Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications

Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video data streams, while maintaining low computational complexity, and performing this task in real-time. Current activity recognition techniques are...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 103; p. 107102
Main Authors Ullah, Amin, Muhammad, Khan, Ding, Weiping, Palade, Vasile, Haq, Ijaz Ul, Baik, Sung Wook
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video data streams, while maintaining low computational complexity, and performing this task in real-time. Current activity recognition techniques are using convolutional neural network (CNN) models with computationally complex classifiers, creating hurdles in obtaining quick responses for abnormal activities. To address these challenges in real-time surveillance, this paper proposes a lightweight deep learning-assisted framework for activity recognition. First, we detect a human in the surveillance stream using an effective CNN model, which is trained on two surveillance datasets. The detected individual is tracked throughout the video stream via an ultra-fast object tracker called the ‘minimum output sum of squared error’ (MOSSE). Next, for each tracked individual, pyramidal convolutional features are extracted from two consecutive frames using the efficient LiteFlowNet CNN. Finally, a novel deep skip connection gated recurrent unit (DS-GRU) is trained to learn the temporal changes in the sequence of frames for activity recognition. Experiments are conducted over five benchmark activity recognition datasets, and the results indicate the efficiency of the proposed technique for real-time surveillance applications compared to the state-of-the-art. •Incorporation of two lightweight technologies for activity recognition.•A novel method for sequential features extraction using optical flow CNN model.•A DS-GRU is presented for learning sequential patterns.•An efficient 48 MB trained model for real-time activity recognition.
AbstractList Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video data streams, while maintaining low computational complexity, and performing this task in real-time. Current activity recognition techniques are using convolutional neural network (CNN) models with computationally complex classifiers, creating hurdles in obtaining quick responses for abnormal activities. To address these challenges in real-time surveillance, this paper proposes a lightweight deep learning-assisted framework for activity recognition. First, we detect a human in the surveillance stream using an effective CNN model, which is trained on two surveillance datasets. The detected individual is tracked throughout the video stream via an ultra-fast object tracker called the ‘minimum output sum of squared error’ (MOSSE). Next, for each tracked individual, pyramidal convolutional features are extracted from two consecutive frames using the efficient LiteFlowNet CNN. Finally, a novel deep skip connection gated recurrent unit (DS-GRU) is trained to learn the temporal changes in the sequence of frames for activity recognition. Experiments are conducted over five benchmark activity recognition datasets, and the results indicate the efficiency of the proposed technique for real-time surveillance applications compared to the state-of-the-art. •Incorporation of two lightweight technologies for activity recognition.•A novel method for sequential features extraction using optical flow CNN model.•A DS-GRU is presented for learning sequential patterns.•An efficient 48 MB trained model for real-time activity recognition.
ArticleNumber 107102
Author Haq, Ijaz Ul
Ullah, Amin
Ding, Weiping
Palade, Vasile
Muhammad, Khan
Baik, Sung Wook
Author_xml – sequence: 1
  givenname: Amin
  surname: Ullah
  fullname: Ullah, Amin
  organization: Sejong University, Seoul, South Korea
– sequence: 2
  givenname: Khan
  surname: Muhammad
  fullname: Muhammad, Khan
  organization: Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Republic of Korea
– sequence: 3
  givenname: Weiping
  surname: Ding
  fullname: Ding, Weiping
  organization: Department of Computer Science and Technology, Nantong University, China
– sequence: 4
  givenname: Vasile
  orcidid: 0000-0002-6768-8394
  surname: Palade
  fullname: Palade, Vasile
  organization: Department of Environment and Computing at Coventry University, UK
– sequence: 5
  givenname: Ijaz Ul
  surname: Haq
  fullname: Haq, Ijaz Ul
  organization: Sejong University, Seoul, South Korea
– sequence: 6
  givenname: Sung Wook
  surname: Baik
  fullname: Baik, Sung Wook
  email: sbaik@sejong.ac.kr
  organization: Sejong University, Seoul, South Korea
BookMark eNp9kMFKAzEQhoMo2FZfwFNeYGuym81mwYvUWoVSQe05pNlJTV2TkqQtfXt3rScPXmaGH75h5huic-cdIHRDyZgSym83YxW9Huckp11QUZKfoQEVVZ7VXNDzbi65yFjN-CUaxrghHVTnYoBgaozVFlzCSie7t-mIA2i_djZZ7_AuWrfGrV1_pAP0FU8WC6xcgx_estnrEjtIBx8-sfEBx13Yg21b5TRgtd22Vqt-S7xCF0a1Ea5_-wgtH6fvk6ds_jJ7ntzPM10wljImWMFgVXFVrmpioOFKmEqRUuSVUU0JQrOmLjSryqbgXWqAU1gJArQuuKHFCInTXh18jAGM1Db9nJCCsq2kRPa65Eb2umSvS550dWj-B90G-6XC8X_o7gRB99TeQpCxd6mhsZ3EJBtv_8O_AQYNh6I
CitedBy_id crossref_primary_10_1016_j_eswa_2023_122482
crossref_primary_10_1080_03772063_2024_2402881
crossref_primary_10_3390_electronics13234733
crossref_primary_10_1002_cpe_7588
crossref_primary_10_3233_ICA_210667
crossref_primary_10_3390_app122311951
crossref_primary_10_1016_j_engappai_2024_109239
crossref_primary_10_3390_jpm11060515
crossref_primary_10_3390_s21113642
crossref_primary_10_3390_s23042182
crossref_primary_10_1016_j_engappai_2023_107218
crossref_primary_10_1109_TCE_2024_3373824
crossref_primary_10_1007_s00521_022_07937_4
crossref_primary_10_1007_s11042_023_17697_5
crossref_primary_10_1016_j_eij_2024_100536
crossref_primary_10_1016_j_energy_2022_125217
crossref_primary_10_1145_3561971
crossref_primary_10_2139_ssrn_4111254
crossref_primary_10_1007_s11042_023_15930_9
crossref_primary_10_1016_j_aej_2023_05_050
crossref_primary_10_1016_j_asoc_2021_107671
crossref_primary_10_1109_TBDATA_2023_3319252
crossref_primary_10_1109_JIOT_2024_3455434
crossref_primary_10_3390_jimaging9070130
crossref_primary_10_3390_rs13101962
crossref_primary_10_32604_cmc_2024_056767
crossref_primary_10_3390_jimaging9040082
crossref_primary_10_1049_tje2_12375
crossref_primary_10_12677_mos_2025_141001
crossref_primary_10_1007_s11042_024_18375_w
crossref_primary_10_34133_plantphenomics_0204
crossref_primary_10_1016_j_asoc_2024_112294
crossref_primary_10_3390_s24165436
crossref_primary_10_1038_s41598_022_24887_y
crossref_primary_10_1016_j_aej_2023_09_013
crossref_primary_10_1109_ACCESS_2023_3293813
crossref_primary_10_1007_s00170_022_10335_8
crossref_primary_10_1016_j_jocs_2024_102377
crossref_primary_10_1109_ACCESS_2022_3162827
crossref_primary_10_1007_s13735_024_00338_4
crossref_primary_10_3233_AIS_220125
crossref_primary_10_1007_s10479_021_04348_x
crossref_primary_10_1109_ACCESS_2022_3174678
crossref_primary_10_3390_s24061908
crossref_primary_10_1007_s11042_023_17289_3
crossref_primary_10_1080_03772063_2021_1967792
crossref_primary_10_1007_s10489_025_06275_x
crossref_primary_10_1155_2021_2449603
crossref_primary_10_1007_s11042_023_15904_x
crossref_primary_10_1016_j_aej_2023_11_017
crossref_primary_10_1016_j_chemolab_2022_104750
crossref_primary_10_1016_j_inffus_2023_102211
crossref_primary_10_32604_cmc_2023_035214
crossref_primary_10_3390_app14114722
crossref_primary_10_32604_cmc_2022_024760
crossref_primary_10_1016_j_engappai_2024_108247
crossref_primary_10_1177_20552076241271639
crossref_primary_10_1007_s11760_023_02895_3
crossref_primary_10_1007_s10462_024_10877_1
crossref_primary_10_3390_machines12070453
crossref_primary_10_1016_j_engappai_2024_109940
crossref_primary_10_1016_j_inffus_2023_101953
crossref_primary_10_3390_electronics13112116
crossref_primary_10_1007_s11042_022_14253_5
crossref_primary_10_3390_s21165625
crossref_primary_10_1049_cvi2_70003
crossref_primary_10_1007_s11263_023_01932_5
crossref_primary_10_1016_j_eswa_2023_122220
crossref_primary_10_1007_s11042_023_14492_0
crossref_primary_10_32604_cmc_2024_048061
crossref_primary_10_3390_electronics11244129
crossref_primary_10_1007_s13369_021_05881_4
crossref_primary_10_1007_s11042_024_19711_w
crossref_primary_10_1109_ACCESS_2024_3522996
crossref_primary_10_32604_cmc_2024_049512
crossref_primary_10_3390_a16080369
crossref_primary_10_1007_s10845_024_02518_9
crossref_primary_10_1109_TCSS_2023_3249152
crossref_primary_10_3233_JIFS_230505
crossref_primary_10_1109_JSTARS_2023_3249216
crossref_primary_10_3390_biomimetics8050417
crossref_primary_10_1007_s00371_024_03266_w
crossref_primary_10_1016_j_asoc_2023_110663
crossref_primary_10_1016_j_bspc_2022_103567
crossref_primary_10_1155_2022_3454167
crossref_primary_10_1155_2024_1052344
crossref_primary_10_1002_int_22537
crossref_primary_10_1007_s11042_021_11722_1
crossref_primary_10_1007_s10639_023_12385_1
crossref_primary_10_3390_s22010323
Cites_doi 10.1109/TPAMI.2014.2345390
10.1109/TMM.2017.2749159
10.1109/CVPR.2018.00936
10.1109/CVPR.2017.515
10.1109/ICCV.2017.617
10.1016/j.inffus.2019.06.007
10.1016/j.imavis.2017.01.010
10.1109/ICCV.2017.236
10.1109/ICCV.2015.510
10.1109/CVPR.2017.690
10.1109/ICME.2018.8486597
10.1109/TCSVT.2019.2894161
10.1109/ACCESS.2017.2778011
10.1016/j.asoc.2019.105986
10.1109/ICCVW.2017.373
10.1109/TCSVT.2014.2376136
10.1016/j.asoc.2017.10.021
10.1109/CVPR42600.2020.00661
10.1016/j.neucom.2015.09.112
10.1109/ICCV.2017.610
10.1109/TIE.2018.2881943
10.1109/TPAMI.2011.239
10.1109/ICCV.2017.590
10.1016/j.cviu.2017.10.011
10.1109/ACCESS.2018.2863943
10.1016/j.image.2018.09.003
10.1109/ICCV.2013.441
10.1109/CVPR.2018.00630
10.1016/j.cviu.2016.03.013
10.1109/CVPR.2015.7298878
10.1109/CVPR.2016.214
10.1109/TPAMI.2016.2537337
10.1109/TPAMI.2011.155
10.1109/TMM.2017.2666540
10.1109/CVPR.2017.179
10.1016/j.asoc.2019.105820
10.1109/TII.2019.2897594
10.3390/a13040080
10.1109/CVPR.2018.00054
10.1016/j.future.2019.01.029
10.1109/CVPR.2016.90
10.1109/JIOT.2019.2896151
10.1016/j.inffus.2017.01.004
10.1007/s00138-012-0450-4
10.1109/ICCV.2015.316
10.1109/ACCESS.2020.2975912
10.1016/j.neucom.2018.10.095
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107102
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107102
S1568494621000259
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c344t-48434eb76a5b90fed6a8f7a05827fad5e8c4d93c475d36582fe61eb80e1936f13
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:08 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 23 02:40:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Video big data analytics
Machine learning
Activity recognition
Pattern recognition
GRU
Artificial intelligence
IoT
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-48434eb76a5b90fed6a8f7a05827fad5e8c4d93c475d36582fe61eb80e1936f13
ORCID 0000-0002-6768-8394
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1568494621000259
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_107102
crossref_primary_10_1016_j_asoc_2021_107102
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Badshah (b38) 2019
A. Dosovitskiy, et al. Flownet: Learning optical flow with convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766.
Wang, Wu, Gravina, Fortino, Jiang, Tang (b3) 2017; 37
Kuehne, Richard, Gall (b24) 2018
Henriques, Caseiro, Martins, Batista (b68) 2015; 37
J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263-7271.
Simonyan, Zisserman (b6) 2014
Gammulle, Denman, Sridharan, Fookes (b19) 2017
Kuehne, Jhuang, Garrote, Poggio, Serre (b58) 2011
Shan, Zhang, Yang, Huang (b33) 2015; 25
Mehmood (b42) 2019; 6
Ullah, Ahmad, Muhammad, Sajjad, Baik (b23) 2018; 6
Liu, Luo, Shah (b62) 2009
H. Wang, C. Schmid, Action recognition with improved trajectories, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3551–3558.
Hossain, Lee (b77) 2019
Oneto (b46) 2020
S. Ma, L. Sigal, S. Sclaroff, Learning activity progression in lstms for activity detection and early detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1942–1950.
A. Lukezic, T. Vojir, L. Čehovin Zajc, J. Matas, M. Kristan, Discriminative correlation filter with channel and spatial reliability, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6309–6318.
T.-W. Hui, X. Tang, C. Change Loy, Liteflownet: A lightweight convolutional neural network for optical flow estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8981–8989.
K. Hara, H. Kataoka, Y. Satoh, Learning spatio-temporal features with 3D residual networks for action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3154–3160.
Muhammad, Khan, Elhoseny, Ahmed, Baik (b43) 2019; 15
Chung, Gulcehre, Cho, Bengio (b40) 2014
Yan, Liu, Yang, Pedrycz (b79) 2020; 53
E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0: Evolution of optical flow estimation with deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2462–2470.
Ullah, Muhammad, Haq, Baik (b63) 2019; 96
Bolme, Beveridge, Draper, Lui (b69) 2010
Z. Lan, M. Lin, X. Li, A.G. Hauptmann, B. Raj, Beyond gaussian pyramid: Multi-skip feature stacking for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 204–212.
Liu, Su, Nie, Kankanhalli (b56) 2017; 39
Hamza, Yan, Muhammad, Bellavista, Titouna (b80) 2020
Wang, Zhang, Cheng, Shang, Mei (b27) 2016
Chen, Ramachandra, Wu, Vatsavai (b49) 2018
Soomro, Zamir, Shah (b59) 2012
Li, Nie, Su (b18) 2018; 6
Sajjad, Nasir, Ullah, Muhammad, Sangaiah, Baik (b81) 2019
Marszalek, Laptev, Schmid (b61) 2009
Ullah, Muhammad, Ser, Baik, Albuquerque (b1) 2019; 66
Yan, Tang, Shu, Li, Tian (b78) 2018
Dang, Min, Wang, Piran, Lee, Moon (b17) 2020
Wang, Gao, Wang, Sun, Liu (b8) 2017; 20
Ma, Chen, Kira, AlRegib (b50) 2019; 71
H. Yang, J. Zhang, S. Li, T. Luo, Bi-direction hierarchical LSTM with spatial–temporal attention for action recognition, J. Intell. Fuzzy Systems, no. Preprint, pp. 1–12.
X. Dai, B. Singh, G. Zhang, L.S. Davis, Y. Qiu Chen, Temporal context network for activity localization in videos, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5793–5802.
Khan, Sharif, Akram, Raza, Saba, Rehman (b57) 2020; 87
Li, Gavrilyuk, Gavves, Jain, Snoek (b22) 2018; 166
Xin, Zhang, Wang, Sun, Yuan (b47) 2016; 178
L. Sun, K. Jia, K. Chen, D.-Y. Yeung, B.E. Shi, S. Savarese, Lattice long short-term memory for human action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2147–2156.
Dai, Liu, Lai (b52) 2020; 86
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Y. Zhou, X. Sun, Z.-J. Zha, W. Zeng, MiCT: Mixed 3D/2D convolutional tube for human action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 449–458.
Majd, Safabakhsh (b12) 2020; 396
Herath, Harandi, Porikli (b16) 2017; 60
Muhammad, Hussain, Baik (b44) 2018
Xu, Zhou (b71) 2018
Bolme, Beveridge, Draper, Lui (b13) 2010
Blank, Gorelick, Shechtman, Irani, Basri (b34) 2005; 2
Kalal, Mikolajczyk, Matas (b65) 2012; 34
Yoon, Gwak, Song, Yoon, Jeon (b73) 2020; 8
Z. Qiu, T. Yao, T. Mei, Learning spatio-temporal representation with pseudo-3d residual networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5533–5541.
Redmon, Farhadi (b31) 2018
D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal features with 3d convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4489–4497.
P. Voigtlaender, J. Luiten, P.H. Torr, B. Leibe, Siam r-cnn: Visual tracking by re-detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6578–6588.
Murray (b76) 2017
J. Donahue, et al. Long-term recurrent convolutional networks for visual recognition and description, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2625–2634.
Reddy, Shah (b60) 2013; 24
Ramasinghe, Rodrigo (b54) 2015
Qi, Wang, Qin, Li, Luo, Van Gool (b25) 2019; 30
L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, J. Huang, End-to-end learning of motion representation for video understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6016–6025.
H. Xu, A. Das, K. Saenko, R-c3d: Region convolutional 3d network for temporal activity detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5783–5792.
Redmon, Farhadi (b26) 2018
Sun, Jia, Chen, Yeung, Shi, Savarese (b48) 2017
Peng, Wang, Wang, Qiao (b55) 2016; 150
Yousefi, Loo (b2) 2018; 62
Shi, Tian, Wang, Huang (b7) 2017; 19
Gao (b45) 2020
Dollar, Wojek, Schiele, Perona (b28) 2012; 34
Baisa (b72) 2019
Li, Xu, Taylor, Studer, Goldstein (b41) 2018
Grabner, Leistner, Bischof (b66) 2008
Zhao, Ali, Van der Smagt (b11) 2017
Ji, Yu, Wu (b75) 2020; 13
L. Chen, H. Ai, Z. Zhuang, C. Shang, Real-time multiple people tracking with deeply learned candidate selection and person re-identification, in: 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, pp. 1-6.
Herath (10.1016/j.asoc.2021.107102_b16) 2017; 60
Li (10.1016/j.asoc.2021.107102_b18) 2018; 6
Marszalek (10.1016/j.asoc.2021.107102_b61) 2009
Qi (10.1016/j.asoc.2021.107102_b25) 2019; 30
Yousefi (10.1016/j.asoc.2021.107102_b2) 2018; 62
Yan (10.1016/j.asoc.2021.107102_b79) 2020; 53
Kalal (10.1016/j.asoc.2021.107102_b65) 2012; 34
Wang (10.1016/j.asoc.2021.107102_b3) 2017; 37
Bolme (10.1016/j.asoc.2021.107102_b13) 2010
10.1016/j.asoc.2021.107102_b20
10.1016/j.asoc.2021.107102_b64
10.1016/j.asoc.2021.107102_b21
Redmon (10.1016/j.asoc.2021.107102_b26) 2018
Dollar (10.1016/j.asoc.2021.107102_b28) 2012; 34
Chen (10.1016/j.asoc.2021.107102_b49) 2018
Khan (10.1016/j.asoc.2021.107102_b57) 2020; 87
Hamza (10.1016/j.asoc.2021.107102_b80) 2020
10.1016/j.asoc.2021.107102_b29
Majd (10.1016/j.asoc.2021.107102_b12) 2020; 396
Dang (10.1016/j.asoc.2021.107102_b17) 2020
10.1016/j.asoc.2021.107102_b67
Soomro (10.1016/j.asoc.2021.107102_b59) 2012
Ramasinghe (10.1016/j.asoc.2021.107102_b54) 2015
Peng (10.1016/j.asoc.2021.107102_b55) 2016; 150
Ullah (10.1016/j.asoc.2021.107102_b23) 2018; 6
Murray (10.1016/j.asoc.2021.107102_b76) 2017
Yan (10.1016/j.asoc.2021.107102_b78) 2018
Simonyan (10.1016/j.asoc.2021.107102_b6) 2014
Hossain (10.1016/j.asoc.2021.107102_b77) 2019
Wang (10.1016/j.asoc.2021.107102_b8) 2017; 20
Li (10.1016/j.asoc.2021.107102_b22) 2018; 166
Badshah (10.1016/j.asoc.2021.107102_b38) 2019
Shan (10.1016/j.asoc.2021.107102_b33) 2015; 25
Chung (10.1016/j.asoc.2021.107102_b40) 2014
10.1016/j.asoc.2021.107102_b53
10.1016/j.asoc.2021.107102_b10
Shi (10.1016/j.asoc.2021.107102_b7) 2017; 19
Grabner (10.1016/j.asoc.2021.107102_b66) 2008
Ma (10.1016/j.asoc.2021.107102_b50) 2019; 71
10.1016/j.asoc.2021.107102_b51
Kuehne (10.1016/j.asoc.2021.107102_b24) 2018
10.1016/j.asoc.2021.107102_b14
10.1016/j.asoc.2021.107102_b15
Mehmood (10.1016/j.asoc.2021.107102_b42) 2019; 6
10.1016/j.asoc.2021.107102_b9
Xin (10.1016/j.asoc.2021.107102_b47) 2016; 178
Kuehne (10.1016/j.asoc.2021.107102_b58) 2011
Xu (10.1016/j.asoc.2021.107102_b71) 2018
Sajjad (10.1016/j.asoc.2021.107102_b81) 2019
Liu (10.1016/j.asoc.2021.107102_b56) 2017; 39
Zhao (10.1016/j.asoc.2021.107102_b11) 2017
Yoon (10.1016/j.asoc.2021.107102_b73) 2020; 8
Ullah (10.1016/j.asoc.2021.107102_b1) 2019; 66
Wang (10.1016/j.asoc.2021.107102_b27) 2016
Henriques (10.1016/j.asoc.2021.107102_b68) 2015; 37
Li (10.1016/j.asoc.2021.107102_b41) 2018
10.1016/j.asoc.2021.107102_b5
10.1016/j.asoc.2021.107102_b4
Redmon (10.1016/j.asoc.2021.107102_b31) 2018
Muhammad (10.1016/j.asoc.2021.107102_b43) 2019; 15
Gao (10.1016/j.asoc.2021.107102_b45) 2020
Ji (10.1016/j.asoc.2021.107102_b75) 2020; 13
Blank (10.1016/j.asoc.2021.107102_b34) 2005; 2
Bolme (10.1016/j.asoc.2021.107102_b69) 2010
Muhammad (10.1016/j.asoc.2021.107102_b44) 2018
Ullah (10.1016/j.asoc.2021.107102_b63) 2019; 96
Dai (10.1016/j.asoc.2021.107102_b52) 2020; 86
Baisa (10.1016/j.asoc.2021.107102_b72) 2019
Reddy (10.1016/j.asoc.2021.107102_b60) 2013; 24
Oneto (10.1016/j.asoc.2021.107102_b46) 2020
Gammulle (10.1016/j.asoc.2021.107102_b19) 2017
10.1016/j.asoc.2021.107102_b30
10.1016/j.asoc.2021.107102_b74
10.1016/j.asoc.2021.107102_b32
10.1016/j.asoc.2021.107102_b70
10.1016/j.asoc.2021.107102_b39
Sun (10.1016/j.asoc.2021.107102_b48) 2017
10.1016/j.asoc.2021.107102_b35
10.1016/j.asoc.2021.107102_b36
10.1016/j.asoc.2021.107102_b37
Liu (10.1016/j.asoc.2021.107102_b62) 2009
References_xml – start-page: 416
  year: 2019
  end-page: 431
  ident: b81
  article-title: Raspberry Pi assisted facial expression recognition framework for smart security in law-enforcement services
– start-page: 6389
  year: 2018
  end-page: 6399
  ident: b41
  article-title: Visualizing the loss landscape of neural nets
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2929
  year: 2009
  end-page: 2936
  ident: b61
  article-title: Actions in context, in computer vision and pattern recognition
  publication-title: 2009. CVPR 2009. IEEE Conference on
– volume: 34
  start-page: 1409
  year: 2012
  end-page: 1422
  ident: b65
  article-title: Tracking-learning-detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: A. Dosovitskiy, et al. Flownet: Learning optical flow with convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766.
– volume: 71
  start-page: 76
  year: 2019
  end-page: 87
  ident: b50
  article-title: TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition
  publication-title: Signal Process., Image Commun.
– reference: K. Hara, H. Kataoka, Y. Satoh, Learning spatio-temporal features with 3D residual networks for action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3154–3160.
– start-page: 2166
  year: 2017
  end-page: 2175
  ident: b48
  article-title: Lattice long short-term memory for human action recognition
  publication-title: ICCV
– reference: L. Chen, H. Ai, Z. Zhuang, C. Shang, Real-time multiple people tracking with deeply learned candidate selection and person re-identification, in: 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, pp. 1-6.
– volume: 150
  start-page: 109
  year: 2016
  end-page: 125
  ident: b55
  article-title: Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice
  publication-title: Comput. Vis. Image Underst.
– volume: 25
  start-page: 1624
  year: 2015
  end-page: 1636
  ident: b33
  article-title: Adaptive slice representation for human action classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 166
  start-page: 41
  year: 2018
  end-page: 50
  ident: b22
  article-title: Videolstm convolves attends and flows for action recognition
  publication-title: Comput. Vis. Image Underst.
– year: 2018
  ident: b44
  article-title: Efficient CNN based summarization of surveillance videos for resource-constrained devices
  publication-title: Pattern Recognit. Lett.
– volume: 66
  start-page: 9692
  year: 2019
  end-page: 9702
  ident: b1
  article-title: Activity recognition using temporal optical flow convolutional features and multilayer LSTM
  publication-title: IEEE Trans. Ind. Electron.
– volume: 86
  year: 2020
  ident: b52
  article-title: Human action recognition using two-stream attention based LSTM networks
  publication-title: Appl. Soft Comput.
– start-page: 234
  year: 2008
  end-page: 247
  ident: b66
  article-title: Semi-supervised on-line boosting for robust tracking
  publication-title: European Conference on Computer Vision
– year: 2018
  ident: b24
  article-title: A hybrid rnn-hmm approach for weakly supervised temporal action segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 38060
  year: 2020
  end-page: 38072
  ident: b73
  article-title: Oneshotda: Online multi-object tracker with one-shot-learning-based data association
  publication-title: IEEE Access
– year: 2018
  ident: b26
  article-title: Yolov3: An incremental improvement
– volume: 19
  start-page: 1510
  year: 2017
  end-page: 1520
  ident: b7
  article-title: Sequential deep trajectory descriptor for action recognition with three-stream CNN
  publication-title: IEEE Trans. Multimed.
– start-page: 3371
  year: 2019
  ident: b77
  article-title: Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices
– reference: Z. Lan, M. Lin, X. Li, A.G. Hauptmann, B. Raj, Beyond gaussian pyramid: Multi-skip feature stacking for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 204–212.
– reference: D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal features with 3d convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4489–4497.
– year: 2020
  ident: b46
  article-title: Model Selection and Error Estimation in a Nutshell
– start-page: 2544
  year: 2010
  end-page: 2550
  ident: b13
  article-title: Visual object tracking using adaptive correlation filters
  publication-title: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
– volume: 6
  start-page: 44211
  year: 2018
  end-page: 44220
  ident: b18
  article-title: Human action recognition based on selected spatio-temporal features via bidirectional LSTM
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 9
  ident: b45
  article-title: Salient object detection in the distributed cloud-edge intelligent network
  publication-title: IEEE Netw.
– volume: 60
  start-page: 4
  year: 2017
  end-page: 21
  ident: b16
  article-title: Going deeper into action recognition: A survey
  publication-title: Image Vis. Comput.
– year: 2014
  ident: b40
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– reference: Y. Zhou, X. Sun, Z.-J. Zha, W. Zeng, MiCT: Mixed 3D/2D convolutional tube for human action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 449–458.
– year: 2020
  ident: b17
  article-title: Sensor-based and vision-based human activity recognition: A comprehensive survey
  publication-title: Pattern Recognit.
– volume: 53
  start-page: 1
  year: 2020
  end-page: 3
  ident: b79
  article-title: Data fusion in heterogeneous networks
  publication-title: Inf. Fusion
– volume: 15
  start-page: 3113
  year: 2019
  end-page: 3122
  ident: b43
  article-title: Efficient fire detection for uncertain surveillance environment
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 493
  year: 2020
  end-page: 510
  ident: b80
  article-title: A privacy-preserving cryptosystem for IoT E-healthcare
– volume: 39
  start-page: 102
  year: 2017
  end-page: 114
  ident: b56
  article-title: Hierarchical clustering multi-task learning for joint human action grouping and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 180
  year: 2018
  end-page: 192
  ident: b71
  article-title: Consistent online multi-object tracking with part-based deep network
  publication-title: Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
– volume: 396
  start-page: 224
  year: 2020
  end-page: 229
  ident: b12
  article-title: Correlational convolutional LSTM for human action recognition
  publication-title: Neurocomputing
– start-page: 463
  year: 2016
  end-page: 477
  ident: b27
  article-title: SPID: surveillance pedestrian image dataset and performance evaluation for pedestrian detection
  publication-title: Asian Conference on Computer Vision
– reference: A. Lukezic, T. Vojir, L. Čehovin Zajc, J. Matas, M. Kristan, Discriminative correlation filter with channel and spatial reliability, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6309–6318.
– start-page: 568
  year: 2014
  end-page: 576
  ident: b6
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  start-page: 549
  year: 2019
  end-page: 565
  ident: b25
  article-title: Stagnet: An attentive semantic RNN for group activity and individual action recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 2544
  year: 2010
  end-page: 2550
  ident: b69
  article-title: Visual object tracking using adaptive correlation filters
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 2
  start-page: 1395
  year: 2005
  end-page: 1402
  ident: b34
  article-title: Actions as space–time shapes
  publication-title: Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol. 1
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: J. Donahue, et al. Long-term recurrent convolutional networks for visual recognition and description, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2625–2634.
– reference: S. Ma, L. Sigal, S. Sclaroff, Learning activity progression in lstms for activity detection and early detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1942–1950.
– volume: 62
  start-page: 57
  year: 2018
  end-page: 72
  ident: b2
  article-title: A dual fast and slow feature interaction in biologically inspired visual recognition of human action
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 634
  year: 2017
  end-page: 644
  ident: b8
  article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length
  publication-title: IEEE Trans. Multimed.
– volume: 96
  start-page: 386
  year: 2019
  end-page: 397
  ident: b63
  article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments
  publication-title: Future Gener. Comput. Syst.
– reference: T.-W. Hui, X. Tang, C. Change Loy, Liteflownet: A lightweight convolutional neural network for optical flow estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8981–8989.
– reference: P. Voigtlaender, J. Luiten, P.H. Torr, B. Leibe, Siam r-cnn: Visual tracking by re-detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6578–6588.
– reference: H. Xu, A. Das, K. Saenko, R-c3d: Region convolutional 3d network for temporal activity detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5783–5792.
– year: 2017
  ident: b76
  article-title: Real-time multiple object tracking-a study on the importance of speed
– start-page: 1292
  year: 2018
  end-page: 1300
  ident: b78
  article-title: Participation-contributed temporal dynamic model for group activity recognition
  publication-title: 2018 ACM Multimedia Conference on Multimedia Conference
– volume: 6
  start-page: 9246
  year: 2019
  end-page: 9255
  ident: b42
  article-title: Efficient image recognition and retrieval on IoT-assisted energy-constrained platforms from big data repositories
  publication-title: IEEE Internet Things J.
– reference: H. Yang, J. Zhang, S. Li, T. Luo, Bi-direction hierarchical LSTM with spatial–temporal attention for action recognition, J. Intell. Fuzzy Systems, no. Preprint, pp. 1–12.
– volume: 37
  start-page: 1
  year: 2017
  end-page: 9
  ident: b3
  article-title: Kernel fusion based extreme learning machine for cross-location activity recognition
  publication-title: Inf. Fusion
– year: 2018
  ident: b31
  article-title: Yolov3: An incremental improvement
– year: 2012
  ident: b59
  article-title: UCF101: A dataset of 101 human actions classes from videos in the wild
– start-page: 177
  year: 2017
  end-page: 186
  ident: b19
  article-title: Two stream lstm: A deep fusion framework for human action recognition
  publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 5571
  year: 2019
  end-page: 5589
  ident: b38
  article-title: Deep features-based speech emotion recognition for smart affective services
– volume: 87
  year: 2020
  ident: b57
  article-title: Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition
  publication-title: Appl. Soft Comput.
– volume: 178
  start-page: 87
  year: 2016
  end-page: 102
  ident: b47
  article-title: Arch: Adaptive recurrent-convolutional hybrid networks for long-term action recognition
  publication-title: Neurocomputing
– start-page: 1
  year: 2019
  end-page: 8
  ident: b72
  article-title: Online multi-object visual tracking using a GM-PHD filter with deep appearance learning
  publication-title: 2019 22th International Conference on Information Fusion (FUSION)
– start-page: 1996
  year: 2009
  end-page: 2003
  ident: b62
  article-title: Recognizing realistic actions from videos in the wild
  publication-title: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
– reference: L. Sun, K. Jia, K. Chen, D.-Y. Yeung, B.E. Shi, S. Savarese, Lattice long short-term memory for human action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2147–2156.
– year: 2018
  ident: b49
  article-title: Relational long short-term memory for video action recognition
– reference: H. Wang, C. Schmid, Action recognition with improved trajectories, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3551–3558.
– volume: 13
  start-page: 80
  year: 2020
  ident: b75
  article-title: Hierarchical-matching-based online and real-time multi-object tracking with deep appearance features
  publication-title: Algorithms
– reference: X. Dai, B. Singh, G. Zhang, L.S. Davis, Y. Qiu Chen, Temporal context network for activity localization in videos, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5793–5802.
– start-page: 101
  year: 2015
  end-page: 105
  ident: b54
  article-title: Action recognition by single stream convolutional neural networks: An approach using combined motion and static information
  publication-title: Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
– volume: 34
  start-page: 743
  year: 2012
  end-page: 761
  ident: b28
  article-title: Pedestrian detection: An evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 971
  year: 2013
  end-page: 981
  ident: b60
  article-title: Recognizing 50 human action categories of web videos
  publication-title: Mach. Vis. Appl.
– volume: 37
  start-page: 583
  year: 2015
  end-page: 596
  ident: b68
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 4260
  year: 2017
  end-page: 4267
  ident: b11
  article-title: Two-stream RNN/CNN for action recognition in 3D videos
  publication-title: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– reference: E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0: Evolution of optical flow estimation with deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2462–2470.
– reference: L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, J. Huang, End-to-end learning of motion representation for video understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6016–6025.
– reference: Z. Qiu, T. Yao, T. Mei, Learning spatio-temporal representation with pseudo-3d residual networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5533–5541.
– start-page: 2556
  year: 2011
  end-page: 2563
  ident: b58
  article-title: HMDB: a large video database for human motion recognition
  publication-title: Computer Vision (ICCV), 2011 IEEE International Conference on
– reference: J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263-7271.
– volume: 6
  start-page: 1155
  year: 2018
  end-page: 1166
  ident: b23
  article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features
  publication-title: IEEE Access
– volume: 37
  start-page: 583
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2021.107102_b68
  article-title: High-speed tracking with kernelized correlation filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345390
– volume: 20
  start-page: 634
  issue: 3
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b8
  article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2749159
– ident: 10.1016/j.asoc.2021.107102_b37
  doi: 10.1109/CVPR.2018.00936
– ident: 10.1016/j.asoc.2021.107102_b67
  doi: 10.1109/CVPR.2017.515
– start-page: 2544
  year: 2010
  ident: 10.1016/j.asoc.2021.107102_b13
  article-title: Visual object tracking using adaptive correlation filters
– start-page: 4260
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b11
  article-title: Two-stream RNN/CNN for action recognition in 3D videos
– year: 2020
  ident: 10.1016/j.asoc.2021.107102_b17
  article-title: Sensor-based and vision-based human activity recognition: A comprehensive survey
  publication-title: Pattern Recognit.
– ident: 10.1016/j.asoc.2021.107102_b36
  doi: 10.1109/ICCV.2017.617
– start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b72
  article-title: Online multi-object visual tracking using a GM-PHD filter with deep appearance learning
– start-page: 493
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b80
– volume: 53
  start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b79
  article-title: Data fusion in heterogeneous networks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.007
– volume: 60
  start-page: 4
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b16
  article-title: Going deeper into action recognition: A survey
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.010
– ident: 10.1016/j.asoc.2021.107102_b20
  doi: 10.1109/ICCV.2017.236
– ident: 10.1016/j.asoc.2021.107102_b64
  doi: 10.1109/ICCV.2015.510
– ident: 10.1016/j.asoc.2021.107102_b30
  doi: 10.1109/CVPR.2017.690
– ident: 10.1016/j.asoc.2021.107102_b51
– year: 2018
  ident: 10.1016/j.asoc.2021.107102_b31
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b45
  article-title: Salient object detection in the distributed cloud-edge intelligent network
  publication-title: IEEE Netw.
– year: 2020
  ident: 10.1016/j.asoc.2021.107102_b46
– ident: 10.1016/j.asoc.2021.107102_b70
  doi: 10.1109/ICME.2018.8486597
– volume: 30
  start-page: 549
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b25
  article-title: Stagnet: An attentive semantic RNN for group activity and individual action recognition
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2894161
– volume: 6
  start-page: 1155
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b23
  article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2778011
– start-page: 463
  year: 2016
  ident: 10.1016/j.asoc.2021.107102_b27
  article-title: SPID: surveillance pedestrian image dataset and performance evaluation for pedestrian detection
– volume: 87
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b57
  article-title: Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105986
– ident: 10.1016/j.asoc.2021.107102_b35
  doi: 10.1109/ICCVW.2017.373
– year: 2018
  ident: 10.1016/j.asoc.2021.107102_b24
  article-title: A hybrid rnn-hmm approach for weakly supervised temporal action segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2012
  ident: 10.1016/j.asoc.2021.107102_b59
– volume: 25
  start-page: 1624
  issue: 10
  year: 2015
  ident: 10.1016/j.asoc.2021.107102_b33
  article-title: Adaptive slice representation for human action classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2376136
– year: 2018
  ident: 10.1016/j.asoc.2021.107102_b44
  article-title: Efficient CNN based summarization of surveillance videos for resource-constrained devices
  publication-title: Pattern Recognit. Lett.
– volume: 62
  start-page: 57
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b2
  article-title: A dual fast and slow feature interaction in biologically inspired visual recognition of human action
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.021
– ident: 10.1016/j.asoc.2021.107102_b74
  doi: 10.1109/CVPR42600.2020.00661
– volume: 178
  start-page: 87
  year: 2016
  ident: 10.1016/j.asoc.2021.107102_b47
  article-title: Arch: Adaptive recurrent-convolutional hybrid networks for long-term action recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.112
– year: 2014
  ident: 10.1016/j.asoc.2021.107102_b40
– start-page: 2556
  year: 2011
  ident: 10.1016/j.asoc.2021.107102_b58
  article-title: HMDB: a large video database for human motion recognition
– ident: 10.1016/j.asoc.2021.107102_b32
  doi: 10.1109/ICCV.2017.610
– volume: 66
  start-page: 9692
  issue: 12
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b1
  article-title: Activity recognition using temporal optical flow convolutional features and multilayer LSTM
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2881943
– volume: 34
  start-page: 1409
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2021.107102_b65
  article-title: Tracking-learning-detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.239
– ident: 10.1016/j.asoc.2021.107102_b9
  doi: 10.1109/ICCV.2017.590
– volume: 166
  start-page: 41
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b22
  article-title: Videolstm convolves attends and flows for action recognition
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.10.011
– volume: 6
  start-page: 44211
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b18
  article-title: Human action recognition based on selected spatio-temporal features via bidirectional LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863943
– start-page: 416
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b81
– volume: 71
  start-page: 76
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b50
  article-title: TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2018.09.003
– start-page: 5571
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b38
– start-page: 234
  year: 2008
  ident: 10.1016/j.asoc.2021.107102_b66
  article-title: Semi-supervised on-line boosting for robust tracking
– ident: 10.1016/j.asoc.2021.107102_b4
  doi: 10.1109/ICCV.2013.441
– start-page: 101
  year: 2015
  ident: 10.1016/j.asoc.2021.107102_b54
  article-title: Action recognition by single stream convolutional neural networks: An approach using combined motion and static information
– ident: 10.1016/j.asoc.2021.107102_b5
  doi: 10.1109/CVPR.2018.00630
– start-page: 1292
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b78
  article-title: Participation-contributed temporal dynamic model for group activity recognition
– start-page: 177
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b19
  article-title: Two stream lstm: A deep fusion framework for human action recognition
– year: 2018
  ident: 10.1016/j.asoc.2021.107102_b26
– volume: 150
  start-page: 109
  year: 2016
  ident: 10.1016/j.asoc.2021.107102_b55
  article-title: Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.03.013
– ident: 10.1016/j.asoc.2021.107102_b39
  doi: 10.1109/CVPR.2015.7298878
– start-page: 568
  year: 2014
  ident: 10.1016/j.asoc.2021.107102_b6
  article-title: Two-stream convolutional networks for action recognition in videos
– start-page: 1996
  year: 2009
  ident: 10.1016/j.asoc.2021.107102_b62
  article-title: Recognizing realistic actions from videos in the wild
– ident: 10.1016/j.asoc.2021.107102_b21
  doi: 10.1109/CVPR.2016.214
– volume: 39
  start-page: 102
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b56
  article-title: Hierarchical clustering multi-task learning for joint human action grouping and recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2537337
– year: 2017
  ident: 10.1016/j.asoc.2021.107102_b76
– ident: 10.1016/j.asoc.2021.107102_b53
– year: 2018
  ident: 10.1016/j.asoc.2021.107102_b49
– start-page: 2166
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b48
  article-title: Lattice long short-term memory for human action recognition
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2021.107102_b28
  article-title: Pedestrian detection: An evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.155
– start-page: 180
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b71
  article-title: Consistent online multi-object tracking with part-based deep network
– volume: 19
  start-page: 1510
  issue: 7
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b7
  article-title: Sequential deep trajectory descriptor for action recognition with three-stream CNN
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2666540
– ident: 10.1016/j.asoc.2021.107102_b15
  doi: 10.1109/CVPR.2017.179
– volume: 2
  start-page: 1395
  year: 2005
  ident: 10.1016/j.asoc.2021.107102_b34
  article-title: Actions as space–time shapes
– start-page: 6389
  year: 2018
  ident: 10.1016/j.asoc.2021.107102_b41
  article-title: Visualizing the loss landscape of neural nets
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b52
  article-title: Human action recognition using two-stream attention based LSTM networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105820
– volume: 15
  start-page: 3113
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b43
  article-title: Efficient fire detection for uncertain surveillance environment
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2897594
– volume: 13
  start-page: 80
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b75
  article-title: Hierarchical-matching-based online and real-time multi-object tracking with deep appearance features
  publication-title: Algorithms
  doi: 10.3390/a13040080
– start-page: 2929
  year: 2009
  ident: 10.1016/j.asoc.2021.107102_b61
  article-title: Actions in context, in computer vision and pattern recognition
– ident: 10.1016/j.asoc.2021.107102_b10
  doi: 10.1109/CVPR.2018.00054
– volume: 96
  start-page: 386
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b63
  article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.01.029
– ident: 10.1016/j.asoc.2021.107102_b29
  doi: 10.1109/CVPR.2016.90
– start-page: 2544
  year: 2010
  ident: 10.1016/j.asoc.2021.107102_b69
  article-title: Visual object tracking using adaptive correlation filters
– volume: 6
  start-page: 9246
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b42
  article-title: Efficient image recognition and retrieval on IoT-assisted energy-constrained platforms from big data repositories
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2896151
– volume: 37
  start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.107102_b3
  article-title: Kernel fusion based extreme learning machine for cross-location activity recognition
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.01.004
– volume: 24
  start-page: 971
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2021.107102_b60
  article-title: Recognizing 50 human action categories of web videos
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-012-0450-4
– ident: 10.1016/j.asoc.2021.107102_b14
  doi: 10.1109/ICCV.2015.316
– volume: 8
  start-page: 38060
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b73
  article-title: Oneshotda: Online multi-object tracker with one-shot-learning-based data association
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975912
– volume: 396
  start-page: 224
  year: 2020
  ident: 10.1016/j.asoc.2021.107102_b12
  article-title: Correlational convolutional LSTM for human action recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.095
– start-page: 3371
  year: 2019
  ident: 10.1016/j.asoc.2021.107102_b77
SSID ssj0016928
Score 2.5972674
Snippet Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107102
SubjectTerms Activity recognition
Artificial intelligence
Deep learning
GRU
IoT
Machine learning
Pattern recognition
Video big data analytics
Title Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications
URI https://dx.doi.org/10.1016/j.asoc.2021.107102
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXLjwRoyXcuCGyvpI0uY4lcd4TWhjErcqaRI0NHUINrjx27H7mIaEOHCqWsVt5Sb25_SzTchJELGca-68wFnfYzEsRUCtIbIsdMykH-Zl-eL7nugO2c0Tf1oiaZMLg7TK2vZXNr201vWVdq3N9uto1B5A5JEwyUSIW9SA4jGDHR4Gc_rsa07zCIQs-6viYA9H14kzFcdLgQYgRgwDuICu9nfntOBwLjfIWo0Uaad6mU2yZIstst50YaD1otwm9qKsAgHOg2KSAvaCoHNa0KSgyGx_pmMMwj_LfVCa9npUFYaeD7yr_pAWFROcAnyl77O3D4uNiODWdPHn9g4ZXl48pl2vbp7g5RFjU48lLGJWx0JxLX1njVCJi5XPkzB2ynCb5MzIKGcxNxHAkNBZEVid-BYgnXBBtEuWi0lh9whVykhmhA6sAxkjlRahlkYaAbFKrlyLBI3WsryuLI4NLsZZQyF7yVDTGWo6qzTdIqdzmdeqrsafo3nzMbIfsyMDw_-H3P4_5Q7IKp5VxMZDsjx9m9kjAB9TfVzOrmOy0kn7dw94vL7t9r4ByNbbMQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFNBwI25cQIXCJo7jxAUF4lquLYCV6IId2wiEAoIFRMNP8YOME2cFEqJAonUyljN25rCf5wGsRTErEpXYILImDFiKvyJGrdShLFTKREiLqnzxaYe3u-zoMrkcgI_mLoyDVXrbX9v0ylr7lpbXZuvh5qZ1jplHxgTj1G1RYxTvkZXH5u0V87anrcNdnOR1Svf3LnbagacWCIqYsV7AMhYzo1IuEyVCazSXmU1lmGQ0tVInJiuYFnHB0kTH6KSpNTwyKgsNBjzcRjH2OwjDDM2Fo03YfO_jSiIuKkJXN7rADc_f1KlBZRJVjkkpjbDB-fafveEXD7c_AWM-NCXb9ddPwoApp2C8oX0g3gpMg9mryk6gtyLuVoQjnyB9HNJ9SRyU_prcuaz_tdp4JTudDpGlJrvnwcFZl5Q19JxgvEyenh9fjGM-wq7J19P0Gej-i0pnYai8L80cECm1YJqryFiU0UIqTpXQQnNMjgpp5yFqtJYXvpS5Y9S4yxvM2m3uNJ07Tee1pudhoy_zUBfy-PXtpJmM_NtyzNHT_CK38Ee5VRhpX5ye5CeHneNFGHVPalTlEgz1Hp_NMkY-PbVSrTQCV_-9tD8BRzIVRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+activity+recognition+using+lightweight+CNN+and+DS-GRU+network+for+surveillance+applications&rft.jtitle=Applied+soft+computing&rft.au=Ullah%2C+Amin&rft.au=Muhammad%2C+Khan&rft.au=Ding%2C+Weiping&rft.au=Palade%2C+Vasile&rft.date=2021-05-01&rft.issn=1568-4946&rft.volume=103&rft.spage=107102&rft_id=info:doi/10.1016%2Fj.asoc.2021.107102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon