Reinforcing learning in Deep Belief Networks through nature-inspired optimization

Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introduci...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 108; p. 107466
Main Authors Roder, Mateus, Passos, Leandro Aparecido, de Rosa, Gustavo H., de Albuquerque, Victor Hugo C., Papa, João Paulo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.107466

Cover

Abstract Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introducing residual connections, thus assisting gradient propagation. However, such a subject of study has been poorly considered for Deep Belief Networks. In this paper, we propose a weighted layer-wise information reinforcement approach concerning Deep Belief Networks. Moreover, we also introduce metaheuristic optimization to select proper weight connections that improve the network’s learning capabilities. Experiments conducted over public datasets corroborate the effectiveness of the proposed approach in image classification tasks. •Novel DBN with weight-based residual connections between layers.•Reinforcement and regularization of the information flow.•Application of metaheuristic optimization to fine-tune Res-DBN hyperparameters;
AbstractList Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from one layer to another until it finally vanishes away and no longer helps in the learning process. Works have addressed this problem by introducing residual connections, thus assisting gradient propagation. However, such a subject of study has been poorly considered for Deep Belief Networks. In this paper, we propose a weighted layer-wise information reinforcement approach concerning Deep Belief Networks. Moreover, we also introduce metaheuristic optimization to select proper weight connections that improve the network’s learning capabilities. Experiments conducted over public datasets corroborate the effectiveness of the proposed approach in image classification tasks. •Novel DBN with weight-based residual connections between layers.•Reinforcement and regularization of the information flow.•Application of metaheuristic optimization to fine-tune Res-DBN hyperparameters;
ArticleNumber 107466
Author de Albuquerque, Victor Hugo C.
de Rosa, Gustavo H.
Papa, João Paulo
Roder, Mateus
Passos, Leandro Aparecido
Author_xml – sequence: 1
  givenname: Mateus
  orcidid: 0000-0002-3112-5290
  surname: Roder
  fullname: Roder, Mateus
  email: mateus.roder@unesp.br
  organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil
– sequence: 2
  givenname: Leandro Aparecido
  orcidid: 0000-0003-3529-3109
  surname: Passos
  fullname: Passos, Leandro Aparecido
  email: leandro.passos@unesp.br
  organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil
– sequence: 3
  givenname: Gustavo H.
  orcidid: 0000-0002-6442-8343
  surname: de Rosa
  fullname: de Rosa, Gustavo H.
  email: gustavo.rosa@unesp.br
  organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil
– sequence: 4
  givenname: Victor Hugo C.
  orcidid: 0000-0003-3886-4309
  surname: de Albuquerque
  fullname: de Albuquerque, Victor Hugo C.
  email: victor.albuquerque@ieee.org
  organization: Graduate Program on Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Fortaleza/CE, Brazil
– sequence: 5
  givenname: João Paulo
  surname: Papa
  fullname: Papa, João Paulo
  email: joao.papa@unesp.br
  organization: Department of Computing, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, 17033-360, Brazil
BookMark eNp9kE1OwzAQRi1UJErhAqxygRTbcWJHYgPlV6pAIFhbjj1pXVK7sl0QnJ6EsmLRzcynkd5o5h2jkfMOEDojeEowqc5XUxW9nlJMST_grKoO0JgITvO6EmTU57ISOatZdYSOY1zhHqqpGKPnF7Cu9UFbt8g6UMENwbrsGmCTXUFnoc0eIX368B6ztAx-u1hmTqVtgNy6uLEBTOY3ya7tt0rWuxN02Kouwulfn6C325vX2X0-f7p7mF3Oc10wlvKSFoSWBvOScsOr1jAQuFC0bU2jRF-M4qygNVOkKnlRaNUoXDaUcBCNoLyYILrbq4OPMUArN8GuVfiSBMtBilzJQYocpMidlB4S_yBt0-_ZKSjb7Ucvdij0T31YCDJqC06D6RXoJI23-_AfWwmAsA
CitedBy_id crossref_primary_10_3390_e24020196
crossref_primary_10_1016_j_rinp_2022_105781
crossref_primary_10_1002_itl2_329
crossref_primary_10_1016_j_isprsjprs_2024_12_020
crossref_primary_10_1007_s11071_022_08109_8
crossref_primary_10_1007_s40747_021_00637_x
crossref_primary_10_1016_j_asoc_2024_112021
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1080_03772063_2023_2175059
crossref_primary_10_1109_ACCESS_2022_3167143
crossref_primary_10_1016_j_swevo_2024_101640
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1016_j_caeai_2022_100071
crossref_primary_10_1142_S0218348X24300010
Cites_doi 10.1109/TNNLS.2018.2832648
10.1162/089976602760128018
10.2307/3001968
10.3390/su10103765
10.1162/neco.2006.18.7.1527
10.1007/s00500-019-03856-0
10.1016/j.jvcir.2019.01.043
10.1561/2200000006
10.1109/TIP.2019.2940679
10.1109/TMI.2018.2823338
10.1145/1390156.1390290
10.1080/0305215X.2013.832237
10.1109/TEVC.2018.2808689
10.1109/TEVC.2020.2968743
10.1109/5.726791
10.1109/TEVC.2018.2869621
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107466
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107466
S1568494621003896
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-523125d07527d76fd4e803a2ffdba8fdbda743294a165733caba05b217e8b8273
IEDL.DBID AIKHN
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:10 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Fri Feb 23 02:43:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Residual networks
Metaheuristic optimization
Restricted Boltzmann machines
Deep Belief Network
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-523125d07527d76fd4e803a2ffdba8fdbda743294a165733caba05b217e8b8273
ORCID 0000-0002-3112-5290
0000-0003-3886-4309
0000-0003-3529-3109
0000-0002-6442-8343
OpenAccessLink http://hdl.handle.net/11449/233128
ParticipantIDs crossref_primary_10_1016_j_asoc_2021_107466
crossref_citationtrail_10_1016_j_asoc_2021_107466
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References LeCun, Bottou, Bengio, Haffner (b31) 1998; 86
Kuremoto, Kimura, Kobayashi, Obayashi (b11) 2012
Fedorovici, Precup, Dragan, David, Purcaru (b9) 2012
Smolensky (b15) 1986
Wilcoxon (b37) 1945; 1
Bengio (b19) 2009; 2
Song, Zhang, Guo, Sun, Wang (b25) 2020
Russell, Norvig (b30) 2010
Nair, Hinton (b18) 2010
Bergstra, Bengio (b29) 2012; 13
Sun, Yen, Yi (b20) 2019; 23
Xiao, Rasul, Vollgraf (b32) 2017
Ronoud, Asadi (b21) 2019; 23
Yang, Zhang, Tian, Wang, Xue, Liao (b3) 2019; 29
Chen, Xue, Zhang (b23) 2018; 23
Hinton, Osindero, Teh (b17) 2006; 18
Demšar (b39) 2006; 7
Hinton, Osindero, Teh (b5) 2006; 18
Zhang, Tan, Li, Hong (b6) 2018; 30
Passos, de Souza Jr, Mendel, Ebigbo, Probst, Messmann, Palm, Papa (b14) 2019
Eberhart, Kennedy (b24) 1995
Hinton (b4) 2002; 14
Yang (b26) 2010
Salakhutdinov, Hinton (b7) 2009
Hinton (b16) 2012
Nemenyi (b38) 1963
He, Zhang, Ren, Sun (b1) 2016
Yang, Karamanoglu, He (b27) 2014; 46
Roder, Passos, Ribeiro, Pereira, Papa (b8) 2020
Clanuwat, Bober-Irizar, Kitamoto, Lamb, Yamamoto, Ha (b33) 2018
Kingma, Ba (b36) 2014
Koza, Koza (b22) 1992
Zhang, Liang, Dong, Xie, Cao (b2) 2018; 37
Desjardins, Courville, Bengio, Vincent, Delalleau (b35) 2010
Roder, Rosa, Passos, Papa, Rossi (b28) 2020
Chung, Shin (b10) 2018; 10
Passos, Papa (b13) 2019
T. Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1064–1071.
Rosa, Papa, Costa, Passos, Pereira, Yang (b12) 2016
Passos (10.1016/j.asoc.2021.107466_b14) 2019
Smolensky (10.1016/j.asoc.2021.107466_b15) 1986
Hinton (10.1016/j.asoc.2021.107466_b17) 2006; 18
Bergstra (10.1016/j.asoc.2021.107466_b29) 2012; 13
Koza (10.1016/j.asoc.2021.107466_b22) 1992
Chen (10.1016/j.asoc.2021.107466_b23) 2018; 23
LeCun (10.1016/j.asoc.2021.107466_b31) 1998; 86
He (10.1016/j.asoc.2021.107466_b1) 2016
Song (10.1016/j.asoc.2021.107466_b25) 2020
Chung (10.1016/j.asoc.2021.107466_b10) 2018; 10
Demšar (10.1016/j.asoc.2021.107466_b39) 2006; 7
Kingma (10.1016/j.asoc.2021.107466_b36) 2014
Hinton (10.1016/j.asoc.2021.107466_b5) 2006; 18
Sun (10.1016/j.asoc.2021.107466_b20) 2019; 23
Hinton (10.1016/j.asoc.2021.107466_b4) 2002; 14
Xiao (10.1016/j.asoc.2021.107466_b32) 2017
Zhang (10.1016/j.asoc.2021.107466_b6) 2018; 30
10.1016/j.asoc.2021.107466_b34
Roder (10.1016/j.asoc.2021.107466_b28) 2020
Passos (10.1016/j.asoc.2021.107466_b13) 2019
Clanuwat (10.1016/j.asoc.2021.107466_b33) 2018
Zhang (10.1016/j.asoc.2021.107466_b2) 2018; 37
Bengio (10.1016/j.asoc.2021.107466_b19) 2009; 2
Ronoud (10.1016/j.asoc.2021.107466_b21) 2019; 23
Roder (10.1016/j.asoc.2021.107466_b8) 2020
Nemenyi (10.1016/j.asoc.2021.107466_b38) 1963
Hinton (10.1016/j.asoc.2021.107466_b16) 2012
Wilcoxon (10.1016/j.asoc.2021.107466_b37) 1945; 1
Russell (10.1016/j.asoc.2021.107466_b30) 2010
Desjardins (10.1016/j.asoc.2021.107466_b35) 2010
Salakhutdinov (10.1016/j.asoc.2021.107466_b7) 2009
Kuremoto (10.1016/j.asoc.2021.107466_b11) 2012
Rosa (10.1016/j.asoc.2021.107466_b12) 2016
Yang (10.1016/j.asoc.2021.107466_b3) 2019; 29
Fedorovici (10.1016/j.asoc.2021.107466_b9) 2012
Yang (10.1016/j.asoc.2021.107466_b27) 2014; 46
Eberhart (10.1016/j.asoc.2021.107466_b24) 1995
Yang (10.1016/j.asoc.2021.107466_b26) 2010
Nair (10.1016/j.asoc.2021.107466_b18) 2010
References_xml – start-page: 770
  year: 2016
  end-page: 778
  ident: b1
  article-title: Deep residual learning for image recognition
  publication-title: IEEE CVPR
– start-page: 17
  year: 2012
  end-page: 22
  ident: b11
  article-title: Time series forecasting using restricted boltzmann machine
  publication-title: International Conference on Intelligent Computing
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b5
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 23
  start-page: 89
  year: 2019
  end-page: 103
  ident: b20
  article-title: Evolving unsupervised deep neural networks for learning meaningful representations
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 145
  year: 2010
  end-page: 152
  ident: b35
  article-title: Parallel tempering for training of restricted Boltzmann machines
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– start-page: 194
  year: 1986
  end-page: 281
  ident: b15
  publication-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b24
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks, Vol. 4
– volume: 37
  start-page: 1407
  year: 2018
  end-page: 1417
  ident: b2
  article-title: A sparse-view ct reconstruction method based on combination of densenet and deconvolution
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 1450
  year: 2019
  end-page: 1464
  ident: b3
  article-title: Lcscnet: Linear compressing-based skip-connecting network for image super-resolution
  publication-title: IEEE Trans. Image Process.
– year: 2010
  ident: b18
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: ICML
– start-page: 125
  year: 2012
  end-page: 130
  ident: b9
  article-title: Embedding gravitational search algorithms in convolutional neural networks for OCR applications
  publication-title: 7th IEEE International Symposium on Applied Computational Intelligence and Informatics
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b19
  article-title: Learning deep architectures for ai
  publication-title: Found. Trends® Mach. Learn.
– volume: 23
  start-page: 13139
  year: 2019
  end-page: 13159
  ident: b21
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft Comput.
– year: 2019
  ident: b14
  article-title: Barrett’s esophagus analysis using infinity restricted Boltzmann machines
  publication-title: J. Vis. Commun. Image Represent.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: b29
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b4
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– year: 2020
  ident: b25
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Trans. Evol. Comput.
– year: 2019
  ident: b13
  article-title: A metaheuristic-driven approach to fine-tune deep Boltzmann machines
  publication-title: Appl. Soft Comput.
– year: 2010
  ident: b30
  article-title: Artificial Intelligence-A Modern Approach
– volume: 46
  start-page: 1222
  year: 2014
  end-page: 1237
  ident: b27
  article-title: Flower pollination algorithm: A novel approach for multiobjective optimization
  publication-title: Eng. Optim.
– year: 1963
  ident: b38
  article-title: Distribution-Free Multiple Comparisons
– start-page: 138
  year: 2016
  end-page: 149
  ident: b12
  article-title: Learning parameters in deep belief networks through firefly algorithm
  publication-title: IAPR Workshop on Artificial Neural Networks in Pattern Recognition
– reference: T. Tieleman, Training restricted Boltzmann machines using approximations to the likelihood gradient, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1064–1071.
– volume: 10
  start-page: 3765
  year: 2018
  ident: b10
  article-title: Genetic algorithm-optimized long short-term memory network for stock market prediction
  publication-title: Sustainability
– year: 2018
  ident: b33
  article-title: Deep learning for classical Japanese literature
– start-page: 65
  year: 2010
  end-page: 74
  ident: b26
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)
– volume: 23
  start-page: 488
  year: 2018
  end-page: 502
  ident: b23
  article-title: Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators
  publication-title: IEEE Trans. Evol. Comput.
– year: 2020
  ident: b8
  article-title: A layer-wise information reinforcement approach to improve learning in deep belief networks
  publication-title: Artificial Intelligence and Soft Computing. ICAISC 2020
– start-page: 3
  year: 2009
  ident: b7
  article-title: Deep Boltzmann machines.
  publication-title: AISTATS, Vol. 1
– volume: 30
  start-page: 109
  year: 2018
  end-page: 122
  ident: b6
  article-title: A cost-sensitive deep belief network for imbalanced classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b39
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: b32
  article-title: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms
– year: 2014
  ident: b36
  article-title: Adam: A method for stochastic optimization
– start-page: 599
  year: 2012
  end-page: 619
  ident: b16
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Neural Networks: Tricks of the Trade
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b37
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
– year: 1992
  ident: b22
  article-title: Genetic Programming: on the Programming of Computers by Means of Natural Selection, Vol. 1
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b31
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– start-page: 1
  year: 2020
  end-page: 8
  ident: b28
  article-title: Harnessing particle swarm optimization through relativistic velocity
  publication-title: 2020 IEEE Congress on Evolutionary Computation (CEC)
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b17
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– year: 2019
  ident: 10.1016/j.asoc.2021.107466_b13
  article-title: A metaheuristic-driven approach to fine-tune deep Boltzmann machines
  publication-title: Appl. Soft Comput.
– start-page: 145
  year: 2010
  ident: 10.1016/j.asoc.2021.107466_b35
  article-title: Parallel tempering for training of restricted Boltzmann machines
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2021.107466_b39
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 125
  year: 2012
  ident: 10.1016/j.asoc.2021.107466_b9
  article-title: Embedding gravitational search algorithms in convolutional neural networks for OCR applications
– start-page: 599
  year: 2012
  ident: 10.1016/j.asoc.2021.107466_b16
  article-title: A practical guide to training restricted Boltzmann machines
– year: 1992
  ident: 10.1016/j.asoc.2021.107466_b22
– start-page: 65
  year: 2010
  ident: 10.1016/j.asoc.2021.107466_b26
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 30
  start-page: 109
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2021.107466_b6
  article-title: A cost-sensitive deep belief network for imbalanced classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2832648
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: 10.1016/j.asoc.2021.107466_b4
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– year: 2010
  ident: 10.1016/j.asoc.2021.107466_b30
– year: 2010
  ident: 10.1016/j.asoc.2021.107466_b18
  article-title: Rectified linear units improve restricted boltzmann machines
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107466_b28
  article-title: Harnessing particle swarm optimization through relativistic velocity
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.asoc.2021.107466_b37
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 10
  start-page: 3765
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2021.107466_b10
  article-title: Genetic algorithm-optimized long short-term memory network for stock market prediction
  publication-title: Sustainability
  doi: 10.3390/su10103765
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2021.107466_b17
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.1016/j.asoc.2021.107466_b29
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 194
  year: 1986
  ident: 10.1016/j.asoc.2021.107466_b15
– start-page: 770
  year: 2016
  ident: 10.1016/j.asoc.2021.107466_b1
  article-title: Deep residual learning for image recognition
– volume: 23
  start-page: 13139
  issue: 24
  year: 2019
  ident: 10.1016/j.asoc.2021.107466_b21
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03856-0
– start-page: 17
  year: 2012
  ident: 10.1016/j.asoc.2021.107466_b11
  article-title: Time series forecasting using restricted boltzmann machine
– year: 2019
  ident: 10.1016/j.asoc.2021.107466_b14
  article-title: Barrett’s esophagus analysis using infinity restricted Boltzmann machines
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.01.043
– year: 2018
  ident: 10.1016/j.asoc.2021.107466_b33
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2021.107466_b5
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2021.107466_b19
  article-title: Learning deep architectures for ai
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– volume: 29
  start-page: 1450
  year: 2019
  ident: 10.1016/j.asoc.2021.107466_b3
  article-title: Lcscnet: Linear compressing-based skip-connecting network for image super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2940679
– start-page: 138
  year: 2016
  ident: 10.1016/j.asoc.2021.107466_b12
  article-title: Learning parameters in deep belief networks through firefly algorithm
– year: 2017
  ident: 10.1016/j.asoc.2021.107466_b32
– volume: 37
  start-page: 1407
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2021.107466_b2
  article-title: A sparse-view ct reconstruction method based on combination of densenet and deconvolution
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2823338
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2021.107466_b24
  article-title: Particle swarm optimization
– year: 2020
  ident: 10.1016/j.asoc.2021.107466_b8
  article-title: A layer-wise information reinforcement approach to improve learning in deep belief networks
– ident: 10.1016/j.asoc.2021.107466_b34
  doi: 10.1145/1390156.1390290
– start-page: 3
  year: 2009
  ident: 10.1016/j.asoc.2021.107466_b7
  article-title: Deep Boltzmann machines.
– volume: 46
  start-page: 1222
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2021.107466_b27
  article-title: Flower pollination algorithm: A novel approach for multiobjective optimization
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2013.832237
– volume: 23
  start-page: 89
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107466_b20
  article-title: Evolving unsupervised deep neural networks for learning meaningful representations
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2808689
– year: 2020
  ident: 10.1016/j.asoc.2021.107466_b25
  article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2968743
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.asoc.2021.107466_b31
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 2014
  ident: 10.1016/j.asoc.2021.107466_b36
– year: 1963
  ident: 10.1016/j.asoc.2021.107466_b38
– volume: 23
  start-page: 488
  issue: 3
  year: 2018
  ident: 10.1016/j.asoc.2021.107466_b23
  article-title: Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869621
SSID ssj0016928
Score 2.4370134
Snippet Deep learning techniques usually face drawbacks related to the vanishing gradient problem, i.e., the gradient becomes gradually weaker when propagating from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107466
SubjectTerms Deep Belief Network
Metaheuristic optimization
Optimization
Residual networks
Restricted Boltzmann machines
Title Reinforcing learning in Deep Belief Networks through nature-inspired optimization
URI https://dx.doi.org/10.1016/j.asoc.2021.107466
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe_HiW6yPsgdvkrbZPPdYq6W-ilYLvYXd7EYimhatV3-7s9lNUZAehBBI2IHw7Wb2G3bmG4BTwTPPcwXOAJUxBihMOcITgcNZJKiLl1dWyN2NwuHEv54G0xr0q1oYnVZpfb_x6aW3tm86Fs3OPM87jxh5xD7zQwxatEpcuAYN6rEwqEOjd3UzHC0PE0JWtljV4x1tYGtnTJoXRxAwTKRuW6cmlmKJf-xPP_acwRZsWLJIeuZ7tqGmih3YrBoxEPtf7sLDWJUCqCnuQ8T2gXgmeUEulJqTc4U8MyMjk_D9QWxrHmI0PZ280IftSpIZeo83W5a5B5PB5VN_6NheCU7q-f5Cx5NIVSQSABrJKMykr-Kux2mWScFjvEmOXIEyn7uhlkBMueDdAOciUrGIkcPsQ72YFeoACMtEqlXjtXKfH2SMSYYDZUrRH4VKsCa4FUJJaoXEdT-L16TKGHtJNKqJRjUxqDbhbGkzNzIaK0cHFfDJr8WQoJ9fYXf4T7sjWNdPJnXsGOqL9091glxjIVqw1v5yW7ii-uPb-5ZdWd_YgNRe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPejFt1ife_AmaZtk89ijVkvVtqC20FvYzW4komnRevW3O5vdFAXpQQg5JLMQvk3mQb75BuBc8Mz3XYE74MkYCxSmHOGLwOEsEp6Lh192yA2GYW9M7ybBpAadqhdG0yqt7zc-vfTW9krLotma5XnrCSuPmDIaYtGiVeLCFVilgR9pXl_za8HzcENWDljV1o42t50zhuTFEQIsEj23qYmJpVTiH9HpR8TpbsGGTRXJpXmabaipYgc2qzEMxH6Vu_DwqEr50xSjELFTIJ5JXpBrpWbkSmGWmZGhoXt_EDuYhxhFTycv9K92JckUfcebbcrcg3H3ZtTpOXZSgpP6lM51NYmJisTw70UyCjNJVdz2uZdlUvAYT5JjpuAxyt1QCyCmXPB2gDsRqVjEmMHsQ72YFuoACMtEqjXjtW4fDTLGJENDmXrojUIlWAPcCqEktTLieprFa1LxxV4SjWqiUU0Mqg24WKyZGRGNpdZBBXzy61VI0MsvWXf4z3VnsNYbDfpJ_3Z4fwTr-o4hkR1Dff7-qU4w65iL0_Kt-gb_p9OU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcing+learning+in+Deep+Belief+Networks+through+nature-inspired+optimization&rft.jtitle=Applied+soft+computing&rft.au=Roder%2C+Mateus&rft.au=Passos%2C+Leandro+Aparecido&rft.au=de+Rosa%2C+Gustavo+H.&rft.au=de+Albuquerque%2C+Victor+Hugo+C.&rft.date=2021-09-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=108&rft_id=info:doi/10.1016%2Fj.asoc.2021.107466&rft.externalDocID=S1568494621003896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon