Demonstrating a new evaluation method on ReLU based Neural Networks for classification problems

Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical processes. However, in such applications the outcomes of the neural network must be checked if it we have a clear understanding regarding the operat...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 250; p. 123905
Main Authors Tollner, Dávid, Ziyu, Wang, Zöldy, Máté, Török, Árpád
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical processes. However, in such applications the outcomes of the neural network must be checked if it we have a clear understanding regarding the operation of network at given input intervals. The most straightforward, though often computationally expensive approach for this checking process evaluates the network at discrete input points and estimates the expected outputs at the given interval. The present research aims to develop a novel approach that can identify in the case of specific input intervals whether the operation process and the output of a neural network can be considered as known or unknown. During the presented case study, we investigated the ReLU (Rectified Linear Unit) and Sigmoid activation functions, using the double moon and the Banknote Authentication classification problems for demonstration. Our method can be applied to identify certain input intervals where the given neural network cannot support critical decisions. The evaluation is performed based on a nonlinear system of equations and inequalities built on arbitrary continuous activation functions. To define the critical intervals of the input variables (i.e. where the decision-making system should not be relied on), those input variable combinations are identified which result in a non-expected output value. This inverse logic is intended to identify intervals of the input variables where the response of the system and the correct decision are not identical. The presented demonstration examples supported our assumption that the number of the neurons and the dimension of the decision space have a significant impact on the complexity of the evaluation process.
AbstractList Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical processes. However, in such applications the outcomes of the neural network must be checked if it we have a clear understanding regarding the operation of network at given input intervals. The most straightforward, though often computationally expensive approach for this checking process evaluates the network at discrete input points and estimates the expected outputs at the given interval. The present research aims to develop a novel approach that can identify in the case of specific input intervals whether the operation process and the output of a neural network can be considered as known or unknown. During the presented case study, we investigated the ReLU (Rectified Linear Unit) and Sigmoid activation functions, using the double moon and the Banknote Authentication classification problems for demonstration. Our method can be applied to identify certain input intervals where the given neural network cannot support critical decisions. The evaluation is performed based on a nonlinear system of equations and inequalities built on arbitrary continuous activation functions. To define the critical intervals of the input variables (i.e. where the decision-making system should not be relied on), those input variable combinations are identified which result in a non-expected output value. This inverse logic is intended to identify intervals of the input variables where the response of the system and the correct decision are not identical. The presented demonstration examples supported our assumption that the number of the neurons and the dimension of the decision space have a significant impact on the complexity of the evaluation process.
ArticleNumber 123905
Author Ziyu, Wang
Tollner, Dávid
Zöldy, Máté
Török, Árpád
Author_xml – sequence: 1
  givenname: Dávid
  surname: Tollner
  fullname: Tollner, Dávid
  email: tollner.david@edu.bme.hu
  organization: Innovative Vehicle Technologies Competency Centre, Dept of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Stoczek u. 6., Hungary
– sequence: 2
  givenname: Wang
  orcidid: 0000-0002-1267-9319
  surname: Ziyu
  fullname: Ziyu, Wang
  email: wangziyu@china-icv.cn
  organization: National Innovation Center of Intelligent and Connected Vehicles (CICV), China
– sequence: 3
  givenname: Máté
  surname: Zöldy
  fullname: Zöldy, Máté
  email: zoldy.mate@kjk.bme.hu
  organization: Head of Innovative Vehicle Technologies Competency Centre, Dept of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Stoczek u. 6., Hungary
– sequence: 4
  givenname: Árpád
  orcidid: 0000-0002-1985-4095
  surname: Török
  fullname: Török, Árpád
  email: torok.arpad@kjk.bme.hu
  organization: Automotive Head of Safety and Security Research Group, Dept. of Automotive Technologies, Budapest University of Technology and Economics, 1111 Budapest, Stoczek u.6, Hungary
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxJsx60TiQ0qT6kCCdG15dhjcEniyk4b8fe4hBWLru5opDOae2Zo0vkOELqiJKeELq-3OcRB5YwwnlNWVGQxQVNSLUTGqeDnaBbjlhAqCBFTJO-g9V3sg-pd94EV7mDAcFDNPi18h1voP73BaXqD9QbXKoLBL7APqknRDz58RWx9wLpRMTrr9Mjtgq8baOMFOrOqiXD5l3O0ebh_Xz1l69fH59XtOtMF533GjS20BsOKWjEGohKcLUqoqqpUCkhty9IsK1gyDUAoqVVNCy0ML0orrAJezBEb7-rgYwxg5S64VoVvSYk8apFbedQij1rkqCVB5T9Iu_73_-TDNafRmxGFVOrgIMioHXSpgguge2m8O4X_AKA2hKs
CitedBy_id crossref_primary_10_1016_j_autcon_2024_105723
crossref_primary_10_1016_j_energy_2025_135284
Cites_doi 10.1016/j.knosys.2017.06.017
10.1016/j.apenergy.2020.114636
10.1016/j.neucom.2020.09.050
10.1016/j.eswa.2020.114534
10.1016/j.neunet.2018.05.008
10.1016/j.neucom.2017.08.017
10.1016/j.eswa.2020.113699
10.1016/j.knosys.2021.106925
10.1016/j.neucom.2020.07.088
10.1016/j.neucom.2022.01.034
10.1016/j.knosys.2018.12.019
10.1016/j.knosys.2021.106779
10.1109/CINTI-MACRo49179.2019.9105322
10.1016/j.neunet.2020.04.003
10.1016/j.eswa.2022.116714
10.1016/j.neucom.2021.03.137
10.1016/S0960-9822(03)00135-0
10.1016/j.ress.2010.06.029
10.1016/j.infsof.2020.106296
10.1016/j.neucom.2018.09.014
10.1016/j.knosys.2021.107374
10.1016/j.eswa.2022.119416
10.1016/j.neucom.2020.07.138
10.1016/j.eswa.2021.115380
10.1016/j.neucom.2023.126353
10.1609/aaai.v34i04.5729
10.1016/j.eswa.2019.112991
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2024.123905
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_123905
S0957417424007711
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c344t-4df3cced23ba22e7974258e9998aae0bf88d69e62cee010bab13c7d438f7fae43
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 01:51:19 EDT 2025
Thu Apr 24 22:56:18 EDT 2025
Sat Aug 31 16:00:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-classic expert system testing
Neural network evaluation
Nonlinear optimization based analysis
investigating ReLUbased systems
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-4df3cced23ba22e7974258e9998aae0bf88d69e62cee010bab13c7d438f7fae43
ORCID 0000-0002-1985-4095
0000-0002-1267-9319
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417424007711
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_123905
crossref_citationtrail_10_1016_j_eswa_2024_123905
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_123905
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-15
PublicationDateYYYYMMDD 2024-09-15
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miguel, Neves, Martins, do Nascimento, T.A.A., Tosta (b0110) 2023; 120609
An, Jiang, Cao, Yang, Li (b0005) 2021; 230
Han, Liu, Yang, Jiang (b0040) 2019; 165
Jiao, Zhao, Lin, Liang (b0060) 2020; 417
Wei, Chen, Wang (b0180) 2020; 127
Tian, Deng, Vinod, Santhosh, Tawfik (b0155) 2018; 322
Zheng, Li (b0205) 2020; 142
Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward relu neural networks. arXiv preprint arXiv:1706.07351.
Xiao, Zhang, Zhang, Li, Li (b0190) 2018; 105
Sierra-García, Santos (b0145) 2021; 183
Wang, Xin, Xu (b0175) 2021; 220
Zhou, Li, Huo, Kung (b0215) 2021; 171
WNA - World Nuclear Association (2022): Safety of Nuclear Power Reactors. Downloaded on the 3
Haykin, S. (2011). Neural Networks and Learning Machines. Pearson Education. ISBN 9780133002553.
Nair, V., & Hinton, G. E. (2010, January). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), 807-814.
Ding, Qian, Zhou (b0020) 2018
Raut, Biasizzo, Dhakad, Gupta, Papa, Vishvakarma (b0135) 2021
Radaideh, Pigg, Kozlowski, Deng, Qu (b0130) 2020; 160
Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020, April). Efficient verification of relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3291–3299).
Lennie (b0085) 2003; 13
Zhong, Wang, Wei, Lu (b0210) 2022; 483
Zhang, Li (b0200) 2020; 123
Choraś, Pawlicki (b0015) 2021; 452
Karush (b0065) 1939
Elhaki, Shojaei, Mehrmohammadi (b0025) 2022; 197
Li, Cai, Duan, Chen, Ding, Lin, Cui (b0090) 2023; 215
Sun, Du, Qin (b0150) 2022; 484
Muralitharan, Sakthivel, Vishnuvarthan (b0115) 2018; 273
Katz, Barrett, Dill, Julian, Kochenderfer (b0070) 2017
Liang, Xu (b0095) 2021; 423
Pasquini, Pozzi, Save (b0125) 2011; 96
Tollner, D., Hang, C., & Zöldy, M. (2019). Artificial Intellgence based Decision Making of Autonomous Vehicles Before Entering Roundabout. 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), 181-186.
Isac, A., J Frederico, C., Kragic, D., & Stork, J. A. (2020). The effect of Target Normalization and Momentum on Dying ReLU. In The 32nd annual workshop of the Swedish Artificial Intelligence Society (SAIS), Gothenburg, Sweden (Virtual).
ISO - International Organization for Standardization (b0055) 2018
Zeltner, Schmid, Csiszár, Csiszár (b0195) 2021; 218
Kuhn, Tucker (b0075) 1951
Freire, P. J., Srivallapanondh, S., Napoli, A., Prilepsky, J. E., & Turitsyn, S. K. (2022). Computational complexity evaluation of neural network applications in signal processing. arXiv preprint arXiv:2206.12191.
Lee, Yun, Koo, Kim (b0080) 2017; 132
Lohweg,V. (2013). Banknote Authentication. UCI Machine Learning Repository. Doi: 10.24432/C55P57.
Török, Tollner (b0165) 2022; V1
of July, 2023, from : https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/safety-of-nuclear-power-reactors.aspx.
Wang, Vinogradov (b0170) 2023; 548
Ruan, Zhong, Wang, Xia, Kang (b0140) 2020; 264
Floudas, Pardalos (b0030) 2013; Vol. 7
Floudas (10.1016/j.eswa.2024.123905_b0030) 2013; Vol. 7
Zheng (10.1016/j.eswa.2024.123905_b0205) 2020; 142
10.1016/j.eswa.2024.123905_b0010
Xiao (10.1016/j.eswa.2024.123905_b0190) 2018; 105
10.1016/j.eswa.2024.123905_b0050
Li (10.1016/j.eswa.2024.123905_b0090) 2023; 215
Zeltner (10.1016/j.eswa.2024.123905_b0195) 2021; 218
Wei (10.1016/j.eswa.2024.123905_b0180) 2020; 127
10.1016/j.eswa.2024.123905_b0035
Jiao (10.1016/j.eswa.2024.123905_b0060) 2020; 417
Katz (10.1016/j.eswa.2024.123905_b0070) 2017
Raut (10.1016/j.eswa.2024.123905_b0135) 2021
Zhang (10.1016/j.eswa.2024.123905_b0200) 2020; 123
Karush (10.1016/j.eswa.2024.123905_b0065) 1939
Miguel (10.1016/j.eswa.2024.123905_b0110) 2023; 120609
Török (10.1016/j.eswa.2024.123905_b0165) 2022; V1
Radaideh (10.1016/j.eswa.2024.123905_b0130) 2020; 160
Ruan (10.1016/j.eswa.2024.123905_b0140) 2020; 264
Tian (10.1016/j.eswa.2024.123905_b0155) 2018; 322
Zhong (10.1016/j.eswa.2024.123905_b0210) 2022; 483
Ding (10.1016/j.eswa.2024.123905_b0020) 2018
Muralitharan (10.1016/j.eswa.2024.123905_b0115) 2018; 273
10.1016/j.eswa.2024.123905_b0185
10.1016/j.eswa.2024.123905_b0120
10.1016/j.eswa.2024.123905_b0160
Choraś (10.1016/j.eswa.2024.123905_b0015) 2021; 452
10.1016/j.eswa.2024.123905_b0105
Liang (10.1016/j.eswa.2024.123905_b0095) 2021; 423
Zhou (10.1016/j.eswa.2024.123905_b0215) 2021; 171
10.1016/j.eswa.2024.123905_b0045
10.1016/j.eswa.2024.123905_b0100
Elhaki (10.1016/j.eswa.2024.123905_b0025) 2022; 197
Sierra-García (10.1016/j.eswa.2024.123905_b0145) 2021; 183
Wang (10.1016/j.eswa.2024.123905_b0175) 2021; 220
An (10.1016/j.eswa.2024.123905_b0005) 2021; 230
Lee (10.1016/j.eswa.2024.123905_b0080) 2017; 132
Wang (10.1016/j.eswa.2024.123905_b0170) 2023; 548
Kuhn (10.1016/j.eswa.2024.123905_b0075) 1951
Pasquini (10.1016/j.eswa.2024.123905_b0125) 2011; 96
Lennie (10.1016/j.eswa.2024.123905_b0085) 2003; 13
Sun (10.1016/j.eswa.2024.123905_b0150) 2022; 484
Han (10.1016/j.eswa.2024.123905_b0040) 2019; 165
ISO - International Organization for Standardization (10.1016/j.eswa.2024.123905_b0055) 2018
References_xml – volume: 452
  start-page: 705
  year: 2021
  end-page: 715
  ident: b0015
  article-title: Intrusion detection approach based on optimised artificial neural network
  publication-title: Neurocomputing
– volume: 171
  year: 2021
  ident: b0215
  article-title: Shape autotuning activation function
  publication-title: Expert Systems with Applications
– volume: 105
  start-page: 185
  year: 2018
  end-page: 196
  ident: b0190
  article-title: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation
  publication-title: Neural networks
– volume: Vol. 7
  year: 2013
  ident: b0030
  publication-title: State of the art in global optimization: computational methods and applications
– reference: Nair, V., & Hinton, G. E. (2010, January). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), 807-814.
– volume: 230
  year: 2021
  ident: b0005
  article-title: Self-learning transferable neural network for intelligent fault diagnosis of rotating machinery with unlabeled and imbalanced data
  publication-title: Knowledge-Based Systems
– volume: 142
  year: 2020
  ident: b0205
  article-title: A novel vehicle lateral positioning methodology based on the integrated deep neural network
  publication-title: Expert Systems with Applications
– volume: 160
  year: 2020
  ident: b0130
  article-title: Neural-based time series forecasting of loss of coolant accidents in nuclear power plants
  publication-title: Expert Systems with Applications
– volume: 484
  start-page: 89
  year: 2022
  end-page: 98
  ident: b0150
  article-title: Distributed adaptive neural network constraint containment control for the benthic autonomous underwater vehicles
  publication-title: Neurocomputing
– reference: of July, 2023, from : https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/safety-of-nuclear-power-reactors.aspx.
– volume: 96
  start-page: 53
  year: 2011
  end-page: 63
  ident: b0125
  article-title: A critical view of severity classification in risk assessment methods
  publication-title: Reliability Engineering & System Safety
– reference: Tollner, D., Hang, C., & Zöldy, M. (2019). Artificial Intellgence based Decision Making of Autonomous Vehicles Before Entering Roundabout. 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo), 181-186.
– volume: 183
  year: 2021
  ident: b0145
  article-title: Intelligent control of an UAV with a cable-suspended load using a neural network estimator
  publication-title: Expert Systems with Applications
– volume: 123
  year: 2020
  ident: b0200
  article-title: Testing and verification of neural-network-based safety-critical control software: A systematic literature review
  publication-title: Information and Software Technology
– reference: Isac, A., J Frederico, C., Kragic, D., & Stork, J. A. (2020). The effect of Target Normalization and Momentum on Dying ReLU. In The 32nd annual workshop of the Swedish Artificial Intelligence Society (SAIS), Gothenburg, Sweden (Virtual).
– volume: 220
  year: 2021
  ident: b0175
  article-title: A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification
  publication-title: Knowledge-Based Systems
– reference: Haykin, S. (2011). Neural Networks and Learning Machines. Pearson Education. ISBN 9780133002553.
– reference: WNA - World Nuclear Association (2022): Safety of Nuclear Power Reactors. Downloaded on the 3
– start-page: 97
  year: 2017
  end-page: 117
  ident: b0070
  article-title: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
  publication-title: Computer Aided Verification
– reference: Lohweg,V. (2013). Banknote Authentication. UCI Machine Learning Repository. Doi: 10.24432/C55P57.
– volume: 215
  year: 2023
  ident: b0090
  article-title: Learning and ensemble based MPC with differential dynamic programming for nuclear power autonomous control
  publication-title: Expert Systems with Applications
– volume: 483
  start-page: 361
  year: 2022
  end-page: 369
  ident: b0210
  article-title: A new neuro-optimal nonlinear tracking control method via integral reinforcement learning with applications to nuclear systems
  publication-title: Neurocomputing
– volume: 127
  start-page: 7
  year: 2020
  end-page: 18
  ident: b0180
  article-title: Finite-time synchronization of memristor neural networks via interval matrix method
  publication-title: Neural Networks
– volume: 120609
  year: 2023
  ident: b0110
  article-title: Analysis of neural networks trained with evolutionary algorithms for the classification of breast cancer histological images
  publication-title: Expert Systems with Applications
– start-page: 1836
  year: 2018
  end-page: 1841
  ident: b0020
  publication-title: Activation functions and their characteristics in deep neural networks
– volume: 13
  start-page: 493
  year: 2003
  end-page: 497
  ident: b0085
  article-title: The cost of cortical computation
  publication-title: Current biology
– year: 1951
  ident: b0075
  article-title: Nonlinear programming
  publication-title: paper presented at Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability
– volume: 417
  start-page: 36
  year: 2020
  end-page: 63
  ident: b0060
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
– volume: 548
  year: 2023
  ident: b0170
  article-title: Simple is good: Investigation of history-state ensemble deep neural networks and their validation on rotating machinery fault diagnosis
  publication-title: Neurocomputing
– volume: 197
  year: 2022
  ident: b0025
  article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles
  publication-title: Expert Systems with Applications
– year: 2018
  ident: b0055
  article-title: “ISO 26262–1:2011 Road vehicles - Functional safety ”, International Organisation for Standardisation (ISO)
– volume: 264
  year: 2020
  ident: b0140
  article-title: Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid
  publication-title: Applied Energy
– year: 2021
  ident: b0135
  article-title: Data Multiplexed and Hardware Reused Architecture for Deep Neural Network Accelerator
  publication-title: Neurocomputing
– volume: V1
  year: 2022
  ident: b0165
  article-title: Dataset of the double moon classification problem and the structure of the neural networks that perform the classification
  publication-title: Mendeley Data
– reference: Freire, P. J., Srivallapanondh, S., Napoli, A., Prilepsky, J. E., & Turitsyn, S. K. (2022). Computational complexity evaluation of neural network applications in signal processing. arXiv preprint arXiv:2206.12191.
– volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: b0040
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowledge-based systems
– reference: Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward relu neural networks. arXiv preprint arXiv:1706.07351.
– volume: 423
  start-page: 71
  year: 2021
  end-page: 79
  ident: b0095
  article-title: Biased ReLU neural networks
  publication-title: Neurocomputing
– volume: 322
  start-page: 102
  year: 2018
  end-page: 119
  ident: b0155
  article-title: A constraint-based genetic algorithm for optimizing neural network architectures for detection of loss of coolant accidents of nuclear power plants
  publication-title: Neurocomputing
– volume: 132
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0080
  article-title: End-to-end recognition of slab identification numbers using a deep convolutional neural network
  publication-title: Knowledge-Based Systems
– volume: 273
  start-page: 199
  year: 2018
  end-page: 208
  ident: b0115
  article-title: Neural network based optimization approach for energy demand prediction in smart grid
  publication-title: Neurocomputing
– reference: Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020, April). Efficient verification of relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 3291–3299).
– volume: 218
  year: 2021
  ident: b0195
  article-title: Squashing activation functions in benchmark tests: Towards a more eXplainable Artificial Intelligence using continuous-valued logic
  publication-title: Knowledge-Based Systems
– year: 1939
  ident: b0065
  article-title: Minima of functions of several variables with inequalities as side constraints
– volume: 132
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2024.123905_b0080
  article-title: End-to-end recognition of slab identification numbers using a deep convolutional neural network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.06.017
– ident: 10.1016/j.eswa.2024.123905_b0100
– volume: 264
  year: 2020
  ident: 10.1016/j.eswa.2024.123905_b0140
  article-title: Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.114636
– volume: 423
  start-page: 71
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0095
  article-title: Biased ReLU neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.050
– volume: 171
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0215
  article-title: Shape autotuning activation function
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114534
– ident: 10.1016/j.eswa.2024.123905_b0045
– volume: 105
  start-page: 185
  year: 2018
  ident: 10.1016/j.eswa.2024.123905_b0190
  article-title: Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2018.05.008
– start-page: 1836
  year: 2018
  ident: 10.1016/j.eswa.2024.123905_b0020
– volume: 273
  start-page: 199
  year: 2018
  ident: 10.1016/j.eswa.2024.123905_b0115
  article-title: Neural network based optimization approach for energy demand prediction in smart grid
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.017
– volume: 160
  year: 2020
  ident: 10.1016/j.eswa.2024.123905_b0130
  article-title: Neural-based time series forecasting of loss of coolant accidents in nuclear power plants
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113699
– volume: Vol. 7
  year: 2013
  ident: 10.1016/j.eswa.2024.123905_b0030
– volume: 220
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0175
  article-title: A novel deep metric learning model for imbalanced fault diagnosis and toward open-set classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106925
– ident: 10.1016/j.eswa.2024.123905_b0185
– year: 1939
  ident: 10.1016/j.eswa.2024.123905_b0065
– year: 1951
  ident: 10.1016/j.eswa.2024.123905_b0075
  article-title: Nonlinear programming
– volume: 417
  start-page: 36
  year: 2020
  ident: 10.1016/j.eswa.2024.123905_b0060
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 483
  start-page: 361
  year: 2022
  ident: 10.1016/j.eswa.2024.123905_b0210
  article-title: A new neuro-optimal nonlinear tracking control method via integral reinforcement learning with applications to nuclear systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.034
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.eswa.2024.123905_b0040
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowledge-based systems
  doi: 10.1016/j.knosys.2018.12.019
– volume: 218
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0195
  article-title: Squashing activation functions in benchmark tests: Towards a more eXplainable Artificial Intelligence using continuous-valued logic
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106779
– ident: 10.1016/j.eswa.2024.123905_b0160
  doi: 10.1109/CINTI-MACRo49179.2019.9105322
– volume: 127
  start-page: 7
  year: 2020
  ident: 10.1016/j.eswa.2024.123905_b0180
  article-title: Finite-time synchronization of memristor neural networks via interval matrix method
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.04.003
– volume: 197
  year: 2022
  ident: 10.1016/j.eswa.2024.123905_b0025
  article-title: Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116714
– volume: 484
  start-page: 89
  year: 2022
  ident: 10.1016/j.eswa.2024.123905_b0150
  article-title: Distributed adaptive neural network constraint containment control for the benthic autonomous underwater vehicles
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.137
– volume: V1
  year: 2022
  ident: 10.1016/j.eswa.2024.123905_b0165
  article-title: Dataset of the double moon classification problem and the structure of the neural networks that perform the classification
  publication-title: Mendeley Data
– volume: 13
  start-page: 493
  issue: 6
  year: 2003
  ident: 10.1016/j.eswa.2024.123905_b0085
  article-title: The cost of cortical computation
  publication-title: Current biology
  doi: 10.1016/S0960-9822(03)00135-0
– ident: 10.1016/j.eswa.2024.123905_b0120
– volume: 96
  start-page: 53
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2024.123905_b0125
  article-title: A critical view of severity classification in risk assessment methods
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2010.06.029
– ident: 10.1016/j.eswa.2024.123905_b0105
– volume: 120609
  year: 2023
  ident: 10.1016/j.eswa.2024.123905_b0110
  article-title: Analysis of neural networks trained with evolutionary algorithms for the classification of breast cancer histological images
  publication-title: Expert Systems with Applications
– volume: 123
  year: 2020
  ident: 10.1016/j.eswa.2024.123905_b0200
  article-title: Testing and verification of neural-network-based safety-critical control software: A systematic literature review
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2020.106296
– start-page: 97
  year: 2017
  ident: 10.1016/j.eswa.2024.123905_b0070
  article-title: Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
  publication-title: Computer Aided Verification
– year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0135
  article-title: Data Multiplexed and Hardware Reused Architecture for Deep Neural Network Accelerator
  publication-title: Neurocomputing
– volume: 322
  start-page: 102
  year: 2018
  ident: 10.1016/j.eswa.2024.123905_b0155
  article-title: A constraint-based genetic algorithm for optimizing neural network architectures for detection of loss of coolant accidents of nuclear power plants
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.014
– volume: 230
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0005
  article-title: Self-learning transferable neural network for intelligent fault diagnosis of rotating machinery with unlabeled and imbalanced data
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107374
– volume: 215
  year: 2023
  ident: 10.1016/j.eswa.2024.123905_b0090
  article-title: Learning and ensemble based MPC with differential dynamic programming for nuclear power autonomous control
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119416
– ident: 10.1016/j.eswa.2024.123905_b0050
– volume: 452
  start-page: 705
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0015
  article-title: Intrusion detection approach based on optimised artificial neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.138
– volume: 183
  year: 2021
  ident: 10.1016/j.eswa.2024.123905_b0145
  article-title: Intelligent control of an UAV with a cable-suspended load using a neural network estimator
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115380
– volume: 548
  year: 2023
  ident: 10.1016/j.eswa.2024.123905_b0170
  article-title: Simple is good: Investigation of history-state ensemble deep neural networks and their validation on rotating machinery fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126353
– year: 2018
  ident: 10.1016/j.eswa.2024.123905_b0055
– ident: 10.1016/j.eswa.2024.123905_b0035
– ident: 10.1016/j.eswa.2024.123905_b0010
  doi: 10.1609/aaai.v34i04.5729
– volume: 142
  year: 2020
  ident: 10.1016/j.eswa.2024.123905_b0205
  article-title: A novel vehicle lateral positioning methodology based on the integrated deep neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112991
SSID ssj0017007
Score 2.4580405
Snippet Deep neural networks, which have proven to be effective methods to solve complex problems, can even be applied in decision systems controlling critical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123905
SubjectTerms investigating ReLUbased systems
Neural network evaluation
Non-classic expert system testing
Nonlinear optimization based analysis
Title Demonstrating a new evaluation method on ReLU based Neural Networks for classification problems
URI https://dx.doi.org/10.1016/j.eswa.2024.123905
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENpW1iJ3bHqlCVVwegUjcrdhxUBKGiRWz8du5ip4CEOrAlkS-KvnPuvpPO3xFyyhOTdaSOg1gDfeNZqAPJGQ8gShobQc3FSsWb21EyHPOrSTypkX51FgbbKn3sdzG9jNb-Sduj2Z5Np-17IAeQDqG0w9Heojzfy7nAXd76XLZ5oPyccHp7IsDV_uCM6_Gy8w_UHop4CwJ4F0fY_ZWcfiScwRbZ8EyR9tzHbJOaLXbIZjWFgfqfcpeoc_uCJA9dWTzSlAJRpt8i3tTNiKZwdWdvxhTTVkZRkwNePnJN4HMK1JUaJNLYOeTs_KiZ-R4ZDy4e-sPAj00IDON8AYDnzAB8EdNpFFkBFUMUSwtMUKap7ehcyizp2gScYaEa06kOmREZZzIXeWo52yf14rWwB4TC3x1Jm9sU0jiHZK8FOBBAzrKOibtMNkhY4aWM1xTH0RbPqmoee1KIsUKMlcO4Qc6WNjOnqLFydVy5Qf3aFwpC_gq7w3_aHZF1vMOOkDA-JvXF27s9Adqx0M1yXzXJWu_yejj6AkV_100
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6m7QAX3ojxzIEbKmubtM2O02Dq2NYDbNJuUdOmaAjKxIb4-9hLykNCO3Cr2riq7MT-rNqfCbnkYZa7QgVOoAC-8dxTjuCMO-AlM-1DzsVWjDejJIwn_G4aTGukW_XCYFml9f3Gp6-8tb3TstpszWez1gOAAwiHkNrhaO8I-3sbyE4V1Emj0x_EydfPhMg1XdOw3kEB2ztjyrz04gPph3x-DT68jVPs_opPP2JOb4dsWbBIO-Z7dklNl3tkuxrEQO253CfyRr8gzkNrlo80pYCV6TePNzVjoilc3evhhGLkyinScsDLE1MHvqCAXmmGWBqLh4ycnTazOCCT3u24Gzt2coKTMc6XoPOCZaBBn6nU93UESYMfCA1gUKSpdlUhRB62dQj20JCQqVR5LItyzkQRFanm7JDUy9dSHxEKB9wXutApRHIO8V5FYEPOozx3s6DNRJN4lb5kZmnFcbrFs6zqx54k6liijqXRcZNcfcnMDanG2tVBZQb5a2tI8Ppr5I7_KXdBNuLxaCiH_WRwQjbxCRaIeMEpqS_f3vUZoJClOre77BOw2Nn-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstrating+a+new+evaluation+method+on+ReLU+based+Neural+Networks+for+classification+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Tollner%2C+D%C3%A1vid&rft.au=Ziyu%2C+Wang&rft.au=Z%C3%B6ldy%2C+M%C3%A1t%C3%A9&rft.au=T%C3%B6r%C3%B6k%2C+%C3%81rp%C3%A1d&rft.date=2024-09-15&rft.issn=0957-4174&rft.volume=250&rft.spage=123905&rft_id=info:doi/10.1016%2Fj.eswa.2024.123905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_123905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon