and medical facilities are increasingly concerned about network security and patient data privacy as the Internet of Medical Things (IoMT) infrastructures continue to develop. Researchers have studied customized network security frameworks and cyberattack detection tools driven by Artificial Intelligence (AI) to counter different types of attacks, such as spoofing, data alteration, and botnet attacks. However, carrying out routine IoMT services and tasks during an under-attack scenario is challenging. Machine Learning has been extensively suggested for detecting cyberattacks in IoMT and IoT infrastructures. However, the conventional centralized approach in ML cannot effectively detect newly emerging attacks without compromising patient data privacy and network flow data confidentiality. This study discusses a Federated Bayesian Optimization XGBoost framework that employs multimodal sensory signals from patient vital signs and network flow data to detect attack patterns and malicious network traffic in IoMT infrastructure while ensuring data privacy and detecting previously unknown attacks. The proposed model employs a Federated Bayesian Optimisation XGBoost approach, which allows us to search the parameter space quickly and find an optimal solution from each local server while aggregating the model parameters from each local server to the centralised server. The XGBoost algorithm generates a new tree by taking into account the previously estimated value for the tree's input data and then optimizing the prediction gain. This study used a dataset with 44 attributes and 16 318 instances. During the preprocessing phase, 10 features were dropped, and the remaining 34 features were used to evaluate the network flows and biometric data (patient vital signs). The performance evaluation reveals that the proposed model predicts data alteration, malware, and spoofing attacks in patients' vital signs and network flow data with a prediction accuracy of 0.96. The results obtained from the experiment demonstrate that both the centralized and federated models are synchronized, with the latter occasionally being slightly reduced. The findings indicate that the suggested model can be incorporated into the IoMT domain to detect malicious patterns while maintaining data privacy and confidentiality efficiently.
ArticleNumber 104964
Author Misra, Sanjay
Azeta, Ambrose
Guembe, Blessing
Author_xml – sequence: 1
  givenname: Blessing
  orcidid: 0000-0002-7576-9127
  surname: Guembe
  fullname: Guembe, Blessing
  organization: Department of Computer Science, Covenant University1, Nigeria
– sequence: 2
  givenname: Sanjay
  orcidid: 0000-0002-3556-9331
  surname: Misra
  fullname: Misra, Sanjay
  email: sanjay.misra@ife.no
  organization: Department of Applied Data Science, Institute for Energy Technology, Halden, Norway
– sequence: 3
  givenname: Ambrose
  surname: Azeta
  fullname: Azeta, Ambrose
  organization: Department of Computer Science, Namibia University of Science and Technology, Namibia
BookMark eNp9kMtKAzEUhrOoYFt9AVd5gam5zQ3c2GJVKLhRcBcyyYlmnJmUJAj16Z1pXbkoHDhw-L8D_7dAs8EPgNANJStKaHHbrtq90StGmBgPoi7EDM1JKXhWcppfokWMLSGU5mU1R7AFA0ElMHitDhCdGrDfJ9e7H5WcH_D749r7mHDvDXTY-oD1oZmIpPQXNpBAH3NumgRhgIS9xT0Yp1WH06cbPuIVurCqi3D9t5fobfvwunnKdi-Pz5v7Xaa5ECkrtOZ1owmDwnALugKmrQUlclUrm7OcsqKsrK5VQ5ShnApuealqa_OG1SLnS1Sd_urgYwxgpXbp2CMF5TpJiZwUyVZOiuSkSJ4UjSj7h-6D61U4nIfuThCMpb4dBBm1g0GP5cPoRRrvzuG_j2mG2g
CitedBy_id crossref_primary_10_3390_s24185937
Cites_doi 10.1109/JBHI.2022.3173947
10.1109/MCOM.2017.1700547
10.1109/JIOT.2021.3074382
10.1145/3501813
10.1016/j.procs.2018.01.136
10.1109/MCE.2021.3116917
10.1016/j.adhoc.2013.04.014
10.1109/MNET.001.1900105
10.3390/su14148707
10.1109/TNSE.2022.3175945
10.1109/TII.2021.3119038
10.1109/TSMCC.2008.923876
10.3390/math11010151
10.1109/JBHI.2022.3178660
10.1109/ACCESS.2021.3128837
10.3390/s20174828
10.1109/TCE.2019.2917895
10.1016/j.tcs.2022.05.018
10.1109/JIOT.2021.3100755
10.1109/COMST.2020.2986024
10.1016/j.comcom.2020.05.048
10.1016/j.asoc.2023.110227
10.1016/j.tcs.2019.12.002
10.3390/s22041377
10.1109/JBHI.2022.3171852
10.1007/s11227-022-04453-z
10.1109/JBHI.2022.3181823
10.1109/JBHI.2022.3187471
10.1109/JBHI.2021.3103404
10.1109/JBHI.2022.3165945
10.1109/JBHI.2022.3186250
10.1109/MNET.011.2000286
10.1109/ACCESS.2020.3000421
10.1109/JBHI.2022.3183644
10.1109/JBHI.2022.3185418
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jpdc.2024.104964
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jpdc_2024_104964
S074373152400128X
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-6cc39bc02e6d3fec8e2cffea45a9af52512678fc9ab0ad13143f37a9ff5b29453
IEDL.DBID .~1
ISSN 0743-7315
IngestDate Tue Jul 01 03:20:53 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Sat Aug 24 15:42:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bayesian optimization
Artificial intelligence
XGBoost
IoMT
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-6cc39bc02e6d3fec8e2cffea45a9af52512678fc9ab0ad13143f37a9ff5b29453
ORCID 0000-0002-7576-9127
0000-0002-3556-9331
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S074373152400128X
ParticipantIDs crossref_citationtrail_10_1016_j_jpdc_2024_104964
crossref_primary_10_1016_j_jpdc_2024_104964
elsevier_sciencedirect_doi_10_1016_j_jpdc_2024_104964
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Le, Oktian, Kim (bib0025) 2022; 14
Ali, Naeem, Tariq, Kaddoum (bib0004) 2023; 27
Xu, Guo, Chakraborty, Hua, Chen, Yu (bib0052) 2023; 27
Guembe, Azeta, Misra, Osamor, Fernandez-Sanz, Pospelova (bib0010) 2022
Wang, Garg, Lin, Hu, Kaddoum, Jalil Piran, Hossain (bib0049) 2022; 9
Argus, (2020). Argus + ml. Retrieved January 02, 2023, from
Lakhan, Mohammed, Rashid, Kadry, Abdulkareem, Nedoma, Martinek, Razzak (bib0023) 2023; 27
Verma, Bhattacharya, Zuhair, Tanwar, Kumar (bib0048) 2022; 26
Lakhan, Mohammed, Nedoma, Martinek, Tiwari, Vidyarthi, Alkhayyat, Wang (bib0024) 2023; 27
Antunes, André da Costa, Küderle, Yari, Eskofier (bib0005) 2022; 13
Rahman, Tout, Talhi, Mourad (bib0037) 2020; 34
Xavier-Junior, Freitas, Ludermir, Feitosa-Neto, Barreto (bib0053) 2020; 805
Gunduz, Yahaya (bib0015) 2018; 7
Singh, Gaba, Kaur, Hedabou, Gurtov (bib0047) 2023; 27
Si-Ahmed, A., Al-Garadi, M., & Boustia, N. (2022). Survey of machine learning based intrusion detection methods for internet of medical things. Retrieved January 13, 2023, from
.
McMahan, Moore, Ramage, Hampson, Arcas (bib0030) 2017; 54
Alazab, RM, M, Maddikunta, Gadekallu, Pham (bib0003) 2022; 18
Newaz, Haque, Sikder, Rahman, Uluagac (bib0032) 2020
Razdan, Sharma (bib0039) 2021
Jain, Singh, Sharma (bib0017) 2021; 16
Arikumar, Prathiba, Alazab, Gadekallu, Pandya, Khan, Moorthy (bib0007) 2022; 22
Nayak, Meher, Souri, Naik, Vimal (bib0031) 2022; 78
Saheed, Arowolo (bib0043) 2021; 9
Lim, Luong, Hoang, Jiao, Liang, Yang, Miao (bib0028) 2020; 22
Wang, Memon, Lian, Yin, Gadekallu, Pham, D, Su (bib0050) 2023; 12
Sayeed, Mohanty, Kougianos, Zaveri (bib0045) 2019; 65
Popoola, Ande, Adebisi, Gui, Hammoudeh, Jogunola (bib0034) 2022; 9
Alabdulatif, Khalil, Forkan, Atiquzzaman (bib0002) 2019; 57
Marwan, Kartit, Ouahmane (bib0029) 2018; 127
Ruby, Yang, Wu (bib0042) 2023; 27
Bertino, Islam (bib0009) 2017; 50
Lian, Yang, Wang, Zeng, Alazab, Zhao, Su (bib0026) 2022; 9
Otoum, Wan, Nayak (bib0033) 2021
Zhang, Zulkernine, Haque (bib0054) 2008; 38
Wagan, Koo, Siddiqui, Qureshi, Attique, Shin (bib0051) 2023; 35
Ahmed, Nguyen, Ali, Javed, Mirza (bib0001) 2023; 27
Hady, Ghubaish, Salman, Unal, Jain (bib0012) 2020; 8
Raza, Wallgren, Voigt (bib0038) 2013; 11
He, Qiao, Gao, Zheng, Chan, Li, Guizani (bib0014) 2019; 33
Deebak, Hwang (bib0011) 2023; 12
Rachakonda, Moorthy, Jain, Bukharev, Bucur, Manni, Quiterio, Joosten, Mendez (bib0036) 2023; 27
Kolokotronis, Dareioti, Shiaeles, Bellini (bib0018) 2022
Prasad, Bhattacharya, Maru, Tanwar, Verma, Singh, Tiwari, Sharma, Alkhayyat, Țurcanu, Raboaca (bib0035) 2022; 11
Kumar, Revathy (bib0020) 2022; 927
Lakhan, Mohammed, Kozlov, Rodrigues (bib0021) 2021
Koutras, Stergiopoulos, Dasaklis, Kotzanikolaou, Glynos, Douligeris (bib0019) 2020; 20
Begli, Derakhshan, Karimipour (bib0008) 2019
Rehman, Razzak, Xu (bib0040) 2023; 27
R.M, Maddikunta, M, Koppu, Gadekallu, Chowdhary, Alazab (bib0041) 2020; 160
Ali (10.1016/j.jpdc.2024.104964_bib0004) 2023; 27
10.1016/j.jpdc.2024.104964_bib0046
Koutras (10.1016/j.jpdc.2024.104964_bib0019) 2020; 20
Ruby (10.1016/j.jpdc.2024.104964_bib0042) 2023; 27
10.1016/j.jpdc.2024.104964_bib0006
Xavier-Junior (10.1016/j.jpdc.2024.104964_bib0053) 2020; 805
Lakhan (10.1016/j.jpdc.2024.104964_bib0024) 2023; 27
Wagan (10.1016/j.jpdc.2024.104964_bib0051) 2023; 35
Gunduz (10.1016/j.jpdc.2024.104964_bib0015) 2018; 7
Zhang (10.1016/j.jpdc.2024.104964_bib0054) 2008; 38
Kumar (10.1016/j.jpdc.2024.104964_bib0020) 2022; 927
R.M (10.1016/j.jpdc.2024.104964_bib0041) 2020; 160
Ahmed (10.1016/j.jpdc.2024.104964_bib0001) 2023; 27
Rachakonda (10.1016/j.jpdc.2024.104964_bib0036) 2023; 27
Sayeed (10.1016/j.jpdc.2024.104964_bib0045) 2019; 65
Otoum (10.1016/j.jpdc.2024.104964_bib0033) 2021
Raza (10.1016/j.jpdc.2024.104964_bib0038) 2013; 11
Xu (10.1016/j.jpdc.2024.104964_bib0052) 2023; 27
Lian (10.1016/j.jpdc.2024.104964_bib0026) 2022; 9
Bertino (10.1016/j.jpdc.2024.104964_bib0009) 2017; 50
Verma (10.1016/j.jpdc.2024.104964_bib0048) 2022; 26
Razdan (10.1016/j.jpdc.2024.104964_bib0039) 2021
Rahman (10.1016/j.jpdc.2024.104964_bib0037) 2020; 34
Alazab (10.1016/j.jpdc.2024.104964_bib0003) 2022; 18
Marwan (10.1016/j.jpdc.2024.104964_bib0029) 2018; 127
Wang (10.1016/j.jpdc.2024.104964_bib0049) 2022; 9
Guembe (10.1016/j.jpdc.2024.104964_bib0010) 2022
Kolokotronis (10.1016/j.jpdc.2024.104964_bib0018) 2022
Lim (10.1016/j.jpdc.2024.104964_bib0028) 2020; 22
Newaz (10.1016/j.jpdc.2024.104964_bib0032) 2020
Arikumar (10.1016/j.jpdc.2024.104964_bib0007) 2022; 22
Jain (10.1016/j.jpdc.2024.104964_bib0017) 2021; 16
Singh (10.1016/j.jpdc.2024.104964_bib0047) 2023; 27
Deebak (10.1016/j.jpdc.2024.104964_bib0011) 2023; 12
Rehman (10.1016/j.jpdc.2024.104964_bib0040) 2023; 27
He (10.1016/j.jpdc.2024.104964_bib0014) 2019; 33
Wang (10.1016/j.jpdc.2024.104964_bib0050) 2023; 12
Saheed (10.1016/j.jpdc.2024.104964_bib0043) 2021; 9
Nayak (10.1016/j.jpdc.2024.104964_bib0031) 2022; 78
Le (10.1016/j.jpdc.2024.104964_bib0025) 2022; 14
Prasad (10.1016/j.jpdc.2024.104964_bib0035) 2022; 11
Hady (10.1016/j.jpdc.2024.104964_bib0012) 2020; 8
Begli (10.1016/j.jpdc.2024.104964_bib0008) 2019
Alabdulatif (10.1016/j.jpdc.2024.104964_bib0002) 2019; 57
McMahan (10.1016/j.jpdc.2024.104964_bib0030) 2017; 54
Antunes (10.1016/j.jpdc.2024.104964_bib0005) 2022; 13
Lakhan (10.1016/j.jpdc.2024.104964_bib0023) 2023; 27
Popoola (10.1016/j.jpdc.2024.104964_bib0034) 2022; 9
Lakhan (10.1016/j.jpdc.2024.104964_bib0021) 2021
References_xml – volume: 27
  start-page: 691
  year: 2023
  end-page: 697
  ident: bib0001
  article-title: On the physical layer security of federated learning based IOMT networks
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2021
  ident: bib0021
  article-title: Mobile-fog-Cloud assisted deep reinforcement learning and blockchain-enable IOMT system for healthcare workflows
  publication-title: Trans. Emerging Telecommun. Technol.
– volume: 20
  start-page: 4828
  year: 2020
  ident: bib0019
  article-title: Security in IoMT communications: a survey
  publication-title: Sensors
– volume: 65
  start-page: 359
  year: 2019
  end-page: 368
  ident: bib0045
  article-title: Neuro-detect: a machine learning-based fast and accurate seizure detection system in the IOMT
  publication-title: IEEE Trans. Consumer Electr.
– volume: 927
  start-page: 15
  year: 2022
  end-page: 30
  ident: bib0020
  article-title: A hybrid soft computing with big data analytics-based protection and recovery strategy for security enhancement in large scale real world online social networks
  publication-title: Theor. Comput. Sci.
– year: 2020
  ident: bib0032
  article-title: Adversarial attacks to machine learning-based Smart Healthcare Systems
  publication-title: GLOBECOM 2020 - 2020 IEEE Global Communications Conference
– volume: 50
  start-page: 76
  year: 2017
  end-page: 79
  ident: bib0009
  article-title: Botnets and internet of things security
  publication-title: Computer. (Long. Beach. Calif)
– volume: 9
  start-page: 3558
  year: 2022
  end-page: 3569
  ident: bib0026
  article-title: Deep-FEL: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems
  publication-title: IEEE Trans. Netw. Sci. Eng.
– year: 2019
  ident: bib0008
  article-title: A layered intrusion detection system for critical infrastructure using machine learning
  publication-title: 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE)
– volume: 160
  start-page: 139
  year: 2020
  end-page: 149
  ident: bib0041
  article-title: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IOMT architecture
  publication-title: Comput. Commun.
– volume: 34
  start-page: 310
  year: 2020
  end-page: 317
  ident: bib0037
  article-title: Internet of things intrusion detection: centralized, on-device, or federated learning?
  publication-title: IEEE Netw.
– volume: 27
  start-page: 652
  year: 2023
  end-page: 663
  ident: bib0052
  article-title: A simple federated learning-based scheme for security enhancement over internet of medical things
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 9
  start-page: 161546
  year: 2021
  end-page: 161554
  ident: bib0043
  article-title: Efficient cyber attack detection on the Internet of Medical Things-smart environment based on deep recurrent neural network and machine learning algorithms
  publication-title: IEEE Access.
– volume: 8
  start-page: 106576
  year: 2020
  end-page: 106584
  ident: bib0012
  article-title: Intrusion detection system for healthcare systems using medical and network data: a comparison study
  publication-title: IEEE Access
– reference: Si-Ahmed, A., Al-Garadi, M., & Boustia, N. (2022). Survey of machine learning based intrusion detection methods for internet of medical things. Retrieved January 13, 2023, from
– year: 2022
  ident: bib0010
  article-title: The emerging threat of AI-driven Attacks: a review
  publication-title: Applied Artificial Intelligence
– volume: 11
  start-page: 2661
  year: 2013
  end-page: 2674
  ident: bib0038
  article-title: Svelte: real-time intrusion detection in the internet of things
  publication-title: Ad. Hoc. Netw.
– volume: 27
  start-page: 722
  year: 2023
  end-page: 731
  ident: bib0047
  article-title: Dew-cloud-based hierarchical federated learning for intrusion detection in IOMT
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 9
  start-page: 3930
  year: 2022
  end-page: 3944
  ident: bib0034
  article-title: Federated deep learning for Zero-Day botnet attack detection in IOT-edge devices
  publication-title: IEEE Internet. Things. J.
– volume: 57
  start-page: 122
  year: 2019
  end-page: 129
  ident: bib0002
  article-title: Real-time secure health surveillance for smarter health communities
  publication-title: IEEE Commun. Magazine
– volume: 127
  start-page: 388
  year: 2018
  end-page: 397
  ident: bib0029
  article-title: Security enhancement in Healthcare Cloud using machine learning
  publication-title: Procedia Comput. Sci.
– volume: 7
  start-page: 63
  year: 2018
  ident: bib0015
  article-title: The importance of healthy human life on economic development
  publication-title: Soc. Sci.
– volume: 27
  start-page: 778
  year: 2023
  end-page: 789
  ident: bib0004
  article-title: Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 18
  start-page: 3501
  year: 2022
  end-page: 3509
  ident: bib0003
  article-title: Federated learning for cybersecurity: concepts, challenges, and future directions
  publication-title: IEEE Trans. Industr. Inform.
– volume: 27
  start-page: 684
  year: 2023
  end-page: 690
  ident: bib0040
  article-title: Federated Learning for Privacy Preservation of healthcare data from smartphone-based side-channel attacks
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 22
  start-page: 1377
  year: 2022
  ident: bib0007
  article-title: FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems
  publication-title: Sensors
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib0039
  article-title: Internet of medical things (IOMT): overview, emerging technologies, and case studies
  publication-title: IETE Tech. Rev.
– volume: 12
  start-page: 1250
  year: 2023
  ident: bib0011
  article-title: Federated learning-based lightweight two-factor authentication framework with privacy preservation for mobile sink in the social IOMT
  publication-title: Electronics. (Basel)
– volume: 78
  start-page: 14866
  year: 2022
  end-page: 14891
  ident: bib0031
  article-title: Extreme learning machine and Bayesian optimization-driven intelligent framework for IOMT cyber-attack detection
  publication-title: J. Supercomput.
– volume: 11
  start-page: 151
  year: 2022
  ident: bib0035
  article-title: Federated learning for the the internet-of-medical-things: a survey
  publication-title: Mathematics
– volume: 35
  start-page: 131
  year: 2023
  end-page: 144
  ident: bib0051
  article-title: A fuzzy-based duo-secure multi-modal framework for IOMT anomaly detection
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– year: 2021
  ident: bib0033
  article-title: Federated transfer learning-based ids for the internet of medical things (IOMT)
  publication-title: 2021 IEEE Globecom Workshops (GC Wkshps)
– year: 2022
  ident: bib0018
  article-title: An intelligent platform for threat assessment and Cyber-Attack mitigation in IOMT ecosystems
  publication-title: 2022 IEEE Globecom Workshops (GC Wkshps)
– volume: 27
  start-page: 673
  year: 2023
  end-page: 683
  ident: bib0023
  article-title: Restricted boltzmann machine assisted secure serverless edge system for internet of medical things
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 14
  start-page: 8707
  year: 2022
  ident: bib0025
  article-title: XGBoost for imbalanced multiclass classification-based industrial internet of things intrusion detection systems
  publication-title: Sustainability
– volume: 805
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0053
  article-title: An evolutionary algorithm for automated machine learning focusing on classifier ensembles: an improved algorithm and extended results
  publication-title: Theor. Comput. Sci.
– volume: 33
  start-page: 64
  year: 2019
  end-page: 69
  ident: bib0014
  article-title: Intrusion detection based on stacked Autoencoder for connected Healthcare Systems
  publication-title: IEEE Netw.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 23
  ident: bib0005
  article-title: Federated learning for healthcare: systematic review and architecture proposal
  publication-title: ACM. Trans. Intell. Syst. Technol.
– reference: Argus, (2020). Argus + ml. Retrieved January 02, 2023, from
– volume: 27
  start-page: 888
  year: 2023
  end-page: 899
  ident: bib0042
  article-title: Anti-jamming strategy for Federated Learning in internet of medical things: a game approach
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 16
  start-page: 331
  year: 2021
  end-page: 369
  ident: bib0017
  article-title: Security as a solution: an intrusion detection system using a neural network for IOT enabled Healthcare Ecosystem
  publication-title: Interdiscipl. J. Inf., Knowl. Manage.
– reference: .
– volume: 26
  start-page: 1997
  year: 2022
  end-page: 2007
  ident: bib0048
  article-title: blockchain-based 5G-assisted UAV vaccine distribution scheme for future pandemics
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 27
  start-page: 664
  year: 2023
  end-page: 672
  ident: bib0024
  article-title: Federated-learning based privacy preservation and fraud-enabled blockchain IOMT system for Healthcare
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 9
  start-page: 7110
  year: 2022
  end-page: 7119
  ident: bib0049
  article-title: Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning
  publication-title: IEEE Internet. Things. J.
– volume: 54
  year: 2017
  ident: bib0030
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: International Conference on Artificial Intelligence and Statistics (AISTATS)
– volume: 22
  start-page: 2031
  year: 2020
  end-page: 2063
  ident: bib0028
  article-title: Federated learning in mobile edge networks: a comprehensive survey
  publication-title: IEEE Commun. Surveys Tutorials
– volume: 12
  start-page: 27
  year: 2023
  end-page: 34
  ident: bib0050
  article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction
  publication-title: IEEE Consumer Electr. Magazine
– volume: 38
  start-page: 649
  year: 2008
  end-page: 659
  ident: bib0054
  article-title: Random-forests-based network intrusion detection systems
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)
– volume: 27
  start-page: 744
  year: 2023
  end-page: 755
  ident: bib0036
  article-title: Privacy enhancing and Scalable Federated Learning to accelerate AI implementation in Cross-Silo and IOMT environments
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 27
  start-page: 691
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0001
  article-title: On the physical layer security of federated learning based IOMT networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3173947
– volume: 57
  start-page: 122
  issue: 1
  year: 2019
  ident: 10.1016/j.jpdc.2024.104964_bib0002
  article-title: Real-time secure health surveillance for smarter health communities
  publication-title: IEEE Commun. Magazine
  doi: 10.1109/MCOM.2017.1700547
– volume: 9
  start-page: 7110
  issue: 10
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0049
  article-title: Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning
  publication-title: IEEE Internet. Things. J.
  doi: 10.1109/JIOT.2021.3074382
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0005
  article-title: Federated learning for healthcare: systematic review and architecture proposal
  publication-title: ACM. Trans. Intell. Syst. Technol.
  doi: 10.1145/3501813
– year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0018
  article-title: An intelligent platform for threat assessment and Cyber-Attack mitigation in IOMT ecosystems
– volume: 127
  start-page: 388
  year: 2018
  ident: 10.1016/j.jpdc.2024.104964_bib0029
  article-title: Security enhancement in Healthcare Cloud using machine learning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.136
– volume: 12
  start-page: 27
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0050
  article-title: Secure-enhanced federated learning for AI-empowered electric vehicle energy prediction
  publication-title: IEEE Consumer Electr. Magazine
  doi: 10.1109/MCE.2021.3116917
– volume: 11
  start-page: 2661
  issue: 8
  year: 2013
  ident: 10.1016/j.jpdc.2024.104964_bib0038
  article-title: Svelte: real-time intrusion detection in the internet of things
  publication-title: Ad. Hoc. Netw.
  doi: 10.1016/j.adhoc.2013.04.014
– volume: 33
  start-page: 64
  issue: 6
  year: 2019
  ident: 10.1016/j.jpdc.2024.104964_bib0014
  article-title: Intrusion detection based on stacked Autoencoder for connected Healthcare Systems
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.1900105
– volume: 14
  start-page: 8707
  issue: 14
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0025
  article-title: XGBoost for imbalanced multiclass classification-based industrial internet of things intrusion detection systems
  publication-title: Sustainability
  doi: 10.3390/su14148707
– volume: 9
  start-page: 3558
  issue: 5
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0026
  article-title: Deep-FEL: decentralized, efficient and privacy-enhanced federated edge learning for healthcare cyber physical systems
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3175945
– volume: 18
  start-page: 3501
  issue: 5
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0003
  article-title: Federated learning for cybersecurity: concepts, challenges, and future directions
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2021.3119038
– volume: 38
  start-page: 649
  issue: 5
  year: 2008
  ident: 10.1016/j.jpdc.2024.104964_bib0054
  article-title: Random-forests-based network intrusion detection systems
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2008.923876
– volume: 11
  start-page: 151
  issue: 1
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0035
  article-title: Federated learning for the the internet-of-medical-things: a survey
  publication-title: Mathematics
  doi: 10.3390/math11010151
– volume: 7
  start-page: 63
  issue: 2
  year: 2018
  ident: 10.1016/j.jpdc.2024.104964_bib0015
  article-title: The importance of healthy human life on economic development
  publication-title: Soc. Sci.
– volume: 27
  start-page: 673
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0023
  article-title: Restricted boltzmann machine assisted secure serverless edge system for internet of medical things
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3178660
– volume: 9
  start-page: 161546
  year: 2021
  ident: 10.1016/j.jpdc.2024.104964_bib0043
  article-title: Efficient cyber attack detection on the Internet of Medical Things-smart environment based on deep recurrent neural network and machine learning algorithms
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3128837
– volume: 16
  start-page: 331
  year: 2021
  ident: 10.1016/j.jpdc.2024.104964_bib0017
  article-title: Security as a solution: an intrusion detection system using a neural network for IOT enabled Healthcare Ecosystem
  publication-title: Interdiscipl. J. Inf., Knowl. Manage.
– year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0010
  article-title: The emerging threat of AI-driven Attacks: a review
– volume: 50
  start-page: 76
  issue: 2
  year: 2017
  ident: 10.1016/j.jpdc.2024.104964_bib0009
  article-title: Botnets and internet of things security
  publication-title: Computer. (Long. Beach. Calif)
– volume: 20
  start-page: 4828
  issue: 17
  year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0019
  article-title: Security in IoMT communications: a survey
  publication-title: Sensors
  doi: 10.3390/s20174828
– volume: 65
  start-page: 359
  issue: 3
  year: 2019
  ident: 10.1016/j.jpdc.2024.104964_bib0045
  article-title: Neuro-detect: a machine learning-based fast and accurate seizure detection system in the IOMT
  publication-title: IEEE Trans. Consumer Electr.
  doi: 10.1109/TCE.2019.2917895
– volume: 927
  start-page: 15
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0020
  article-title: A hybrid soft computing with big data analytics-based protection and recovery strategy for security enhancement in large scale real world online social networks
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2022.05.018
– volume: 9
  start-page: 3930
  issue: 5
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0034
  article-title: Federated deep learning for Zero-Day botnet attack detection in IOT-edge devices
  publication-title: IEEE Internet. Things. J.
  doi: 10.1109/JIOT.2021.3100755
– volume: 22
  start-page: 2031
  issue: 3
  year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0028
  article-title: Federated learning in mobile edge networks: a comprehensive survey
  publication-title: IEEE Commun. Surveys Tutorials
  doi: 10.1109/COMST.2020.2986024
– volume: 160
  start-page: 139
  year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0041
  article-title: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IOMT architecture
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.05.048
– volume: 35
  start-page: 131
  issue: 1
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0051
  article-title: A fuzzy-based duo-secure multi-modal framework for IOMT anomaly detection
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– year: 2021
  ident: 10.1016/j.jpdc.2024.104964_bib0033
  article-title: Federated transfer learning-based ids for the internet of medical things (IOMT)
– ident: 10.1016/j.jpdc.2024.104964_bib0046
  doi: 10.1016/j.asoc.2023.110227
– volume: 805
  start-page: 1
  year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0053
  article-title: An evolutionary algorithm for automated machine learning focusing on classifier ensembles: an improved algorithm and extended results
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.12.002
– volume: 54
  year: 2017
  ident: 10.1016/j.jpdc.2024.104964_bib0030
  article-title: Communication-efficient learning of deep networks from decentralized data
– volume: 22
  start-page: 1377
  issue: 4
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0007
  article-title: FL-PMI: federated learning-based person movement identification through wearable devices in smart healthcare systems
  publication-title: Sensors
  doi: 10.3390/s22041377
– volume: 27
  start-page: 684
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0040
  article-title: Federated Learning for Privacy Preservation of healthcare data from smartphone-based side-channel attacks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3171852
– ident: 10.1016/j.jpdc.2024.104964_bib0006
– year: 2021
  ident: 10.1016/j.jpdc.2024.104964_bib0021
  article-title: Mobile-fog-Cloud assisted deep reinforcement learning and blockchain-enable IOMT system for healthcare workflows
  publication-title: Trans. Emerging Telecommun. Technol.
– volume: 78
  start-page: 14866
  issue: 13
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0031
  article-title: Extreme learning machine and Bayesian optimization-driven intelligent framework for IOMT cyber-attack detection
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04453-z
– volume: 27
  start-page: 778
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0004
  article-title: Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3181823
– volume: 27
  start-page: 652
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0052
  article-title: A simple federated learning-based scheme for security enhancement over internet of medical things
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3187471
– volume: 26
  start-page: 1997
  issue: 5
  year: 2022
  ident: 10.1016/j.jpdc.2024.104964_bib0048
  article-title: Vacochain: blockchain-based 5G-assisted UAV vaccine distribution scheme for future pandemics
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3103404
– volume: 27
  start-page: 664
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0024
  article-title: Federated-learning based privacy preservation and fraud-enabled blockchain IOMT system for Healthcare
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3165945
– volume: 27
  start-page: 722
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0047
  article-title: Dew-cloud-based hierarchical federated learning for intrusion detection in IOMT
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3186250
– start-page: 1
  year: 2021
  ident: 10.1016/j.jpdc.2024.104964_bib0039
  article-title: Internet of medical things (IOMT): overview, emerging technologies, and case studies
  publication-title: IETE Tech. Rev.
– volume: 34
  start-page: 310
  issue: 6
  year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0037
  article-title: Internet of things intrusion detection: centralized, on-device, or federated learning?
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.011.2000286
– volume: 8
  start-page: 106576
  year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0012
  article-title: Intrusion detection system for healthcare systems using medical and network data: a comparison study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000421
– volume: 27
  start-page: 888
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0042
  article-title: Anti-jamming strategy for Federated Learning in internet of medical things: a game approach
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3183644
– volume: 12
  start-page: 1250
  issue: 5
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0011
  article-title: Federated learning-based lightweight two-factor authentication framework with privacy preservation for mobile sink in the social IOMT
  publication-title: Electronics. (Basel)
– year: 2019
  ident: 10.1016/j.jpdc.2024.104964_bib0008
  article-title: A layered intrusion detection system for critical infrastructure using machine learning
– volume: 27
  start-page: 744
  issue: 2
  year: 2023
  ident: 10.1016/j.jpdc.2024.104964_bib0036
  article-title: Privacy enhancing and Scalable Federated Learning to accelerate AI implementation in Cross-Silo and IOMT environments
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3185418
– year: 2020
  ident: 10.1016/j.jpdc.2024.104964_bib0032
  article-title: Adversarial attacks to machine learning-based Smart Healthcare Systems
SSID ssj0011578
Score 2.4256265
Snippet •Proposed a solution for the data privacy of healthcare data in IoMT.•A federated Bayesian optimisation XGBoost with differential privacy to enhance the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104964
SubjectTerms Artificial intelligence
Bayesian optimization
IoMT
XGBoost
Title Federated Bayesian optimization XGBoost model for cyberattack detection in internet of medical things
URI https://dx.doi.org/10.1016/j.jpdc.2024.104964
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCGQpvYeXhsK0oB0QUqZbMcx5ZaaFKBGbrw2_ElTgUS6oCUJZFPis7O3Xe5--4QuoJAR2U2TKVKJzZAsXshfMa8QGVSBjIhhAEb-WkSjaf0IQ3TFho2XBgoq3S2v7bplbV2T7pOm93lbNZ9BucXE-t_aJUPSoHBTmM45Tdf6zIP6CWTNK04YbUjztQ1XvNlDm0MAwqpThbRv53TD4cz2ke7Dinifv0yB6ilikO010xhwO6jPEJqBP0gLGTM8UCsFJAicWkNwcIxLHF6NyjLD4OroTfYglQsVxlIGCFfca5MVY1V4Blc8H9QGVxqvKhTONhUkz2P0XR0-zIce254gicJpcaLpLRqlr1ARTnRSiYqkForQUPBhA4B1lg_pSUTWU_kPrG4SZNYMK3DLGA0JCdoqygLdYqwr4PEwjIiZU_ThEQi85ndnhjIlxZAkjbyG61x6TqLw4CLN96UkM05aJqDpnmt6Ta6Xsss674aG1eHzWbwX6eDW8O_Qe7sn3LnaAfuas7hBdoy75_q0oIPk3Wq09VB2_37x_HkG-LU2dg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELYqGGDhjXjjASZU2thOGg8MFCjlURZaqVtwHFsqj6aCINSFP8Uf5C5xEEioAxJShijJScn59N138T0I2cNAx8QQpgpjQwhQYC2UJ2WVmVhrpkPOJVYjd26Cdk9c9v1-hXyUtTCYVumwv8D0HK3dlZrTZm00GNRu0fk1OPgfke8H9V1m5ZUZv0Hc9nJ0cQqLvM9Y66x70q660QJVzYXIqoHW8BK6zkyQcGt0aJi21ijhK6msj04fUNxqqeK6SjwOrMLyhpLW-jGTAkdFAO5Pw0mIYxMO37_ySrB5TVj2_sTXc5U6RVLZ_SjBvolM4N6qDMTv3vCbh2stkDlHTelx8fWLpGKGS2S-HPtAHQosE9PCBhTAURPaVGODVZg0BeR5ciWdtH_eTNOXjOZTdiiwYqrHMUpkSj_QxGR5-teQDvDAH5Imo6mlT8WeEc3yUaIrpPcvKl0lU8N0aNYI9SwLgQdyretWhDxQsSfBHhpY7QmMla8Tr9RapF0rc5yo8RiVOWv3EWo6Qk1HhabXycGXzKho5DHxab9cjOiHOUbgaSbIbfxRbpfMtLud6-j64uZqk8zinaLgcYtMZc-vZhuYTxbv5JZGyd1_m_YnbXwXMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Bayesian+optimization+XGBoost+model+for+cyberattack+detection+in+internet+of+medical+things&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=Guembe%2C+Blessing&rft.au=Misra%2C+Sanjay&rft.au=Azeta%2C+Ambrose&rft.date=2024-11-01&rft.issn=0743-7315&rft.volume=193&rft.spage=104964&rft_id=info:doi/10.1016%2Fj.jpdc.2024.104964&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpdc_2024_104964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon