Demonstrating a new evaluation method on ReLU based Neural Networks for classification problems
Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical processes. However, in such applications the outcomes of the neural network must be checked if it we have a clear understanding regarding the operat...
Saved in:
Published in | Expert systems with applications Vol. 250; p. 123905 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical processes. However, in such applications the outcomes of the neural network must be checked if it we have a clear understanding regarding the operation of network at given input intervals. The most straightforward, though often computationally expensive approach for this checking process evaluates the network at discrete input points and estimates the expected outputs at the given interval. The present research aims to develop a novel approach that can identify in the case of specific input intervals whether the operation process and the output of a neural network can be considered as known or unknown. During the presented case study, we investigated the ReLU (Rectified Linear Unit) and Sigmoid activation functions, using the double moon and the Banknote Authentication classification problems for demonstration.
Our method can be applied to identify certain input intervals where the given neural network cannot support critical decisions. The evaluation is performed based on a nonlinear system of equations and inequalities built on arbitrary continuous activation functions. To define the critical intervals of the input variables (i.e. where the decision-making system should not be relied on), those input variable combinations are identified which result in a non-expected output value. This inverse logic is intended to identify intervals of the input variables where the response of the system and the correct decision are not identical. The presented demonstration examples supported our assumption that the number of the neurons and the dimension of the decision space have a significant impact on the complexity of the evaluation process. |
---|---|
AbstractList | Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical processes. However, in such applications the outcomes of the neural network must be checked if it we have a clear understanding regarding the operation of network at given input intervals. The most straightforward, though often computationally expensive approach for this checking process evaluates the network at discrete input points and estimates the expected outputs at the given interval. The present research aims to develop a novel approach that can identify in the case of specific input intervals whether the operation process and the output of a neural network can be considered as known or unknown. During the presented case study, we investigated the ReLU (Rectified Linear Unit) and Sigmoid activation functions, using the double moon and the Banknote Authentication classification problems for demonstration.
Our method can be applied to identify certain input intervals where the given neural network cannot support critical decisions. The evaluation is performed based on a nonlinear system of equations and inequalities built on arbitrary continuous activation functions. To define the critical intervals of the input variables (i.e. where the decision-making system should not be relied on), those input variable combinations are identified which result in a non-expected output value. This inverse logic is intended to identify intervals of the input variables where the response of the system and the correct decision are not identical. The presented demonstration examples supported our assumption that the number of the neurons and the dimension of the decision space have a significant impact on the complexity of the evaluation process. |
ArticleNumber | 123905 |
Author | Ziyu, Wang Tollner, Dávid Zöldy, Máté Török, Árpád |
Author_xml | – sequence: 1 givenname: Dávid surname: Tollner fullname: Tollner, Dávid email: tollner.david@edu.bme.hu organization: Innovative Vehicle Technologies Competency Centre, Dept of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Stoczek u. 6., Hungary – sequence: 2 givenname: Wang orcidid: 0000-0002-1267-9319 surname: Ziyu fullname: Ziyu, Wang email: wangziyu@china-icv.cn organization: National Innovation Center of Intelligent and Connected Vehicles (CICV), China – sequence: 3 givenname: Máté surname: Zöldy fullname: Zöldy, Máté email: zoldy.mate@kjk.bme.hu organization: Head of Innovative Vehicle Technologies Competency Centre, Dept of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Stoczek u. 6., Hungary – sequence: 4 givenname: Árpád orcidid: 0000-0002-1985-4095 surname: Török fullname: Török, Árpád email: torok.arpad@kjk.bme.hu organization: Automotive Head of Safety and Security Research Group, Dept. of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Stoczek u.6, Hungary |
BookMark | eNp9kMtOwzAQRb0oEm3hB1j5BxJsx60TiQ0qT6kCCdG15dhjcEniyk4b8fe4hBWLru5opDOae2Zo0vkOELqiJKeELq-3OcRB5YwwnlNWVGQxQVNSLUTGqeDnaBbjlhAqCBFTJO-g9V3sg-pd94EV7mDAcFDNPi18h1voP73BaXqD9QbXKoLBL7APqknRDz58RWx9wLpRMTrr9Mjtgq8baOMFOrOqiXD5l3O0ebh_Xz1l69fH59XtOtMF533GjS20BsOKWjEGohKcLUqoqqpUCkhty9IsK1gyDUAoqVVNCy0ML0orrAJezBEb7-rgYwxg5S64VoVvSYk8apFbedQij1rkqCVB5T9Iu_73_-TDNafRmxGFVOrgIMioHXSpgguge2m8O4X_AKA2hKs |
CitedBy_id | crossref_primary_10_1016_j_autcon_2024_105723 crossref_primary_10_1016_j_energy_2025_135284 |
Cites_doi | 10.1016/j.knosys.2017.06.017 10.1016/j.apenergy.2020.114636 10.1016/j.neucom.2020.09.050 10.1016/j.eswa.2020.114534 10.1016/j.neunet.2018.05.008 10.1016/j.neucom.2017.08.017 10.1016/j.eswa.2020.113699 10.1016/j.knosys.2021.106925 10.1016/j.neucom.2020.07.088 10.1016/j.neucom.2022.01.034 10.1016/j.knosys.2018.12.019 10.1016/j.knosys.2021.106779 10.1109/CINTI-MACRo49179.2019.9105322 10.1016/j.neunet.2020.04.003 10.1016/j.eswa.2022.116714 10.1016/j.neucom.2021.03.137 10.1016/S0960-9822(03)00135-0 10.1016/j.ress.2010.06.029 10.1016/j.infsof.2020.106296 10.1016/j.neucom.2018.09.014 10.1016/j.knosys.2021.107374 10.1016/j.eswa.2022.119416 10.1016/j.neucom.2020.07.138 10.1016/j.eswa.2021.115380 10.1016/j.neucom.2023.126353 10.1609/aaai.v34i04.5729 10.1016/j.eswa.2019.112991 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.123905 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2024_123905 S0957417424007711 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c344t-4df3cced23ba22e7974258e9998aae0bf88d69e62cee010bab13c7d438f7fae43 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 01:51:19 EDT 2025 Thu Apr 24 22:56:18 EDT 2025 Sat Aug 31 16:00:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-classic expert system testing Neural network evaluation Nonlinear optimization based analysis investigating ReLUbased systems |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-4df3cced23ba22e7974258e9998aae0bf88d69e62cee010bab13c7d438f7fae43 |
ORCID | 0000-0002-1985-4095 0000-0002-1267-9319 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0957417424007711 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_123905 crossref_citationtrail_10_1016_j_eswa_2024_123905 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-15 |
PublicationDateYYYYMMDD | 2024-09-15 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Miguel, Neves, Martins, do Nascimento, T.A.A., Tosta (b0110) 2023; 120609 An, Jiang, Cao, Yang, Li (b0005) 2021; 230 Han, Liu, Yang, Jiang (b0040) 2019; 165 Jiao, Zhao, Lin, Liang (b0060) 2020; 417 Wei, Chen, Wang (b0180) 2020; 127 Tian, Deng, Vinod, Santhosh, Tawfik (b0155) 2018; 322 Zheng, Li (b0205) 2020; 142 Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward relu neural networks. arXiv preprint arXiv:1706.07351. Xiao, Zhang, Zhang, Li, Li (b0190) 2018; 105 Sierra-García, Santos (b0145) 2021; 183 Wang, Xin, Xu (b0175) 2021; 220 Zhou, Li, Huo, Kung (b0215) 2021; 171 WNA - World Nuclear Association (2022): Safety of Nuclear Power Reactors. Downloaded on the 3 Haykin, S. (2011). Neural Networks and Learning Machines. Pearson Education. ISBN 9780133002553. Nair, V., & Hinton, G. E. (2010, January). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), 807-814. Ding, Qian, Zhou (b0020) 2018 Raut, Biasizzo, Dhakad, Gupta, Papa, Vishvakarma (b0135) 2021 Radaideh, Pigg, Kozlowski, Deng, Qu (b0130) 2020; 160 Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020, April). Efficient verification of relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3291–3299). Lennie (b0085) 2003; 13 Zhong, Wang, Wei, Lu (b0210) 2022; 483 Zhang, Li (b0200) 2020; 123 Choraś, Pawlicki (b0015) 2021; 452 Karush (b0065) 1939 Elhaki, Shojaei, Mehrmohammadi (b0025) 2022; 197 Li, Cai, Duan, Chen, Ding, Lin, Cui (b0090) 2023; 215 Sun, Du, Qin (b0150) 2022; 484 Muralitharan, Sakthivel, Vishnuvarthan (b0115) 2018; 273 Katz, Barrett, Dill, Julian, Kochenderfer (b0070) 2017 Liang, Xu (b0095) 2021; 423 Pasquini, Pozzi, Save (b0125) 2011; 96 Tollner, D., Hang, C., & Zöldy, M. (2019). Artificial Intellgence based Decision Making of Autonomous Vehicles Before Entering Roundabout. 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), 181-186. Isac, A., J Frederico, C., Kragic, D., & Stork, J. A. (2020). The effect of Target Normalization and Momentum on Dying ReLU. In The 32nd annual workshop of the Swedish Artificial Intelligence Society (SAIS), Gothenburg, Sweden (Virtual). ISO - International Organization for Standardization (b0055) 2018 Zeltner, Schmid, Csiszár, Csiszár (b0195) 2021; 218 Kuhn, Tucker (b0075) 1951 Freire, P. J., Srivallapanondh, S., Napoli, A., Prilepsky, J. E., & Turitsyn, S. K. (2022). Computational complexity evaluation of neural network applications in signal processing. arXiv preprint arXiv:2206.12191. Lee, Yun, Koo, Kim (b0080) 2017; 132 Lohweg,V. (2013). Banknote Authentication. UCI Machine Learning Repository. Doi: 10.24432/C55P57. Török, Tollner (b0165) 2022; V1 of July, 2023, from : https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/safety-of-nuclear-power-reactors.aspx. Wang, Vinogradov (b0170) 2023; 548 Ruan, Zhong, Wang, Xia, Kang (b0140) 2020; 264 Floudas, Pardalos (b0030) 2013; Vol. 7 Floudas (10.1016/j.eswa.2024.123905_b0030) 2013; Vol. 7 Zheng (10.1016/j.eswa.2024.123905_b0205) 2020; 142 10.1016/j.eswa.2024.123905_b0010 Xiao (10.1016/j.eswa.2024.123905_b0190) 2018; 105 10.1016/j.eswa.2024.123905_b0050 Li (10.1016/j.eswa.2024.123905_b0090) 2023; 215 Zeltner (10.1016/j.eswa.2024.123905_b0195) 2021; 218 Wei (10.1016/j.eswa.2024.123905_b0180) 2020; 127 10.1016/j.eswa.2024.123905_b0035 Jiao (10.1016/j.eswa.2024.123905_b0060) 2020; 417 Katz (10.1016/j.eswa.2024.123905_b0070) 2017 Raut (10.1016/j.eswa.2024.123905_b0135) 2021 Zhang (10.1016/j.eswa.2024.123905_b0200) 2020; 123 Karush (10.1016/j.eswa.2024.123905_b0065) 1939 Miguel (10.1016/j.eswa.2024.123905_b0110) 2023; 120609 Török (10.1016/j.eswa.2024.123905_b0165) 2022; V1 Radaideh (10.1016/j.eswa.2024.123905_b0130) 2020; 160 Ruan (10.1016/j.eswa.2024.123905_b0140) 2020; 264 Tian (10.1016/j.eswa.2024.123905_b0155) 2018; 322 Zhong (10.1016/j.eswa.2024.123905_b0210) 2022; 483 Ding (10.1016/j.eswa.2024.123905_b0020) 2018 Muralitharan (10.1016/j.eswa.2024.123905_b0115) 2018; 273 10.1016/j.eswa.2024.123905_b0185 10.1016/j.eswa.2024.123905_b0120 10.1016/j.eswa.2024.123905_b0160 Choraś (10.1016/j.eswa.2024.123905_b0015) 2021; 452 10.1016/j.eswa.2024.123905_b0105 Liang (10.1016/j.eswa.2024.123905_b0095) 2021; 423 Zhou (10.1016/j.eswa.2024.123905_b0215) 2021; 171 10.1016/j.eswa.2024.123905_b0045 10.1016/j.eswa.2024.123905_b0100 Elhaki (10.1016/j.eswa.2024.123905_b0025) 2022; 197 Sierra-García (10.1016/j.eswa.2024.123905_b0145) 2021; 183 Wang (10.1016/j.eswa.2024.123905_b0175) 2021; 220 An (10.1016/j.eswa.2024.123905_b0005) 2021; 230 Lee (10.1016/j.eswa.2024.123905_b0080) 2017; 132 Wang (10.1016/j.eswa.2024.123905_b0170) 2023; 548 Kuhn (10.1016/j.eswa.2024.123905_b0075) 1951 Pasquini (10.1016/j.eswa.2024.123905_b0125) 2011; 96 Lennie (10.1016/j.eswa.2024.123905_b0085) 2003; 13 Sun (10.1016/j.eswa.2024.123905_b0150) 2022; 484 Han (10.1016/j.eswa.2024.123905_b0040) 2019; 165 ISO - International Organization for Standardization (10.1016/j.eswa.2024.123905_b0055) 2018 |
References_xml | – volume: 452 start-page: 705 year: 2021 end-page: 715 ident: b0015 article-title: Intrusion detection approach based on optimised artificial neural network publication-title: Neurocomputing – volume: 171 year: 2021 ident: b0215 article-title: Shape autotuning activation function publication-title: Expert Systems with Applications – volume: 105 start-page: 185 year: 2018 end-page: 196 ident: b0190 article-title: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation publication-title: Neural networks – volume: Vol. 7 year: 2013 ident: b0030 publication-title: State of the art in global optimization: computational methods and applications – reference: Nair, V., & Hinton, G. E. (2010, January). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), 807-814. – volume: 230 year: 2021 ident: b0005 article-title: Self-learning transferable neural network for intelligent fault diagnosis of rotating machinery with unlabeled and imbalanced data publication-title: Knowledge-Based Systems – volume: 142 year: 2020 ident: b0205 article-title: A novel vehicle lateral positioning methodology based on the integrated deep neural network publication-title: Expert Systems with Applications – volume: 160 year: 2020 ident: b0130 article-title: Neural-based time series forecasting of loss of coolant accidents in nuclear power plants publication-title: Expert Systems with Applications – volume: 484 start-page: 89 year: 2022 end-page: 98 ident: b0150 article-title: Distributed adaptive neural network constraint containment control for the benthic autonomous underwater vehicles publication-title: Neurocomputing – reference: of July, 2023, from : https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/safety-of-nuclear-power-reactors.aspx. – volume: 96 start-page: 53 year: 2011 end-page: 63 ident: b0125 article-title: A critical view of severity classification in risk assessment methods publication-title: Reliability Engineering & System Safety – reference: Tollner, D., Hang, C., & Zöldy, M. (2019). Artificial Intellgence based Decision Making of Autonomous Vehicles Before Entering Roundabout. 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), 181-186. – volume: 183 year: 2021 ident: b0145 article-title: Intelligent control of an UAV with a cable-suspended load using a neural network estimator publication-title: Expert Systems with Applications – volume: 123 year: 2020 ident: b0200 article-title: Testing and verification of neural-network-based safety-critical control software: A systematic literature review publication-title: Information and Software Technology – reference: Isac, A., J Frederico, C., Kragic, D., & Stork, J. A. (2020). The effect of Target Normalization and Momentum on Dying ReLU. In The 32nd annual workshop of the Swedish Artificial Intelligence Society (SAIS), Gothenburg, Sweden (Virtual). – volume: 220 year: 2021 ident: b0175 article-title: A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification publication-title: Knowledge-Based Systems – reference: Haykin, S. (2011). Neural Networks and Learning Machines. Pearson Education. ISBN 9780133002553. – reference: WNA - World Nuclear Association (2022): Safety of Nuclear Power Reactors. Downloaded on the 3 – start-page: 97 year: 2017 end-page: 117 ident: b0070 article-title: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks publication-title: Computer Aided Verification – reference: Lohweg,V. (2013). Banknote Authentication. UCI Machine Learning Repository. Doi: 10.24432/C55P57. – volume: 215 year: 2023 ident: b0090 article-title: Learning and ensemble based MPC with differential dynamic programming for nuclear power autonomous control publication-title: Expert Systems with Applications – volume: 483 start-page: 361 year: 2022 end-page: 369 ident: b0210 article-title: A new neuro-optimal nonlinear tracking control method via integral reinforcement learning with applications to nuclear systems publication-title: Neurocomputing – volume: 127 start-page: 7 year: 2020 end-page: 18 ident: b0180 article-title: Finite-time synchronization of memristor neural networks via interval matrix method publication-title: Neural Networks – volume: 120609 year: 2023 ident: b0110 article-title: Analysis of neural networks trained with evolutionary algorithms for the classification of breast cancer histological images publication-title: Expert Systems with Applications – start-page: 1836 year: 2018 end-page: 1841 ident: b0020 publication-title: Activation functions and their characteristics in deep neural networks – volume: 13 start-page: 493 year: 2003 end-page: 497 ident: b0085 article-title: The cost of cortical computation publication-title: Current biology – year: 1951 ident: b0075 article-title: Nonlinear programming publication-title: paper presented at Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability – volume: 417 start-page: 36 year: 2020 end-page: 63 ident: b0060 article-title: A comprehensive review on convolutional neural network in machine fault diagnosis publication-title: Neurocomputing – volume: 548 year: 2023 ident: b0170 article-title: Simple is good: Investigation of history-state ensemble deep neural networks and their validation on rotating machinery fault diagnosis publication-title: Neurocomputing – volume: 197 year: 2022 ident: b0025 article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles publication-title: Expert Systems with Applications – year: 2018 ident: b0055 article-title: “ISO 26262–1:2011 Road vehicles - Functional safety ”, International Organisation for Standardisation (ISO) – volume: 264 year: 2020 ident: b0140 article-title: Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid publication-title: Applied Energy – year: 2021 ident: b0135 article-title: Data Multiplexed and Hardware Reused Architecture for Deep Neural Network Accelerator publication-title: Neurocomputing – volume: V1 year: 2022 ident: b0165 article-title: Dataset of the double moon classification problem and the structure of the neural networks that perform the classification publication-title: Mendeley Data – reference: Freire, P. J., Srivallapanondh, S., Napoli, A., Prilepsky, J. E., & Turitsyn, S. K. (2022). Computational complexity evaluation of neural network applications in signal processing. arXiv preprint arXiv:2206.12191. – volume: 165 start-page: 474 year: 2019 end-page: 487 ident: b0040 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowledge-based systems – reference: Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward relu neural networks. arXiv preprint arXiv:1706.07351. – volume: 423 start-page: 71 year: 2021 end-page: 79 ident: b0095 article-title: Biased ReLU neural networks publication-title: Neurocomputing – volume: 322 start-page: 102 year: 2018 end-page: 119 ident: b0155 article-title: A constraint-based genetic algorithm for optimizing neural network architectures for detection of loss of coolant accidents of nuclear power plants publication-title: Neurocomputing – volume: 132 start-page: 1 year: 2017 end-page: 10 ident: b0080 article-title: End-to-end recognition of slab identification numbers using a deep convolutional neural network publication-title: Knowledge-Based Systems – volume: 273 start-page: 199 year: 2018 end-page: 208 ident: b0115 article-title: Neural network based optimization approach for energy demand prediction in smart grid publication-title: Neurocomputing – reference: Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020, April). Efficient verification of relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3291–3299). – volume: 218 year: 2021 ident: b0195 article-title: Squashing activation functions in benchmark tests: Towards a more eXplainable Artificial Intelligence using continuous-valued logic publication-title: Knowledge-Based Systems – year: 1939 ident: b0065 article-title: Minima of functions of several variables with inequalities as side constraints – volume: 132 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2024.123905_b0080 article-title: End-to-end recognition of slab identification numbers using a deep convolutional neural network publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.06.017 – ident: 10.1016/j.eswa.2024.123905_b0100 – volume: 264 year: 2020 ident: 10.1016/j.eswa.2024.123905_b0140 article-title: Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid publication-title: Applied Energy doi: 10.1016/j.apenergy.2020.114636 – volume: 423 start-page: 71 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0095 article-title: Biased ReLU neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.050 – volume: 171 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0215 article-title: Shape autotuning activation function publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114534 – ident: 10.1016/j.eswa.2024.123905_b0045 – volume: 105 start-page: 185 year: 2018 ident: 10.1016/j.eswa.2024.123905_b0190 article-title: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation publication-title: Neural networks doi: 10.1016/j.neunet.2018.05.008 – start-page: 1836 year: 2018 ident: 10.1016/j.eswa.2024.123905_b0020 – volume: 273 start-page: 199 year: 2018 ident: 10.1016/j.eswa.2024.123905_b0115 article-title: Neural network based optimization approach for energy demand prediction in smart grid publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.017 – volume: 160 year: 2020 ident: 10.1016/j.eswa.2024.123905_b0130 article-title: Neural-based time series forecasting of loss of coolant accidents in nuclear power plants publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113699 – volume: Vol. 7 year: 2013 ident: 10.1016/j.eswa.2024.123905_b0030 – volume: 220 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0175 article-title: A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106925 – ident: 10.1016/j.eswa.2024.123905_b0185 – year: 1939 ident: 10.1016/j.eswa.2024.123905_b0065 – year: 1951 ident: 10.1016/j.eswa.2024.123905_b0075 article-title: Nonlinear programming – volume: 417 start-page: 36 year: 2020 ident: 10.1016/j.eswa.2024.123905_b0060 article-title: A comprehensive review on convolutional neural network in machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.088 – volume: 483 start-page: 361 year: 2022 ident: 10.1016/j.eswa.2024.123905_b0210 article-title: A new neuro-optimal nonlinear tracking control method via integral reinforcement learning with applications to nuclear systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.034 – volume: 165 start-page: 474 year: 2019 ident: 10.1016/j.eswa.2024.123905_b0040 article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults publication-title: Knowledge-based systems doi: 10.1016/j.knosys.2018.12.019 – volume: 218 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0195 article-title: Squashing activation functions in benchmark tests: Towards a more eXplainable Artificial Intelligence using continuous-valued logic publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106779 – ident: 10.1016/j.eswa.2024.123905_b0160 doi: 10.1109/CINTI-MACRo49179.2019.9105322 – volume: 127 start-page: 7 year: 2020 ident: 10.1016/j.eswa.2024.123905_b0180 article-title: Finite-time synchronization of memristor neural networks via interval matrix method publication-title: Neural Networks doi: 10.1016/j.neunet.2020.04.003 – volume: 197 year: 2022 ident: 10.1016/j.eswa.2024.123905_b0025 article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116714 – volume: 484 start-page: 89 year: 2022 ident: 10.1016/j.eswa.2024.123905_b0150 article-title: Distributed adaptive neural network constraint containment control for the benthic autonomous underwater vehicles publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.137 – volume: V1 year: 2022 ident: 10.1016/j.eswa.2024.123905_b0165 article-title: Dataset of the double moon classification problem and the structure of the neural networks that perform the classification publication-title: Mendeley Data – volume: 13 start-page: 493 issue: 6 year: 2003 ident: 10.1016/j.eswa.2024.123905_b0085 article-title: The cost of cortical computation publication-title: Current biology doi: 10.1016/S0960-9822(03)00135-0 – ident: 10.1016/j.eswa.2024.123905_b0120 – volume: 96 start-page: 53 issue: 1 year: 2011 ident: 10.1016/j.eswa.2024.123905_b0125 article-title: A critical view of severity classification in risk assessment methods publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2010.06.029 – ident: 10.1016/j.eswa.2024.123905_b0105 – volume: 120609 year: 2023 ident: 10.1016/j.eswa.2024.123905_b0110 article-title: Analysis of neural networks trained with evolutionary algorithms for the classification of breast cancer histological images publication-title: Expert Systems with Applications – volume: 123 year: 2020 ident: 10.1016/j.eswa.2024.123905_b0200 article-title: Testing and verification of neural-network-based safety-critical control software: A systematic literature review publication-title: Information and Software Technology doi: 10.1016/j.infsof.2020.106296 – start-page: 97 year: 2017 ident: 10.1016/j.eswa.2024.123905_b0070 article-title: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks publication-title: Computer Aided Verification – year: 2021 ident: 10.1016/j.eswa.2024.123905_b0135 article-title: Data Multiplexed and Hardware Reused Architecture for Deep Neural Network Accelerator publication-title: Neurocomputing – volume: 322 start-page: 102 year: 2018 ident: 10.1016/j.eswa.2024.123905_b0155 article-title: A constraint-based genetic algorithm for optimizing neural network architectures for detection of loss of coolant accidents of nuclear power plants publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.014 – volume: 230 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0005 article-title: Self-learning transferable neural network for intelligent fault diagnosis of rotating machinery with unlabeled and imbalanced data publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107374 – volume: 215 year: 2023 ident: 10.1016/j.eswa.2024.123905_b0090 article-title: Learning and ensemble based MPC with differential dynamic programming for nuclear power autonomous control publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119416 – ident: 10.1016/j.eswa.2024.123905_b0050 – volume: 452 start-page: 705 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0015 article-title: Intrusion detection approach based on optimised artificial neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.138 – volume: 183 year: 2021 ident: 10.1016/j.eswa.2024.123905_b0145 article-title: Intelligent control of an UAV with a cable-suspended load using a neural network estimator publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115380 – volume: 548 year: 2023 ident: 10.1016/j.eswa.2024.123905_b0170 article-title: Simple is good: Investigation of history-state ensemble deep neural networks and their validation on rotating machinery fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126353 – year: 2018 ident: 10.1016/j.eswa.2024.123905_b0055 – ident: 10.1016/j.eswa.2024.123905_b0035 – ident: 10.1016/j.eswa.2024.123905_b0010 doi: 10.1609/aaai.v34i04.5729 – volume: 142 year: 2020 ident: 10.1016/j.eswa.2024.123905_b0205 article-title: A novel vehicle lateral positioning methodology based on the integrated deep neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112991 |
SSID | ssj0017007 |
Score | 2.4580405 |
Snippet | Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123905 |
SubjectTerms | investigating ReLUbased systems Neural network evaluation Non-classic expert system testing Nonlinear optimization based analysis |
Title | Demonstrating a new evaluation method on ReLU based Neural Networks for classification problems |
URI | https://dx.doi.org/10.1016/j.eswa.2024.123905 |
Volume | 250 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENpW1iJ3bHqlCVVwegUjcrdhxUBKGiRWz8du5ip4CEOrAlkS-KvnPuvpPO3xFyyhOTdaSOg1gDfeNZqAPJGQ8gShobQc3FSsWb21EyHPOrSTypkX51FgbbKn3sdzG9jNb-Sduj2Z5Np-17IAeQDqG0w9Heojzfy7nAXd76XLZ5oPyccHp7IsDV_uCM6_Gy8w_UHop4CwJ4F0fY_ZWcfiScwRbZ8EyR9tzHbJOaLXbIZjWFgfqfcpeoc_uCJA9dWTzSlAJRpt8i3tTNiKZwdWdvxhTTVkZRkwNePnJN4HMK1JUaJNLYOeTs_KiZ-R4ZDy4e-sPAj00IDON8AYDnzAB8EdNpFFkBFUMUSwtMUKap7ehcyizp2gScYaEa06kOmREZZzIXeWo52yf14rWwB4TC3x1Jm9sU0jiHZK8FOBBAzrKOibtMNkhY4aWM1xTH0RbPqmoee1KIsUKMlcO4Qc6WNjOnqLFydVy5Qf3aFwpC_gq7w3_aHZF1vMOOkDA-JvXF27s9Adqx0M1yXzXJWu_yejj6AkV_100 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAX3ojxzIEbKmubtM2O02Dq2NYDbNJuUdOmaAjKxIb4-9hLykNCO3Cr2riq7MT-rNqfCbnkYZa7QgVOoAC-8dxTjuCMO-AlM-1DzsVWjDejJIwn_G4aTGukW_XCYFml9f3Gp6-8tb3TstpszWez1gOAAwiHkNrhaO8I-3sbyE4V1Emj0x_EydfPhMg1XdOw3kEB2ztjyrz04gPph3x-DT68jVPs_opPP2JOb4dsWbBIO-Z7dklNl3tkuxrEQO253CfyRr8gzkNrlo80pYCV6TePNzVjoilc3evhhGLkyinScsDLE1MHvqCAXmmGWBqLh4ycnTazOCCT3u24Gzt2coKTMc6XoPOCZaBBn6nU93UESYMfCA1gUKSpdlUhRB62dQj20JCQqVR5LItyzkQRFanm7JDUy9dSHxEKB9wXutApRHIO8V5FYEPOozx3s6DNRJN4lb5kZmnFcbrFs6zqx54k6liijqXRcZNcfcnMDanG2tVBZQb5a2tI8Ppr5I7_KXdBNuLxaCiH_WRwQjbxCRaIeMEpqS_f3vUZoJClOre77BOw2Nn- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstrating+a+new+evaluation+method+on+ReLU+based+Neural+Networks+for+classification+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Tollner%2C+D%C3%A1vid&rft.au=Ziyu%2C+Wang&rft.au=Z%C3%B6ldy%2C+M%C3%A1t%C3%A9&rft.au=T%C3%B6r%C3%B6k%2C+%C3%81rp%C3%A1d&rft.date=2024-09-15&rft.issn=0957-4174&rft.volume=250&rft.spage=123905&rft_id=info:doi/10.1016%2Fj.eswa.2024.123905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_123905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |