Reinforcing learning in Deep Belief Networks through nature-inspired optimization
Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introduci...
Saved in:
Published in | Applied soft computing Vol. 108; p. 107466 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2021.107466 |
Cover
Abstract | Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introducing residual connections, thus assisting gradient propagation. However, such a subject of study has been poorly considered for Deep Belief Networks. In this paper, we propose a weighted layer-wise information reinforcement approach concerning Deep Belief Networks. Moreover, we also introduce metaheuristic optimization to select proper weight connections that improve the network’s learning capabilities. Experiments conducted over public datasets corroborate the effectiveness of the proposed approach in image classification tasks.
•Novel DBN with weight-based residual connections between layers.•Reinforcement and regularization of the information flow.•Application of metaheuristic optimization to fine-tune Res-DBN hyperparameters; |
---|---|
AbstractList | Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introducing residual connections, thus assisting gradient propagation. However, such a subject of study has been poorly considered for Deep Belief Networks. In this paper, we propose a weighted layer-wise information reinforcement approach concerning Deep Belief Networks. Moreover, we also introduce metaheuristic optimization to select proper weight connections that improve the network’s learning capabilities. Experiments conducted over public datasets corroborate the effectiveness of the proposed approach in image classification tasks.
•Novel DBN with weight-based residual connections between layers.•Reinforcement and regularization of the information flow.•Application of metaheuristic optimization to fine-tune Res-DBN hyperparameters; |
ArticleNumber | 107466 |
Author | de Albuquerque, Victor Hugo C. de Rosa, Gustavo H. Papa, João Paulo Roder, Mateus Passos, Leandro Aparecido |
Author_xml | – sequence: 1 givenname: Mateus orcidid: 0000-0002-3112-5290 surname: Roder fullname: Roder, Mateus email: mateus.roder@unesp.br organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil – sequence: 2 givenname: Leandro Aparecido orcidid: 0000-0003-3529-3109 surname: Passos fullname: Passos, Leandro Aparecido email: leandro.passos@unesp.br organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil – sequence: 3 givenname: Gustavo H. orcidid: 0000-0002-6442-8343 surname: de Rosa fullname: de Rosa, Gustavo H. email: gustavo.rosa@unesp.br organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil – sequence: 4 givenname: Victor Hugo C. orcidid: 0000-0003-3886-4309 surname: de Albuquerque fullname: de Albuquerque, Victor Hugo C. email: victor.albuquerque@ieee.org organization: Graduate Program on Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Fortaleza/CE, Brazil – sequence: 5 givenname: João Paulo surname: Papa fullname: Papa, João Paulo email: joao.papa@unesp.br organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil |
BookMark | eNp9kE1OwzAQRi1UJErhAqxygRTbcWJHYgPlV6pAIFhbjj1pXVK7sl0QnJ6EsmLRzcynkd5o5h2jkfMOEDojeEowqc5XUxW9nlJMST_grKoO0JgITvO6EmTU57ISOatZdYSOY1zhHqqpGKPnF7Cu9UFbt8g6UMENwbrsGmCTXUFnoc0eIX368B6ztAx-u1hmTqVtgNy6uLEBTOY3ya7tt0rWuxN02Kouwulfn6C325vX2X0-f7p7mF3Oc10wlvKSFoSWBvOScsOr1jAQuFC0bU2jRF-M4qygNVOkKnlRaNUoXDaUcBCNoLyYILrbq4OPMUArN8GuVfiSBMtBilzJQYocpMidlB4S_yBt0-_ZKSjb7Ucvdij0T31YCDJqC06D6RXoJI23-_AfWwmAsA |
CitedBy_id | crossref_primary_10_3390_e24020196 crossref_primary_10_1016_j_rinp_2022_105781 crossref_primary_10_1002_itl2_329 crossref_primary_10_1016_j_isprsjprs_2024_12_020 crossref_primary_10_1007_s11071_022_08109_8 crossref_primary_10_1007_s40747_021_00637_x crossref_primary_10_1016_j_asoc_2024_112021 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1080_03772063_2023_2175059 crossref_primary_10_1109_ACCESS_2022_3167143 crossref_primary_10_1016_j_swevo_2024_101640 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1016_j_caeai_2022_100071 crossref_primary_10_1142_S0218348X24300010 |
Cites_doi | 10.1109/TNNLS.2018.2832648 10.1162/089976602760128018 10.2307/3001968 10.3390/su10103765 10.1162/neco.2006.18.7.1527 10.1007/s00500-019-03856-0 10.1016/j.jvcir.2019.01.043 10.1561/2200000006 10.1109/TIP.2019.2940679 10.1109/TMI.2018.2823338 10.1145/1390156.1390290 10.1080/0305215X.2013.832237 10.1109/TEVC.2018.2808689 10.1109/TEVC.2020.2968743 10.1109/5.726791 10.1109/TEVC.2018.2869621 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107466 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107466 S1568494621003896 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-523125d07527d76fd4e803a2ffdba8fdbda743294a165733caba05b217e8b8273 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:10 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Fri Feb 23 02:43:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Residual networks Metaheuristic optimization Restricted Boltzmann machines Deep Belief Network Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-523125d07527d76fd4e803a2ffdba8fdbda743294a165733caba05b217e8b8273 |
ORCID | 0000-0002-3112-5290 0000-0003-3886-4309 0000-0003-3529-3109 0000-0002-6442-8343 |
OpenAccessLink | http://hdl.handle.net/11449/233128 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2021_107466 crossref_citationtrail_10_1016_j_asoc_2021_107466 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | LeCun, Bottou, Bengio, Haffner (b31) 1998; 86 Kuremoto, Kimura, Kobayashi, Obayashi (b11) 2012 Fedorovici, Precup, Dragan, David, Purcaru (b9) 2012 Smolensky (b15) 1986 Wilcoxon (b37) 1945; 1 Bengio (b19) 2009; 2 Song, Zhang, Guo, Sun, Wang (b25) 2020 Russell, Norvig (b30) 2010 Nair, Hinton (b18) 2010 Bergstra, Bengio (b29) 2012; 13 Sun, Yen, Yi (b20) 2019; 23 Xiao, Rasul, Vollgraf (b32) 2017 Ronoud, Asadi (b21) 2019; 23 Yang, Zhang, Tian, Wang, Xue, Liao (b3) 2019; 29 Chen, Xue, Zhang (b23) 2018; 23 Hinton, Osindero, Teh (b17) 2006; 18 Demšar (b39) 2006; 7 Hinton, Osindero, Teh (b5) 2006; 18 Zhang, Tan, Li, Hong (b6) 2018; 30 Passos, de Souza Jr, Mendel, Ebigbo, Probst, Messmann, Palm, Papa (b14) 2019 Eberhart, Kennedy (b24) 1995 Hinton (b4) 2002; 14 Yang (b26) 2010 Salakhutdinov, Hinton (b7) 2009 Hinton (b16) 2012 Nemenyi (b38) 1963 He, Zhang, Ren, Sun (b1) 2016 Yang, Karamanoglu, He (b27) 2014; 46 Roder, Passos, Ribeiro, Pereira, Papa (b8) 2020 Clanuwat, Bober-Irizar, Kitamoto, Lamb, Yamamoto, Ha (b33) 2018 Kingma, Ba (b36) 2014 Koza, Koza (b22) 1992 Zhang, Liang, Dong, Xie, Cao (b2) 2018; 37 Desjardins, Courville, Bengio, Vincent, Delalleau (b35) 2010 Roder, Rosa, Passos, Papa, Rossi (b28) 2020 Chung, Shin (b10) 2018; 10 Passos, Papa (b13) 2019 T. Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1064–1071. Rosa, Papa, Costa, Passos, Pereira, Yang (b12) 2016 Passos (10.1016/j.asoc.2021.107466_b14) 2019 Smolensky (10.1016/j.asoc.2021.107466_b15) 1986 Hinton (10.1016/j.asoc.2021.107466_b17) 2006; 18 Bergstra (10.1016/j.asoc.2021.107466_b29) 2012; 13 Koza (10.1016/j.asoc.2021.107466_b22) 1992 Chen (10.1016/j.asoc.2021.107466_b23) 2018; 23 LeCun (10.1016/j.asoc.2021.107466_b31) 1998; 86 He (10.1016/j.asoc.2021.107466_b1) 2016 Song (10.1016/j.asoc.2021.107466_b25) 2020 Chung (10.1016/j.asoc.2021.107466_b10) 2018; 10 Demšar (10.1016/j.asoc.2021.107466_b39) 2006; 7 Kingma (10.1016/j.asoc.2021.107466_b36) 2014 Hinton (10.1016/j.asoc.2021.107466_b5) 2006; 18 Sun (10.1016/j.asoc.2021.107466_b20) 2019; 23 Hinton (10.1016/j.asoc.2021.107466_b4) 2002; 14 Xiao (10.1016/j.asoc.2021.107466_b32) 2017 Zhang (10.1016/j.asoc.2021.107466_b6) 2018; 30 10.1016/j.asoc.2021.107466_b34 Roder (10.1016/j.asoc.2021.107466_b28) 2020 Passos (10.1016/j.asoc.2021.107466_b13) 2019 Clanuwat (10.1016/j.asoc.2021.107466_b33) 2018 Zhang (10.1016/j.asoc.2021.107466_b2) 2018; 37 Bengio (10.1016/j.asoc.2021.107466_b19) 2009; 2 Ronoud (10.1016/j.asoc.2021.107466_b21) 2019; 23 Roder (10.1016/j.asoc.2021.107466_b8) 2020 Nemenyi (10.1016/j.asoc.2021.107466_b38) 1963 Hinton (10.1016/j.asoc.2021.107466_b16) 2012 Wilcoxon (10.1016/j.asoc.2021.107466_b37) 1945; 1 Russell (10.1016/j.asoc.2021.107466_b30) 2010 Desjardins (10.1016/j.asoc.2021.107466_b35) 2010 Salakhutdinov (10.1016/j.asoc.2021.107466_b7) 2009 Kuremoto (10.1016/j.asoc.2021.107466_b11) 2012 Rosa (10.1016/j.asoc.2021.107466_b12) 2016 Yang (10.1016/j.asoc.2021.107466_b3) 2019; 29 Fedorovici (10.1016/j.asoc.2021.107466_b9) 2012 Yang (10.1016/j.asoc.2021.107466_b27) 2014; 46 Eberhart (10.1016/j.asoc.2021.107466_b24) 1995 Yang (10.1016/j.asoc.2021.107466_b26) 2010 Nair (10.1016/j.asoc.2021.107466_b18) 2010 |
References_xml | – start-page: 770 year: 2016 end-page: 778 ident: b1 article-title: Deep residual learning for image recognition publication-title: IEEE CVPR – start-page: 17 year: 2012 end-page: 22 ident: b11 article-title: Time series forecasting using restricted boltzmann machine publication-title: International Conference on Intelligent Computing – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b5 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 23 start-page: 89 year: 2019 end-page: 103 ident: b20 article-title: Evolving unsupervised deep neural networks for learning meaningful representations publication-title: IEEE Trans. Evol. Comput. – start-page: 145 year: 2010 end-page: 152 ident: b35 article-title: Parallel tempering for training of restricted Boltzmann machines publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – start-page: 194 year: 1986 end-page: 281 ident: b15 publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1 – start-page: 1942 year: 1995 end-page: 1948 ident: b24 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks, Vol. 4 – volume: 37 start-page: 1407 year: 2018 end-page: 1417 ident: b2 article-title: A sparse-view ct reconstruction method based on combination of densenet and deconvolution publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 1450 year: 2019 end-page: 1464 ident: b3 article-title: Lcscnet: Linear compressing-based skip-connecting network for image super-resolution publication-title: IEEE Trans. Image Process. – year: 2010 ident: b18 article-title: Rectified linear units improve restricted boltzmann machines publication-title: ICML – start-page: 125 year: 2012 end-page: 130 ident: b9 article-title: Embedding gravitational search algorithms in convolutional neural networks for OCR applications publication-title: 7th IEEE International Symposium on Applied Computational Intelligence and Informatics – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: b19 article-title: Learning deep architectures for ai publication-title: Found. Trends® Mach. Learn. – volume: 23 start-page: 13139 year: 2019 end-page: 13159 ident: b21 article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis publication-title: Soft Comput. – year: 2019 ident: b14 article-title: Barrett’s esophagus analysis using infinity restricted Boltzmann machines publication-title: J. Vis. Commun. Image Represent. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: b29 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 1771 year: 2002 end-page: 1800 ident: b4 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. – year: 2020 ident: b25 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Trans. Evol. Comput. – year: 2019 ident: b13 article-title: A metaheuristic-driven approach to fine-tune deep Boltzmann machines publication-title: Appl. Soft Comput. – year: 2010 ident: b30 article-title: Artificial Intelligence-A Modern Approach – volume: 46 start-page: 1222 year: 2014 end-page: 1237 ident: b27 article-title: Flower pollination algorithm: A novel approach for multiobjective optimization publication-title: Eng. Optim. – year: 1963 ident: b38 article-title: Distribution-Free Multiple Comparisons – start-page: 138 year: 2016 end-page: 149 ident: b12 article-title: Learning parameters in deep belief networks through firefly algorithm publication-title: IAPR Workshop on Artificial Neural Networks in Pattern Recognition – reference: T. Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1064–1071. – volume: 10 start-page: 3765 year: 2018 ident: b10 article-title: Genetic algorithm-optimized long short-term memory network for stock market prediction publication-title: Sustainability – year: 2018 ident: b33 article-title: Deep learning for classical Japanese literature – start-page: 65 year: 2010 end-page: 74 ident: b26 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) – volume: 23 start-page: 488 year: 2018 end-page: 502 ident: b23 article-title: Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators publication-title: IEEE Trans. Evol. Comput. – year: 2020 ident: b8 article-title: A layer-wise information reinforcement approach to improve learning in deep belief networks publication-title: Artificial Intelligence and Soft Computing. ICAISC 2020 – start-page: 3 year: 2009 ident: b7 article-title: Deep Boltzmann machines. publication-title: AISTATS, Vol. 1 – volume: 30 start-page: 109 year: 2018 end-page: 122 ident: b6 article-title: A cost-sensitive deep belief network for imbalanced classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b39 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – year: 2017 ident: b32 article-title: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms – year: 2014 ident: b36 article-title: Adam: A method for stochastic optimization – start-page: 599 year: 2012 end-page: 619 ident: b16 article-title: A practical guide to training restricted Boltzmann machines publication-title: Neural Networks: Tricks of the Trade – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: b37 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. – year: 1992 ident: b22 article-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection, Vol. 1 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b31 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – start-page: 1 year: 2020 end-page: 8 ident: b28 article-title: Harnessing particle swarm optimization through relativistic velocity publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC) – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b17 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – year: 2019 ident: 10.1016/j.asoc.2021.107466_b13 article-title: A metaheuristic-driven approach to fine-tune deep Boltzmann machines publication-title: Appl. Soft Comput. – start-page: 145 year: 2010 ident: 10.1016/j.asoc.2021.107466_b35 article-title: Parallel tempering for training of restricted Boltzmann machines – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.asoc.2021.107466_b39 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – start-page: 125 year: 2012 ident: 10.1016/j.asoc.2021.107466_b9 article-title: Embedding gravitational search algorithms in convolutional neural networks for OCR applications – start-page: 599 year: 2012 ident: 10.1016/j.asoc.2021.107466_b16 article-title: A practical guide to training restricted Boltzmann machines – year: 1992 ident: 10.1016/j.asoc.2021.107466_b22 – start-page: 65 year: 2010 ident: 10.1016/j.asoc.2021.107466_b26 article-title: A new metaheuristic bat-inspired algorithm – volume: 30 start-page: 109 issue: 1 year: 2018 ident: 10.1016/j.asoc.2021.107466_b6 article-title: A cost-sensitive deep belief network for imbalanced classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2832648 – volume: 14 start-page: 1771 issue: 8 year: 2002 ident: 10.1016/j.asoc.2021.107466_b4 article-title: Training products of experts by minimizing contrastive divergence publication-title: Neural Comput. doi: 10.1162/089976602760128018 – year: 2010 ident: 10.1016/j.asoc.2021.107466_b30 – year: 2010 ident: 10.1016/j.asoc.2021.107466_b18 article-title: Rectified linear units improve restricted boltzmann machines – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107466_b28 article-title: Harnessing particle swarm optimization through relativistic velocity – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.asoc.2021.107466_b37 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. doi: 10.2307/3001968 – volume: 10 start-page: 3765 issue: 10 year: 2018 ident: 10.1016/j.asoc.2021.107466_b10 article-title: Genetic algorithm-optimized long short-term memory network for stock market prediction publication-title: Sustainability doi: 10.3390/su10103765 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.asoc.2021.107466_b17 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 10.1016/j.asoc.2021.107466_b29 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – start-page: 194 year: 1986 ident: 10.1016/j.asoc.2021.107466_b15 – start-page: 770 year: 2016 ident: 10.1016/j.asoc.2021.107466_b1 article-title: Deep residual learning for image recognition – volume: 23 start-page: 13139 issue: 24 year: 2019 ident: 10.1016/j.asoc.2021.107466_b21 article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis publication-title: Soft Comput. doi: 10.1007/s00500-019-03856-0 – start-page: 17 year: 2012 ident: 10.1016/j.asoc.2021.107466_b11 article-title: Time series forecasting using restricted boltzmann machine – year: 2019 ident: 10.1016/j.asoc.2021.107466_b14 article-title: Barrett’s esophagus analysis using infinity restricted Boltzmann machines publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.01.043 – year: 2018 ident: 10.1016/j.asoc.2021.107466_b33 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.asoc.2021.107466_b5 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.asoc.2021.107466_b19 article-title: Learning deep architectures for ai publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – volume: 29 start-page: 1450 year: 2019 ident: 10.1016/j.asoc.2021.107466_b3 article-title: Lcscnet: Linear compressing-based skip-connecting network for image super-resolution publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2940679 – start-page: 138 year: 2016 ident: 10.1016/j.asoc.2021.107466_b12 article-title: Learning parameters in deep belief networks through firefly algorithm – year: 2017 ident: 10.1016/j.asoc.2021.107466_b32 – volume: 37 start-page: 1407 issue: 6 year: 2018 ident: 10.1016/j.asoc.2021.107466_b2 article-title: A sparse-view ct reconstruction method based on combination of densenet and deconvolution publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2823338 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2021.107466_b24 article-title: Particle swarm optimization – year: 2020 ident: 10.1016/j.asoc.2021.107466_b8 article-title: A layer-wise information reinforcement approach to improve learning in deep belief networks – ident: 10.1016/j.asoc.2021.107466_b34 doi: 10.1145/1390156.1390290 – start-page: 3 year: 2009 ident: 10.1016/j.asoc.2021.107466_b7 article-title: Deep Boltzmann machines. – volume: 46 start-page: 1222 issue: 9 year: 2014 ident: 10.1016/j.asoc.2021.107466_b27 article-title: Flower pollination algorithm: A novel approach for multiobjective optimization publication-title: Eng. Optim. doi: 10.1080/0305215X.2013.832237 – volume: 23 start-page: 89 issue: 1 year: 2019 ident: 10.1016/j.asoc.2021.107466_b20 article-title: Evolving unsupervised deep neural networks for learning meaningful representations publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2808689 – year: 2020 ident: 10.1016/j.asoc.2021.107466_b25 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2968743 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.asoc.2021.107466_b31 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – year: 2014 ident: 10.1016/j.asoc.2021.107466_b36 – year: 1963 ident: 10.1016/j.asoc.2021.107466_b38 – volume: 23 start-page: 488 issue: 3 year: 2018 ident: 10.1016/j.asoc.2021.107466_b23 article-title: Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2869621 |
SSID | ssj0016928 |
Score | 2.4370134 |
Snippet | Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107466 |
SubjectTerms | Deep Belief Network Metaheuristic optimization Optimization Residual networks Restricted Boltzmann machines |
Title | Reinforcing learning in Deep Belief Networks through nature-inspired optimization |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107466 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe_HiW6yPsgdvkrbZPPdYq6W-ilYLvYXd7EYimhatV3-7s9lNUZAehBBI2IHw7Wb2G3bmG4BTwTPPcwXOAJUxBihMOcITgcNZJKiLl1dWyN2NwuHEv54G0xr0q1oYnVZpfb_x6aW3tm86Fs3OPM87jxh5xD7zQwxatEpcuAYN6rEwqEOjd3UzHC0PE0JWtljV4x1tYGtnTJoXRxAwTKRuW6cmlmKJf-xPP_acwRZsWLJIeuZ7tqGmih3YrBoxEPtf7sLDWJUCqCnuQ8T2gXgmeUEulJqTc4U8MyMjk_D9QWxrHmI0PZ280IftSpIZeo83W5a5B5PB5VN_6NheCU7q-f5Cx5NIVSQSABrJKMykr-Kux2mWScFjvEmOXIEyn7uhlkBMueDdAOciUrGIkcPsQ72YFeoACMtEqlXjtXKfH2SMSYYDZUrRH4VKsCa4FUJJaoXEdT-L16TKGHtJNKqJRjUxqDbhbGkzNzIaK0cHFfDJr8WQoJ9fYXf4T7sjWNdPJnXsGOqL9091glxjIVqw1v5yW7ii-uPb-5ZdWd_YgNRe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPejFt1ife_AmaZtk89ijVkvVtqC20FvYzW4komnRevW3O5vdFAXpQQg5JLMQvk3mQb75BuBc8Mz3XYE74MkYCxSmHOGLwOEsEp6Lh192yA2GYW9M7ybBpAadqhdG0yqt7zc-vfTW9krLotma5XnrCSuPmDIaYtGiVeLCFVilgR9pXl_za8HzcENWDljV1o42t50zhuTFEQIsEj23qYmJpVTiH9HpR8TpbsGGTRXJpXmabaipYgc2qzEMxH6Vu_DwqEr50xSjELFTIJ5JXpBrpWbkSmGWmZGhoXt_EDuYhxhFTycv9K92JckUfcebbcrcg3H3ZtTpOXZSgpP6lM51NYmJisTw70UyCjNJVdz2uZdlUvAYT5JjpuAxyt1QCyCmXPB2gDsRqVjEmMHsQ72YFuoACMtEqjXjtW4fDTLGJENDmXrojUIlWAPcCqEktTLieprFa1LxxV4SjWqiUU0Mqg24WKyZGRGNpdZBBXzy61VI0MsvWXf4z3VnsNYbDfpJ_3Z4fwTr-o4hkR1Dff7-qU4w65iL0_Kt-gb_p9OU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcing+learning+in+Deep+Belief+Networks+through+nature-inspired+optimization&rft.jtitle=Applied+soft+computing&rft.au=Roder%2C+Mateus&rft.au=Passos%2C+Leandro+Aparecido&rft.au=de+Rosa%2C+Gustavo+H.&rft.au=de+Albuquerque%2C+Victor+Hugo+C.&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=108&rft_id=info:doi/10.1016%2Fj.asoc.2021.107466&rft.externalDocID=S1568494621003896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |