Deep 3D human pose estimation: A review

Three-dimensional (3D) human pose estimation involves estimating the articulated 3D joint locations of a human body from an image or video. Due to its widespread applications in a great variety of areas, such as human motion analysis, human–computer interaction, robots, 3D human pose estimation has...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 210; p. 103225
Main Authors Wang, Jinbao, Tan, Shujie, Zhen, Xiantong, Xu, Shuo, Zheng, Feng, He, Zhenyu, Shao, Ling
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three-dimensional (3D) human pose estimation involves estimating the articulated 3D joint locations of a human body from an image or video. Due to its widespread applications in a great variety of areas, such as human motion analysis, human–computer interaction, robots, 3D human pose estimation has recently attracted increasing attention in the computer vision community, however, it is a challenging task due to depth ambiguities and the lack of in-the-wild datasets. A large number of approaches, with many based on deep learning, have been developed over the past decade, largely advancing the performance on existing benchmarks. To guide future development, a comprehensive literature review is highly desired in this area. However, existing surveys on 3D human pose estimation mainly focus on traditional methods and a comprehensive review on deep learning based methods remains lacking in the literature. In this paper, we provide a thorough review of existing deep learning based works for 3D pose estimation, summarize the advantages and disadvantages of these methods and provide an in-depth understanding of this area. Furthermore, we also explore the commonly-used benchmark datasets on which we conduct a comprehensive study for comparison and analysis. Our study sheds light on the state of research development in 3D human pose estimation and provides insights that can facilitate the future design of models and algorithms. •The recent methods for deep 3D pose estimation are categorized and thoroughly analyzed.•Provide an extensive review of related datasets and evaluation metrics.•Compare the pros and cons of the deep 3D models valuated on the datasets and draw a conclusion.•We discuss the potential research orientations of future.
AbstractList Three-dimensional (3D) human pose estimation involves estimating the articulated 3D joint locations of a human body from an image or video. Due to its widespread applications in a great variety of areas, such as human motion analysis, human–computer interaction, robots, 3D human pose estimation has recently attracted increasing attention in the computer vision community, however, it is a challenging task due to depth ambiguities and the lack of in-the-wild datasets. A large number of approaches, with many based on deep learning, have been developed over the past decade, largely advancing the performance on existing benchmarks. To guide future development, a comprehensive literature review is highly desired in this area. However, existing surveys on 3D human pose estimation mainly focus on traditional methods and a comprehensive review on deep learning based methods remains lacking in the literature. In this paper, we provide a thorough review of existing deep learning based works for 3D pose estimation, summarize the advantages and disadvantages of these methods and provide an in-depth understanding of this area. Furthermore, we also explore the commonly-used benchmark datasets on which we conduct a comprehensive study for comparison and analysis. Our study sheds light on the state of research development in 3D human pose estimation and provides insights that can facilitate the future design of models and algorithms. •The recent methods for deep 3D pose estimation are categorized and thoroughly analyzed.•Provide an extensive review of related datasets and evaluation metrics.•Compare the pros and cons of the deep 3D models valuated on the datasets and draw a conclusion.•We discuss the potential research orientations of future.
ArticleNumber 103225
Author Zhen, Xiantong
Wang, Jinbao
Shao, Ling
He, Zhenyu
Zheng, Feng
Tan, Shujie
Xu, Shuo
Author_xml – sequence: 1
  givenname: Jinbao
  surname: Wang
  fullname: Wang, Jinbao
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, 518055, China
– sequence: 2
  givenname: Shujie
  surname: Tan
  fullname: Tan, Shujie
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, 518055, China
– sequence: 3
  givenname: Xiantong
  surname: Zhen
  fullname: Zhen, Xiantong
  organization: Inception Institute of Artificial Intelligence, Abu Dhabi, The United Arab Emirates
– sequence: 4
  givenname: Shuo
  surname: Xu
  fullname: Xu, Shuo
  organization: Department of Electronics and Information Engineering, Anhui University, 230601, China
– sequence: 5
  givenname: Feng
  surname: Zheng
  fullname: Zheng, Feng
  email: zhengf@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, 518055, China
– sequence: 6
  givenname: Zhenyu
  surname: He
  fullname: He, Zhenyu
  organization: Harbin Institute of Technology (Shenzhen), China
– sequence: 7
  givenname: Ling
  surname: Shao
  fullname: Shao, Ling
  organization: Inception Institute of Artificial Intelligence, Abu Dhabi, The United Arab Emirates
BookMark eNp9z0tLw0AQwPFFKthWv4Cn3Dwl7uwjD_FSWl9Q8KLgbdlOJrihTcpuWvHbmxhPHnqaZeC_zG_GJk3bEGPXwBPgkN7WCR7dIRFcQL-QQugzNgVe8FhI_TEZ3lkWS1Digs1CqDkHUAVM2c2KaB_JVfR52Nkm2reBIgqd29nOtc1dtIg8HR19XbLzym4DXf3NOXt_fHhbPsfr16eX5WIdo1Sqi7WmDddFmaYFKL1BhJRA5mWliwKk5RVWwHPkeX8hqgxVDmmJlmRlUdhcyTnLx3_RtyF4qgy67veWzlu3NcDNADa1GcBmAJsR3KfiX7r3vcN_n47ux4h6VA_1JqCjBql0nrAzZetO5T9JzG9r
CitedBy_id crossref_primary_10_29121_ijetmr_v11_i6_2024_1464
crossref_primary_10_1371_journal_pone_0293178
crossref_primary_10_4028_p_9cplm1
crossref_primary_10_1111_epi_17926
crossref_primary_10_3390_s25030667
crossref_primary_10_1109_THMS_2021_3121649
crossref_primary_10_3389_fnbot_2025_1531894
crossref_primary_10_1109_LRA_2024_3478569
crossref_primary_10_3389_fnbot_2023_1148545
crossref_primary_10_24018_ejece_2023_7_6_573
crossref_primary_10_1016_j_displa_2021_102138
crossref_primary_10_1016_j_imavis_2025_105437
crossref_primary_10_1016_j_heliyon_2024_e36589
crossref_primary_10_3390_s23156997
crossref_primary_10_1109_TFUZZ_2022_3177028
crossref_primary_10_1109_TIM_2023_3338658
crossref_primary_10_3390_aerospace10030298
crossref_primary_10_1007_s10489_022_03516_1
crossref_primary_10_32604_cmes_2023_027676
crossref_primary_10_3390_s23218997
crossref_primary_10_3390_s24103123
crossref_primary_10_32604_cmc_2023_035904
crossref_primary_10_3390_s24092947
crossref_primary_10_32604_cmc_2024_058193
crossref_primary_10_1016_j_eswa_2023_122419
crossref_primary_10_1038_s41597_024_04077_3
crossref_primary_10_1109_THMS_2022_3219242
crossref_primary_10_38124_ijisrt_IJISRT24JUN071
crossref_primary_10_1007_s11082_023_06246_x
crossref_primary_10_1016_j_artmed_2022_102474
crossref_primary_10_1016_j_media_2022_102484
crossref_primary_10_1109_JSEN_2023_3315849
crossref_primary_10_1016_j_conb_2022_02_002
crossref_primary_10_1016_j_cviu_2024_103999
crossref_primary_10_1109_ACCESS_2023_3323220
crossref_primary_10_1142_S1469026823410092
crossref_primary_10_1109_OJCAS_2022_3231097
crossref_primary_10_1061__ASCE_CP_1943_5487_0001060
crossref_primary_10_1016_j_cub_2024_05_033
crossref_primary_10_1109_JSEN_2024_3523903
crossref_primary_10_1016_j_aej_2024_10_099
crossref_primary_10_29109_gujsc_1384031
crossref_primary_10_1109_TNSRE_2022_3150392
crossref_primary_10_35940_ijitee_B9783_13020124
crossref_primary_10_1016_j_cviu_2025_104297
crossref_primary_10_1007_s41999_024_01082_y
crossref_primary_10_1007_s11042_024_20495_2
crossref_primary_10_3390_agriculture14122282
crossref_primary_10_3390_app13042700
crossref_primary_10_1016_j_imavis_2023_104841
crossref_primary_10_1109_ACCESS_2025_3548170
crossref_primary_10_1186_s12984_023_01294_6
crossref_primary_10_1016_j_autcon_2024_105452
crossref_primary_10_1049_ipr2_12400
crossref_primary_10_1177_09544062251314931
crossref_primary_10_1080_0951192X_2024_2372281
crossref_primary_10_1109_TCSVT_2024_3423411
crossref_primary_10_1061_JCEMD4_COENG_13071
crossref_primary_10_12677_AIRR_2023_122017
crossref_primary_10_1145_3709000
crossref_primary_10_1016_j_aei_2023_101875
crossref_primary_10_3233_JPD_223351
crossref_primary_10_1186_s13640_024_00623_6
crossref_primary_10_1016_j_image_2023_117041
crossref_primary_10_1186_s40537_024_00915_8
crossref_primary_10_3390_s22145419
crossref_primary_10_7717_peerj_cs_2574
crossref_primary_10_3390_s21196530
crossref_primary_10_1016_j_gaitpost_2022_07_019
crossref_primary_10_1016_j_inffus_2023_102154
crossref_primary_10_3390_electronics12204273
crossref_primary_10_3389_fcomp_2024_1379925
crossref_primary_10_1016_j_cag_2023_06_024
crossref_primary_10_1109_ACCESS_2024_3397612
crossref_primary_10_1109_TBDATA_2023_3291558
crossref_primary_10_1016_j_aej_2024_10_079
crossref_primary_10_1007_s00138_024_01530_6
crossref_primary_10_3390_bioengineering11020136
crossref_primary_10_3390_jimaging9120275
crossref_primary_10_1145_3691356
crossref_primary_10_1016_j_engappai_2022_105636
crossref_primary_10_1007_s10462_024_11019_3
crossref_primary_10_3390_bioengineering10030369
crossref_primary_10_3390_bioengineering11020141
crossref_primary_10_1016_j_neucom_2024_128743
crossref_primary_10_1016_j_sna_2024_115752
crossref_primary_10_1109_JBHI_2023_3340716
crossref_primary_10_3390_electronics14061078
crossref_primary_10_3390_s22186951
crossref_primary_10_1109_TCE_2024_3363616
crossref_primary_10_3389_fpsyg_2021_705170
crossref_primary_10_1002_mdc3_13692
crossref_primary_10_1117_1_JEI_33_4_043022
crossref_primary_10_1109_ACCESS_2022_3191644
crossref_primary_10_1111_mice_13139
crossref_primary_10_3390_buildings14103174
crossref_primary_10_3233_THC_240639
crossref_primary_10_1016_j_aej_2024_12_097
crossref_primary_10_1002_aisy_202300335
crossref_primary_10_1007_s12283_022_00387_0
crossref_primary_10_3390_s24072037
crossref_primary_10_1007_s10639_023_12365_5
crossref_primary_10_1016_j_aej_2025_02_058
crossref_primary_10_3389_fpsyg_2022_897230
crossref_primary_10_1016_j_autcon_2022_104193
crossref_primary_10_1109_ACCESS_2025_3538332
crossref_primary_10_1109_JSEN_2024_3485226
crossref_primary_10_1016_j_cviu_2023_103830
crossref_primary_10_1007_s11042_023_16225_9
crossref_primary_10_1142_S0218213024400086
crossref_primary_10_1186_s12984_024_01362_5
crossref_primary_10_1038_s41598_024_66165_z
crossref_primary_10_5607_en24008
crossref_primary_10_1007_s00371_023_02957_0
crossref_primary_10_1016_j_atech_2024_100486
crossref_primary_10_1016_j_neucom_2025_129413
crossref_primary_10_1038_s44172_024_00272_7
crossref_primary_10_56977_jicce_2023_21_4_337
crossref_primary_10_1007_s13735_023_00294_5
crossref_primary_10_3389_frobt_2022_813843
crossref_primary_10_3389_fspor_2022_994221
crossref_primary_10_3390_app122010591
crossref_primary_10_1109_TIM_2023_3301060
crossref_primary_10_1155_2024_7113084
crossref_primary_10_3390_s22072712
crossref_primary_10_1109_TIP_2024_3490401
crossref_primary_10_1145_3580883
crossref_primary_10_1007_s00530_022_00980_0
crossref_primary_10_1007_s11042_022_13921_w
crossref_primary_10_1016_j_gaitpost_2024_06_007
crossref_primary_10_1016_j_jvcir_2025_104409
crossref_primary_10_1155_2022_6858822
crossref_primary_10_1016_j_autcon_2023_105236
crossref_primary_10_1016_j_neucom_2022_05_107
crossref_primary_10_1109_TIM_2025_3548063
crossref_primary_10_1109_ACCESS_2024_3444790
crossref_primary_10_1007_s42979_024_02785_6
crossref_primary_10_1016_j_eswa_2023_121981
crossref_primary_10_1109_TCSVT_2022_3187670
crossref_primary_10_1016_j_cviu_2025_104307
Cites_doi 10.1109/ICCV.2019.00083
10.1007/978-3-030-01249-6_48
10.1145/3181973
10.1109/CVPR.2019.01115
10.1109/CVPR.2018.00787
10.1109/CVPR.2018.00763
10.1109/CVPR.2017.139
10.1109/CVPR.2015.7298751
10.1109/CVPR.2017.588
10.1109/CVPR.2018.00498
10.1109/ICCV.2017.51
10.1109/ICCV.2019.00785
10.1109/ICCV.2017.427
10.1007/978-3-030-01234-2_8
10.1109/MMUL.2012.24
10.1145/3072959.3073711
10.1016/j.cviu.2016.09.002
10.1109/CVPR.2019.00794
10.1109/CVPR.2018.00230
10.1109/ICCV.2019.00234
10.1109/TPAMI.2017.2782743
10.1109/CVPR.2018.00744
10.1109/CVPR.2019.00351
10.1109/ICCV.2019.00228
10.1109/CVPR.2018.00762
10.1109/CVPR.2019.00354
10.1145/3072959.3073596
10.1109/ICCV.2017.322
10.1007/s11263-009-0273-6
10.1145/2661229.2661273
10.1109/CVPR.2017.138
10.1007/978-3-030-01249-6_46
10.1109/TPAMI.2012.261
10.1145/2816795.2818013
10.1109/CVPR.2016.533
10.1109/CVPR.2016.511
10.1109/CVPR42600.2020.00530
10.1109/CVPR.2018.00539
10.1109/ICCV.2019.00445
10.1109/ICCV.2019.00081
10.1109/ICCV.2017.288
10.1016/j.cviu.2019.102897
10.1007/978-3-030-58536-5_22
10.1109/ICCV.2019.00089
10.1109/TPAMI.2016.2557779
10.1109/CVPR.2018.00229
10.1109/ICCV.2017.467
10.1109/CVPR.2014.471
10.1007/978-3-030-01249-6_5
10.1109/CVPR.2019.00789
10.1109/CVPRW.2018.00232
10.1111/cgf.12184
10.1109/CVPR.2018.00551
10.1109/CVPR.2018.00542
10.1109/CVPR.2018.00868
10.1109/ICCV.2019.00235
10.1007/978-3-030-01225-0_27
10.1109/ICCV.2017.284
10.1109/TPAMI.2019.2892985
10.1162/neco.1997.9.8.1735
10.1109/ICCVW.2017.99
10.1007/s11263-016-0966-6
10.1007/978-3-030-01231-1_33
10.1007/978-3-030-01249-6_37
10.1109/ICCV.2019.00444
10.1109/CVPR.2017.170
10.1109/CVPR.2017.492
10.1109/CVPR.2018.00055
10.3390/s16020208
10.1109/CVPR.2017.280
10.1109/ICCV.2019.00545
10.1109/TPAMI.2013.248
10.1007/s11263-018-1066-6
10.1109/WACV.2019.00162
10.1109/CVPR.2017.134
10.1109/CVPR.2019.00798
10.1109/CVPR.2014.216
10.1109/LRA.2019.2896705
10.1109/CVPR.2016.113
10.1109/ICCV.2019.00237
10.1109/ICCV.2019.00554
10.1109/CVPR.2018.00359
10.1109/ICCV.2015.94
10.1109/CVPR.2019.00586
10.1609/aaai.v30i1.10460
10.1109/CVPR.2017.501
10.1109/LRA.2019.2895266
10.1109/CVPR.2016.537
10.1109/ICCV.2019.00778
10.1109/CVPR.2018.00226
10.1109/CVPR.2019.00381
10.1109/CVPRW.2017.20
10.1109/CVPR.2019.00797
10.1109/CVPR.2018.00880
10.1016/j.cag.2019.09.002
10.1007/978-3-030-01240-3_41
10.1109/ICCV.2019.00243
10.1109/CVPR.2019.01116
10.1109/CVPR.2019.00724
10.1145/2159516.2159523
10.1109/ICCV.2017.425
10.1109/ICCV.2019.00236
10.1109/CVPR.2017.500
10.1007/s10462-019-09724-5
10.1007/978-3-030-66096-3_36
10.1109/CVPR.2017.143
10.1109/CVPR.2019.00606
10.1109/CVPR.2017.603
10.1109/ICCV.2017.589
10.1109/CVPR.2019.01012
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cviu.2021.103225
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID 10_1016_j_cviu_2021_103225
S1077314221000692
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SST
ID FETCH-LOGICAL-c344t-55eb059d669145bcc16e138df59913a0fcf108c08225c47c4816dcae3fac2a843
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Tue Jul 01 04:32:08 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Fri Feb 23 02:42:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 68T45
68U10
3D Human Pose Estimation
68-02
Deep Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-55eb059d669145bcc16e138df59913a0fcf108c08225c47c4816dcae3fac2a843
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1077314221000692
ParticipantIDs crossref_citationtrail_10_1016_j_cviu_2021_103225
crossref_primary_10_1016_j_cviu_2021_103225
elsevier_sciencedirect_doi_10_1016_j_cviu_2021_103225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Johnson, Everingham (b51) 2010; 2
Loper, Mahmood, Romero, Pons-Moll, Black (b75) 2015; 34
Sun, X., Shang, J., Liang, S., Wei, Y., 2017. Compositional human pose regression. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2602–2611.
Cheng, Yang, Wang, Tan (b23) 2020
Huang, Guibas (b46) 2013; 32
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J., 2018. End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7122–7131.
Du, Wong, Liu, Han, Gui, Wang, Kankanhalli, Geng (b32) 2016
Omran, Lassner, Pons-Moll, Gehler, Schiele (b96) 2018
Cai, Y., Ge, L., Liu, J., Cai, J., Cham, T.-J., Yuan, J., Thalmann, N.M., 2019. Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2272–2281.
Agrawal, Lu, Antol, Mitchell, Zitnick, Parikh, Batra (b1) 2015; 123
Arnab, A., Doersch, C., Zisserman, A., 2019a. Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3404.
Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K., 2017b. Harvesting multiple views for marker-less 3d human pose annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6988–6997.
Ci, H., Wang, C., Ma, X., Wang, Y., 2019. Optimizing network structure for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2262–2271.
Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R., 2018. Learning to detect and track visible and occluded body joints in a virtual world. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 430–446.
Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C., 2019. In the wild human pose estimation using explicit 2D features and intermediate 3D representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 10905–10914.
Zheng, Huang, Lu, Yang (b164) 2019
Tome, Toso, Agapito, Russell (b141) 2018
Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A., 2019. C3DPO: Canonical 3D pose networks for non-rigid structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision.
Rhodin, H., Robertini, N., Richardt, C., Seidel, H.-P., Theobalt, C., 2015. A versatile scene model with differentiable visibility applied to generative pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 765–773.
Yang, Ramanan (b159) 2012; 35
Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V., Schiele, B., 2016. Deepcut: Joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4929–4937.
Zanfir, A., Marinoiu, E., Sminchisescu, C., 2018. Monocular 3d pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2148–2157.
Li, C., Lee, G.H., 2019. Generating Multiple Hypotheses for 3D Human Pose Estimation with Mixture Density Network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9887–9895.
Choi, Moon, Lee (b25) 2020
Rhodin, H., Constantin, V., Katircioglu, I., Salzmann, M., Fua, P., 2019. Neural scene decomposition for multi-person motion capture. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Newell, Yang, Deng (b89) 2016
Sengupta, Budvytis, Cipolla (b123) 2020
Popov, S., Bauszat, P., Ferrari, V., 2020. CoReNet: Coherent 3D scene reconstruction from a single RGB image. In: ECCV.
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K., 2019b. Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 2252–2261.
Pavlakos, G., Kolotouros, N., Daniilidis, K., 2019. TexturePose: Supervising Human Mesh Estimation with Texture Consistency. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 803–812.
Tompson, J.J., Jain, A., LeCun, Y., Bregler, C., 2014. Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems. pp. 1799–1807.
Kocabas, Karagoz, Akbas (b58) 2019
Lee, K., Lee, I., Lee, S., 2018. Propagating lstm: 3d pose estimation based on joint interdependency. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 119–135.
Li, Chan (b65) 2014
Song, Xiao (b129) 2015
Rhodin, H., Salzmann, M., Fua, P., 2018. Unsupervised geometry-aware representation for 3d human pose estimation. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 750–767.
Alp Güler, R., Neverova, N., Kokkinos, I., 2018. Densepose: Dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306.
Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S., 2018. Viton: An image-based virtual try-on network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7543–7552.
Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014a. 2d human pose estimation: New benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3686–3693.
Rematas, K., Kemelmacher-Shlizerman, I., Curless, B., Seitz, S., 2018. Soccer on your tabletop. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4738–4747.
Grauman, Shakhnarovich, Darrell (b38) 2003
Park, Hwang, Kwak (b97) 2016
Sarafianos, Boteanu, Ionescu, Kakadiaris (b121) 2016; 152
Zecha, D., Einfalt, M., Eggert, C., Lienhart, R., 2018. Kinematic Pose Rectification for Performance Analysis and Retrieval in Sports. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1791–1799.
Trumble, M., Gilbert, A., Hilton, A., Collomosse, J., 2018. Deep autoencoder for combined human pose estimation and body model upscaling. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 784–800.
Elhayek, de Aguiar, Jain, Thompson, Pishchulin, Andriluka, Bregler, Schiele, Theobalt (b33) 2016; 39
Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y., 2018. Integral human pose regression. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 529–545.
Xu, J., Zhao, R., Zhu, F., Wang, H., Ouyang, W., 2018b. Attention-aware compositional network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2119–2128.
Pons-Moll, Baak, Gall, Leal-Taixe, Mueller, Seidel, Rosenhahn (b106) 2011
Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y., 2016. Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4724–4732.
Liang, J., Lin, M., 2019. Shape-aware human pose and shape reconstruction using multi-view images. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV. pp. 4351–4361.
Zhou, K., Han, X., Jiang, N., Jia, K., Lu, J., 2019. HEMlets pose: Learning part-centric heatmap triplets for accurate 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2344–2353.
Martinez, J., Hossain, R., Romero, J., Little, J.J., 2017. A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2640–2649.
Joo, H., Simon, T., Sheikh, Y., 2018. Total capture: A 3d deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8320–8329.
Arnab, A., Doersch, C., Zisserman, A., 2019b. Exploiting temporal context for 3D human pose estimation in the wild. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3390–3399.
Hassan, M., Choutas, V., Tzionas, D., Black, M.J., 2019. Resolving 3D human pose ambiguities with 3D scene constrains. In: Proceedings IEEE International Conference on Computer Vision, ICCV.
Popa, A.-I., Zanfir, M., Sminchisescu, C., 2017. Deep multitask architecture for integrated 2d and 3d human sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6289–6298.
Sigal, Balan, Black (b126) 2009; 87
Moon, Lee (b87) 2020
Bogo, Kanazawa, Lassner, Gehler, Romero, Black (b15) 2016
Pons-Moll, Pujades, Hu, Black (b107) 2017; 36
Tekin, B., Rozantsev, A., Lepetit, V., Fua, P., 2016. Direct prediction of 3d body poses from motion compensated sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 991–1000.
Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid, C., 2017. Learning from synthetic humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 109–117.
Du, Vasudevan, Johnson-Roberson (b31) 2019; 4
Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W., 2019. Cross View Fusion for 3D Human Pose Estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4342–4351.
Katircioglu, Tekin, Salzmann, Lepetit, Fua (b55) 2018; 126
Airò Farulla, Pianu, Cempini, Cortese, Russo, Indaco, Nerino, Chimienti, Oddo, Vitiello (b2) 2016; 16
He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969.
Sigal, Balan, Black (b127) 2010; 87
Siarohin, A., Sangineto, E., Lathuilière, S., Sebe, N., 2018. Deformable gans for pose-based human image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3408–3416.
Zhang (b162) 2012; 19
Andriluka, M., Iqbal, U
Huang (10.1016/j.cviu.2021.103225_b45) 2017
Katircioglu (10.1016/j.cviu.2021.103225_b55) 2018; 126
Nie (10.1016/j.cviu.2021.103225_b93) 2019
Cheng (10.1016/j.cviu.2021.103225_b23) 2020
10.1016/j.cviu.2021.103225_b140
Luo (10.1016/j.cviu.2021.103225_b76) 2020
10.1016/j.cviu.2021.103225_b142
Kocabas (10.1016/j.cviu.2021.103225_b58) 2019
Sengupta (10.1016/j.cviu.2021.103225_b123) 2020
10.1016/j.cviu.2021.103225_b143
10.1016/j.cviu.2021.103225_b7
10.1016/j.cviu.2021.103225_b146
10.1016/j.cviu.2021.103225_b6
Park (10.1016/j.cviu.2021.103225_b97) 2016
10.1016/j.cviu.2021.103225_b9
10.1016/j.cviu.2021.103225_b8
10.1016/j.cviu.2021.103225_b147
Wei (10.1016/j.cviu.2021.103225_b152) 2020
10.1016/j.cviu.2021.103225_b3
Belagiannis (10.1016/j.cviu.2021.103225_b14) 2014
10.1016/j.cviu.2021.103225_b95
Rhodin (10.1016/j.cviu.2021.103225_b114) 2016
10.1016/j.cviu.2021.103225_b149
10.1016/j.cviu.2021.103225_b5
10.1016/j.cviu.2021.103225_b11
10.1016/j.cviu.2021.103225_b99
10.1016/j.cviu.2021.103225_b12
10.1016/j.cviu.2021.103225_b98
10.1016/j.cviu.2021.103225_b16
10.1016/j.cviu.2021.103225_b13
Chen (10.1016/j.cviu.2021.103225_b19) 2019
10.1016/j.cviu.2021.103225_b18
Kim (10.1016/j.cviu.2021.103225_b56) 2019; 4
Tome (10.1016/j.cviu.2021.103225_b141) 2018
10.1016/j.cviu.2021.103225_b131
Choi (10.1016/j.cviu.2021.103225_b25) 2020
10.1016/j.cviu.2021.103225_b133
10.1016/j.cviu.2021.103225_b132
10.1016/j.cviu.2021.103225_b91
10.1016/j.cviu.2021.103225_b134
Chen (10.1016/j.cviu.2021.103225_b21) 2020; 192
10.1016/j.cviu.2021.103225_b139
10.1016/j.cviu.2021.103225_b138
10.1016/j.cviu.2021.103225_b82
Sigal (10.1016/j.cviu.2021.103225_b126) 2009; 87
10.1016/j.cviu.2021.103225_b88
Ferrari (10.1016/j.cviu.2021.103225_b36) 2009
Noroozi (10.1016/j.cviu.2021.103225_b94) 2018
Sigal (10.1016/j.cviu.2021.103225_b127) 2010; 87
Yang (10.1016/j.cviu.2021.103225_b159) 2012; 35
Nibali (10.1016/j.cviu.2021.103225_b90) 2018
Du (10.1016/j.cviu.2021.103225_b31) 2019; 4
Trumble (10.1016/j.cviu.2021.103225_b144) 2017
10.1016/j.cviu.2021.103225_b122
Zheng (10.1016/j.cviu.2021.103225_b164) 2019
10.1016/j.cviu.2021.103225_b80
Sarafianos (10.1016/j.cviu.2021.103225_b121) 2016; 152
10.1016/j.cviu.2021.103225_b81
10.1016/j.cviu.2021.103225_b125
Xu (10.1016/j.cviu.2021.103225_b155) 2018; 37
Loper (10.1016/j.cviu.2021.103225_b75) 2015; 34
10.1016/j.cviu.2021.103225_b77
Du (10.1016/j.cviu.2021.103225_b32) 2016
Moon (10.1016/j.cviu.2021.103225_b87) 2020
Bogo (10.1016/j.cviu.2021.103225_b15) 2016
10.1016/j.cviu.2021.103225_b79
Luvizon (10.1016/j.cviu.2021.103225_b78) 2019; 85
Simonyan (10.1016/j.cviu.2021.103225_b128) 2014
10.1016/j.cviu.2021.103225_b111
Nie (10.1016/j.cviu.2021.103225_b92) 2017
10.1016/j.cviu.2021.103225_b110
10.1016/j.cviu.2021.103225_b113
10.1016/j.cviu.2021.103225_b70
10.1016/j.cviu.2021.103225_b112
10.1016/j.cviu.2021.103225_b115
Rogez (10.1016/j.cviu.2021.103225_b120) 2019
10.1016/j.cviu.2021.103225_b62
10.1016/j.cviu.2021.103225_b117
10.1016/j.cviu.2021.103225_b63
10.1016/j.cviu.2021.103225_b116
10.1016/j.cviu.2021.103225_b60
10.1016/j.cviu.2021.103225_b119
10.1016/j.cviu.2021.103225_b61
10.1016/j.cviu.2021.103225_b66
10.1016/j.cviu.2021.103225_b67
Song (10.1016/j.cviu.2021.103225_b129) 2015
Choutas (10.1016/j.cviu.2021.103225_b26) 2020
10.1016/j.cviu.2021.103225_b68
10.1016/j.cviu.2021.103225_b69
Sharma (10.1016/j.cviu.2021.103225_b124) 2019
Elhayek (10.1016/j.cviu.2021.103225_b33) 2016; 39
Pons-Moll (10.1016/j.cviu.2021.103225_b107) 2017; 36
Tung (10.1016/j.cviu.2021.103225_b145) 2017
10.1016/j.cviu.2021.103225_b100
Stoll (10.1016/j.cviu.2021.103225_b130) 2011
10.1016/j.cviu.2021.103225_b102
10.1016/j.cviu.2021.103225_b101
Pons-Moll (10.1016/j.cviu.2021.103225_b106) 2011
10.1016/j.cviu.2021.103225_b103
10.1016/j.cviu.2021.103225_b105
10.1016/j.cviu.2021.103225_b108
10.1016/j.cviu.2021.103225_b50
Newell (10.1016/j.cviu.2021.103225_b89) 2016
10.1016/j.cviu.2021.103225_b109
Sutskever (10.1016/j.cviu.2021.103225_b135) 2014
10.1016/j.cviu.2021.103225_b53
10.1016/j.cviu.2021.103225_b54
10.1016/j.cviu.2021.103225_b59
Johnson (10.1016/j.cviu.2021.103225_b51) 2010; 2
10.1016/j.cviu.2021.103225_b57
Loper (10.1016/j.cviu.2021.103225_b74) 2014; 33
Airò Farulla (10.1016/j.cviu.2021.103225_b2) 2016; 16
Joo (10.1016/j.cviu.2021.103225_b52) 2017; 41
Omran (10.1016/j.cviu.2021.103225_b96) 2018
10.1016/j.cviu.2021.103225_b40
Wang (10.1016/j.cviu.2021.103225_b148) 2019
10.1016/j.cviu.2021.103225_b41
10.1016/j.cviu.2021.103225_b42
10.1016/j.cviu.2021.103225_b43
Roetenberg (10.1016/j.cviu.2021.103225_b118) 2009
10.1016/j.cviu.2021.103225_b47
Agrawal (10.1016/j.cviu.2021.103225_b1) 2015; 123
Lin (10.1016/j.cviu.2021.103225_b73) 2020
Mehta (10.1016/j.cviu.2021.103225_b85) 2017; 36
Akhter (10.1016/j.cviu.2021.103225_b4) 2012; 31
10.1016/j.cviu.2021.103225_b160
Zhang (10.1016/j.cviu.2021.103225_b162) 2012; 19
10.1016/j.cviu.2021.103225_b161
10.1016/j.cviu.2021.103225_b163
10.1016/j.cviu.2021.103225_b166
10.1016/j.cviu.2021.103225_b165
10.1016/j.cviu.2021.103225_b168
Ferrari (10.1016/j.cviu.2021.103225_b35) 2008
Zhou (10.1016/j.cviu.2021.103225_b167) 2016
10.1016/j.cviu.2021.103225_b30
Peng (10.1016/j.cviu.2021.103225_b104) 2020
10.1016/j.cviu.2021.103225_b34
Lin (10.1016/j.cviu.2021.103225_b71) 2014
10.1016/j.cviu.2021.103225_b37
Ionescu (10.1016/j.cviu.2021.103225_b48) 2013; 36
Mehta (10.1016/j.cviu.2021.103225_b84) 2018
Moon (10.1016/j.cviu.2021.103225_b86) 2019
Lentzas (10.1016/j.cviu.2021.103225_b64) 2019; 53
10.1016/j.cviu.2021.103225_b39
Tai (10.1016/j.cviu.2021.103225_b136) 2015
Huang (10.1016/j.cviu.2021.103225_b46) 2013; 32
10.1016/j.cviu.2021.103225_b151
10.1016/j.cviu.2021.103225_b150
10.1016/j.cviu.2021.103225_b153
Grauman (10.1016/j.cviu.2021.103225_b38) 2003
Li (10.1016/j.cviu.2021.103225_b65) 2014
10.1016/j.cviu.2021.103225_b154
Anguelov (10.1016/j.cviu.2021.103225_b10) 2005
10.1016/j.cviu.2021.103225_b157
10.1016/j.cviu.2021.103225_b156
10.1016/j.cviu.2021.103225_b158
Iskakov (10.1016/j.cviu.2021.103225_b49) 2019
Mehta (10.1016/j.cviu.2021.103225_b83) 2017
Cao (10.1016/j.cviu.2021.103225_b17) 2018
10.1016/j.cviu.2021.103225_b22
10.1016/j.cviu.2021.103225_b20
10.1016/j.cviu.2021.103225_b27
10.1016/j.cviu.2021.103225_b24
Tan (10.1016/j.cviu.2021.103225_b137) 2018
10.1016/j.cviu.2021.103225_b28
10.1016/j.cviu.2021.103225_b29
Hochreiter (10.1016/j.cviu.2021.103225_b44) 1997; 9
Lin (10.1016/j.cviu.2021.103225_b72) 2014
References_xml – reference: Li, Z., Wang, X., Wang, F., Jiang, P., 2019b. On boosting single-frame 3D human pose estimation via monocular videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2192–2201.
– start-page: 951
  year: 2011
  end-page: 958
  ident: b130
  article-title: Fast articulated motion tracking using a sums of gaussians body model
  publication-title: 2011 International Conference on Computer Vision
– reference: Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7291–7299.
– year: 2019
  ident: b49
  article-title: Learnable triangulation of human pose
– volume: 123
  start-page: 4
  year: 2015
  end-page: 31
  ident: b1
  article-title: VQA: Visual question answering
  publication-title: Int. J. Comput. Vis.
– reference: Tekin, B., Rozantsev, A., Lepetit, V., Fua, P., 2016. Direct prediction of 3d body poses from motion compensated sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 991–1000.
– reference: Alp Guler, R., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., Kokkinos, I., 2017. Densereg: Fully convolutional dense shape regression in-the-wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6799–6808.
– volume: 31
  start-page: 17
  year: 2012
  ident: b4
  article-title: Bilinear spatiotemporal basis models
  publication-title: ACM Trans. Graph.
– reference: Wang, C., Kong, C., Lucey, S., 2019b. Distill Knowledge from NRSfM for Weakly Supervised 3D Pose Learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 743–752.
– reference: Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y., 2017. Towards 3d human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 398–407.
– reference: Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X., 2018. 3d human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5255–5264.
– year: 2020
  ident: b104
  article-title: Learning graph convolutional network for skeleton-based human action recognition by neural searching
– reference: Xu, Y., Zhu, S.-C., Tung, T., 2019. DenseRaC: Joint 3D Pose and Shape Estimation by Dense Render-and-Compare. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 7760–7770.
– volume: 36
  start-page: 44
  year: 2017
  ident: b85
  article-title: Vnect: Real-time 3d human pose estimation with a single rgb camera
  publication-title: ACM Trans. Graph.
– reference: Green, R., 2003. Spherical harmonic lighting: The gritty details. In: Archives of the Game Developers Conference, vol. 56, p. 4.
– reference: Nibali, A., He, Z., Morgan, S., Prendergast, L., 2019. 3D Human pose estimation with 2D marginal heatmaps. In: 2019 IEEE Winter Conference on Applications of Computer Vision, WACV. pp. 1477–1485.
– start-page: 740
  year: 2014
  end-page: 755
  ident: b71
  article-title: Microsoft coco: Common objects in context
  publication-title: European Conference on Computer Vision
– year: 2018
  ident: b137
  article-title: Indirect deep structured learning for 3d human body shape and pose prediction
– volume: 2
  start-page: 5
  year: 2010
  ident: b51
  article-title: Clustered pose and nonlinear appearance models for human pose estimation
  publication-title: Bmvc
– volume: 152
  start-page: 1
  year: 2016
  end-page: 20
  ident: b121
  article-title: 3d human pose estimation: A review of the literature and analysis of covariates
  publication-title: Comput. Vis. Image Underst.
– reference: Cheng, Y., Yang, B., Wang, B., Yan, W., Tan, R.T., 2019. Occlusion-aware networks for 3D human pose estimation in video. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 723–732.
– reference: Hwang, J., Park, S., Kwak, N., 2017. Athlete pose estimation by a global-local network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 58–65.
– start-page: 506
  year: 2017
  end-page: 516
  ident: b83
  article-title: Monocular 3d human pose estimation in the wild using improved cnn supervision
  publication-title: 2017 International Conference on 3D Vision (3DV)
– reference: Arnab, A., Doersch, C., Zisserman, A., 2019a. Exploiting temporal context for 3D human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3404.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b44
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S., 2018. Viton: An image-based virtual try-on network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7543–7552.
– reference: Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., Schiele, B., 2018. Posetrack: A benchmark for human pose estimation and tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5167–5176.
– volume: 85
  start-page: 15
  year: 2019
  end-page: 22
  ident: b78
  article-title: Human pose regression by combining indirect part detection and contextual information
  publication-title: Comput. Graph.
– year: 2020
  ident: b25
  article-title: Pose2mesh: Graph convolutional network for 3D human pose and mesh recovery from a 2D human pose
– reference: Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y., 2018. Integral human pose regression. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 529–545.
– start-page: 742
  year: 2014
  end-page: 754
  ident: b14
  article-title: Multiple human pose estimation with temporally consistent 3D pictorial structures
  publication-title: European Conference on Computer Vision
– reference: Sun, X., Shang, J., Liang, S., Wei, Y., 2017. Compositional human pose regression. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2602–2611.
– volume: 87
  start-page: 4
  year: 2009
  end-page: 27
  ident: b126
  article-title: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
  publication-title: Int. J. Comput. Vis.
– reference: Rhodin, H., Spörri, J., Katircioglu, I., Constantin, V., Meyer, F., Müller, E., Salzmann, M., Fua, P., 2018. Learning monocular 3D human pose estimation from multi-view images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8437–8446.
– reference: Scott, J., Collins, R., Funk, C., Liu, Y., 2017. 4D model-based spatiotemporal alignment of scripted Taiji Quan sequences. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 795–804.
– year: 2020
  ident: b123
  article-title: Synthetic training for accurate 3D human pose and shape estimation in the wild
– start-page: 332
  year: 2014
  end-page: 347
  ident: b65
  article-title: 3d human pose estimation from monocular images with deep convolutional neural network
  publication-title: Asian Conference on Computer Vision
– year: 2019
  ident: b93
  article-title: Single-stage multi-person pose machines
– start-page: 509
  year: 2016
  end-page: 526
  ident: b114
  article-title: General automatic human shape and motion capture using volumetric contour cues
  publication-title: European Conference on Computer Vision
– year: 2009
  ident: b118
  article-title: Xsens MVN: Full 6dof human motion tracking using miniature inertial sensors
– volume: 4
  start-page: 1501
  year: 2019
  end-page: 1508
  ident: b31
  article-title: Bio-lstm: A biomechanically inspired recurrent neural network for 3-d pedestrian pose and gait prediction
  publication-title: IEEE Robot. Autom. Lett.
– reference: Lin, M., Lin, L., Liang, X., Wang, K., Cheng, H., 2017. Recurrent 3d pose sequence machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 810–819.
– reference: Mahmood, N., Ghorbani, N., Troje, N., Pons-Moll, G., Black, M.J., 2019. AMASS: Archive of motion capture as surface shapes. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, pp. 5441–5450.
– year: 2019
  ident: b86
  article-title: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image
– volume: 34
  start-page: 248
  year: 2015
  ident: b75
  article-title: SMPL: A skinned multi-person linear model
  publication-title: ACM Trans. Graph. (TOG)
– reference: Rhodin, H., Salzmann, M., Fua, P., 2018. Unsupervised geometry-aware representation for 3d human pose estimation. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 750–767.
– reference: Siarohin, A., Sangineto, E., Lathuilière, S., Sebe, N., 2018. Deformable gans for pose-based human image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3408–3416.
– volume: 19
  start-page: 4
  year: 2012
  end-page: 10
  ident: b162
  article-title: Microsoft kinect sensor and its effect
  publication-title: IEEE multimedia
– reference: Martinez, J., Hossain, R., Romero, J., Little, J.J., 2017. A simple yet effective baseline for 3d human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2640–2649.
– year: 2019
  ident: b19
  article-title: Holistic++ scene understanding: Single-view 3D holistic scene parsing and human pose estimation with human-object interaction and physical commonsense
– reference: Tekin, B., Márquez-Neila, P., Salzmann, M., Fua, P., 2017. Learning to fuse 2d and 3d image cues for monocular body pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3941–3950.
– reference: Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014b. 2D human pose estimation: New Benchmark and state of the art analysis. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. pp. 3686–3693.
– reference: Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V., 2017. Unite the people: Closing the loop between 3d and 2d human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6050–6059.
– reference: Pavlakos, G., Kolotouros, N., Daniilidis, K., 2019. TexturePose: Supervising Human Mesh Estimation with Texture Consistency. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 803–812.
– start-page: 3
  year: 2017
  ident: b144
  article-title: Total capture: 3D human pose estimation fusing video and inertial sensors.
  publication-title: BMVC, vol. 2
– year: 2020
  ident: b26
  article-title: Monocular expressive body regression through body-driven attention
– start-page: 474
  year: 2018
  end-page: 483
  ident: b141
  article-title: Rethinking pose in 3d: Multi-stage refinement and recovery for markerless motion capture
  publication-title: 2018 International Conference on 3D Vision (3DV)
– reference: Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R., 2018. Learning to detect and track visible and occluded body joints in a virtual world. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 430–446.
– reference: Hassan, M., Choutas, V., Tzionas, D., Black, M.J., 2019. Resolving 3D human pose ambiguities with 3D scene constrains. In: Proceedings IEEE International Conference on Computer Vision, ICCV.
– start-page: 156
  year: 2016
  end-page: 169
  ident: b97
  article-title: 3D human pose estimation using convolutional neural networks with 2D pose information
  publication-title: European Conference on Computer Vision
– year: 2017
  ident: b145
  article-title: Self-supervised learning of motion capture
  publication-title: NIPS
– reference: Wandt, B., Rosenhahn, B., 2019. RepNet: Weakly supervised training of an adversarial reprojection network for 3D human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7782–7791.
– reference: Zhou, K., Han, X., Jiang, N., Jia, K., Lu, J., 2019. HEMlets pose: Learning part-centric heatmap triplets for accurate 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2344–2353.
– reference: Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014a. 2d human pose estimation: New benchmark and state of the art analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3686–3693.
– year: 2019
  ident: b148
  article-title: Not all parts are created equal: 3D pose estimation by modelling bi-directional dependencies of body parts
– year: 2018
  ident: b17
  article-title: Openpose: realtime multi-person 2D pose estimation using part affinity fields
– reference: Qiu, H., Wang, C., Wang, J., Wang, N., Zeng, W., 2019. Cross View Fusion for 3D Human Pose Estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4342–4351.
– volume: 192
  year: 2020
  ident: b21
  article-title: Monocular human pose estimation: A survey of deep learning-based methods
  publication-title: Comput. Vis. Image Underst.
– start-page: 120
  year: 2018
  end-page: 130
  ident: b84
  article-title: Single-shot multi-person 3d pose estimation from monocular rgb
  publication-title: 2018 International Conference on 3D Vision (3DV)
– year: 2019
  ident: b124
  article-title: Monocular 3d human pose estimation by generation and ordinal ranking
– start-page: 483
  year: 2016
  end-page: 499
  ident: b89
  article-title: Stacked hourglass networks for human pose estimation
  publication-title: European Conference on Computer Vision
– reference: Coskun, H., Achilles, F., DiPietro, R., Navab, N., Tombari, F., 2017. Long short-term memory kalman filters: Recurrent neural estimators for pose regularization. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 5524–5532.
– start-page: 1
  year: 2009
  end-page: 8
  ident: b36
  article-title: Pose search: retrieving people using their pose
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– reference: Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N., Ilic, S., 2014a. 3D pictorial structures for multiple human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1669–1676.
– start-page: 3467
  year: 2017
  end-page: 3475
  ident: b92
  article-title: Monocular 3d human pose estimation by predicting depth on joints
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– reference: Weng, C.-Y., Curless, B., Kemelmacher-Shlizerman, I., 2019. Photo wake-up: 3d character animation from a single photo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5908–5917.
– volume: 53
  start-page: 1975
  year: 2019
  end-page: 2021
  ident: b64
  article-title: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review
  publication-title: Artif. Intell. Rev.
– reference: Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q., 2017. Pose-driven deep convolutional model for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3960–3969.
– volume: 36
  start-page: 1325
  year: 2013
  end-page: 1339
  ident: b48
  article-title: Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M., 2019. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7753–7762.
– reference: Trumble, M., Gilbert, A., Hilton, A., Collomosse, J., 2018. Deep autoencoder for combined human pose estimation and body model upscaling. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 784–800.
– reference: Moreno-Noguer, F., 2017. 3d human pose estimation from a single image via distance matrix regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2823–2832.
– reference: Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K., 2019b. Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 2252–2261.
– reference: Jack, D., Maire, F., Shirazi, S., Eriksson, A., 2019. IGE-Net: Inverse Graphics Energy Networks for Human Pose Estimation and Single-View Reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7075–7084.
– reference: Rematas, K., Kemelmacher-Shlizerman, I., Curless, B., Seitz, S., 2018. Soccer on your tabletop. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4738–4747.
– reference: Li, Y., Huang, C., Loy, C.C., 2019a. Dense intrinsic appearance flow for human pose transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3693–3702.
– reference: Popa, A.-I., Zanfir, M., Sminchisescu, C., 2017. Deep multitask architecture for integrated 2d and 3d human sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6289–6298.
– year: 2020
  ident: b23
  article-title: 3D Human pose estimation using spatio-temporal networks with explicit occlusion training
  publication-title: AAAI
– reference: Tompson, J.J., Jain, A., LeCun, Y., Bregler, C., 2014. Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems. pp. 1799–1807.
– volume: 4
  start-page: 1940
  year: 2019
  end-page: 1947
  ident: b56
  article-title: Pedx: Benchmark dataset for metric 3-D pose estimation of pedestrians in complex urban intersections
  publication-title: IEEE Robot. Autom. Lett.
– reference: Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N., 2019. Semantic graph convolutional networks for 3D human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3425–3435.
– start-page: 421
  year: 2017
  end-page: 430
  ident: b45
  article-title: Towards accurate marker-less human shape and pose estimation over time
  publication-title: 2017 International Conference on 3D Vision (3DV)
– reference: He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961–2969.
– volume: 87
  start-page: 4
  year: 2010
  ident: b127
  article-title: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
  publication-title: Int. J. Comput. Vis.
– reference: Cai, Y., Ge, L., Liu, J., Cai, J., Cham, T.-J., Yuan, J., Thalmann, N.M., 2019. Exploiting spatial-temporal relationships for 3d pose estimation via graph convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2272–2281.
– volume: 35
  start-page: 2878
  year: 2012
  end-page: 2890
  ident: b159
  article-title: Articulated human detection with flexible mixtures of parts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Joo, H., Simon, T., Sheikh, Y., 2018. Total capture: A 3d deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8320–8329.
– year: 2003
  ident: b38
  article-title: A bayesian approach to image-based visual hull reconstruction
  publication-title: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. vol. 1
– year: 2005
  ident: b10
  article-title: SCAPE: shape completion and animation of people
  publication-title: SIGGRAPH 2005
– reference: Wang, Z., Shin, D., Fowlkes, C.C., 2020. Predicting camera viewpoint improves cross-dataset generalization for 3D human pose estimation. In: ECCV Workshops.
– reference: Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K., 2018. Learning to estimate 3D human pose and shape from a single color image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 459–468.
– reference: Rogez, G., Weinzaepfel, P., Schmid, C., 2017. LCR-Net: Localization-classification-regression for human pose. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR. pp. 1216–1224.
– start-page: 561
  year: 2016
  end-page: 578
  ident: b15
  article-title: Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image
  publication-title: European Conference on Computer Vision
– reference: Arnab, A., Doersch, C., Zisserman, A., 2019b. Exploiting temporal context for 3D human pose estimation in the wild. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3390–3399.
– reference: Chen, X., Lin, K.-Y., Liu, W., Qian, C., Lin, L., 2019b. Weakly-supervised discovery of geometry-aware representation for 3d human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 10895–10904.
– year: 2019
  ident: b164
  article-title: Pose invariant embedding for deep person re-identification
  publication-title: IEEE Trans. Image Process.
– volume: 16
  start-page: 208
  year: 2016
  ident: b2
  article-title: Vision-based pose estimation for robot-mediated hand telerehabilitation
  publication-title: Sensors
– reference: Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X., 2019. Fast and robust multi-person 3d pose estimation from multiple views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7792–7801.
– reference: Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V., Schiele, B., 2016. Deepcut: Joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4929–4937.
– year: 2020
  ident: b87
  article-title: I2l-meshnet: Image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image
  publication-title: ECCV
– year: 2014
  ident: b128
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2018
  ident: b94
  article-title: Survey on emotional body gesture recognition
  publication-title: IEEE Trans. Affect. Comput.
– reference: Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y., 2016. Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4724–4732.
– reference: Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C., 2019. In the wild human pose estimation using explicit 2D features and intermediate 3D representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 10905–10914.
– reference: Marinoiu, E., Zanfir, M., Olaru, V., Sminchisescu, C., 2018. 3d human sensing, action and emotion recognition in robot assisted therapy of children with autism. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2158–2167.
– reference: Zecha, D., Einfalt, M., Eggert, C., Lienhart, R., 2018. Kinematic Pose Rectification for Performance Analysis and Retrieval in Sports. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 1791–1799.
– reference: Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K., 2017a. Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7025–7034.
– start-page: 20
  year: 2016
  end-page: 36
  ident: b32
  article-title: Marker-less 3d human motion capture with monocular image sequence and height-maps
  publication-title: European Conference on Computer Vision
– reference: Lee, K., Lee, I., Lee, S., 2018. Propagating lstm: 3d pose estimation based on joint interdependency. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 119–135.
– volume: 41
  start-page: 190
  year: 2017
  end-page: 204
  ident: b52
  article-title: Panoptic studio: A massively multiview system for social interaction capture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 220
  year: 2014
  ident: b74
  article-title: MoSh: Motion and shape capture from sparse markers
  publication-title: ACM Trans. Graph.
– reference: Li, C., Lee, G.H., 2019. Generating Multiple Hypotheses for 3D Human Pose Estimation with Mixture Density Network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9887–9895.
– reference: Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J., 2018. End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7122–7131.
– reference: Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K., 2017b. Harvesting multiple views for marker-less 3d human pose annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6988–6997.
– start-page: 1
  year: 2008
  end-page: 8
  ident: b35
  article-title: Progressive search space reduction for human pose estimation
  publication-title: 2008 IEEE Conference on Computer Vision and Pattern Recognition
– reference: Zanfir, A., Marinoiu, E., Sminchisescu, C., 2018. Monocular 3d pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2148–2157.
– start-page: 484
  year: 2018
  end-page: 494
  ident: b96
  article-title: Neural body fitting: Unifying deep learning and model based human pose and shape estimation
  publication-title: 2018 International Conference on 3D Vision (3DV)
– reference: Xu, J., Zhao, R., Zhu, F., Wang, H., Ouyang, W., 2018b. Attention-aware compositional network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2119–2128.
– reference: Fish Tung, H.-Y., Harley, A.W., Seto, W., Fragkiadaki, K., 2017. Adversarial inverse graphics networks: learning 2D-to-3D lifting and image-to-image translation from unpaired supervision. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 4354–4362.
– year: 2020
  ident: b73
  article-title: End-to-end human pose and mesh reconstruction with transformers
– reference: Dabral, R., Mundhada, A., Kusupati, U., Afaque, S., Sharma, A., Jain, A., 2018. Learning 3d human pose from structure and motion. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 668–683.
– year: 2014
  ident: b135
  article-title: Sequence to sequence learning with neural networks
  publication-title: NIPS
– year: 2015
  ident: b129
  article-title: LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
– reference: Luvizon, D.C., Picard, D., Tabia, H., 2018. 2d/3d pose estimation and action recognition using multitask deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5137–5146.
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems. pp. 1097–1105.
– reference: Alp Güler, R., Neverova, N., Kokkinos, I., 2018. Densepose: Dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306.
– year: 2014
  ident: b72
  article-title: Microsoft COCO: Common objects in context
  publication-title: ECCV
– reference: Popov, S., Bauszat, P., Ferrari, V., 2020. CoReNet: Coherent 3D scene reconstruction from a single RGB image. In: ECCV.
– start-page: 1243
  year: 2011
  end-page: 1250
  ident: b106
  article-title: Outdoor human motion capture using inverse kinematics and von mises-fisher sampling
  publication-title: 2011 International Conference on Computer Vision
– reference: Novotny, D., Ravi, N., Graham, B., Neverova, N., Vedaldi, A., 2019. C3DPO: Canonical 3D pose networks for non-rigid structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision.
– reference: Rhodin, H., Robertini, N., Richardt, C., Seidel, H.-P., Theobalt, C., 2015. A versatile scene model with differentiable visibility applied to generative pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 765–773.
– reference: Chen, C.-H., Tyagi, A., Agrawal, A., Drover, D., MV, R., Stojanov, S., Rehg, J.M., 2019a. Unsupervised 3D Pose Estimation with Geometric Self-Supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5714–5724.
– reference: von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G., 2018. Recovering accurate 3d human pose in the wild using imus and a moving camera. In: Proceedings of the European Conference on Computer Vision, ECCV. pp. 601–617.
– reference: Kocabas, M., Athanasiou, N., Black, M.J., 2020. VIBE: Video inference for human body pose and shape estimation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5252–5262.
– year: 2019
  ident: b120
  article-title: Lcr-net++: Multi-person 2d and 3d pose detection in natural images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Tome, D., Russell, C., Agapito, L., 2017. Lifting from the deep: Convolutional 3d pose estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2500–2509.
– year: 2018
  ident: b90
  article-title: Numerical coordinate regression with convolutional neural networks
– reference: Pavlakos, G., Zhou, X., Daniilidis, K., 2018. Ordinal depth supervision for 3d human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7307–7316.
– reference: Xia, F., Zhu, J., Wang, P., Yuille, A.L., 2016. Pose-guided human parsing by an and/or graph using pose-context features. In: Thirtieth AAAI Conference on Artificial Intelligence.
– volume: 32
  start-page: 177
  year: 2013
  end-page: 186
  ident: b46
  article-title: Consistent shape maps via semidefinite programming
  publication-title: Comput. Graph. Forum
– volume: 36
  start-page: 73
  year: 2017
  ident: b107
  article-title: Clothcap: Seamless 4D clothing capture and retargeting
  publication-title: ACM Trans. Graph.
– volume: 39
  start-page: 501
  year: 2016
  end-page: 514
  ident: b33
  article-title: MARCOnI—ConvNet-Based MARker-less motion capture in outdoor and indoor scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: b76
  article-title: 3D Human motion estimation via motion compression and refinement
– reference: Ci, H., Wang, C., Ma, X., Wang, Y., 2019. Optimizing network structure for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2262–2271.
– year: 2020
  ident: b152
  article-title: Deepsfm: Structure from motion via deep bundle adjustment
  publication-title: ECCV
– reference: Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K., 2019a. Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2252–2261.
– reference: Rayat Imtiaz Hossain, M., Little, J.J., 2018. Exploiting temporal information for 3d human pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 68–84.
– year: 2019
  ident: b58
  article-title: Self-supervised learning of 3d human pose using multi-view geometry
– reference: Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K., 2016b. Sparseness meets deepness: 3D human pose estimation from monocular video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4966–4975.
– volume: 126
  start-page: 1326
  year: 2018
  end-page: 1341
  ident: b55
  article-title: Learning latent representations of 3d human pose with deep neural networks
  publication-title: Int. J. Comput. Vis.
– start-page: 186
  year: 2016
  end-page: 201
  ident: b167
  article-title: Deep kinematic pose regression
  publication-title: European Conference on Computer Vision
– reference: Sun, Y., Ye, Y., Liu, W., Gao, W., Fu, Y., Mei, T., 2019. Human mesh recovery from monocular images via a skeleton-disentangled representation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 5348–5357.
– reference: Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid, C., 2017. Learning from synthetic humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 109–117.
– reference: Akhter, I., Black, M.J., 2015. Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1446–1455.
– reference: Liang, J., Lin, M., 2019. Shape-aware human pose and shape reconstruction using multi-view images. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV. pp. 4351–4361.
– year: 2015
  ident: b136
  article-title: Improved semantic representations from tree-structured long short-term memory networks
– volume: 37
  start-page: 27
  year: 2018
  ident: b155
  article-title: Monoperfcap: Human performance capture from monocular video
  publication-title: ACM Trans. Graph. (ToG)
– reference: Rhodin, H., Constantin, V., Katircioglu, I., Salzmann, M., Fua, P., 2019. Neural scene decomposition for multi-person motion capture. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
– ident: 10.1016/j.cviu.2021.103225_b149
  doi: 10.1109/ICCV.2019.00083
– ident: 10.1016/j.cviu.2021.103225_b143
  doi: 10.1007/978-3-030-01249-6_48
– volume: 37
  start-page: 27
  issue: 2
  year: 2018
  ident: 10.1016/j.cviu.2021.103225_b155
  article-title: Monoperfcap: Human performance capture from monocular video
  publication-title: ACM Trans. Graph. (ToG)
  doi: 10.1145/3181973
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b23
  article-title: 3D Human pose estimation using spatio-temporal networks with explicit occlusion training
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b25
– start-page: 1
  year: 2009
  ident: 10.1016/j.cviu.2021.103225_b36
  article-title: Pose search: retrieving people using their pose
– ident: 10.1016/j.cviu.2021.103225_b20
  doi: 10.1109/CVPR.2019.01115
– year: 2009
  ident: 10.1016/j.cviu.2021.103225_b118
– ident: 10.1016/j.cviu.2021.103225_b41
  doi: 10.1109/CVPR.2018.00787
– ident: 10.1016/j.cviu.2021.103225_b99
  doi: 10.1109/CVPR.2018.00763
– year: 2014
  ident: 10.1016/j.cviu.2021.103225_b135
  article-title: Sequence to sequence learning with neural networks
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b26
– ident: 10.1016/j.cviu.2021.103225_b100
  doi: 10.1109/CVPR.2017.139
– ident: 10.1016/j.cviu.2021.103225_b3
  doi: 10.1109/CVPR.2015.7298751
– ident: 10.1016/j.cviu.2021.103225_b70
  doi: 10.1109/CVPR.2017.588
– ident: 10.1016/j.cviu.2021.103225_b112
  doi: 10.1109/CVPR.2018.00498
– ident: 10.1016/j.cviu.2021.103225_b166
  doi: 10.1109/ICCV.2017.51
– ident: 10.1016/j.cviu.2021.103225_b157
  doi: 10.1109/ICCV.2019.00785
– ident: 10.1016/j.cviu.2021.103225_b131
  doi: 10.1109/ICCV.2017.427
– ident: 10.1016/j.cviu.2021.103225_b63
  doi: 10.1007/978-3-030-01234-2_8
– volume: 19
  start-page: 4
  issue: 2
  year: 2012
  ident: 10.1016/j.cviu.2021.103225_b162
  article-title: Microsoft kinect sensor and its effect
  publication-title: IEEE multimedia
  doi: 10.1109/MMUL.2012.24
– start-page: 20
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b32
  article-title: Marker-less 3d human motion capture with monocular image sequence and height-maps
– start-page: 332
  year: 2014
  ident: 10.1016/j.cviu.2021.103225_b65
  article-title: 3d human pose estimation from monocular images with deep convolutional neural network
– volume: 36
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b107
  article-title: Clothcap: Seamless 4D clothing capture and retargeting
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073711
– volume: 152
  start-page: 1
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b121
  article-title: 3d human pose estimation: A review of the literature and analysis of covariates
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.09.002
– ident: 10.1016/j.cviu.2021.103225_b103
  doi: 10.1109/CVPR.2019.00794
– ident: 10.1016/j.cviu.2021.103225_b81
  doi: 10.1109/CVPR.2018.00230
– ident: 10.1016/j.cviu.2021.103225_b60
  doi: 10.1109/ICCV.2019.00234
– volume: 41
  start-page: 190
  issue: 1
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b52
  article-title: Panoptic studio: A massively multiview system for social interaction capture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2782743
– ident: 10.1016/j.cviu.2021.103225_b54
  doi: 10.1109/CVPR.2018.00744
– start-page: 474
  year: 2018
  ident: 10.1016/j.cviu.2021.103225_b141
  article-title: Rethinking pose in 3d: Multi-stage refinement and recovery for markerless motion capture
– ident: 10.1016/j.cviu.2021.103225_b11
  doi: 10.1109/CVPR.2019.00351
– ident: 10.1016/j.cviu.2021.103225_b68
  doi: 10.1109/ICCV.2019.00228
– ident: 10.1016/j.cviu.2021.103225_b5
  doi: 10.1109/CVPR.2018.00762
– ident: 10.1016/j.cviu.2021.103225_b163
  doi: 10.1109/CVPR.2019.00354
– volume: 36
  start-page: 44
  issue: 4
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b85
  article-title: Vnect: Real-time 3d human pose estimation with a single rgb camera
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073596
– start-page: 951
  year: 2011
  ident: 10.1016/j.cviu.2021.103225_b130
  article-title: Fast articulated motion tracking using a sums of gaussians body model
– ident: 10.1016/j.cviu.2021.103225_b43
  doi: 10.1109/ICCV.2017.322
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b152
  article-title: Deepsfm: Structure from motion via deep bundle adjustment
– year: 2005
  ident: 10.1016/j.cviu.2021.103225_b10
  article-title: SCAPE: shape completion and animation of people
– volume: 87
  start-page: 4
  year: 2009
  ident: 10.1016/j.cviu.2021.103225_b126
  article-title: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0273-6
– volume: 33
  start-page: 220
  issue: 6
  year: 2014
  ident: 10.1016/j.cviu.2021.103225_b74
  article-title: MoSh: Motion and shape capture from sparse markers
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2661229.2661273
– year: 2018
  ident: 10.1016/j.cviu.2021.103225_b90
– ident: 10.1016/j.cviu.2021.103225_b101
  doi: 10.1109/CVPR.2017.138
– ident: 10.1016/j.cviu.2021.103225_b59
  doi: 10.1109/ICCV.2019.00234
– ident: 10.1016/j.cviu.2021.103225_b116
  doi: 10.1007/978-3-030-01249-6_46
– volume: 35
  start-page: 2878
  issue: 12
  year: 2012
  ident: 10.1016/j.cviu.2021.103225_b159
  article-title: Articulated human detection with flexible mixtures of parts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.261
– volume: 34
  start-page: 248
  issue: 6
  year: 2015
  ident: 10.1016/j.cviu.2021.103225_b75
  article-title: SMPL: A skinned multi-person linear model
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/2816795.2818013
– ident: 10.1016/j.cviu.2021.103225_b105
  doi: 10.1109/CVPR.2016.533
– ident: 10.1016/j.cviu.2021.103225_b151
  doi: 10.1109/CVPR.2016.511
– start-page: 421
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b45
  article-title: Towards accurate marker-less human shape and pose estimation over time
– ident: 10.1016/j.cviu.2021.103225_b57
  doi: 10.1109/CVPR42600.2020.00530
– start-page: 561
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b15
  article-title: Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b93
– ident: 10.1016/j.cviu.2021.103225_b77
  doi: 10.1109/CVPR.2018.00539
– year: 2015
  ident: 10.1016/j.cviu.2021.103225_b129
– ident: 10.1016/j.cviu.2021.103225_b69
  doi: 10.1109/ICCV.2019.00445
– ident: 10.1016/j.cviu.2021.103225_b24
  doi: 10.1109/ICCV.2019.00081
– ident: 10.1016/j.cviu.2021.103225_b82
  doi: 10.1109/ICCV.2017.288
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b58
– volume: 192
  year: 2020
  ident: 10.1016/j.cviu.2021.103225_b21
  article-title: Monocular human pose estimation: A survey of deep learning-based methods
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.102897
– ident: 10.1016/j.cviu.2021.103225_b109
  doi: 10.1007/978-3-030-58536-5_22
– start-page: 483
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b89
  article-title: Stacked hourglass networks for human pose estimation
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b148
– ident: 10.1016/j.cviu.2021.103225_b98
  doi: 10.1109/ICCV.2019.00089
– start-page: 742
  year: 2014
  ident: 10.1016/j.cviu.2021.103225_b14
  article-title: Multiple human pose estimation with temporally consistent 3D pictorial structures
– year: 2018
  ident: 10.1016/j.cviu.2021.103225_b17
– volume: 39
  start-page: 501
  issue: 3
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b33
  article-title: MARCOnI—ConvNet-Based MARker-less motion capture in outdoor and indoor scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2557779
– ident: 10.1016/j.cviu.2021.103225_b160
  doi: 10.1109/CVPR.2018.00229
– year: 2018
  ident: 10.1016/j.cviu.2021.103225_b137
– ident: 10.1016/j.cviu.2021.103225_b12
  doi: 10.1109/CVPR.2019.00351
– ident: 10.1016/j.cviu.2021.103225_b37
  doi: 10.1109/ICCV.2017.467
– ident: 10.1016/j.cviu.2021.103225_b8
  doi: 10.1109/CVPR.2014.471
– start-page: 1243
  year: 2011
  ident: 10.1016/j.cviu.2021.103225_b106
  article-title: Outdoor human motion capture using inverse kinematics and von mises-fisher sampling
– ident: 10.1016/j.cviu.2021.103225_b111
  doi: 10.1007/978-3-030-01249-6_5
– ident: 10.1016/j.cviu.2021.103225_b113
  doi: 10.1109/CVPR.2019.00789
– start-page: 506
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b83
  article-title: Monocular 3d human pose estimation in the wild using improved cnn supervision
– ident: 10.1016/j.cviu.2021.103225_b161
  doi: 10.1109/CVPRW.2018.00232
– volume: 32
  start-page: 177
  issue: 5
  year: 2013
  ident: 10.1016/j.cviu.2021.103225_b46
  article-title: Consistent shape maps via semidefinite programming
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12184
– ident: 10.1016/j.cviu.2021.103225_b158
  doi: 10.1109/CVPR.2018.00551
– ident: 10.1016/j.cviu.2021.103225_b7
  doi: 10.1109/CVPR.2018.00542
– ident: 10.1016/j.cviu.2021.103225_b53
  doi: 10.1109/CVPR.2018.00868
– start-page: 740
  year: 2014
  ident: 10.1016/j.cviu.2021.103225_b71
  article-title: Microsoft coco: Common objects in context
– ident: 10.1016/j.cviu.2021.103225_b27
  doi: 10.1109/ICCV.2019.00235
– year: 2015
  ident: 10.1016/j.cviu.2021.103225_b136
– ident: 10.1016/j.cviu.2021.103225_b9
  doi: 10.1109/CVPR.2014.471
– ident: 10.1016/j.cviu.2021.103225_b34
  doi: 10.1007/978-3-030-01225-0_27
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b123
– ident: 10.1016/j.cviu.2021.103225_b132
  doi: 10.1109/ICCV.2017.284
– ident: 10.1016/j.cviu.2021.103225_b61
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b120
  article-title: Lcr-net++: Multi-person 2d and 3d pose detection in natural images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2892985
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.cviu.2021.103225_b44
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10.1016/j.cviu.2021.103225_b122
  doi: 10.1109/ICCVW.2017.99
– volume: 123
  start-page: 4
  year: 2015
  ident: 10.1016/j.cviu.2021.103225_b1
  article-title: VQA: Visual question answering
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0966-6
– ident: 10.1016/j.cviu.2021.103225_b133
  doi: 10.1007/978-3-030-01231-1_33
– ident: 10.1016/j.cviu.2021.103225_b80
  doi: 10.1007/978-3-030-01249-6_37
– ident: 10.1016/j.cviu.2021.103225_b110
  doi: 10.1109/ICCV.2019.00444
– ident: 10.1016/j.cviu.2021.103225_b88
  doi: 10.1109/CVPR.2017.170
– ident: 10.1016/j.cviu.2021.103225_b146
  doi: 10.1109/CVPR.2017.492
– ident: 10.1016/j.cviu.2021.103225_b142
– ident: 10.1016/j.cviu.2021.103225_b102
  doi: 10.1109/CVPR.2018.00055
– volume: 16
  start-page: 208
  issue: 2
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b2
  article-title: Vision-based pose estimation for robot-mediated hand telerehabilitation
  publication-title: Sensors
  doi: 10.3390/s16020208
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b87
  article-title: I2l-meshnet: Image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image
– start-page: 120
  year: 2018
  ident: 10.1016/j.cviu.2021.103225_b84
  article-title: Single-shot multi-person 3d pose estimation from monocular rgb
– ident: 10.1016/j.cviu.2021.103225_b6
  doi: 10.1109/CVPR.2017.280
– start-page: 484
  year: 2018
  ident: 10.1016/j.cviu.2021.103225_b96
  article-title: Neural body fitting: Unifying deep learning and model based human pose and shape estimation
– ident: 10.1016/j.cviu.2021.103225_b134
  doi: 10.1109/ICCV.2019.00545
– volume: 36
  start-page: 1325
  issue: 7
  year: 2013
  ident: 10.1016/j.cviu.2021.103225_b48
  article-title: Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.248
– volume: 126
  start-page: 1326
  issue: 12
  year: 2018
  ident: 10.1016/j.cviu.2021.103225_b55
  article-title: Learning latent representations of 3d human pose with deep neural networks
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1066-6
– year: 2014
  ident: 10.1016/j.cviu.2021.103225_b72
  article-title: Microsoft COCO: Common objects in context
– ident: 10.1016/j.cviu.2021.103225_b91
  doi: 10.1109/WACV.2019.00162
– ident: 10.1016/j.cviu.2021.103225_b119
  doi: 10.1109/CVPR.2017.134
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b124
– year: 2018
  ident: 10.1016/j.cviu.2021.103225_b94
  article-title: Survey on emotional body gesture recognition
  publication-title: IEEE Trans. Affect. Comput.
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b104
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b76
– ident: 10.1016/j.cviu.2021.103225_b30
  doi: 10.1109/CVPR.2019.00798
– ident: 10.1016/j.cviu.2021.103225_b13
  doi: 10.1109/CVPR.2014.216
– volume: 4
  start-page: 1940
  issue: 2
  year: 2019
  ident: 10.1016/j.cviu.2021.103225_b56
  article-title: Pedx: Benchmark dataset for metric 3-D pose estimation of pedestrians in complex urban intersections
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2896705
– ident: 10.1016/j.cviu.2021.103225_b139
  doi: 10.1109/CVPR.2016.113
– ident: 10.1016/j.cviu.2021.103225_b42
  doi: 10.1109/ICCV.2019.00237
– ident: 10.1016/j.cviu.2021.103225_b79
  doi: 10.1109/ICCV.2019.00554
– ident: 10.1016/j.cviu.2021.103225_b125
  doi: 10.1109/CVPR.2018.00359
– ident: 10.1016/j.cviu.2021.103225_b115
  doi: 10.1109/ICCV.2015.94
– ident: 10.1016/j.cviu.2021.103225_b22
  doi: 10.1109/CVPR.2019.00586
– ident: 10.1016/j.cviu.2021.103225_b154
  doi: 10.1609/aaai.v30i1.10460
– ident: 10.1016/j.cviu.2021.103225_b108
  doi: 10.1109/CVPR.2017.501
– year: 2014
  ident: 10.1016/j.cviu.2021.103225_b128
– volume: 4
  start-page: 1501
  issue: 2
  year: 2019
  ident: 10.1016/j.cviu.2021.103225_b31
  article-title: Bio-lstm: A biomechanically inspired recurrent neural network for 3-d pedestrian pose and gait prediction
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2895266
– ident: 10.1016/j.cviu.2021.103225_b168
  doi: 10.1109/CVPR.2016.537
– ident: 10.1016/j.cviu.2021.103225_b95
  doi: 10.1109/ICCV.2019.00778
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b164
  article-title: Pose invariant embedding for deep person re-identification
  publication-title: IEEE Trans. Image Process.
– ident: 10.1016/j.cviu.2021.103225_b156
  doi: 10.1109/CVPR.2018.00226
– ident: 10.1016/j.cviu.2021.103225_b66
  doi: 10.1109/CVPR.2019.00381
– ident: 10.1016/j.cviu.2021.103225_b47
  doi: 10.1109/CVPRW.2017.20
– ident: 10.1016/j.cviu.2021.103225_b147
  doi: 10.1109/CVPR.2019.00797
– start-page: 3
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b144
  article-title: Total capture: 3D human pose estimation fusing video and inertial sensors.
– ident: 10.1016/j.cviu.2021.103225_b117
  doi: 10.1109/CVPR.2018.00880
– volume: 85
  start-page: 15
  year: 2019
  ident: 10.1016/j.cviu.2021.103225_b78
  article-title: Human pose regression by combining indirect part detection and contextual information
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2019.09.002
– ident: 10.1016/j.cviu.2021.103225_b29
  doi: 10.1007/978-3-030-01240-3_41
– ident: 10.1016/j.cviu.2021.103225_b165
  doi: 10.1109/ICCV.2019.00243
– start-page: 156
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b97
  article-title: 3D human pose estimation using convolutional neural networks with 2D pose information
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b19
– ident: 10.1016/j.cviu.2021.103225_b40
  doi: 10.1109/CVPR.2019.01116
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b86
– start-page: 1
  year: 2008
  ident: 10.1016/j.cviu.2021.103225_b35
  article-title: Progressive search space reduction for human pose estimation
– ident: 10.1016/j.cviu.2021.103225_b50
  doi: 10.1109/CVPR.2019.00724
– start-page: 186
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b167
  article-title: Deep kinematic pose regression
– volume: 31
  start-page: 17
  issue: 2
  year: 2012
  ident: 10.1016/j.cviu.2021.103225_b4
  article-title: Bilinear spatiotemporal basis models
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2159516.2159523
– ident: 10.1016/j.cviu.2021.103225_b138
  doi: 10.1109/ICCV.2017.425
– ident: 10.1016/j.cviu.2021.103225_b16
  doi: 10.1109/ICCV.2019.00236
– ident: 10.1016/j.cviu.2021.103225_b62
  doi: 10.1109/CVPR.2017.500
– volume: 53
  start-page: 1975
  year: 2019
  ident: 10.1016/j.cviu.2021.103225_b64
  article-title: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09724-5
– ident: 10.1016/j.cviu.2021.103225_b150
  doi: 10.1007/978-3-030-66096-3_36
– volume: 2
  start-page: 5
  issue: 4
  year: 2010
  ident: 10.1016/j.cviu.2021.103225_b51
  article-title: Clustered pose and nonlinear appearance models for human pose estimation
  publication-title: Bmvc
– start-page: 3467
  year: 2017
  ident: 10.1016/j.cviu.2021.103225_b92
  article-title: Monocular 3d human pose estimation by predicting depth on joints
– ident: 10.1016/j.cviu.2021.103225_b39
– ident: 10.1016/j.cviu.2021.103225_b18
  doi: 10.1109/CVPR.2017.143
– ident: 10.1016/j.cviu.2021.103225_b153
  doi: 10.1109/CVPR.2019.00606
– ident: 10.1016/j.cviu.2021.103225_b140
  doi: 10.1109/CVPR.2017.603
– year: 2017
  ident: 10.1016/j.cviu.2021.103225_b145
  article-title: Self-supervised learning of motion capture
– volume: 87
  start-page: 4
  issue: 1–2
  year: 2010
  ident: 10.1016/j.cviu.2021.103225_b127
  article-title: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0273-6
– year: 2020
  ident: 10.1016/j.cviu.2021.103225_b73
– year: 2019
  ident: 10.1016/j.cviu.2021.103225_b49
– ident: 10.1016/j.cviu.2021.103225_b28
  doi: 10.1109/ICCV.2017.589
– start-page: 509
  year: 2016
  ident: 10.1016/j.cviu.2021.103225_b114
  article-title: General automatic human shape and motion capture using volumetric contour cues
– ident: 10.1016/j.cviu.2021.103225_b67
  doi: 10.1109/CVPR.2019.01012
– year: 2003
  ident: 10.1016/j.cviu.2021.103225_b38
  article-title: A bayesian approach to image-based visual hull reconstruction
SSID ssj0011491
Score 2.6792161
Snippet Three-dimensional (3D) human pose estimation involves estimating the articulated 3D joint locations of a human body from an image or video. Due to its...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103225
SubjectTerms 3D Human Pose Estimation
Deep Learning
Title Deep 3D human pose estimation: A review
URI https://dx.doi.org/10.1016/j.cviu.2021.103225
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvTgoyrWR8lB8CCxzeaxWW-ltVTFXrTQ25LNZqEi7WJbj_52M7vZUkF68LhDZlmGycyX7Mx8CF0nMolSoyxhSqWER9SSSIaaZEoHxlInLFgUXkZyOOZPEzGpoV7VCwNllT72lzG9iNZe0vbWbOfTafvVHVxCBlcYcEUtI4jDnIfg5Xff6zIPB_cL1jxYTGC1b5wpa7zM13TlzogBhd7zAOiy_0pOGwlncIj2PVLE3fJjjlDNzhrowKNG7PfkwokqYoZK1kB7G1MGj9FN39ocsz4u-PhwPl9YDLM1yqbFe9zFZf_KCRoPHt56Q-L5EYhhnC-JEDZx6CiVMqJcJMZQaSlTaSYc6GO6k5mMdpSBme7C8NBwRWVqtGWZNoFWnJ2i-mw-s2cI06CThS6bh1Iqrl0UixL4r821YO79gWkiWhkmNn54OHBYfMRVldh7DMaMwZhxacwmul3r5OXojK2rRWXv-JcDxC62b9E7_6feBdqFp7Jc7BLVl58re-XwxTJpFQ7UQjvdx-fh6Adp48sA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDLYQHLYd9mCbxp45TNphqiDNo-luCIbKeFwGEreqTVOJaQI0YL9_CUkRkyYOu7p1VVnJZzux_QE8pjwNMymUR4TIPBpi5YU8SLxcJL5UWAs3LAqDIY_G9G3CJiVoFb0wpqzSYb_F9A1aO0ndWbO-mE7r7zpxCYg5wjBH1DzUOFwx06lYGSrNbi8abi8TdBKAbemhOZKjvuudsWVe8nu61mmij037uW8Ys__yTzs-p3MKxy5YRE37P2dQUrMqnLjAEbltudSigpuhkFXhaGfQ4Dk8tZVaINJGG0o-tJgvFTLjNWzf4gtqItvCcgHjzuuoFXmOIsGThNKVx5hKdYCUcR5iylIpMVeYiCxnOu4jSSOXOW4Iaca6M0kDSQXmmUwUyRPpJ4KSSyjP5jN1BQj7jTzQDj3gXNBEA1mYmqttmjCiv-_LGuDCMLF088MNjcVnXBSKfcTGmLExZmyNWYPnrc7CTs_Y-zYr7B3_WgOxhvc9etf_1HuAg2g06Mf97rB3A4fmia0eu4Xy6mut7nS4sUrv3XL6AX0kzbE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+3D+human+pose+estimation%3A+A+review&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Wang%2C+Jinbao&rft.au=Tan%2C+Shujie&rft.au=Zhen%2C+Xiantong&rft.au=Xu%2C+Shuo&rft.date=2021-09-01&rft.issn=1077-3142&rft.volume=210&rft.spage=103225&rft_id=info:doi/10.1016%2Fj.cviu.2021.103225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cviu_2021_103225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon