Spectrum-irrelevant fine-grained representation for visible–infrared person re-identification
Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous str...
Saved in:
Published in | Computer vision and image understanding Vol. 232; p. 103703 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous structures and the different spectra of visible and infrared images. In this work, we propose the Spectrum-Insensitive Data Augmentation (SIDA) strategy, which effectively alleviates the disturbance in the visible and infrared spectra and forces the network to learn spectrum-irrelevant features. The network also compares samples with both global and local features. We devise a Feature Relation Reasoning (FRR) module to learn discriminative fine-grained representations according to the graph reasoning principle. Compared to the most commonly used uniform partition, our FRR better adopts to the case of VI-ReID, in which human bodies are difficult to align. Furthermore, we design the dual center loss for learning the global feature in order to maintain the intra-modality relations, while learning the cross-modal similarities. Our method achieves better convergence in training. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two visible–infrared cross-modal Re-ID datasets.
•Analyzing the cross-modality discrepancy and studying the data augmentation on spectra information, we propose a Spectrum-Insensitive Data Augmentation (SIDA) strategy.•We develop a Feature Relation Reasoning (FRR) module based on the graph reasoning principle, for extraction and alignment of the fine-grained representation. Through further transferring information among cross-modality samples on the part-level, FRR learns discriminative feature representations.•We present an effective solution for VI-ReID. The experiments demonstrate that our method achieves the state-of-the-art performance on two popular benchmarks of VI-ReID datasets. |
---|---|
AbstractList | Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous structures and the different spectra of visible and infrared images. In this work, we propose the Spectrum-Insensitive Data Augmentation (SIDA) strategy, which effectively alleviates the disturbance in the visible and infrared spectra and forces the network to learn spectrum-irrelevant features. The network also compares samples with both global and local features. We devise a Feature Relation Reasoning (FRR) module to learn discriminative fine-grained representations according to the graph reasoning principle. Compared to the most commonly used uniform partition, our FRR better adopts to the case of VI-ReID, in which human bodies are difficult to align. Furthermore, we design the dual center loss for learning the global feature in order to maintain the intra-modality relations, while learning the cross-modal similarities. Our method achieves better convergence in training. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two visible–infrared cross-modal Re-ID datasets.
•Analyzing the cross-modality discrepancy and studying the data augmentation on spectra information, we propose a Spectrum-Insensitive Data Augmentation (SIDA) strategy.•We develop a Feature Relation Reasoning (FRR) module based on the graph reasoning principle, for extraction and alignment of the fine-grained representation. Through further transferring information among cross-modality samples on the part-level, FRR learns discriminative feature representations.•We present an effective solution for VI-ReID. The experiments demonstrate that our method achieves the state-of-the-art performance on two popular benchmarks of VI-ReID datasets. |
ArticleNumber | 103703 |
Author | Gao, Xin Shen, Jianbing Gong, Jiahao Lam, Kin-Man Zhao, Sanyuan |
