Molecular simulation studies on the design of energetic ammonium dinitramide co-crystals for tuning hygroscopicity

Cocrystallization technology is an effective method for improving crystal properties. Ammonium dinitramide (ADN) is an important component of propellants. However, the high hygroscopicity property of ADN limits its applications. In order to solve this problem, nine energetic co-formers containing 2,...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 22; no. 31; pp. 5237 - 5244
Main Authors Ren, Zhongqi, Chen, Xinjian, Yu, Guojia, Wang, Yinglei, Chen, Bin, Zhou, Zhiyong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cocrystallization technology is an effective method for improving crystal properties. Ammonium dinitramide (ADN) is an important component of propellants. However, the high hygroscopicity property of ADN limits its applications. In order to solve this problem, nine energetic co-formers containing 2,4,5,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), benzotrifuroxan (BTF), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 2,4,6-trinitrotoluene (TNT), butane-1,2,3,4-tetrayl tetranitrate (ETN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitro-N-methylaniline (MATNB), and 1,3,3- trinitroazetidine (TNAZ) were selected to predict the hygroscopicity of co-crystals with the molar ratio of ADN to co-former as 1 : 1. A novel computational method has been put forward to select co-formers efficiently for designing energetic co-crystals with a low water sorption capacity. Based on the molecular electrostatic potential calculations, the intermolecular binding sites in the co-formers of co-crystal were found. By the lattice energy minimization methodology, the possible crystal structures were constructed, and the density and H-bond energy of possible energetic co-crystals were predicted. The co-crystal screening method was used to calculate pairwise interactions and select promising co-crystal formers for the experimental screening. This method can be used to predict the co-crystal hygroscopicity, which thus may speed up the progress of developing novel energetic co-crystal materials. Cocrystallization technology is an effective method for improving crystal properties.
AbstractList Cocrystallization technology is an effective method for improving crystal properties. Ammonium dinitramide (ADN) is an important component of propellants. However, the high hygroscopicity property of ADN limits its applications. In order to solve this problem, nine energetic co-formers containing 2,4,5,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), benzotrifuroxan (BTF), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 2,4,6-trinitrotoluene (TNT), butane-1,2,3,4-tetrayl tetranitrate (ETN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitro-N-methylaniline (MATNB), and 1,3,3- trinitroazetidine (TNAZ) were selected to predict the hygroscopicity of co-crystals with the molar ratio of ADN to co-former as 1 : 1. A novel computational method has been put forward to select co-formers efficiently for designing energetic co-crystals with a low water sorption capacity. Based on the molecular electrostatic potential calculations, the intermolecular binding sites in the co-formers of co-crystal were found. By the lattice energy minimization methodology, the possible crystal structures were constructed, and the density and H-bond energy of possible energetic co-crystals were predicted. The co-crystal screening method was used to calculate pairwise interactions and select promising co-crystal formers for the experimental screening. This method can be used to predict the co-crystal hygroscopicity, which thus may speed up the progress of developing novel energetic co-crystal materials.
Cocrystallization technology is an effective method for improving crystal properties. Ammonium dinitramide (ADN) is an important component of propellants. However, the high hygroscopicity property of ADN limits its applications. In order to solve this problem, nine energetic co-formers containing 2,4,5,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), benzotrifuroxan (BTF), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 2,4,6-trinitrotoluene (TNT), butane-1,2,3,4-tetrayl tetranitrate (ETN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 1,3,5-trinitrobenzene (TNB), 2,4,6-trinitro-N-methylaniline (MATNB), and 1,3,3- trinitroazetidine (TNAZ) were selected to predict the hygroscopicity of co-crystals with the molar ratio of ADN to co-former as 1 : 1. A novel computational method has been put forward to select co-formers efficiently for designing energetic co-crystals with a low water sorption capacity. Based on the molecular electrostatic potential calculations, the intermolecular binding sites in the co-formers of co-crystal were found. By the lattice energy minimization methodology, the possible crystal structures were constructed, and the density and H-bond energy of possible energetic co-crystals were predicted. The co-crystal screening method was used to calculate pairwise interactions and select promising co-crystal formers for the experimental screening. This method can be used to predict the co-crystal hygroscopicity, which thus may speed up the progress of developing novel energetic co-crystal materials. Cocrystallization technology is an effective method for improving crystal properties.
Author Ren, Zhongqi
Chen, Bin
Zhou, Zhiyong
Yu, Guojia
Wang, Yinglei
Chen, Xinjian
AuthorAffiliation College of Chemical Engineering
Xi'an Modern Chemistry Research Institute
Beijing University of Chemical Technology
AuthorAffiliation_xml – name: College of Chemical Engineering
– name: Xi'an Modern Chemistry Research Institute
– name: Beijing University of Chemical Technology
Author_xml – sequence: 1
  givenname: Zhongqi
  surname: Ren
  fullname: Ren, Zhongqi
– sequence: 2
  givenname: Xinjian
  surname: Chen
  fullname: Chen, Xinjian
– sequence: 3
  givenname: Guojia
  surname: Yu
  fullname: Yu, Guojia
– sequence: 4
  givenname: Yinglei
  surname: Wang
  fullname: Wang, Yinglei
– sequence: 5
  givenname: Bin
  surname: Chen
  fullname: Chen, Bin
– sequence: 6
  givenname: Zhiyong
  surname: Zhou
  fullname: Zhou, Zhiyong
BookMark eNp9kM1LAzEQxYNUsK1evAsRb8LqpMluu0ep9QMqXvS8xGTSpnSTmmQP-98bragnT_Pg_ebN8EZk4LxDQk4ZXDHg9bUGhQAVTPCADJmoqmIGnA_-6CMyinEDwARjMCThyW9RdVsZaLRtnsl6R2PqtMVIs0xrpBqjXTnqDUWHYYXJKirb1jvbtVRbZ1OQrdVIlS9U6GOS20iNDzR1zroVXfer4KPyO6ts6o_JockAnnzPMXm9W7zMH4rl8_3j_GZZKC5EKsqylAKyZhpNVUsUdTkRvJzK-m2GWuFETsCouhI1BykYr7nJC4yZupoyrfiYXOxzd8G_dxhTs_FdcPlkk3PYDGaCQ6Yu95TKL8aAptkF28rQNwyaz06bW5gvvjpdZPhsD4eofrjfzrN__p_f7LThHzArgis
CitedBy_id crossref_primary_10_1016_j_dt_2022_11_013
crossref_primary_10_3390_molecules28114534
crossref_primary_10_1016_j_dt_2022_04_006
crossref_primary_10_1002_prep_202200344
crossref_primary_10_1016_j_mtcomm_2022_103699
crossref_primary_10_1016_j_dt_2023_08_012
crossref_primary_10_1016_j_dt_2024_06_003
crossref_primary_10_25699_SSSB_2023_48_2_019
crossref_primary_10_1016_j_cej_2024_153174
crossref_primary_10_1016_j_jssc_2023_124545
crossref_primary_10_1021_acs_iecr_3c04468
crossref_primary_10_1039_D1CE00551K
crossref_primary_10_1016_j_ejpb_2022_08_013
crossref_primary_10_1615_IntJEnergeticMaterialsChemProp_2023045658
crossref_primary_10_1016_j_cjche_2023_01_006
crossref_primary_10_1007_s00894_022_05399_y
crossref_primary_10_1021_acs_cgd_4c00080
Cites_doi 10.1021/acs.jpcc.9b00120
10.1021/acs.cgd.8b00972
10.1063/1.4959900
10.1038/nature21419
10.1007/s11224-012-0185-x
10.1021/acs.cgd.7b01530
10.1021/ct8004326
10.1002/anie.201811313
10.1039/C7CS00391A
10.1021/cg101300n
10.1039/C7SC04665K
10.1002/prep.200400043
10.1021/je100067n
10.1021/ja9709280
10.1039/C3CS60279F
10.1039/C6CE01835A
10.1039/c0cc01195a
10.1002/anie.201908709
10.1039/C9TA04677A
10.1021/cg800685z
10.14429/dsj.67.10188
10.1021/ja403264c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d0ce00602e
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 5244
ExternalDocumentID 10_1039_D0CE00602E
d0ce00602e
GroupedDBID 0-7
0R
1TJ
29F
5GY
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFS
ACLDK
ADACO
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
E3Z
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
IDZ
J3I
JG
KC5
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
-JG
0R~
6J9
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AGEGJ
AGRSR
AHGCF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7U5
8FD
L7M
ID FETCH-LOGICAL-c344t-555a40c341def69ae49524357a9b8edce2a20fc964930a41393fa4011f9671dc3
ISSN 1466-8033
IngestDate Thu Oct 10 19:37:26 EDT 2024
Fri Aug 23 02:41:56 EDT 2024
Wed Nov 11 00:27:41 EST 2020
Sat Jan 08 03:53:00 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-555a40c341def69ae49524357a9b8edce2a20fc964930a41393fa4011f9671dc3
Notes Electronic supplementary information (ESI) available: An PDF Files contains: scatter diagrams of lattice energy and density of co-crystals of ADN/CL-20, ADN/BTF, ADN/HMX, ADN/TNT, ADN/ETN, ADN/RDX, ADN/TNB, ADN/MATNB, and ADN/TNAZ. The lowest energy water sorption frames of (1 0 0), (0 1 0), (0 0 1) ADN/CL-20, ADN/BTF, ADN/HMX, ADN/TNT, ADN/ETN, ADN/RDX, ADN/TNB, ADN/MATNB, and ADN/TNAZ co-crystal surfaces and200 the parameters and value of the interaction site pairing energy difference of ADN/DPO. See DOI
10.1039/d0ce00602e
ORCID 0000-0002-2571-5702
0000-0001-6436-1399
PQID 2431808430
PQPubID 2047491
PageCount 8
ParticipantIDs crossref_primary_10_1039_D0CE00602E
rsc_primary_d0ce00602e
proquest_journals_2431808430
PublicationCentury 2000
PublicationDate 2020-08-21
PublicationDateYYYYMMDD 2020-08-21
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Webber (D0CE00602E-(cit8)/*[position()=1]) 2017; 46
Landenberger (D0CE00602E-(cit11)/*[position()=1]) 2010; 10
Yedukondalu (D0CE00602E-(cit18)/*[position()=1]) 2016; 145
Desiraju (D0CE00602E-(cit3)/*[position()=1]) 2013; 135
Nangia (D0CE00602E-(cit1)/*[position()=1]) 2019; 58
Chen (D0CE00602E-(cit22)/*[position()=1]) 2019; 123
Bellas (D0CE00602E-(cit23)/*[position()=1]) 2019; 58
Corpinot (D0CE00602E-(cit6)/*[position()=1]) 2019; 19
Cherukuvada (D0CE00602E-(cit7)/*[position()=1]) 2016; 18
Gao (D0CE00602E-(cit12)/*[position()=1]) 2017; 67
Karamertzanis (D0CE00602E-(cit14)/*[position()=1]) 2009; 5
Musil (D0CE00602E-(cit16)/*[position()=1]) 2018; 9
Issa (D0CE00602E-(cit13)/*[position()=1]) 2009; 9
Gilardi (D0CE00602E-(cit17)/*[position()=1]) 1997; 119
Price (D0CE00602E-(cit4)/*[position()=1]) 2014; 43
Cui (D0CE00602E-(cit20)/*[position()=1]) 2010; 55
Pulido (D0CE00602E-(cit15)/*[position()=1]) 2017; 543
Desiraju (D0CE00602E-(cit2)/*[position()=1]) 1989
Garai (D0CE00602E-(cit9)/*[position()=1]) 2018; 18
Braga (D0CE00602E-(cit5)/*[position()=1]) 2010; 46
Venkatachalam (D0CE00602E-(cit19)/*[position()=1]) 2004; 29
Wang (D0CE00602E-(cit21)/*[position()=1]) 2013; 24
Wang (D0CE00602E-(cit10)/*[position()=1]) 2019; 7
References_xml – issn: 1989
  publication-title: Crystal engineering: the design of organic solids
  doi: Desiraju
– volume: 123
  start-page: 10940
  year: 2019
  ident: D0CE00602E-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b00120
  contributor:
    fullname: Chen
– volume: 19
  start-page: 1426
  year: 2019
  ident: D0CE00602E-(cit6)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00972
  contributor:
    fullname: Corpinot
– volume: 145
  start-page: 1
  year: 2016
  ident: D0CE00602E-(cit18)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4959900
  contributor:
    fullname: Yedukondalu
– volume: 543
  start-page: 657
  year: 2017
  ident: D0CE00602E-(cit15)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature21419
  contributor:
    fullname: Pulido
– volume: 24
  start-page: 1537
  year: 2013
  ident: D0CE00602E-(cit21)/*[position()=1]
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-012-0185-x
  contributor:
    fullname: Wang
– volume: 18
  start-page: 581
  year: 2018
  ident: D0CE00602E-(cit9)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b01530
  contributor:
    fullname: Garai
– volume: 5
  start-page: 1432
  year: 2009
  ident: D0CE00602E-(cit14)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct8004326
  contributor:
    fullname: Karamertzanis
– volume: 58
  start-page: 4100
  year: 2019
  ident: D0CE00602E-(cit1)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811313
  contributor:
    fullname: Nangia
– volume: 46
  start-page: 6600
  year: 2017
  ident: D0CE00602E-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00391A
  contributor:
    fullname: Webber
– volume: 10
  start-page: 5341
  year: 2010
  ident: D0CE00602E-(cit11)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg101300n
  contributor:
    fullname: Landenberger
– volume: 9
  start-page: 1289
  year: 2018
  ident: D0CE00602E-(cit16)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04665K
  contributor:
    fullname: Musil
– volume: 29
  start-page: 178
  year: 2004
  ident: D0CE00602E-(cit19)/*[position()=1]
  publication-title: Propellants, Explos., Pyrotech.
  doi: 10.1002/prep.200400043
  contributor:
    fullname: Venkatachalam
– volume: 55
  start-page: 3229
  year: 2010
  ident: D0CE00602E-(cit20)/*[position()=1]
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je100067n
  contributor:
    fullname: Cui
– volume: 119
  start-page: 9411
  year: 1997
  ident: D0CE00602E-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9709280
  contributor:
    fullname: Gilardi
– volume: 43
  start-page: 2098
  year: 2014
  ident: D0CE00602E-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60279F
  contributor:
    fullname: Price
– volume: 18
  start-page: 8528
  year: 2016
  ident: D0CE00602E-(cit7)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C6CE01835A
  contributor:
    fullname: Cherukuvada
– volume: 46
  start-page: 6232
  year: 2010
  ident: D0CE00602E-(cit5)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01195a
  contributor:
    fullname: Braga
– volume: 58
  start-page: 17185
  year: 2019
  ident: D0CE00602E-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908709
  contributor:
    fullname: Bellas
– volume: 7
  start-page: 19248
  year: 2019
  ident: D0CE00602E-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04677A
  contributor:
    fullname: Wang
– volume: 9
  start-page: 442
  year: 2009
  ident: D0CE00602E-(cit13)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg800685z
  contributor:
    fullname: Issa
– volume: 67
  start-page: 510
  year: 2017
  ident: D0CE00602E-(cit12)/*[position()=1]
  publication-title: Def. Sci. J.
  doi: 10.14429/dsj.67.10188
  contributor:
    fullname: Gao
– volume-title: Crystal engineering: the design of organic solids
  year: 1989
  ident: D0CE00602E-(cit2)/*[position()=1]
  contributor:
    fullname: Desiraju
– volume: 135
  start-page: 9952
  year: 2013
  ident: D0CE00602E-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403264c
  contributor:
    fullname: Desiraju
SSID ssj0014110
Score 2.4449537
Snippet Cocrystallization technology is an effective method for improving crystal properties. Ammonium dinitramide (ADN) is an important component of propellants....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 5237
SubjectTerms Binding sites
Bond energy
Cocrystallization
Computer simulation
Crystal lattices
Crystal structure
Crystal surfaces
Crystals
Density
Energy conservation
HMX
Hygroscopicity
Mathematical analysis
RDX
Screening
Sorption
Trinitrotoluene
Title Molecular simulation studies on the design of energetic ammonium dinitramide co-crystals for tuning hygroscopicity
URI https://www.proquest.com/docview/2431808430
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb5swFLbS9LIdpv2qlq6bLG23iA3Mr_hYpVTdlHYXIqW7IDAmddVARkBa99f3GWMgWjVtuyDLAQf5ffh9fn7-jNBHcDuZbyXESDPTNRzOYiPJUiByM0o8l1meF8uNwpdX3sXS-bpyV6PRz0HWUl0ln9ivR_eV_I9VoQ7sKnfJ_oNlu0ahAspgX7iCheH6Vza-1GfbTndi057D1QjGCq5XAaZpk6IhOaEUmJabytg0lq8o6s0UHJeoyngjUpm0brDyHsji3U7lHtZNyOTmfi0FL4utYKLaWwOey7uDfC33mHTrNmoU-35T5Osfos8dUNUrkd8O4HhdN1H5urgVvXNo49fX8N93XAyDEqRJiSN9UEKFPnTeaZNX0p5ep9yOGmsdT2ohKx0MPRgTMgBd6x_U0AozZn_gpl2idCN_cwGmLRVUU5NxqTVDeO_o9OL-1bfofLlYRGGwCg_QIfGp647R4WkQfll0K1AO8CItZ2vTz317-wSmn5UclPrImIaahM_Rs3ZOgU8VQF6gEc9foqcDpclXqOyggnuo4BYqGIoAFayggosMd1DBGip4ABU8gAoGqGAFFbwPlddoeR6E8wujPW7DYLbjVIbrurFjQtlKeebRmMPcmQCb9mOazGSyMImJmTHqOdQ2YyA_1M7gAcvKqOdbKbOP0Dgvcv5GCgGkJPY8H2zkO1kCLNK2_QSYKpBX6MJkgj7oPoy2SlUlarIhbBqdmfOg6elggk5090btV7eL4I2smTlzbHOCjqDLu-d7C03Q8eM_RNs0O_5zo2_Rkx7PJ2hclTV_B7SzSt63CHkApgiMhg
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+simulation+studies+on+the+design+of+energetic+ammonium+dinitramide+co-crystals+for+tuning+hygroscopicity&rft.jtitle=CrystEngComm&rft.au=Ren%2C+Zhongqi&rft.au=Chen%2C+Xinjian&rft.au=Yu%2C+Guojia&rft.au=Wang%2C+Yinglei&rft.date=2020-08-21&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=22&rft.issue=31&rft.spage=5237&rft.epage=5244&rft_id=info:doi/10.1039%2Fd0ce00602e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon