Spectrum-irrelevant fine-grained representation for visible–infrared person re-identification

Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous str...

Full description

Saved in:
Bibliographic Details
Published inComputer vision and image understanding Vol. 232; p. 103703
Main Authors Gong, Jiahao, Zhao, Sanyuan, Lam, Kin-Man, Gao, Xin, Shen, Jianbing
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous structures and the different spectra of visible and infrared images. In this work, we propose the Spectrum-Insensitive Data Augmentation (SIDA) strategy, which effectively alleviates the disturbance in the visible and infrared spectra and forces the network to learn spectrum-irrelevant features. The network also compares samples with both global and local features. We devise a Feature Relation Reasoning (FRR) module to learn discriminative fine-grained representations according to the graph reasoning principle. Compared to the most commonly used uniform partition, our FRR better adopts to the case of VI-ReID, in which human bodies are difficult to align. Furthermore, we design the dual center loss for learning the global feature in order to maintain the intra-modality relations, while learning the cross-modal similarities. Our method achieves better convergence in training. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two visible–infrared cross-modal Re-ID datasets. •Analyzing the cross-modality discrepancy and studying the data augmentation on spectra information, we propose a Spectrum-Insensitive Data Augmentation (SIDA) strategy.•We develop a Feature Relation Reasoning (FRR) module based on the graph reasoning principle, for extraction and alignment of the fine-grained representation. Through further transferring information among cross-modality samples on the part-level, FRR learns discriminative feature representations.•We present an effective solution for VI-ReID. The experiments demonstrate that our method achieves the state-of-the-art performance on two popular benchmarks of VI-ReID datasets.
AbstractList Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible person re-identification, it is more challenging due to the large cross-modal discrepancy. Existing VI-ReID methods suffer from heterogeneous structures and the different spectra of visible and infrared images. In this work, we propose the Spectrum-Insensitive Data Augmentation (SIDA) strategy, which effectively alleviates the disturbance in the visible and infrared spectra and forces the network to learn spectrum-irrelevant features. The network also compares samples with both global and local features. We devise a Feature Relation Reasoning (FRR) module to learn discriminative fine-grained representations according to the graph reasoning principle. Compared to the most commonly used uniform partition, our FRR better adopts to the case of VI-ReID, in which human bodies are difficult to align. Furthermore, we design the dual center loss for learning the global feature in order to maintain the intra-modality relations, while learning the cross-modal similarities. Our method achieves better convergence in training. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two visible–infrared cross-modal Re-ID datasets. •Analyzing the cross-modality discrepancy and studying the data augmentation on spectra information, we propose a Spectrum-Insensitive Data Augmentation (SIDA) strategy.•We develop a Feature Relation Reasoning (FRR) module based on the graph reasoning principle, for extraction and alignment of the fine-grained representation. Through further transferring information among cross-modality samples on the part-level, FRR learns discriminative feature representations.•We present an effective solution for VI-ReID. The experiments demonstrate that our method achieves the state-of-the-art performance on two popular benchmarks of VI-ReID datasets.
ArticleNumber 103703
Author Gao, Xin
Shen, Jianbing
Gong, Jiahao
Lam, Kin-Man
Zhao, Sanyuan
Author_xml – sequence: 1
  givenname: Jiahao
  surname: Gong
  fullname: Gong, Jiahao
  organization: School of Computer Science, Beijing Institute of Technology, 100081, PR China
– sequence: 2
  givenname: Sanyuan
  surname: Zhao
  fullname: Zhao, Sanyuan
  email: zhaosanyuan@bit.edu.cn
  organization: School of Computer Science, Beijing Institute of Technology, 100081, PR China
– sequence: 3
  givenname: Kin-Man
  surname: Lam
  fullname: Lam, Kin-Man
  organization: The Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
– sequence: 4
  givenname: Xin
  surname: Gao
  fullname: Gao, Xin
  organization: King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 5
  givenname: Jianbing
  surname: Shen
  fullname: Shen, Jianbing
  organization: the State Key Laboratory of Internet of Things for Smart City, Department of Computer and Information Science, University of Macau, Macau, PR China
BookMark eNp9kM1KxDAURoOM4MzoC7jqC2RMmrSdghsZ_IMBFyq4C2l6Ixk6abnpFNz5Dr6hT2JqXbmY1Q33fifwnQWZ-dYDIZecrTjj-dVuZQZ3WKUsFXEhCiZOyJyzktFUZG-z8V0UVHCZnpFFCDvGOJclnxP13IHp8bCnDhEaGLTvE-s80HfUcdQJQocQwPe6d61PbIvJ4IKrGvj-_HLeosaY6gBDvCJQV8ess8785s_JqdVNgIu_uSSvd7cvmwe6fbp_3NxsqRFS9lSWlstM1EYUlYYMalkVmRXVWlZZasq0hFxqKYwp4hK01jUXUuciL0Re61SKJUmnfw22ISBY1aHba_xQnKlRkdqpUZEaFalJUYTW_yDjppp9LN8cR68nFGKpwQGqYBx4A7XDKFTVrTuG_wCRv4hf
CitedBy_id crossref_primary_10_1016_j_cviu_2023_103833
crossref_primary_10_1016_j_bdr_2025_100522
crossref_primary_10_1016_j_patcog_2024_110643
crossref_primary_10_1016_j_engappai_2024_107990
crossref_primary_10_1007_s11042_024_20217_8
crossref_primary_10_1145_3682066
Cites_doi 10.1109/CVPR46437.2021.00157
10.1109/CVPR.2017.360
10.1109/CVPR.2018.00046
10.1109/TMM.2020.3042080
10.1109/ICCV.2017.349
10.1109/CVPR.2014.27
10.1109/CVPR.2018.00110
10.1016/j.jvcir.2019.01.010
10.1145/3474085.3475610
10.1109/CVPR42600.2020.01027
10.1109/CVPR.2018.00813
10.1109/ICCV48922.2021.01331
10.1109/CVPR.2019.00071
10.1109/CVPR42600.2020.01339
10.1109/CVPR.2018.00243
10.1109/ICCV.2017.575
10.1109/TMM.2020.2999180
10.1007/978-3-030-01264-9_25
10.1016/j.neucom.2019.12.100
10.1109/ICCV.2019.00372
10.1109/CVPR.2016.149
10.1007/978-3-030-01225-0_30
10.1109/CVPR.2016.90
10.3390/s17030605
10.1109/CVPR.2019.00588
10.1109/CVPR.2017.782
10.1016/j.patcog.2018.08.015
10.1109/CVPR42600.2020.00904
10.1109/CVPR.2017.103
10.1109/CVPR.2017.357
10.1109/CVPR.2018.00159
10.1109/CVPR.2019.00871
10.1109/CVPR.2019.00052
10.1109/CVPR46437.2021.00065
10.1109/ICCV.2015.513
10.1109/ICCV.2015.133
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.cviu.2023.103703
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1090-235X
ExternalDocumentID 10_1016_j_cviu_2023_103703
S1077314223000838
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HF~
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SST
ID FETCH-LOGICAL-c344t-49f1453dc37bae5ed4b75f3b84b52c929e64a43cc7f3beaaad134a636736da243
IEDL.DBID .~1
ISSN 1077-3142
IngestDate Tue Jul 01 04:32:09 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Fri Feb 23 02:34:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 65D05
65D17
Visible–infrared person re-identification
41A05
41A10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-49f1453dc37bae5ed4b75f3b84b52c929e64a43cc7f3beaaad134a636736da243
OpenAccessLink http://hdl.handle.net/10754/691354
ParticipantIDs crossref_primary_10_1016_j_cviu_2023_103703
crossref_citationtrail_10_1016_j_cviu_2023_103703
elsevier_sciencedirect_doi_10_1016_j_cviu_2023_103703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Computer vision and image understanding
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yang, Yan, Lu, Jia, Xie, Gao (b38) 2019; 86
Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q., 2017. Person re-identification in the wild. In: IEEE CVPR. pp. 1367–1376.
Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J., 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: IEEE CVPR. pp. 994–1003.
Karanam, S., Li, Y., Radke, R.J., 2015. Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: IEEE ICCV.
Li, Wei, Hong, Gong (b19) 2020
Zhao, L., Li, X., Zhuang, Y., Wang, J., 2017a. Deeply-Learned Part-Aligned Representations for Person Re-Identification. In: IEEE ICCV.
Liu, Tan, Zhou (b22) 2020; 23
Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C., 2020. Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification. In: IEEE CVPR. pp. 10257–10266.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE CVPR. pp. 770–778.
Zheng, F., Deng, C., Sun, X., Jiang, X., Guo, X., Yu, Z., Huang, F., Ji, R., 2019a. Pyramidal person re-identification via multi-loss dynamic training. In: IEEE CVPR. pp. 8514–8522.
Ye, Wang, Lan, Yuen (b45) 2018; vol. 1
Fan, Luo, Zhang, Jiang (b8) 2020
Wu, A., Zheng, W.-S., Yu, H.-X., Gong, S., Lai, J., 2017. Rgb-infrared cross-modality person re-identification. In: IEEE ICCV. pp. 5380–5389.
Zheng, K., Lan, C., Zeng, W., Liu, J., Zhang, Z., Zha, Z.-J., 2021. Pose-Guided Feature Learning with Knowledge Distillation for Occluded Person Re-Identification. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 4537–4545.
Wang, X., Girshick, R., Gupta, A., He, K., 2018b. Non-local neural networks. In: IEEE CVPR. pp. 7794–7803.
Feng, Lai, Xie (b9) 2019; 29
Ye, Lan, Leng (b39) 2019
Luo, Jiang, Gu, Liu, Liao, Lai, Gu (b24) 2019
Nguyen, Hong, Kim, Park (b25) 2017; 17
Li, W., Zhao, R., Xiao, T., Wang, X., 2014. Deepreid: Deep filter pairing neural network for person re-identification. In: IEEE CVPR. pp. 152–159.
Fan, Jiang, Luo, Fei (b7) 2019; 60
Ye, Lan, Wang, Yuen (b41) 2019; 15
Zhu, Yang, Wang, Zhao, Hu, Tao (b56) 2020; 386
Xiao, T., Li, S., Wang, B., Lin, L., Wang, X., 2017. Joint detection and identification feature learning for person search. In: IEEE CVPR. pp. 3415–3424.
Wang, Yang, Cheng, Chang, Liang, Hou (b32) 2020
Wang, Y., Chen, Z., Wu, F., Wang, G., 2018a. Person re-identification with cascaded pairwise convolutions. In: IEEE CVPR. pp. 1470–1478.
Zheng, M., Karanam, S., Wu, Z., Radke, R.J., 2019b. Re-identification with consistent attentive siamese networks. In: IEEE CVPR. pp. 5735–5744.
Wang, Zhao, Su, Zhao, Wang, Yang, Li (b34) 2020; 23
Li, S., Bak, S., Carr, P., Wang, X., 2018a. Diversity regularized spatiotemporal attention for video-based person re-identification. In: IEEE CVPR.
Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y., 2019. Graph-based global reasoning networks. In: IEEE CVPR. pp. 433–442.
Zhao, H., Tian, M., Sun, S., Shao, J., Yan, J., Yi, S., Wang, X., Tang, X., 2017b. Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: IEEE CVPR. pp. 1077–1085.
Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z., 2019b. Rgb-infrared cross-modality person re-identification via joint pixel and feature alignment. In: IEEE ICCV. pp. 3623–3632.
Zhong, Zheng, Kang, Li, Yang (b54) 2020
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: NeurIPS. pp. 1097–1105.
He, Liu (b10) 2020
Ye, Shen, Lin, Xiang, Shao, Hoi (b44) 2021
Tian, X., Zhang, Z., Lin, S., Qu, Y., Xie, Y., Ma, L., 2021. Farewell to mutual information: Variational distillation for cross-modal person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1522–1531.
Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N., 2016. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: IEEE CVPR. pp. 1335–1344.
Jia, Zhai, Lu, Ma, Zhang (b13) 2020
Ye, M., Ruan, W., Du, B., Shou, M.Z., 2021a. Channel Augmented Joint Learning for Visible-Infrared Recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13567–13576.
Li, W., Zhu, X., Gong, S., 2018b. Harmonious attention network for person re-identification. In: IEEE CVPR. pp. 2285–2294.
Kansal, Subramanyam, Wang, Satoh (b14) 2020
Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S., 2018. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV. pp. 480–496.
Zhai, Y., Lu, S., Ye, Q., Shan, X., Chen, J., Ji, R., Tian, Y., 2020. AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-Identification. In: IEEE CVPR.
Ye, Shen, Crandall, Shao, Luo (b43) 2020
Ye, Lan, Li, Yuen (b40) 2018
Hermans, Beyer, Leibe (b12) 2017
Dai, Ji, Wang, Wu, Huang (b5) 2018; vol. 1
Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z., 2021. Neural feature search for rgb-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 587–597.
Wen, Zhang, Li, Qiao (b35) 2016
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q., 2015. Scalable person re-identification: A benchmark. In: IEEE ICCV. pp. 1116–1124.
Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.-Y., Satoh, S., 2019a. Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: IEEE CVPR. pp. 618–626.
Zhu, Guo, Zhang, Wang, Huang, Qiao, Liu, Wang, Tang (b55) 2021
Li, D., Chen, X., Zhang, Z., Huang, K., 2017. Learning deep context-aware features over body and latent parts for person re-identification. In: IEEE CVPR. pp. 384–393.
Lu, Y., Wu, Y., Liu, B., Zhang, T., Li, B., Chu, Q., Yu, N., 2020. Cross-modality Person re-identification with Shared-Specific Feature Transfer. In: IEEE CVPR. pp. 13379–13389.
Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K., 2018. Part-aligned bilinear representations for person re-identification. In: ECCV. pp. 402–419.
10.1016/j.cviu.2023.103703_b28
10.1016/j.cviu.2023.103703_b27
10.1016/j.cviu.2023.103703_b26
10.1016/j.cviu.2023.103703_b23
Nguyen (10.1016/j.cviu.2023.103703_b25) 2017; 17
10.1016/j.cviu.2023.103703_b21
10.1016/j.cviu.2023.103703_b20
Yang (10.1016/j.cviu.2023.103703_b38) 2019; 86
Zhong (10.1016/j.cviu.2023.103703_b54) 2020
Ye (10.1016/j.cviu.2023.103703_b43) 2020
Kansal (10.1016/j.cviu.2023.103703_b14) 2020
Liu (10.1016/j.cviu.2023.103703_b22) 2020; 23
10.1016/j.cviu.2023.103703_b29
10.1016/j.cviu.2023.103703_b37
Zhu (10.1016/j.cviu.2023.103703_b55) 2021
10.1016/j.cviu.2023.103703_b36
Ye (10.1016/j.cviu.2023.103703_b39) 2019
10.1016/j.cviu.2023.103703_b33
10.1016/j.cviu.2023.103703_b31
10.1016/j.cviu.2023.103703_b30
Jia (10.1016/j.cviu.2023.103703_b13) 2020
Luo (10.1016/j.cviu.2023.103703_b24) 2019
Feng (10.1016/j.cviu.2023.103703_b9) 2019; 29
Ye (10.1016/j.cviu.2023.103703_b44) 2021
Fan (10.1016/j.cviu.2023.103703_b8) 2020
10.1016/j.cviu.2023.103703_b49
10.1016/j.cviu.2023.103703_b48
Dai (10.1016/j.cviu.2023.103703_b5) 2018; vol. 1
10.1016/j.cviu.2023.103703_b47
10.1016/j.cviu.2023.103703_b46
10.1016/j.cviu.2023.103703_b42
Ye (10.1016/j.cviu.2023.103703_b41) 2019; 15
Fan (10.1016/j.cviu.2023.103703_b7) 2019; 60
He (10.1016/j.cviu.2023.103703_b10) 2020
Hermans (10.1016/j.cviu.2023.103703_b12) 2017
10.1016/j.cviu.2023.103703_b17
Wang (10.1016/j.cviu.2023.103703_b32) 2020
10.1016/j.cviu.2023.103703_b16
10.1016/j.cviu.2023.103703_b15
Zhu (10.1016/j.cviu.2023.103703_b56) 2020; 386
10.1016/j.cviu.2023.103703_b11
Wen (10.1016/j.cviu.2023.103703_b35) 2016
Li (10.1016/j.cviu.2023.103703_b19) 2020
10.1016/j.cviu.2023.103703_b53
10.1016/j.cviu.2023.103703_b52
10.1016/j.cviu.2023.103703_b51
10.1016/j.cviu.2023.103703_b50
10.1016/j.cviu.2023.103703_b3
10.1016/j.cviu.2023.103703_b4
10.1016/j.cviu.2023.103703_b1
10.1016/j.cviu.2023.103703_b2
Ye (10.1016/j.cviu.2023.103703_b40) 2018
Wang (10.1016/j.cviu.2023.103703_b34) 2020; 23
Ye (10.1016/j.cviu.2023.103703_b45) 2018; vol. 1
10.1016/j.cviu.2023.103703_b6
10.1016/j.cviu.2023.103703_b18
References_xml – reference: Wang, Y., Chen, Z., Wu, F., Wang, G., 2018a. Person re-identification with cascaded pairwise convolutions. In: IEEE CVPR. pp. 1470–1478.
– reference: Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.-Y., Satoh, S., 2019a. Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: IEEE CVPR. pp. 618–626.
– volume: 23
  start-page: 4414
  year: 2020
  end-page: 4425
  ident: b22
  article-title: Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification
  publication-title: IEEE Trans. Multimed.
– year: 2021
  ident: b55
  article-title: Aaformer: Auto-aligned transformer for person re-identification
– reference: Tian, X., Zhang, Z., Lin, S., Qu, Y., Xie, Y., Ma, L., 2021. Farewell to mutual information: Variational distillation for cross-modal person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1522–1531.
– reference: Zhao, L., Li, X., Zhuang, Y., Wang, J., 2017a. Deeply-Learned Part-Aligned Representations for Person Re-Identification. In: IEEE ICCV.
– start-page: 4610
  year: 2020
  end-page: 4617
  ident: b19
  article-title: Infrared-visible cross-modal person re-identification with an X modality
  publication-title: AAAI
– year: 2020
  ident: b8
  article-title: Cross-spectrum dual-subspace pairing for RGB-infrared cross-modality person re-identification
– volume: vol. 1
  start-page: 2
  year: 2018
  ident: b45
  article-title: Visible thermal person re-identification via dual-constrained top-ranking
  publication-title: IJCAI
– volume: 23
  start-page: 1474
  year: 2020
  end-page: 1488
  ident: b34
  article-title: Deep multi-patch matching network for visible thermal person re-identification
  publication-title: IEEE Trans. Multimed.
– volume: 60
  start-page: 51
  year: 2019
  end-page: 58
  ident: b7
  article-title: Spherereid: Deep hypersphere manifold embedding for person re-identification
  publication-title: J. Vis. Commun. Image Represent.
– reference: Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K., 2018. Part-aligned bilinear representations for person re-identification. In: ECCV. pp. 402–419.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE CVPR. pp. 770–778.
– reference: Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. In: NeurIPS. pp. 1097–1105.
– start-page: 499
  year: 2016
  end-page: 515
  ident: b35
  article-title: A discriminative feature learning approach for deep face recognition
  publication-title: ECCV
– volume: 17
  start-page: 605
  year: 2017
  ident: b25
  article-title: Person recognition system based on a combination of body images from visible light and thermal cameras
  publication-title: Sensors
– start-page: 13001
  year: 2020
  end-page: 13008
  ident: b54
  article-title: Random erasing data augmentation
  publication-title: AAAI
– reference: Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J., 2018. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: IEEE CVPR. pp. 994–1003.
– year: 2020
  ident: b32
  article-title: Cross-modality paired-images generation for RGB-infrared person re-identification
– year: 2020
  ident: b43
  article-title: Dynamic dual-attentive aggregation learning for visible-infrared person re-identification
– reference: Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S., 2018. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV. pp. 480–496.
– reference: Wang, X., Girshick, R., Gupta, A., He, K., 2018b. Non-local neural networks. In: IEEE CVPR. pp. 7794–7803.
– reference: Zheng, F., Deng, C., Sun, X., Jiang, X., Guo, X., Yu, Z., Huang, F., Ji, R., 2019a. Pyramidal person re-identification via multi-loss dynamic training. In: IEEE CVPR. pp. 8514–8522.
– reference: Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z., 2019b. Rgb-infrared cross-modality person re-identification via joint pixel and feature alignment. In: IEEE ICCV. pp. 3623–3632.
– reference: Zheng, M., Karanam, S., Wu, Z., Radke, R.J., 2019b. Re-identification with consistent attentive siamese networks. In: IEEE CVPR. pp. 5735–5744.
– year: 2019
  ident: b24
  article-title: A strong baseline and batch normalization neck for deep person re-identification
  publication-title: IEEE TMM
– year: 2018
  ident: b40
  article-title: Hierarchical discriminative learning for visible thermal person re-identification
  publication-title: AAAI
– reference: Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q., 2017. Person re-identification in the wild. In: IEEE CVPR. pp. 1367–1376.
– year: 2020
  ident: b13
  article-title: A similarity inference metric for RGB-infrared cross-modality person re-identification
– reference: Wu, A., Zheng, W.-S., Yu, H.-X., Gong, S., Lai, J., 2017. Rgb-infrared cross-modality person re-identification. In: IEEE ICCV. pp. 5380–5389.
– year: 2017
  ident: b12
  article-title: In defense of the triplet loss for person re-identification
– reference: Li, S., Bak, S., Carr, P., Wang, X., 2018a. Diversity regularized spatiotemporal attention for video-based person re-identification. In: IEEE CVPR.
– reference: Li, W., Zhu, X., Gong, S., 2018b. Harmonious attention network for person re-identification. In: IEEE CVPR. pp. 2285–2294.
– reference: Xiao, T., Li, S., Wang, B., Lin, L., Wang, X., 2017. Joint detection and identification feature learning for person search. In: IEEE CVPR. pp. 3415–3424.
– reference: Ye, M., Ruan, W., Du, B., Shou, M.Z., 2021a. Channel Augmented Joint Learning for Visible-Infrared Recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13567–13576.
– reference: Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N., 2016. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In: IEEE CVPR. pp. 1335–1344.
– reference: Karanam, S., Li, Y., Radke, R.J., 2015. Person re-identification with discriminatively trained viewpoint invariant dictionaries. In: IEEE ICCV.
– reference: Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C., 2020. Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification. In: IEEE CVPR. pp. 10257–10266.
– volume: 15
  start-page: 407
  year: 2019
  end-page: 419
  ident: b41
  article-title: Bi-directional center-constrained top-ranking for visible thermal person re-identification
  publication-title: IEEE TIFS
– volume: 86
  start-page: 143
  year: 2019
  end-page: 155
  ident: b38
  article-title: Attention driven person re-identification
  publication-title: Pattern Recognit.
– reference: Zheng, K., Lan, C., Zeng, W., Liu, J., Zhang, Z., Zha, Z.-J., 2021. Pose-Guided Feature Learning with Knowledge Distillation for Occluded Person Re-Identification. In: Proceedings of the 29th ACM International Conference on Multimedia. pp. 4537–4545.
– start-page: 357
  year: 2020
  end-page: 373
  ident: b10
  article-title: Guided saliency feature learning for person re-identification in crowded scenes
  publication-title: European Conference on Computer Vision
– reference: Chen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y., 2019. Graph-based global reasoning networks. In: IEEE CVPR. pp. 433–442.
– volume: vol. 1
  start-page: 2
  year: 2018
  ident: b5
  article-title: Cross-modality person re-identification with generative adversarial training
  publication-title: IJCAI
– year: 2020
  ident: b14
  article-title: SDL: Spectrum-disentangled representation learning for visible-infrared person re-identification
  publication-title: IEEE TCSVT
– reference: Lu, Y., Wu, Y., Liu, B., Zhang, T., Li, B., Chu, Q., Yu, N., 2020. Cross-modality Person re-identification with Shared-Specific Feature Transfer. In: IEEE CVPR. pp. 13379–13389.
– reference: Li, W., Zhao, R., Xiao, T., Wang, X., 2014. Deepreid: Deep filter pairing neural network for person re-identification. In: IEEE CVPR. pp. 152–159.
– start-page: 347
  year: 2019
  end-page: 355
  ident: b39
  article-title: Modality-aware collaborative learning for visible thermal person re-identification
  publication-title: ACM MM
– volume: 386
  start-page: 97
  year: 2020
  end-page: 109
  ident: b56
  article-title: Hetero-center loss for cross-modality person re-identification
  publication-title: Neurocomputing
– reference: Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z., 2021. Neural feature search for rgb-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 587–597.
– reference: Zhai, Y., Lu, S., Ye, Q., Shan, X., Chen, J., Ji, R., Tian, Y., 2020. AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-Identification. In: IEEE CVPR.
– reference: Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q., 2015. Scalable person re-identification: A benchmark. In: IEEE ICCV. pp. 1116–1124.
– volume: 29
  start-page: 579
  year: 2019
  end-page: 590
  ident: b9
  article-title: Learning modality-specific representations for visible-infrared person re-identification
  publication-title: IEEE TIP
– reference: Li, D., Chen, X., Zhang, Z., Huang, K., 2017. Learning deep context-aware features over body and latent parts for person re-identification. In: IEEE CVPR. pp. 384–393.
– year: 2021
  ident: b44
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Zhao, H., Tian, M., Sun, S., Shao, J., Yan, J., Yi, S., Wang, X., Tang, X., 2017b. Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: IEEE CVPR. pp. 1077–1085.
– year: 2020
  ident: 10.1016/j.cviu.2023.103703_b43
– volume: vol. 1
  start-page: 2
  year: 2018
  ident: 10.1016/j.cviu.2023.103703_b45
  article-title: Visible thermal person re-identification via dual-constrained top-ranking
– ident: 10.1016/j.cviu.2023.103703_b28
  doi: 10.1109/CVPR46437.2021.00157
– ident: 10.1016/j.cviu.2023.103703_b37
  doi: 10.1109/CVPR.2017.360
– year: 2017
  ident: 10.1016/j.cviu.2023.103703_b12
– year: 2020
  ident: 10.1016/j.cviu.2023.103703_b8
– year: 2020
  ident: 10.1016/j.cviu.2023.103703_b14
  article-title: SDL: Spectrum-disentangled representation learning for visible-infrared person re-identification
  publication-title: IEEE TCSVT
– ident: 10.1016/j.cviu.2023.103703_b17
  doi: 10.1109/CVPR.2018.00046
– volume: 23
  start-page: 4414
  year: 2020
  ident: 10.1016/j.cviu.2023.103703_b22
  article-title: Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3042080
– ident: 10.1016/j.cviu.2023.103703_b47
  doi: 10.1109/ICCV.2017.349
– ident: 10.1016/j.cviu.2023.103703_b16
– ident: 10.1016/j.cviu.2023.103703_b20
  doi: 10.1109/CVPR.2014.27
– ident: 10.1016/j.cviu.2023.103703_b6
  doi: 10.1109/CVPR.2018.00110
– volume: 60
  start-page: 51
  year: 2019
  ident: 10.1016/j.cviu.2023.103703_b7
  article-title: Spherereid: Deep hypersphere manifold embedding for person re-identification
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.01.010
– ident: 10.1016/j.cviu.2023.103703_b51
  doi: 10.1145/3474085.3475610
– start-page: 357
  year: 2020
  ident: 10.1016/j.cviu.2023.103703_b10
  article-title: Guided saliency feature learning for person re-identification in crowded scenes
– ident: 10.1016/j.cviu.2023.103703_b4
  doi: 10.1109/CVPR42600.2020.01027
– start-page: 4610
  year: 2020
  ident: 10.1016/j.cviu.2023.103703_b19
  article-title: Infrared-visible cross-modal person re-identification with an X modality
– year: 2021
  ident: 10.1016/j.cviu.2023.103703_b44
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.cviu.2023.103703_b30
  doi: 10.1109/CVPR.2018.00813
– start-page: 13001
  year: 2020
  ident: 10.1016/j.cviu.2023.103703_b54
  article-title: Random erasing data augmentation
– year: 2018
  ident: 10.1016/j.cviu.2023.103703_b40
  article-title: Hierarchical discriminative learning for visible thermal person re-identification
– ident: 10.1016/j.cviu.2023.103703_b42
  doi: 10.1109/ICCV48922.2021.01331
– ident: 10.1016/j.cviu.2023.103703_b31
  doi: 10.1109/CVPR.2019.00071
– year: 2021
  ident: 10.1016/j.cviu.2023.103703_b55
– ident: 10.1016/j.cviu.2023.103703_b23
  doi: 10.1109/CVPR42600.2020.01339
– start-page: 347
  year: 2019
  ident: 10.1016/j.cviu.2023.103703_b39
  article-title: Modality-aware collaborative learning for visible thermal person re-identification
– ident: 10.1016/j.cviu.2023.103703_b21
  doi: 10.1109/CVPR.2018.00243
– ident: 10.1016/j.cviu.2023.103703_b36
  doi: 10.1109/ICCV.2017.575
– volume: 23
  start-page: 1474
  year: 2020
  ident: 10.1016/j.cviu.2023.103703_b34
  article-title: Deep multi-patch matching network for visible thermal person re-identification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.2999180
– volume: vol. 1
  start-page: 2
  year: 2018
  ident: 10.1016/j.cviu.2023.103703_b5
  article-title: Cross-modality person re-identification with generative adversarial training
– volume: 29
  start-page: 579
  year: 2019
  ident: 10.1016/j.cviu.2023.103703_b9
  article-title: Learning modality-specific representations for visible-infrared person re-identification
  publication-title: IEEE TIP
– ident: 10.1016/j.cviu.2023.103703_b26
  doi: 10.1007/978-3-030-01264-9_25
– volume: 386
  start-page: 97
  year: 2020
  ident: 10.1016/j.cviu.2023.103703_b56
  article-title: Hetero-center loss for cross-modality person re-identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.100
– ident: 10.1016/j.cviu.2023.103703_b33
  doi: 10.1109/ICCV.2019.00372
– ident: 10.1016/j.cviu.2023.103703_b3
  doi: 10.1109/CVPR.2016.149
– year: 2020
  ident: 10.1016/j.cviu.2023.103703_b32
– ident: 10.1016/j.cviu.2023.103703_b27
  doi: 10.1007/978-3-030-01225-0_30
– ident: 10.1016/j.cviu.2023.103703_b11
  doi: 10.1109/CVPR.2016.90
– volume: 17
  start-page: 605
  issue: 3
  year: 2017
  ident: 10.1016/j.cviu.2023.103703_b25
  article-title: Person recognition system based on a combination of body images from visible light and thermal cameras
  publication-title: Sensors
  doi: 10.3390/s17030605
– ident: 10.1016/j.cviu.2023.103703_b50
  doi: 10.1109/CVPR.2019.00588
– ident: 10.1016/j.cviu.2023.103703_b18
  doi: 10.1109/CVPR.2017.782
– volume: 15
  start-page: 407
  year: 2019
  ident: 10.1016/j.cviu.2023.103703_b41
  article-title: Bi-directional center-constrained top-ranking for visible thermal person re-identification
  publication-title: IEEE TIFS
– volume: 86
  start-page: 143
  year: 2019
  ident: 10.1016/j.cviu.2023.103703_b38
  article-title: Attention driven person re-identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.08.015
– ident: 10.1016/j.cviu.2023.103703_b46
  doi: 10.1109/CVPR42600.2020.00904
– ident: 10.1016/j.cviu.2023.103703_b48
  doi: 10.1109/CVPR.2017.103
– ident: 10.1016/j.cviu.2023.103703_b53
  doi: 10.1109/CVPR.2017.357
– start-page: 499
  year: 2016
  ident: 10.1016/j.cviu.2023.103703_b35
  article-title: A discriminative feature learning approach for deep face recognition
– ident: 10.1016/j.cviu.2023.103703_b29
  doi: 10.1109/CVPR.2018.00159
– ident: 10.1016/j.cviu.2023.103703_b49
  doi: 10.1109/CVPR.2019.00871
– ident: 10.1016/j.cviu.2023.103703_b1
  doi: 10.1109/CVPR.2019.00052
– ident: 10.1016/j.cviu.2023.103703_b2
  doi: 10.1109/CVPR46437.2021.00065
– ident: 10.1016/j.cviu.2023.103703_b15
  doi: 10.1109/ICCV.2015.513
– ident: 10.1016/j.cviu.2023.103703_b52
  doi: 10.1109/ICCV.2015.133
– year: 2020
  ident: 10.1016/j.cviu.2023.103703_b13
– year: 2019
  ident: 10.1016/j.cviu.2023.103703_b24
  article-title: A strong baseline and batch normalization neck for deep person re-identification
  publication-title: IEEE TMM
SSID ssj0011491
Score 2.467713
Snippet Visible–infrared person re-identification (VI-ReID) is an important and practical task for full-time intelligent surveillance systems. Compared to visible...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103703
SubjectTerms Visible–infrared person re-identification
Title Spectrum-irrelevant fine-grained representation for visible–infrared person re-identification
URI https://dx.doi.org/10.1016/j.cviu.2023.103703
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaqssDATwFRfqoMbMgtqZ2YjFVFVUB0gUrdIttxUFAJVUkZEe_AG_Ik3DlOVRg6MOZyF0W-i--LdXcfIee-MSn2e1LpK065VgFVMuLUh2xuQgEAOsWjgftROBzz20kwqZF-1QuDZZVu7y_3dLtbO0nHrWZnlmWdB_hxEQyPMJgFEtjwy7nAKG9_LMs8AO5b1jxUpqjtGmfKGi_9ni3aSCBue88r4qy_yWkl4Qx2ybZDil6vfJk9UjN5g-w41Oi5b_INRBUxQyVrkK2VKYP7JEaO-WK-eKHZHClSADsXXgr36RPyQ8DD7GTLqgsp9wDHethzrqbm-_MLQnCOVerezIJzUKZZ4mqMrP4BGQ-uH_tD6ngVqGacF5RHqc8DlmgmlDSBSbgS4BJ1xVXQ1YCXTMglZ1oLEBopZeIzLkOGJWCJ7HJ2SOr5a26OiMeSCAekXfoqMmCjI4AHOpQiAVyjhRBN4lcLGms3dBy5L6ZxVV32HKMTYnRCXDqhSS6WNrNy5MZa7aDyU_wrcGLICWvsjv9pd0I28aqs2D0ldXCfOQNcUqiWDbwW2ejd3A1HPzsD5B8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgADHwVE-czAhtwS7MTNiCpQgcICSN0s23FREJSqtIyI_8A_5JdwlzioMHRgte-iyGf7XqJ39wAOQ-f6VO_JdGgEE9ZEzOhEsBCzuYslAug-_Rq4vok79-KyF_Uq0C5rYYhW6e_-4k7Pb2s_0vSr2RxmWfMWP1wkp18YPAcSrTmYF3h8Scag8f7D80C8n8vmkTUjc185U5C87Fs2aZCCeF58Xipn_c1OUxnnfBWWPVQMTou3WYOKG9RgxcPGwB_KVxwqlRnKsRosTbUZXAdFIvPj0eSZZSPSSEHwPA76OM8eSCACH5a3tizLkAYBAtmAis7Nk_v6-MQ9OCKaejDM0Tkasyz1JKPcfgPuz8_u2h3mhRWY5UKMmUj6IS5Vark02kUuFUZiTExLmOjEImBysdCCWytx0Gmt05ALHXPigKX6RPBNqA5eBm4LAp4m1CHtODSJQx-bID6wsZYpAhsrpaxDWC6osr7rOIlfPKmSXvaoKAiKgqCKINTh6MdnWPTcmGkdlXFSv3aOwqQww2_7n34HsNC5u-6q7sXN1Q4s0kxB392FKobS7SFIGZv9fBN-A4RC5a0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum-irrelevant+fine-grained+representation+for+visible%E2%80%93infrared+person+re-identification&rft.jtitle=Computer+vision+and+image+understanding&rft.au=Gong%2C+Jiahao&rft.au=Zhao%2C+Sanyuan&rft.au=Lam%2C+Kin-Man&rft.au=Gao%2C+Xin&rft.date=2023-07-01&rft.pub=Elsevier+Inc&rft.issn=1077-3142&rft.eissn=1090-235X&rft.volume=232&rft_id=info:doi/10.1016%2Fj.cviu.2023.103703&rft.externalDocID=S1077314223000838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-3142&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-3142&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-3142&client=summon