Author_xml | – sequence: 1 givenname: Jiahao surname: Gong fullname: Gong, Jiahao organization: School of Computer Science, Beijing Institute of Technology, 100081, PR China – sequence: 2 givenname: Sanyuan surname: Zhao fullname: Zhao, Sanyuan email: zhaosanyuan@bit.edu.cn organization: School of Computer Science, Beijing Institute of Technology, 100081, PR China – sequence: 3 givenname: Kin-Man surname: Lam fullname: Lam, Kin-Man organization: The Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong – sequence: 4 givenname: Xin surname: Gao fullname: Gao, Xin organization: King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 5 givenname: Jianbing surname: Shen fullname: Shen, Jianbing organization: the State Key Laboratory of Internet of Things for Smart City, Department of Computer and Information Science, University of Macau, Macau, PR China |
BookMark | eNp9kM1KxDAURoOM4MzoC7jqC2RMmrSdghsZ_IMBFyq4C2l6Ixk6abnpFNz5Dr6hT2JqXbmY1Q33fifwnQWZ-dYDIZecrTjj-dVuZQZ3WKUsFXEhCiZOyJyzktFUZG-z8V0UVHCZnpFFCDvGOJclnxP13IHp8bCnDhEaGLTvE-s80HfUcdQJQocQwPe6d61PbIvJ4IKrGvj-_HLeosaY6gBDvCJQV8ess8785s_JqdVNgIu_uSSvd7cvmwe6fbp_3NxsqRFS9lSWlstM1EYUlYYMalkVmRXVWlZZasq0hFxqKYwp4hK01jUXUuciL0Re61SKJUmnfw22ISBY1aHba_xQnKlRkdqpUZEaFalJUYTW_yDjppp9LN8cR68nFGKpwQGqYBx4A7XDKFTVrTuG_wCRv4hf |
CitedBy_id | crossref_primary_10_1016_j_cviu_2023_103833 crossref_primary_10_1016_j_bdr_2025_100522 crossref_primary_10_1016_j_patcog_2024_110643 crossref_primary_10_1016_j_engappai_2024_107990 crossref_primary_10_1007_s11042_024_20217_8 crossref_primary_10_1145_3682066 |
Cites_doi | 10.1109/CVPR46437.2021.00157 10.1109/CVPR.2017.360 10.1109/CVPR.2018.00046 10.1109/TMM.2020.3042080 10.1109/ICCV.2017.349 10.1109/CVPR.2014.27 10.1109/CVPR.2018.00110 10.1016/j.jvcir.2019.01.010 10.1145/3474085.3475610 10.1109/CVPR42600.2020.01027 10.1109/CVPR.2018.00813 10.1109/ICCV48922.2021.01331 10.1109/CVPR.2019.00071 10.1109/CVPR42600.2020.01339 10.1109/CVPR.2018.00243 10.1109/ICCV.2017.575 10.1109/TMM.2020.2999180 10.1007/978-3-030-01264-9_25 10.1016/j.neucom.2019.12.100 10.1109/ICCV.2019.00372 10.1109/CVPR.2016.149 10.1007/978-3-030-01225-0_30 10.1109/CVPR.2016.90 10.3390/s17030605 10.1109/CVPR.2019.00588 10.1109/CVPR.2017.782 10.1016/j.patcog.2018.08.015 10.1109/CVPR42600.2020.00904 10.1109/CVPR.2017.103 10.1109/CVPR.2017.357 10.1109/CVPR.2018.00159 10.1109/CVPR.2019.00871 10.1109/CVPR.2019.00052 10.1109/CVPR46437.2021.00065 10.1109/ICCV.2015.513 10.1109/ICCV.2015.133 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. |
Copyright_xml | – notice: 2023 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cviu.2023.103703 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1090-235X |
ExternalDocumentID | 10_1016_j_cviu_2023_103703 S1077314223000838 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HF~ HVGLF HZ~ IHE J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TN5 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SST |
ID | FETCH-LOGICAL-c344t-49f1453dc37bae5ed4b75f3b84b52c929e64a43cc7f3beaaad134a636736da243 |
IEDL.DBID | .~1 |
ISSN | 1077-3142 |
IngestDate | Tue Jul 01 04:32:09 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Fri Feb 23 02:34:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 65D05 65D17 Visible–infrared person re-identification 41A05 41A10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-49f1453dc37bae5ed4b75f3b84b52c929e64a43cc7f3beaaad134a636736da243 |
OpenAccessLink | http://hdl.handle.net/10754/691354 |
ParticipantIDs | crossref_primary_10_1016_j_cviu_2023_103703 crossref_citationtrail_10_1016_j_cviu_2023_103703 elsevier_sciencedirect_doi_10_1016_j_cviu_2023_103703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computer vision and image understanding |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yang, Yan, Lu, Jia, Xie, Gao (b38) 2019; 86 Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q., 2017. Person re-identification in the wild. In: IEEE CVPR. pp. 1367–1376. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J., 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: IEEE CVPR. pp. 994–1003. Karanam, S., Li, Y., Radke, R.J., 2015. Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: IEEE ICCV. Li, Wei, Hong, Gong (b19) 2020 Zhao, L., Li, X., Zhuang, Y., Wang, J., 2017a. Deeply-Learned Part-Aligned Representations for Person Re-Identification. In: IEEE ICCV. Liu, Tan, Zhou (b22) 2020; 23 Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C., 2020. Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification. In: IEEE CVPR. pp. 10257–10266. He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE CVPR. pp. 770–778. Zheng, F., Deng, C., Sun, X., Jiang, X., Guo, X., Yu, Z., Huang, F., Ji, R., 2019a. Pyramidal person re-identification via multi-loss dynamic training. In: IEEE CVPR. pp. 8514–8522. Ye, Wang, Lan, Yuen (b45) 2018; vol. 1 Fan, Luo, Zhang, Jiang (b8) 2020 Wu, A., Zheng, W.-S., Yu, H.-X., Gong, S., Lai, J., 2017. Rgb-infrared cross-modality person re-identification. In: IEEE ICCV. pp. 5380–5389. Zheng, K., Lan, C., Zeng, W., Liu, J., Zhang, Z., Zha, Z.-J., 2021. Pose-Guided Feature Learning with Knowledge Distillation for Occluded Person Re-Identification. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 4537–4545. Wang, X., Girshick, R., Gupta, A., He, K., 2018b. Non-local neural networks. In: IEEE CVPR. pp. 7794–7803. Feng, Lai, Xie (b9) 2019; 29 Ye, Lan, Leng (b39) 2019 Luo, Jiang, Gu, Liu, Liao, Lai, Gu (b24) 2019 Nguyen, Hong, Kim, Park (b25) 2017; 17 Li, W., Zhao, R., Xiao, T., Wang, X., 2014. Deepreid: Deep filter pairing neural network for person re-identification. In: IEEE CVPR. pp. 152–159. Fan, Jiang, Luo, Fei (b7) 2019; 60 Ye, Lan, Wang, Yuen (b41) 2019; 15 Zhu, Yang, Wang, Zhao, Hu, Tao (b56) 2020; 386 Xiao, T., Li, S., Wang, B., Lin, L., Wang, X., 2017. Joint detection and identification feature learning for person search. In: IEEE CVPR. pp. 3415–3424. Wang, Yang, Cheng, Chang, Liang, Hou (b32) 2020 Wang, Y., Chen, Z., Wu, F., Wang, G., 2018a. Person re-identification with cascaded pairwise convolutions. In: IEEE CVPR. pp. 1470–1478. Zheng, M., Karanam, S., Wu, Z., Radke, R.J., 2019b. Re-identification with consistent attentive siamese networks. In: IEEE CVPR. pp. 5735–5744. Wang, Zhao, Su, Zhao, Wang, Yang, Li (b34) 2020; 23 Li, S., Bak, S., Carr, P., Wang, X., 2018a. Diversity regularized spatiotemporal attention for video-based person re-identification. In: IEEE CVPR. Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y., 2019. Graph-based global reasoning networks. In: IEEE CVPR. pp. 433–442. Zhao, H., Tian, M., Sun, S., Shao, J., Yan, J., Yi, S., Wang, X., Tang, X., 2017b. Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: IEEE CVPR. pp. 1077–1085. Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z., 2019b. Rgb-infrared cross-modality person re-identification via joint pixel and feature alignment. In: IEEE ICCV. pp. 3623–3632. Zhong, Zheng, Kang, Li, Yang (b54) 2020 Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: NeurIPS. pp. 1097–1105. He, Liu (b10) 2020 Ye, Shen, Lin, Xiang, Shao, Hoi (b44) 2021 Tian, X., Zhang, Z., Lin, S., Qu, Y., Xie, Y., Ma, L., 2021. Farewell to mutual information: Variational distillation for cross-modal person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1522–1531. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N., 2016. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: IEEE CVPR. pp. 1335–1344. Jia, Zhai, Lu, Ma, Zhang (b13) 2020 Ye, M., Ruan, W., Du, B., Shou, M.Z., 2021a. Channel Augmented Joint Learning for Visible-Infrared Recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13567–13576. Li, W., Zhu, X., Gong, S., 2018b. Harmonious attention network for person re-identification. In: IEEE CVPR. pp. 2285–2294. Kansal, Subramanyam, Wang, Satoh (b14) 2020 Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S., 2018. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV. pp. 480–496. Zhai, Y., Lu, S., Ye, Q., Shan, X., Chen, J., Ji, R., Tian, Y., 2020. AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-Identification. In: IEEE CVPR. Ye, Shen, Crandall, Shao, Luo (b43) 2020 Ye, Lan, Li, Yuen (b40) 2018 Hermans, Beyer, Leibe (b12) 2017 Dai, Ji, Wang, Wu, Huang (b5) 2018; vol. 1 Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z., 2021. Neural feature search for rgb-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 587–597. Wen, Zhang, Li, Qiao (b35) 2016 Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q., 2015. Scalable person re-identification: A benchmark. In: IEEE ICCV. pp. 1116–1124. Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.-Y., Satoh, S., 2019a. Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: IEEE CVPR. pp. 618–626. Zhu, Guo, Zhang, Wang, Huang, Qiao, Liu, Wang, Tang (b55) 2021 Li, D., Chen, X., Zhang, Z., Huang, K., 2017. Learning deep context-aware features over body and latent parts for person re-identification. In: IEEE CVPR. pp. 384–393. Lu, Y., Wu, Y., Liu, B., Zhang, T., Li, B., Chu, Q., Yu, N., 2020. Cross-modality Person re-identification with Shared-Specific Feature Transfer. In: IEEE CVPR. pp. 13379–13389. Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K., 2018. Part-aligned bilinear representations for person re-identification. In: ECCV. pp. 402–419. 10.1016/j.cviu.2023.103703_b28 10.1016/j.cviu.2023.103703_b27 10.1016/j.cviu.2023.103703_b26 10.1016/j.cviu.2023.103703_b23 Nguyen (10.1016/j.cviu.2023.103703_b25) 2017; 17 10.1016/j.cviu.2023.103703_b21 10.1016/j.cviu.2023.103703_b20 Yang (10.1016/j.cviu.2023.103703_b38) 2019; 86 Zhong (10.1016/j.cviu.2023.103703_b54) 2020 Ye (10.1016/j.cviu.2023.103703_b43) 2020 Kansal (10.1016/j.cviu.2023.103703_b14) 2020 Liu (10.1016/j.cviu.2023.103703_b22) 2020; 23 10.1016/j.cviu.2023.103703_b29 10.1016/j.cviu.2023.103703_b37 Zhu (10.1016/j.cviu.2023.103703_b55) 2021 10.1016/j.cviu.2023.103703_b36 Ye (10.1016/j.cviu.2023.103703_b39) 2019 10.1016/j.cviu.2023.103703_b33 10.1016/j.cviu.2023.103703_b31 10.1016/j.cviu.2023.103703_b30 Jia (10.1016/j.cviu.2023.103703_b13) 2020 Luo (10.1016/j.cviu.2023.103703_b24) 2019 Feng (10.1016/j.cviu.2023.103703_b9) 2019; 29 Ye (10.1016/j.cviu.2023.103703_b44) 2021 Fan (10.1016/j.cviu.2023.103703_b8) 2020 10.1016/j.cviu.2023.103703_b49 10.1016/j.cviu.2023.103703_b48 Dai (10.1016/j.cviu.2023.103703_b5) 2018; vol. 1 10.1016/j.cviu.2023.103703_b47 10.1016/j.cviu.2023.103703_b46 10.1016/j.cviu.2023.103703_b42 Ye (10.1016/j.cviu.2023.103703_b41) 2019; 15 Fan (10.1016/j.cviu.2023.103703_b7) 2019; 60 He (10.1016/j.cviu.2023.103703_b10) 2020 Hermans (10.1016/j.cviu.2023.103703_b12) 2017 10.1016/j.cviu.2023.103703_b17 Wang (10.1016/j.cviu.2023.103703_b32) 2020 10.1016/j.cviu.2023.103703_b16 10.1016/j.cviu.2023.103703_b15 Zhu (10.1016/j.cviu.2023.103703_b56) 2020; 386 10.1016/j.cviu.2023.103703_b11 Wen (10.1016/j.cviu.2023.103703_b35) 2016 Li (10.1016/j.cviu.2023.103703_b19) 2020 10.1016/j.cviu.2023.103703_b53 10.1016/j.cviu.2023.103703_b52 10.1016/j.cviu.2023.103703_b51 10.1016/j.cviu.2023.103703_b50 10.1016/j.cviu.2023.103703_b3 10.1016/j.cviu.2023.103703_b4 10.1016/j.cviu.2023.103703_b1 10.1016/j.cviu.2023.103703_b2 Ye (10.1016/j.cviu.2023.103703_b40) 2018 Wang (10.1016/j.cviu.2023.103703_b34) 2020; 23 Ye (10.1016/j.cviu.2023.103703_b45) 2018; vol. 1 10.1016/j.cviu.2023.103703_b6 10.1016/j.cviu.2023.103703_b18 |
References_xml | – reference: Wang, Y., Chen, Z., Wu, F., Wang, G., 2018a. Person re-identification with cascaded pairwise convolutions. In: IEEE CVPR. pp. 1470–1478. – reference: Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.-Y., Satoh, S., 2019a. Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: IEEE CVPR. pp. 618–626. – volume: 23 start-page: 4414 year: 2020 end-page: 4425 ident: b22 article-title: Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification publication-title: IEEE Trans. Multimed. – year: 2021 ident: b55 article-title: Aaformer: Auto-aligned transformer for person re-identification – reference: Tian, X., Zhang, Z., Lin, S., Qu, Y., Xie, Y., Ma, L., 2021. Farewell to mutual information: Variational distillation for cross-modal person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1522–1531. – reference: Zhao, L., Li, X., Zhuang, Y., Wang, J., 2017a. Deeply-Learned Part-Aligned Representations for Person Re-Identification. In: IEEE ICCV. – start-page: 4610 year: 2020 end-page: 4617 ident: b19 article-title: Infrared-visible cross-modal person re-identification with an X modality publication-title: AAAI – year: 2020 ident: b8 article-title: Cross-spectrum dual-subspace pairing for RGB-infrared cross-modality person re-identification – volume: vol. 1 start-page: 2 year: 2018 ident: b45 article-title: Visible thermal person re-identification via dual-constrained top-ranking publication-title: IJCAI – volume: 23 start-page: 1474 year: 2020 end-page: 1488 ident: b34 article-title: Deep multi-patch matching network for visible thermal person re-identification publication-title: IEEE Trans. Multimed. – volume: 60 start-page: 51 year: 2019 end-page: 58 ident: b7 article-title: Spherereid: Deep hypersphere manifold embedding for person re-identification publication-title: J. Vis. Commun. Image Represent. – reference: Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K., 2018. Part-aligned bilinear representations for person re-identification. In: ECCV. pp. 402–419. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE CVPR. pp. 770–778. – reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: NeurIPS. pp. 1097–1105. – start-page: 499 year: 2016 end-page: 515 ident: b35 article-title: A discriminative feature learning approach for deep face recognition publication-title: ECCV – volume: 17 start-page: 605 year: 2017 ident: b25 article-title: Person recognition system based on a combination of body images from visible light and thermal cameras publication-title: Sensors – start-page: 13001 year: 2020 end-page: 13008 ident: b54 article-title: Random erasing data augmentation publication-title: AAAI – reference: Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J., 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: IEEE CVPR. pp. 994–1003. – year: 2020 ident: b32 article-title: Cross-modality paired-images generation for RGB-infrared person re-identification – year: 2020 ident: b43 article-title: Dynamic dual-attentive aggregation learning for visible-infrared person re-identification – reference: Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S., 2018. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV. pp. 480–496. – reference: Wang, X., Girshick, R., Gupta, A., He, K., 2018b. Non-local neural networks. In: IEEE CVPR. pp. 7794–7803. – reference: Zheng, F., Deng, C., Sun, X., Jiang, X., Guo, X., Yu, Z., Huang, F., Ji, R., 2019a. Pyramidal person re-identification via multi-loss dynamic training. In: IEEE CVPR. pp. 8514–8522. – reference: Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z., 2019b. Rgb-infrared cross-modality person re-identification via joint pixel and feature alignment. In: IEEE ICCV. pp. 3623–3632. – reference: Zheng, M., Karanam, S., Wu, Z., Radke, R.J., 2019b. Re-identification with consistent attentive siamese networks. In: IEEE CVPR. pp. 5735–5744. – year: 2019 ident: b24 article-title: A strong baseline and batch normalization neck for deep person re-identification publication-title: IEEE TMM – year: 2018 ident: b40 article-title: Hierarchical discriminative learning for visible thermal person re-identification publication-title: AAAI – reference: Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q., 2017. Person re-identification in the wild. In: IEEE CVPR. pp. 1367–1376. – year: 2020 ident: b13 article-title: A similarity inference metric for RGB-infrared cross-modality person re-identification – reference: Wu, A., Zheng, W.-S., Yu, H.-X., Gong, S., Lai, J., 2017. Rgb-infrared cross-modality person re-identification. In: IEEE ICCV. pp. 5380–5389. – year: 2017 ident: b12 article-title: In defense of the triplet loss for person re-identification – reference: Li, S., Bak, S., Carr, P., Wang, X., 2018a. Diversity regularized spatiotemporal attention for video-based person re-identification. In: IEEE CVPR. – reference: Li, W., Zhu, X., Gong, S., 2018b. Harmonious attention network for person re-identification. In: IEEE CVPR. pp. 2285–2294. – reference: Xiao, T., Li, S., Wang, B., Lin, L., Wang, X., 2017. Joint detection and identification feature learning for person search. In: IEEE CVPR. pp. 3415–3424. – reference: Ye, M., Ruan, W., Du, B., Shou, M.Z., 2021a. Channel Augmented Joint Learning for Visible-Infrared Recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13567–13576. – reference: Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N., 2016. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: IEEE CVPR. pp. 1335–1344. – reference: Karanam, S., Li, Y., Radke, R.J., 2015. Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: IEEE ICCV. – reference: Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C., 2020. Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification. In: IEEE CVPR. pp. 10257–10266. – volume: 15 start-page: 407 year: 2019 end-page: 419 ident: b41 article-title: Bi-directional center-constrained top-ranking for visible thermal person re-identification publication-title: IEEE TIFS – volume: 86 start-page: 143 year: 2019 end-page: 155 ident: b38 article-title: Attention driven person re-identification publication-title: Pattern Recognit. – reference: Zheng, K., Lan, C., Zeng, W., Liu, J., Zhang, Z., Zha, Z.-J., 2021. Pose-Guided Feature Learning with Knowledge Distillation for Occluded Person Re-Identification. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 4537–4545. – start-page: 357 year: 2020 end-page: 373 ident: b10 article-title: Guided saliency feature learning for person re-identification in crowded scenes publication-title: European Conference on Computer Vision – reference: Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y., 2019. Graph-based global reasoning networks. In: IEEE CVPR. pp. 433–442. – volume: vol. 1 start-page: 2 year: 2018 ident: b5 article-title: Cross-modality person re-identification with generative adversarial training publication-title: IJCAI – year: 2020 ident: b14 article-title: SDL: Spectrum-disentangled representation learning for visible-infrared person re-identification publication-title: IEEE TCSVT – reference: Lu, Y., Wu, Y., Liu, B., Zhang, T., Li, B., Chu, Q., Yu, N., 2020. Cross-modality Person re-identification with Shared-Specific Feature Transfer. In: IEEE CVPR. pp. 13379–13389. – reference: Li, W., Zhao, R., Xiao, T., Wang, X., 2014. Deepreid: Deep filter pairing neural network for person re-identification. In: IEEE CVPR. pp. 152–159. – start-page: 347 year: 2019 end-page: 355 ident: b39 article-title: Modality-aware collaborative learning for visible thermal person re-identification publication-title: ACM MM – volume: 386 start-page: 97 year: 2020 end-page: 109 ident: b56 article-title: Hetero-center loss for cross-modality person re-identification publication-title: Neurocomputing – reference: Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z., 2021. Neural feature search for rgb-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 587–597. – reference: Zhai, Y., Lu, S., Ye, Q., Shan, X., Chen, J., Ji, R., Tian, Y., 2020. AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-Identification. In: IEEE CVPR. – reference: Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q., 2015. Scalable person re-identification: A benchmark. In: IEEE ICCV. pp. 1116–1124. – volume: 29 start-page: 579 year: 2019 end-page: 590 ident: b9 article-title: Learning modality-specific representations for visible-infrared person re-identification publication-title: IEEE TIP – reference: Li, D., Chen, X., Zhang, Z., Huang, K., 2017. Learning deep context-aware features over body and latent parts for person re-identification. In: IEEE CVPR. pp. 384–393. – year: 2021 ident: b44 article-title: Deep learning for person re-identification: A survey and outlook publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Zhao, H., Tian, M., Sun, S., Shao, J., Yan, J., Yi, S., Wang, X., Tang, X., 2017b. Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: IEEE CVPR. pp. 1077–1085. – year: 2020 ident: 10.1016/j.cviu.2023.103703_b43 – volume: vol. 1 start-page: 2 year: 2018 ident: 10.1016/j.cviu.2023.103703_b45 article-title: Visible thermal person re-identification via dual-constrained top-ranking – ident: 10.1016/j.cviu.2023.103703_b28 doi: 10.1109/CVPR46437.2021.00157 – ident: 10.1016/j.cviu.2023.103703_b37 doi: 10.1109/CVPR.2017.360 – year: 2017 ident: 10.1016/j.cviu.2023.103703_b12 – year: 2020 ident: 10.1016/j.cviu.2023.103703_b8 – year: 2020 ident: 10.1016/j.cviu.2023.103703_b14 article-title: SDL: Spectrum-disentangled representation learning for visible-infrared person re-identification publication-title: IEEE TCSVT – ident: 10.1016/j.cviu.2023.103703_b17 doi: 10.1109/CVPR.2018.00046 – volume: 23 start-page: 4414 year: 2020 ident: 10.1016/j.cviu.2023.103703_b22 article-title: Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.3042080 – ident: 10.1016/j.cviu.2023.103703_b47 doi: 10.1109/ICCV.2017.349 – ident: 10.1016/j.cviu.2023.103703_b16 – ident: 10.1016/j.cviu.2023.103703_b20 doi: 10.1109/CVPR.2014.27 – ident: 10.1016/j.cviu.2023.103703_b6 doi: 10.1109/CVPR.2018.00110 – volume: 60 start-page: 51 year: 2019 ident: 10.1016/j.cviu.2023.103703_b7 article-title: Spherereid: Deep hypersphere manifold embedding for person re-identification publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.01.010 – ident: 10.1016/j.cviu.2023.103703_b51 doi: 10.1145/3474085.3475610 – start-page: 357 year: 2020 ident: 10.1016/j.cviu.2023.103703_b10 article-title: Guided saliency feature learning for person re-identification in crowded scenes – ident: 10.1016/j.cviu.2023.103703_b4 doi: 10.1109/CVPR42600.2020.01027 – start-page: 4610 year: 2020 ident: 10.1016/j.cviu.2023.103703_b19 article-title: Infrared-visible cross-modal person re-identification with an X modality – year: 2021 ident: 10.1016/j.cviu.2023.103703_b44 article-title: Deep learning for person re-identification: A survey and outlook publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.cviu.2023.103703_b30 doi: 10.1109/CVPR.2018.00813 – start-page: 13001 year: 2020 ident: 10.1016/j.cviu.2023.103703_b54 article-title: Random erasing data augmentation – year: 2018 ident: 10.1016/j.cviu.2023.103703_b40 article-title: Hierarchical discriminative learning for visible thermal person re-identification – ident: 10.1016/j.cviu.2023.103703_b42 doi: 10.1109/ICCV48922.2021.01331 – ident: 10.1016/j.cviu.2023.103703_b31 doi: 10.1109/CVPR.2019.00071 – year: 2021 ident: 10.1016/j.cviu.2023.103703_b55 – ident: 10.1016/j.cviu.2023.103703_b23 doi: 10.1109/CVPR42600.2020.01339 – start-page: 347 year: 2019 ident: 10.1016/j.cviu.2023.103703_b39 article-title: Modality-aware collaborative learning for visible thermal person re-identification – ident: 10.1016/j.cviu.2023.103703_b21 doi: 10.1109/CVPR.2018.00243 – ident: 10.1016/j.cviu.2023.103703_b36 doi: 10.1109/ICCV.2017.575 – volume: 23 start-page: 1474 year: 2020 ident: 10.1016/j.cviu.2023.103703_b34 article-title: Deep multi-patch matching network for visible thermal person re-identification publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2020.2999180 – volume: vol. 1 start-page: 2 year: 2018 ident: 10.1016/j.cviu.2023.103703_b5 article-title: Cross-modality person re-identification with generative adversarial training – volume: 29 start-page: 579 year: 2019 ident: 10.1016/j.cviu.2023.103703_b9 article-title: Learning modality-specific representations for visible-infrared person re-identification publication-title: IEEE TIP – ident: 10.1016/j.cviu.2023.103703_b26 doi: 10.1007/978-3-030-01264-9_25 – volume: 386 start-page: 97 year: 2020 ident: 10.1016/j.cviu.2023.103703_b56 article-title: Hetero-center loss for cross-modality person re-identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.100 – ident: 10.1016/j.cviu.2023.103703_b33 doi: 10.1109/ICCV.2019.00372 – ident: 10.1016/j.cviu.2023.103703_b3 doi: 10.1109/CVPR.2016.149 – year: 2020 ident: 10.1016/j.cviu.2023.103703_b32 – ident: 10.1016/j.cviu.2023.103703_b27 doi: 10.1007/978-3-030-01225-0_30 – ident: 10.1016/j.cviu.2023.103703_b11 doi: 10.1109/CVPR.2016.90 – volume: 17 start-page: 605 issue: 3 year: 2017 ident: 10.1016/j.cviu.2023.103703_b25 article-title: Person recognition system based on a combination of body images from visible light and thermal cameras publication-title: Sensors doi: 10.3390/s17030605 – ident: 10.1016/j.cviu.2023.103703_b50 doi: 10.1109/CVPR.2019.00588 – ident: 10.1016/j.cviu.2023.103703_b18 doi: 10.1109/CVPR.2017.782 – volume: 15 start-page: 407 year: 2019 ident: 10.1016/j.cviu.2023.103703_b41 article-title: Bi-directional center-constrained top-ranking for visible thermal person re-identification publication-title: IEEE TIFS – volume: 86 start-page: 143 year: 2019 ident: 10.1016/j.cviu.2023.103703_b38 article-title: Attention driven person re-identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.08.015 – ident: 10.1016/j.cviu.2023.103703_b46 doi: 10.1109/CVPR42600.2020.00904 – ident: 10.1016/j.cviu.2023.103703_b48 doi: 10.1109/CVPR.2017.103 – ident: 10.1016/j.cviu.2023.103703_b53 doi: 10.1109/CVPR.2017.357 – start-page: 499 year: 2016 ident: 10.1016/j.cviu.2023.103703_b35 article-title: A discriminative feature learning approach for deep face recognition – ident: 10.1016/j.cviu.2023.103703_b29 doi: 10.1109/CVPR.2018.00159 – ident: 10.1016/j.cviu.2023.103703_b49 doi: 10.1109/CVPR.2019.00871 – ident: 10.1016/j.cviu.2023.103703_b1 doi: 10.1109/CVPR.2019.00052 – ident: 10.1016/j.cviu.2023.103703_b2 doi: 10.1109/CVPR46437.2021.00065 – ident: 10.1016/j.cviu.2023.103703_b15 doi: 10.1109/ICCV.2015.513 – ident: 10.1016/j.cviu.2023.103703_b52 doi: 10.1109/ICCV.2015.133 – year: 2020 ident: 10.1016/j.cviu.2023.103703_b13 – year: 2019 ident: 10.1016/j.cviu.2023.103703_b24 article-title: A strong baseline and batch normalization neck for deep person re-identification publication-title: IEEE TMM |
SSID | ssj0011491 |
Score | 2.467713 |
Snippet | Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103703 |
SubjectTerms | Visible–infrared person re-identification |
Title | Spectrum-irrelevant fine-grained representation for visible–infrared person re-identification |
URI | https://dx.doi.org/10.1016/j.cviu.2023.103703 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaqssDATwFRfqoMbMgtqZ2YjFVFVUB0gUrdIttxUFAJVUkZEe_AG_Ik3DlOVRg6MOZyF0W-i--LdXcfIee-MSn2e1LpK065VgFVMuLUh2xuQgEAOsWjgftROBzz20kwqZF-1QuDZZVu7y_3dLtbO0nHrWZnlmWdB_hxEQyPMJgFEtjwy7nAKG9_LMs8AO5b1jxUpqjtGmfKGi_9ni3aSCBue88r4qy_yWkl4Qx2ybZDil6vfJk9UjN5g-w41Oi5b_INRBUxQyVrkK2VKYP7JEaO-WK-eKHZHClSADsXXgr36RPyQ8DD7GTLqgsp9wDHethzrqbm-_MLQnCOVerezIJzUKZZ4mqMrP4BGQ-uH_tD6ngVqGacF5RHqc8DlmgmlDSBSbgS4BJ1xVXQ1YCXTMglZ1oLEBopZeIzLkOGJWCJ7HJ2SOr5a26OiMeSCAekXfoqMmCjI4AHOpQiAVyjhRBN4lcLGms3dBy5L6ZxVV32HKMTYnRCXDqhSS6WNrNy5MZa7aDyU_wrcGLICWvsjv9pd0I28aqs2D0ldXCfOQNcUqiWDbwW2ejd3A1HPzsD5B8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgADHwVE-czAhtwS7MTNiCpQgcICSN0s23FREJSqtIyI_8A_5JdwlzioMHRgte-iyGf7XqJ39wAOQ-f6VO_JdGgEE9ZEzOhEsBCzuYslAug-_Rq4vok79-KyF_Uq0C5rYYhW6e_-4k7Pb2s_0vSr2RxmWfMWP1wkp18YPAcSrTmYF3h8Scag8f7D80C8n8vmkTUjc185U5C87Fs2aZCCeF58Xipn_c1OUxnnfBWWPVQMTou3WYOKG9RgxcPGwB_KVxwqlRnKsRosTbUZXAdFIvPj0eSZZSPSSEHwPA76OM8eSCACH5a3tizLkAYBAtmAis7Nk_v6-MQ9OCKaejDM0Tkasyz1JKPcfgPuz8_u2h3mhRWY5UKMmUj6IS5Vark02kUuFUZiTExLmOjEImBysdCCWytx0Gmt05ALHXPigKX6RPBNqA5eBm4LAp4m1CHtODSJQx-bID6wsZYpAhsrpaxDWC6osr7rOIlfPKmSXvaoKAiKgqCKINTh6MdnWPTcmGkdlXFSv3aOwqQww2_7n34HsNC5u-6q7sXN1Q4s0kxB392FKobS7SFIGZv9fBN-A4RC5a0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum-irrelevant+fine-grained+representation+for+visible%E2%80%93infrared+person+re-identification&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Gong%2C+Jiahao&rft.au=Zhao%2C+Sanyuan&rft.au=Lam%2C+Kin-Man&rft.au=Gao%2C+Xin&rft.date=2023-07-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=232&rft_id=info:doi/10.1016%2Fj.cviu.2023.103703&rft.externalDocID=S1077314223000838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon |