Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications
Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video data streams, while maintaining low computational complexity, and performing this task in real-time. Current activity recognition techniques are...
Saved in:
Published in | Applied soft computing Vol. 103; p. 107102 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video data streams, while maintaining low computational complexity, and performing this task in real-time. Current activity recognition techniques are using convolutional neural network (CNN) models with computationally complex classifiers, creating hurdles in obtaining quick responses for abnormal activities. To address these challenges in real-time surveillance, this paper proposes a lightweight deep learning-assisted framework for activity recognition. First, we detect a human in the surveillance stream using an effective CNN model, which is trained on two surveillance datasets. The detected individual is tracked throughout the video stream via an ultra-fast object tracker called the ‘minimum output sum of squared error’ (MOSSE). Next, for each tracked individual, pyramidal convolutional features are extracted from two consecutive frames using the efficient LiteFlowNet CNN. Finally, a novel deep skip connection gated recurrent unit (DS-GRU) is trained to learn the temporal changes in the sequence of frames for activity recognition. Experiments are conducted over five benchmark activity recognition datasets, and the results indicate the efficiency of the proposed technique for real-time surveillance applications compared to the state-of-the-art.
•Incorporation of two lightweight technologies for activity recognition.•A novel method for sequential features extraction using optical flow CNN model.•A DS-GRU is presented for learning sequential patterns.•An efficient 48 MB trained model for real-time activity recognition. |
---|---|
AbstractList | Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video data streams, while maintaining low computational complexity, and performing this task in real-time. Current activity recognition techniques are using convolutional neural network (CNN) models with computationally complex classifiers, creating hurdles in obtaining quick responses for abnormal activities. To address these challenges in real-time surveillance, this paper proposes a lightweight deep learning-assisted framework for activity recognition. First, we detect a human in the surveillance stream using an effective CNN model, which is trained on two surveillance datasets. The detected individual is tracked throughout the video stream via an ultra-fast object tracker called the ‘minimum output sum of squared error’ (MOSSE). Next, for each tracked individual, pyramidal convolutional features are extracted from two consecutive frames using the efficient LiteFlowNet CNN. Finally, a novel deep skip connection gated recurrent unit (DS-GRU) is trained to learn the temporal changes in the sequence of frames for activity recognition. Experiments are conducted over five benchmark activity recognition datasets, and the results indicate the efficiency of the proposed technique for real-time surveillance applications compared to the state-of-the-art.
•Incorporation of two lightweight technologies for activity recognition.•A novel method for sequential features extraction using optical flow CNN model.•A DS-GRU is presented for learning sequential patterns.•An efficient 48 MB trained model for real-time activity recognition. |
ArticleNumber | 107102 |
Author | Haq, Ijaz Ul Ullah, Amin Ding, Weiping Palade, Vasile Muhammad, Khan Baik, Sung Wook |
Author_xml | – sequence: 1 givenname: Amin surname: Ullah fullname: Ullah, Amin organization: Sejong University, Seoul, South Korea – sequence: 2 givenname: Khan surname: Muhammad fullname: Muhammad, Khan organization: Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Republic of Korea – sequence: 3 givenname: Weiping surname: Ding fullname: Ding, Weiping organization: Department of Computer Science and Technology, Nantong University, China – sequence: 4 givenname: Vasile orcidid: 0000-0002-6768-8394 surname: Palade fullname: Palade, Vasile organization: Department of Environment and Computing at Coventry University, UK – sequence: 5 givenname: Ijaz Ul surname: Haq fullname: Haq, Ijaz Ul organization: Sejong University, Seoul, South Korea – sequence: 6 givenname: Sung Wook surname: Baik fullname: Baik, Sung Wook email: sbaik@sejong.ac.kr organization: Sejong University, Seoul, South Korea |
BookMark | eNp9kMFKAzEQhoMo2FZfwFNeYGuym81mwYvUWoVSQe05pNlJTV2TkqQtfXt3rScPXmaGH75h5huic-cdIHRDyZgSym83YxW9Huckp11QUZKfoQEVVZ7VXNDzbi65yFjN-CUaxrghHVTnYoBgaozVFlzCSie7t-mIA2i_djZZ7_AuWrfGrV1_pAP0FU8WC6xcgx_estnrEjtIBx8-sfEBx13Yg21b5TRgtd22Vqt-S7xCF0a1Ea5_-wgtH6fvk6ds_jJ7ntzPM10wljImWMFgVXFVrmpioOFKmEqRUuSVUU0JQrOmLjSryqbgXWqAU1gJArQuuKHFCInTXh18jAGM1Db9nJCCsq2kRPa65Eb2umSvS550dWj-B90G-6XC8X_o7gRB99TeQpCxd6mhsZ3EJBtv_8O_AQYNh6I |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_122482 crossref_primary_10_1080_03772063_2024_2402881 crossref_primary_10_3390_electronics13234733 crossref_primary_10_1002_cpe_7588 crossref_primary_10_3233_ICA_210667 crossref_primary_10_3390_app122311951 crossref_primary_10_1016_j_engappai_2024_109239 crossref_primary_10_3390_jpm11060515 crossref_primary_10_3390_s21113642 crossref_primary_10_3390_s23042182 crossref_primary_10_1016_j_engappai_2023_107218 crossref_primary_10_1109_TCE_2024_3373824 crossref_primary_10_1007_s00521_022_07937_4 crossref_primary_10_1007_s11042_023_17697_5 crossref_primary_10_1016_j_eij_2024_100536 crossref_primary_10_1016_j_energy_2022_125217 crossref_primary_10_1145_3561971 crossref_primary_10_2139_ssrn_4111254 crossref_primary_10_1007_s11042_023_15930_9 crossref_primary_10_1016_j_aej_2023_05_050 crossref_primary_10_1016_j_asoc_2021_107671 crossref_primary_10_1109_TBDATA_2023_3319252 crossref_primary_10_1109_JIOT_2024_3455434 crossref_primary_10_3390_jimaging9070130 crossref_primary_10_3390_rs13101962 crossref_primary_10_32604_cmc_2024_056767 crossref_primary_10_3390_jimaging9040082 crossref_primary_10_1049_tje2_12375 crossref_primary_10_12677_mos_2025_141001 crossref_primary_10_1007_s11042_024_18375_w crossref_primary_10_34133_plantphenomics_0204 crossref_primary_10_1016_j_asoc_2024_112294 crossref_primary_10_3390_s24165436 crossref_primary_10_1038_s41598_022_24887_y crossref_primary_10_1016_j_aej_2023_09_013 crossref_primary_10_1109_ACCESS_2023_3293813 crossref_primary_10_1007_s00170_022_10335_8 crossref_primary_10_1016_j_jocs_2024_102377 crossref_primary_10_1109_ACCESS_2022_3162827 crossref_primary_10_1007_s13735_024_00338_4 crossref_primary_10_3233_AIS_220125 crossref_primary_10_1007_s10479_021_04348_x crossref_primary_10_1109_ACCESS_2022_3174678 crossref_primary_10_3390_s24061908 crossref_primary_10_1007_s11042_023_17289_3 crossref_primary_10_1080_03772063_2021_1967792 crossref_primary_10_1007_s10489_025_06275_x crossref_primary_10_1155_2021_2449603 crossref_primary_10_1007_s11042_023_15904_x crossref_primary_10_1016_j_aej_2023_11_017 crossref_primary_10_1016_j_chemolab_2022_104750 crossref_primary_10_1016_j_inffus_2023_102211 crossref_primary_10_32604_cmc_2023_035214 crossref_primary_10_3390_app14114722 crossref_primary_10_32604_cmc_2022_024760 crossref_primary_10_1016_j_engappai_2024_108247 crossref_primary_10_1177_20552076241271639 crossref_primary_10_1007_s11760_023_02895_3 crossref_primary_10_1007_s10462_024_10877_1 crossref_primary_10_3390_machines12070453 crossref_primary_10_1016_j_engappai_2024_109940 crossref_primary_10_1016_j_inffus_2023_101953 crossref_primary_10_3390_electronics13112116 crossref_primary_10_1007_s11042_022_14253_5 crossref_primary_10_3390_s21165625 crossref_primary_10_1049_cvi2_70003 crossref_primary_10_1007_s11263_023_01932_5 crossref_primary_10_1016_j_eswa_2023_122220 crossref_primary_10_1007_s11042_023_14492_0 crossref_primary_10_32604_cmc_2024_048061 crossref_primary_10_3390_electronics11244129 crossref_primary_10_1007_s13369_021_05881_4 crossref_primary_10_1007_s11042_024_19711_w crossref_primary_10_1109_ACCESS_2024_3522996 crossref_primary_10_32604_cmc_2024_049512 crossref_primary_10_3390_a16080369 crossref_primary_10_1007_s10845_024_02518_9 crossref_primary_10_1109_TCSS_2023_3249152 crossref_primary_10_3233_JIFS_230505 crossref_primary_10_1109_JSTARS_2023_3249216 crossref_primary_10_3390_biomimetics8050417 crossref_primary_10_1007_s00371_024_03266_w crossref_primary_10_1016_j_asoc_2023_110663 crossref_primary_10_1016_j_bspc_2022_103567 crossref_primary_10_1155_2022_3454167 crossref_primary_10_1155_2024_1052344 crossref_primary_10_1002_int_22537 crossref_primary_10_1007_s11042_021_11722_1 crossref_primary_10_1007_s10639_023_12385_1 crossref_primary_10_3390_s22010323 |
Cites_doi | 10.1109/TPAMI.2014.2345390 10.1109/TMM.2017.2749159 10.1109/CVPR.2018.00936 10.1109/CVPR.2017.515 10.1109/ICCV.2017.617 10.1016/j.inffus.2019.06.007 10.1016/j.imavis.2017.01.010 10.1109/ICCV.2017.236 10.1109/ICCV.2015.510 10.1109/CVPR.2017.690 10.1109/ICME.2018.8486597 10.1109/TCSVT.2019.2894161 10.1109/ACCESS.2017.2778011 10.1016/j.asoc.2019.105986 10.1109/ICCVW.2017.373 10.1109/TCSVT.2014.2376136 10.1016/j.asoc.2017.10.021 10.1109/CVPR42600.2020.00661 10.1016/j.neucom.2015.09.112 10.1109/ICCV.2017.610 10.1109/TIE.2018.2881943 10.1109/TPAMI.2011.239 10.1109/ICCV.2017.590 10.1016/j.cviu.2017.10.011 10.1109/ACCESS.2018.2863943 10.1016/j.image.2018.09.003 10.1109/ICCV.2013.441 10.1109/CVPR.2018.00630 10.1016/j.cviu.2016.03.013 10.1109/CVPR.2015.7298878 10.1109/CVPR.2016.214 10.1109/TPAMI.2016.2537337 10.1109/TPAMI.2011.155 10.1109/TMM.2017.2666540 10.1109/CVPR.2017.179 10.1016/j.asoc.2019.105820 10.1109/TII.2019.2897594 10.3390/a13040080 10.1109/CVPR.2018.00054 10.1016/j.future.2019.01.029 10.1109/CVPR.2016.90 10.1109/JIOT.2019.2896151 10.1016/j.inffus.2017.01.004 10.1007/s00138-012-0450-4 10.1109/ICCV.2015.316 10.1109/ACCESS.2020.2975912 10.1016/j.neucom.2018.10.095 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.107102 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_107102 S1568494621000259 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-48434eb76a5b90fed6a8f7a05827fad5e8c4d93c475d36582fe61eb80e1936f13 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:08 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Video big data analytics Machine learning Activity recognition Pattern recognition GRU Artificial intelligence IoT |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-48434eb76a5b90fed6a8f7a05827fad5e8c4d93c475d36582fe61eb80e1936f13 |
ORCID | 0000-0002-6768-8394 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568494621000259 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_107102 crossref_primary_10_1016_j_asoc_2021_107102 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Badshah (b38) 2019 A. Dosovitskiy, et al. Flownet: Learning optical flow with convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766. Wang, Wu, Gravina, Fortino, Jiang, Tang (b3) 2017; 37 Kuehne, Richard, Gall (b24) 2018 Henriques, Caseiro, Martins, Batista (b68) 2015; 37 J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263-7271. Simonyan, Zisserman (b6) 2014 Gammulle, Denman, Sridharan, Fookes (b19) 2017 Kuehne, Jhuang, Garrote, Poggio, Serre (b58) 2011 Shan, Zhang, Yang, Huang (b33) 2015; 25 Mehmood (b42) 2019; 6 Ullah, Ahmad, Muhammad, Sajjad, Baik (b23) 2018; 6 Liu, Luo, Shah (b62) 2009 H. Wang, C. Schmid, Action recognition with improved trajectories, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3551–3558. Hossain, Lee (b77) 2019 Oneto (b46) 2020 S. Ma, L. Sigal, S. Sclaroff, Learning activity progression in lstms for activity detection and early detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1942–1950. A. Lukezic, T. Vojir, L. Čehovin Zajc, J. Matas, M. Kristan, Discriminative correlation filter with channel and spatial reliability, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6309–6318. T.-W. Hui, X. Tang, C. Change Loy, Liteflownet: A lightweight convolutional neural network for optical flow estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8981–8989. K. Hara, H. Kataoka, Y. Satoh, Learning spatio-temporal features with 3D residual networks for action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3154–3160. Muhammad, Khan, Elhoseny, Ahmed, Baik (b43) 2019; 15 Chung, Gulcehre, Cho, Bengio (b40) 2014 Yan, Liu, Yang, Pedrycz (b79) 2020; 53 E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0: Evolution of optical flow estimation with deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2462–2470. Ullah, Muhammad, Haq, Baik (b63) 2019; 96 Bolme, Beveridge, Draper, Lui (b69) 2010 Z. Lan, M. Lin, X. Li, A.G. Hauptmann, B. Raj, Beyond gaussian pyramid: Multi-skip feature stacking for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 204–212. Liu, Su, Nie, Kankanhalli (b56) 2017; 39 Hamza, Yan, Muhammad, Bellavista, Titouna (b80) 2020 Wang, Zhang, Cheng, Shang, Mei (b27) 2016 Chen, Ramachandra, Wu, Vatsavai (b49) 2018 Soomro, Zamir, Shah (b59) 2012 Li, Nie, Su (b18) 2018; 6 Sajjad, Nasir, Ullah, Muhammad, Sangaiah, Baik (b81) 2019 Marszalek, Laptev, Schmid (b61) 2009 Ullah, Muhammad, Ser, Baik, Albuquerque (b1) 2019; 66 Yan, Tang, Shu, Li, Tian (b78) 2018 Dang, Min, Wang, Piran, Lee, Moon (b17) 2020 Wang, Gao, Wang, Sun, Liu (b8) 2017; 20 Ma, Chen, Kira, AlRegib (b50) 2019; 71 H. Yang, J. Zhang, S. Li, T. Luo, Bi-direction hierarchical LSTM with spatial–temporal attention for action recognition, J. Intell. Fuzzy Systems, no. Preprint, pp. 1–12. X. Dai, B. Singh, G. Zhang, L.S. Davis, Y. Qiu Chen, Temporal context network for activity localization in videos, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5793–5802. Khan, Sharif, Akram, Raza, Saba, Rehman (b57) 2020; 87 Li, Gavrilyuk, Gavves, Jain, Snoek (b22) 2018; 166 Xin, Zhang, Wang, Sun, Yuan (b47) 2016; 178 L. Sun, K. Jia, K. Chen, D.-Y. Yeung, B.E. Shi, S. Savarese, Lattice long short-term memory for human action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2147–2156. Dai, Liu, Lai (b52) 2020; 86 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Y. Zhou, X. Sun, Z.-J. Zha, W. Zeng, MiCT: Mixed 3D/2D convolutional tube for human action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 449–458. Majd, Safabakhsh (b12) 2020; 396 Herath, Harandi, Porikli (b16) 2017; 60 Muhammad, Hussain, Baik (b44) 2018 Xu, Zhou (b71) 2018 Bolme, Beveridge, Draper, Lui (b13) 2010 Blank, Gorelick, Shechtman, Irani, Basri (b34) 2005; 2 Kalal, Mikolajczyk, Matas (b65) 2012; 34 Yoon, Gwak, Song, Yoon, Jeon (b73) 2020; 8 Z. Qiu, T. Yao, T. Mei, Learning spatio-temporal representation with pseudo-3d residual networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5533–5541. Redmon, Farhadi (b31) 2018 D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal features with 3d convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4489–4497. P. Voigtlaender, J. Luiten, P.H. Torr, B. Leibe, Siam r-cnn: Visual tracking by re-detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6578–6588. Murray (b76) 2017 J. Donahue, et al. Long-term recurrent convolutional networks for visual recognition and description, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2625–2634. Reddy, Shah (b60) 2013; 24 Ramasinghe, Rodrigo (b54) 2015 Qi, Wang, Qin, Li, Luo, Van Gool (b25) 2019; 30 L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, J. Huang, End-to-end learning of motion representation for video understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6016–6025. H. Xu, A. Das, K. Saenko, R-c3d: Region convolutional 3d network for temporal activity detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5783–5792. Redmon, Farhadi (b26) 2018 Sun, Jia, Chen, Yeung, Shi, Savarese (b48) 2017 Peng, Wang, Wang, Qiao (b55) 2016; 150 Yousefi, Loo (b2) 2018; 62 Shi, Tian, Wang, Huang (b7) 2017; 19 Gao (b45) 2020 Dollar, Wojek, Schiele, Perona (b28) 2012; 34 Baisa (b72) 2019 Li, Xu, Taylor, Studer, Goldstein (b41) 2018 Grabner, Leistner, Bischof (b66) 2008 Zhao, Ali, Van der Smagt (b11) 2017 Ji, Yu, Wu (b75) 2020; 13 L. Chen, H. Ai, Z. Zhuang, C. Shang, Real-time multiple people tracking with deeply learned candidate selection and person re-identification, in: 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, pp. 1-6. Herath (10.1016/j.asoc.2021.107102_b16) 2017; 60 Li (10.1016/j.asoc.2021.107102_b18) 2018; 6 Marszalek (10.1016/j.asoc.2021.107102_b61) 2009 Qi (10.1016/j.asoc.2021.107102_b25) 2019; 30 Yousefi (10.1016/j.asoc.2021.107102_b2) 2018; 62 Yan (10.1016/j.asoc.2021.107102_b79) 2020; 53 Kalal (10.1016/j.asoc.2021.107102_b65) 2012; 34 Wang (10.1016/j.asoc.2021.107102_b3) 2017; 37 Bolme (10.1016/j.asoc.2021.107102_b13) 2010 10.1016/j.asoc.2021.107102_b20 10.1016/j.asoc.2021.107102_b64 10.1016/j.asoc.2021.107102_b21 Redmon (10.1016/j.asoc.2021.107102_b26) 2018 Dollar (10.1016/j.asoc.2021.107102_b28) 2012; 34 Chen (10.1016/j.asoc.2021.107102_b49) 2018 Khan (10.1016/j.asoc.2021.107102_b57) 2020; 87 Hamza (10.1016/j.asoc.2021.107102_b80) 2020 10.1016/j.asoc.2021.107102_b29 Majd (10.1016/j.asoc.2021.107102_b12) 2020; 396 Dang (10.1016/j.asoc.2021.107102_b17) 2020 10.1016/j.asoc.2021.107102_b67 Soomro (10.1016/j.asoc.2021.107102_b59) 2012 Ramasinghe (10.1016/j.asoc.2021.107102_b54) 2015 Peng (10.1016/j.asoc.2021.107102_b55) 2016; 150 Ullah (10.1016/j.asoc.2021.107102_b23) 2018; 6 Murray (10.1016/j.asoc.2021.107102_b76) 2017 Yan (10.1016/j.asoc.2021.107102_b78) 2018 Simonyan (10.1016/j.asoc.2021.107102_b6) 2014 Hossain (10.1016/j.asoc.2021.107102_b77) 2019 Wang (10.1016/j.asoc.2021.107102_b8) 2017; 20 Li (10.1016/j.asoc.2021.107102_b22) 2018; 166 Badshah (10.1016/j.asoc.2021.107102_b38) 2019 Shan (10.1016/j.asoc.2021.107102_b33) 2015; 25 Chung (10.1016/j.asoc.2021.107102_b40) 2014 10.1016/j.asoc.2021.107102_b53 10.1016/j.asoc.2021.107102_b10 Shi (10.1016/j.asoc.2021.107102_b7) 2017; 19 Grabner (10.1016/j.asoc.2021.107102_b66) 2008 Ma (10.1016/j.asoc.2021.107102_b50) 2019; 71 10.1016/j.asoc.2021.107102_b51 Kuehne (10.1016/j.asoc.2021.107102_b24) 2018 10.1016/j.asoc.2021.107102_b14 10.1016/j.asoc.2021.107102_b15 Mehmood (10.1016/j.asoc.2021.107102_b42) 2019; 6 10.1016/j.asoc.2021.107102_b9 Xin (10.1016/j.asoc.2021.107102_b47) 2016; 178 Kuehne (10.1016/j.asoc.2021.107102_b58) 2011 Xu (10.1016/j.asoc.2021.107102_b71) 2018 Sajjad (10.1016/j.asoc.2021.107102_b81) 2019 Liu (10.1016/j.asoc.2021.107102_b56) 2017; 39 Zhao (10.1016/j.asoc.2021.107102_b11) 2017 Yoon (10.1016/j.asoc.2021.107102_b73) 2020; 8 Ullah (10.1016/j.asoc.2021.107102_b1) 2019; 66 Wang (10.1016/j.asoc.2021.107102_b27) 2016 Henriques (10.1016/j.asoc.2021.107102_b68) 2015; 37 Li (10.1016/j.asoc.2021.107102_b41) 2018 10.1016/j.asoc.2021.107102_b5 10.1016/j.asoc.2021.107102_b4 Redmon (10.1016/j.asoc.2021.107102_b31) 2018 Muhammad (10.1016/j.asoc.2021.107102_b43) 2019; 15 Gao (10.1016/j.asoc.2021.107102_b45) 2020 Ji (10.1016/j.asoc.2021.107102_b75) 2020; 13 Blank (10.1016/j.asoc.2021.107102_b34) 2005; 2 Bolme (10.1016/j.asoc.2021.107102_b69) 2010 Muhammad (10.1016/j.asoc.2021.107102_b44) 2018 Ullah (10.1016/j.asoc.2021.107102_b63) 2019; 96 Dai (10.1016/j.asoc.2021.107102_b52) 2020; 86 Baisa (10.1016/j.asoc.2021.107102_b72) 2019 Reddy (10.1016/j.asoc.2021.107102_b60) 2013; 24 Oneto (10.1016/j.asoc.2021.107102_b46) 2020 Gammulle (10.1016/j.asoc.2021.107102_b19) 2017 10.1016/j.asoc.2021.107102_b30 10.1016/j.asoc.2021.107102_b74 10.1016/j.asoc.2021.107102_b32 10.1016/j.asoc.2021.107102_b70 10.1016/j.asoc.2021.107102_b39 Sun (10.1016/j.asoc.2021.107102_b48) 2017 10.1016/j.asoc.2021.107102_b35 10.1016/j.asoc.2021.107102_b36 10.1016/j.asoc.2021.107102_b37 Liu (10.1016/j.asoc.2021.107102_b62) 2009 |
References_xml | – start-page: 416 year: 2019 end-page: 431 ident: b81 article-title: Raspberry Pi assisted facial expression recognition framework for smart security in law-enforcement services – start-page: 6389 year: 2018 end-page: 6399 ident: b41 article-title: Visualizing the loss landscape of neural nets publication-title: Advances in Neural Information Processing Systems – start-page: 2929 year: 2009 end-page: 2936 ident: b61 article-title: Actions in context, in computer vision and pattern recognition publication-title: 2009. CVPR 2009. IEEE Conference on – volume: 34 start-page: 1409 year: 2012 end-page: 1422 ident: b65 article-title: Tracking-learning-detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: A. Dosovitskiy, et al. Flownet: Learning optical flow with convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766. – volume: 71 start-page: 76 year: 2019 end-page: 87 ident: b50 article-title: TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition publication-title: Signal Process., Image Commun. – reference: K. Hara, H. Kataoka, Y. Satoh, Learning spatio-temporal features with 3D residual networks for action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3154–3160. – start-page: 2166 year: 2017 end-page: 2175 ident: b48 article-title: Lattice long short-term memory for human action recognition publication-title: ICCV – reference: L. Chen, H. Ai, Z. Zhuang, C. Shang, Real-time multiple people tracking with deeply learned candidate selection and person re-identification, in: 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, pp. 1-6. – volume: 150 start-page: 109 year: 2016 end-page: 125 ident: b55 article-title: Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice publication-title: Comput. Vis. Image Underst. – volume: 25 start-page: 1624 year: 2015 end-page: 1636 ident: b33 article-title: Adaptive slice representation for human action classification publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 166 start-page: 41 year: 2018 end-page: 50 ident: b22 article-title: Videolstm convolves attends and flows for action recognition publication-title: Comput. Vis. Image Underst. – year: 2018 ident: b44 article-title: Efficient CNN based summarization of surveillance videos for resource-constrained devices publication-title: Pattern Recognit. Lett. – volume: 66 start-page: 9692 year: 2019 end-page: 9702 ident: b1 article-title: Activity recognition using temporal optical flow convolutional features and multilayer LSTM publication-title: IEEE Trans. Ind. Electron. – volume: 86 year: 2020 ident: b52 article-title: Human action recognition using two-stream attention based LSTM networks publication-title: Appl. Soft Comput. – start-page: 234 year: 2008 end-page: 247 ident: b66 article-title: Semi-supervised on-line boosting for robust tracking publication-title: European Conference on Computer Vision – year: 2018 ident: b24 article-title: A hybrid rnn-hmm approach for weakly supervised temporal action segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 38060 year: 2020 end-page: 38072 ident: b73 article-title: Oneshotda: Online multi-object tracker with one-shot-learning-based data association publication-title: IEEE Access – year: 2018 ident: b26 article-title: Yolov3: An incremental improvement – volume: 19 start-page: 1510 year: 2017 end-page: 1520 ident: b7 article-title: Sequential deep trajectory descriptor for action recognition with three-stream CNN publication-title: IEEE Trans. Multimed. – start-page: 3371 year: 2019 ident: b77 article-title: Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices – reference: Z. Lan, M. Lin, X. Li, A.G. Hauptmann, B. Raj, Beyond gaussian pyramid: Multi-skip feature stacking for action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 204–212. – reference: D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal features with 3d convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4489–4497. – year: 2020 ident: b46 article-title: Model Selection and Error Estimation in a Nutshell – start-page: 2544 year: 2010 end-page: 2550 ident: b13 article-title: Visual object tracking using adaptive correlation filters publication-title: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on – volume: 6 start-page: 44211 year: 2018 end-page: 44220 ident: b18 article-title: Human action recognition based on selected spatio-temporal features via bidirectional LSTM publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 9 ident: b45 article-title: Salient object detection in the distributed cloud-edge intelligent network publication-title: IEEE Netw. – volume: 60 start-page: 4 year: 2017 end-page: 21 ident: b16 article-title: Going deeper into action recognition: A survey publication-title: Image Vis. Comput. – year: 2014 ident: b40 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – reference: Y. Zhou, X. Sun, Z.-J. Zha, W. Zeng, MiCT: Mixed 3D/2D convolutional tube for human action recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 449–458. – year: 2020 ident: b17 article-title: Sensor-based and vision-based human activity recognition: A comprehensive survey publication-title: Pattern Recognit. – volume: 53 start-page: 1 year: 2020 end-page: 3 ident: b79 article-title: Data fusion in heterogeneous networks publication-title: Inf. Fusion – volume: 15 start-page: 3113 year: 2019 end-page: 3122 ident: b43 article-title: Efficient fire detection for uncertain surveillance environment publication-title: IEEE Trans. Ind. Inform. – start-page: 493 year: 2020 end-page: 510 ident: b80 article-title: A privacy-preserving cryptosystem for IoT E-healthcare – volume: 39 start-page: 102 year: 2017 end-page: 114 ident: b56 article-title: Hierarchical clustering multi-task learning for joint human action grouping and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 180 year: 2018 end-page: 192 ident: b71 article-title: Consistent online multi-object tracking with part-based deep network publication-title: Chinese Conference on Pattern Recognition and Computer Vision (PRCV) – volume: 396 start-page: 224 year: 2020 end-page: 229 ident: b12 article-title: Correlational convolutional LSTM for human action recognition publication-title: Neurocomputing – start-page: 463 year: 2016 end-page: 477 ident: b27 article-title: SPID: surveillance pedestrian image dataset and performance evaluation for pedestrian detection publication-title: Asian Conference on Computer Vision – reference: A. Lukezic, T. Vojir, L. Čehovin Zajc, J. Matas, M. Kristan, Discriminative correlation filter with channel and spatial reliability, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6309–6318. – start-page: 568 year: 2014 end-page: 576 ident: b6 article-title: Two-stream convolutional networks for action recognition in videos publication-title: Advances in Neural Information Processing Systems – volume: 30 start-page: 549 year: 2019 end-page: 565 ident: b25 article-title: Stagnet: An attentive semantic RNN for group activity and individual action recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 2544 year: 2010 end-page: 2550 ident: b69 article-title: Visual object tracking using adaptive correlation filters publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 2 start-page: 1395 year: 2005 end-page: 1402 ident: b34 article-title: Actions as space–time shapes publication-title: Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol. 1 – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – reference: J. Donahue, et al. Long-term recurrent convolutional networks for visual recognition and description, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 2625–2634. – reference: S. Ma, L. Sigal, S. Sclaroff, Learning activity progression in lstms for activity detection and early detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1942–1950. – volume: 62 start-page: 57 year: 2018 end-page: 72 ident: b2 article-title: A dual fast and slow feature interaction in biologically inspired visual recognition of human action publication-title: Appl. Soft Comput. – volume: 20 start-page: 634 year: 2017 end-page: 644 ident: b8 article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length publication-title: IEEE Trans. Multimed. – volume: 96 start-page: 386 year: 2019 end-page: 397 ident: b63 article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments publication-title: Future Gener. Comput. Syst. – reference: T.-W. Hui, X. Tang, C. Change Loy, Liteflownet: A lightweight convolutional neural network for optical flow estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8981–8989. – reference: P. Voigtlaender, J. Luiten, P.H. Torr, B. Leibe, Siam r-cnn: Visual tracking by re-detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6578–6588. – reference: H. Xu, A. Das, K. Saenko, R-c3d: Region convolutional 3d network for temporal activity detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5783–5792. – year: 2017 ident: b76 article-title: Real-time multiple object tracking-a study on the importance of speed – start-page: 1292 year: 2018 end-page: 1300 ident: b78 article-title: Participation-contributed temporal dynamic model for group activity recognition publication-title: 2018 ACM Multimedia Conference on Multimedia Conference – volume: 6 start-page: 9246 year: 2019 end-page: 9255 ident: b42 article-title: Efficient image recognition and retrieval on IoT-assisted energy-constrained platforms from big data repositories publication-title: IEEE Internet Things J. – reference: H. Yang, J. Zhang, S. Li, T. Luo, Bi-direction hierarchical LSTM with spatial–temporal attention for action recognition, J. Intell. Fuzzy Systems, no. Preprint, pp. 1–12. – volume: 37 start-page: 1 year: 2017 end-page: 9 ident: b3 article-title: Kernel fusion based extreme learning machine for cross-location activity recognition publication-title: Inf. Fusion – year: 2018 ident: b31 article-title: Yolov3: An incremental improvement – year: 2012 ident: b59 article-title: UCF101: A dataset of 101 human actions classes from videos in the wild – start-page: 177 year: 2017 end-page: 186 ident: b19 article-title: Two stream lstm: A deep fusion framework for human action recognition publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 5571 year: 2019 end-page: 5589 ident: b38 article-title: Deep features-based speech emotion recognition for smart affective services – volume: 87 year: 2020 ident: b57 article-title: Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition publication-title: Appl. Soft Comput. – volume: 178 start-page: 87 year: 2016 end-page: 102 ident: b47 article-title: Arch: Adaptive recurrent-convolutional hybrid networks for long-term action recognition publication-title: Neurocomputing – start-page: 1 year: 2019 end-page: 8 ident: b72 article-title: Online multi-object visual tracking using a GM-PHD filter with deep appearance learning publication-title: 2019 22th International Conference on Information Fusion (FUSION) – start-page: 1996 year: 2009 end-page: 2003 ident: b62 article-title: Recognizing realistic actions from videos in the wild publication-title: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on – reference: L. Sun, K. Jia, K. Chen, D.-Y. Yeung, B.E. Shi, S. Savarese, Lattice long short-term memory for human action recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2147–2156. – year: 2018 ident: b49 article-title: Relational long short-term memory for video action recognition – reference: H. Wang, C. Schmid, Action recognition with improved trajectories, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 3551–3558. – volume: 13 start-page: 80 year: 2020 ident: b75 article-title: Hierarchical-matching-based online and real-time multi-object tracking with deep appearance features publication-title: Algorithms – reference: X. Dai, B. Singh, G. Zhang, L.S. Davis, Y. Qiu Chen, Temporal context network for activity localization in videos, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5793–5802. – start-page: 101 year: 2015 end-page: 105 ident: b54 article-title: Action recognition by single stream convolutional neural networks: An approach using combined motion and static information publication-title: Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on – volume: 34 start-page: 743 year: 2012 end-page: 761 ident: b28 article-title: Pedestrian detection: An evaluation of the state of the art publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 971 year: 2013 end-page: 981 ident: b60 article-title: Recognizing 50 human action categories of web videos publication-title: Mach. Vis. Appl. – volume: 37 start-page: 583 year: 2015 end-page: 596 ident: b68 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 4260 year: 2017 end-page: 4267 ident: b11 article-title: Two-stream RNN/CNN for action recognition in 3D videos publication-title: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – reference: E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0: Evolution of optical flow estimation with deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2462–2470. – reference: L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, J. Huang, End-to-end learning of motion representation for video understanding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6016–6025. – reference: Z. Qiu, T. Yao, T. Mei, Learning spatio-temporal representation with pseudo-3d residual networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5533–5541. – start-page: 2556 year: 2011 end-page: 2563 ident: b58 article-title: HMDB: a large video database for human motion recognition publication-title: Computer Vision (ICCV), 2011 IEEE International Conference on – reference: J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263-7271. – volume: 6 start-page: 1155 year: 2018 end-page: 1166 ident: b23 article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features publication-title: IEEE Access – volume: 37 start-page: 583 issue: 3 year: 2015 ident: 10.1016/j.asoc.2021.107102_b68 article-title: High-speed tracking with kernelized correlation filters publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345390 – volume: 20 start-page: 634 issue: 3 year: 2017 ident: 10.1016/j.asoc.2021.107102_b8 article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2749159 – ident: 10.1016/j.asoc.2021.107102_b37 doi: 10.1109/CVPR.2018.00936 – ident: 10.1016/j.asoc.2021.107102_b67 doi: 10.1109/CVPR.2017.515 – start-page: 2544 year: 2010 ident: 10.1016/j.asoc.2021.107102_b13 article-title: Visual object tracking using adaptive correlation filters – start-page: 4260 year: 2017 ident: 10.1016/j.asoc.2021.107102_b11 article-title: Two-stream RNN/CNN for action recognition in 3D videos – year: 2020 ident: 10.1016/j.asoc.2021.107102_b17 article-title: Sensor-based and vision-based human activity recognition: A comprehensive survey publication-title: Pattern Recognit. – ident: 10.1016/j.asoc.2021.107102_b36 doi: 10.1109/ICCV.2017.617 – start-page: 1 year: 2019 ident: 10.1016/j.asoc.2021.107102_b72 article-title: Online multi-object visual tracking using a GM-PHD filter with deep appearance learning – start-page: 493 year: 2020 ident: 10.1016/j.asoc.2021.107102_b80 – volume: 53 start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107102_b79 article-title: Data fusion in heterogeneous networks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.007 – volume: 60 start-page: 4 year: 2017 ident: 10.1016/j.asoc.2021.107102_b16 article-title: Going deeper into action recognition: A survey publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.01.010 – ident: 10.1016/j.asoc.2021.107102_b20 doi: 10.1109/ICCV.2017.236 – ident: 10.1016/j.asoc.2021.107102_b64 doi: 10.1109/ICCV.2015.510 – ident: 10.1016/j.asoc.2021.107102_b30 doi: 10.1109/CVPR.2017.690 – ident: 10.1016/j.asoc.2021.107102_b51 – year: 2018 ident: 10.1016/j.asoc.2021.107102_b31 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2021.107102_b45 article-title: Salient object detection in the distributed cloud-edge intelligent network publication-title: IEEE Netw. – year: 2020 ident: 10.1016/j.asoc.2021.107102_b46 – ident: 10.1016/j.asoc.2021.107102_b70 doi: 10.1109/ICME.2018.8486597 – volume: 30 start-page: 549 issue: 2 year: 2019 ident: 10.1016/j.asoc.2021.107102_b25 article-title: Stagnet: An attentive semantic RNN for group activity and individual action recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2894161 – volume: 6 start-page: 1155 year: 2018 ident: 10.1016/j.asoc.2021.107102_b23 article-title: Action recognition in video sequences using deep Bi-directional LSTM with CNN features publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2778011 – start-page: 463 year: 2016 ident: 10.1016/j.asoc.2021.107102_b27 article-title: SPID: surveillance pedestrian image dataset and performance evaluation for pedestrian detection – volume: 87 year: 2020 ident: 10.1016/j.asoc.2021.107102_b57 article-title: Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105986 – ident: 10.1016/j.asoc.2021.107102_b35 doi: 10.1109/ICCVW.2017.373 – year: 2018 ident: 10.1016/j.asoc.2021.107102_b24 article-title: A hybrid rnn-hmm approach for weakly supervised temporal action segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2012 ident: 10.1016/j.asoc.2021.107102_b59 – volume: 25 start-page: 1624 issue: 10 year: 2015 ident: 10.1016/j.asoc.2021.107102_b33 article-title: Adaptive slice representation for human action classification publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2376136 – year: 2018 ident: 10.1016/j.asoc.2021.107102_b44 article-title: Efficient CNN based summarization of surveillance videos for resource-constrained devices publication-title: Pattern Recognit. Lett. – volume: 62 start-page: 57 year: 2018 ident: 10.1016/j.asoc.2021.107102_b2 article-title: A dual fast and slow feature interaction in biologically inspired visual recognition of human action publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.021 – ident: 10.1016/j.asoc.2021.107102_b74 doi: 10.1109/CVPR42600.2020.00661 – volume: 178 start-page: 87 year: 2016 ident: 10.1016/j.asoc.2021.107102_b47 article-title: Arch: Adaptive recurrent-convolutional hybrid networks for long-term action recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.112 – year: 2014 ident: 10.1016/j.asoc.2021.107102_b40 – start-page: 2556 year: 2011 ident: 10.1016/j.asoc.2021.107102_b58 article-title: HMDB: a large video database for human motion recognition – ident: 10.1016/j.asoc.2021.107102_b32 doi: 10.1109/ICCV.2017.610 – volume: 66 start-page: 9692 issue: 12 year: 2019 ident: 10.1016/j.asoc.2021.107102_b1 article-title: Activity recognition using temporal optical flow convolutional features and multilayer LSTM publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2881943 – volume: 34 start-page: 1409 issue: 7 year: 2012 ident: 10.1016/j.asoc.2021.107102_b65 article-title: Tracking-learning-detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.239 – ident: 10.1016/j.asoc.2021.107102_b9 doi: 10.1109/ICCV.2017.590 – volume: 166 start-page: 41 year: 2018 ident: 10.1016/j.asoc.2021.107102_b22 article-title: Videolstm convolves attends and flows for action recognition publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.10.011 – volume: 6 start-page: 44211 year: 2018 ident: 10.1016/j.asoc.2021.107102_b18 article-title: Human action recognition based on selected spatio-temporal features via bidirectional LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863943 – start-page: 416 year: 2019 ident: 10.1016/j.asoc.2021.107102_b81 – volume: 71 start-page: 76 year: 2019 ident: 10.1016/j.asoc.2021.107102_b50 article-title: TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2018.09.003 – start-page: 5571 year: 2019 ident: 10.1016/j.asoc.2021.107102_b38 – start-page: 234 year: 2008 ident: 10.1016/j.asoc.2021.107102_b66 article-title: Semi-supervised on-line boosting for robust tracking – ident: 10.1016/j.asoc.2021.107102_b4 doi: 10.1109/ICCV.2013.441 – start-page: 101 year: 2015 ident: 10.1016/j.asoc.2021.107102_b54 article-title: Action recognition by single stream convolutional neural networks: An approach using combined motion and static information – ident: 10.1016/j.asoc.2021.107102_b5 doi: 10.1109/CVPR.2018.00630 – start-page: 1292 year: 2018 ident: 10.1016/j.asoc.2021.107102_b78 article-title: Participation-contributed temporal dynamic model for group activity recognition – start-page: 177 year: 2017 ident: 10.1016/j.asoc.2021.107102_b19 article-title: Two stream lstm: A deep fusion framework for human action recognition – year: 2018 ident: 10.1016/j.asoc.2021.107102_b26 – volume: 150 start-page: 109 year: 2016 ident: 10.1016/j.asoc.2021.107102_b55 article-title: Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.03.013 – ident: 10.1016/j.asoc.2021.107102_b39 doi: 10.1109/CVPR.2015.7298878 – start-page: 568 year: 2014 ident: 10.1016/j.asoc.2021.107102_b6 article-title: Two-stream convolutional networks for action recognition in videos – start-page: 1996 year: 2009 ident: 10.1016/j.asoc.2021.107102_b62 article-title: Recognizing realistic actions from videos in the wild – ident: 10.1016/j.asoc.2021.107102_b21 doi: 10.1109/CVPR.2016.214 – volume: 39 start-page: 102 issue: 1 year: 2017 ident: 10.1016/j.asoc.2021.107102_b56 article-title: Hierarchical clustering multi-task learning for joint human action grouping and recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2537337 – year: 2017 ident: 10.1016/j.asoc.2021.107102_b76 – ident: 10.1016/j.asoc.2021.107102_b53 – year: 2018 ident: 10.1016/j.asoc.2021.107102_b49 – start-page: 2166 year: 2017 ident: 10.1016/j.asoc.2021.107102_b48 article-title: Lattice long short-term memory for human action recognition – volume: 34 start-page: 743 issue: 4 year: 2012 ident: 10.1016/j.asoc.2021.107102_b28 article-title: Pedestrian detection: An evaluation of the state of the art publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.155 – start-page: 180 year: 2018 ident: 10.1016/j.asoc.2021.107102_b71 article-title: Consistent online multi-object tracking with part-based deep network – volume: 19 start-page: 1510 issue: 7 year: 2017 ident: 10.1016/j.asoc.2021.107102_b7 article-title: Sequential deep trajectory descriptor for action recognition with three-stream CNN publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2666540 – ident: 10.1016/j.asoc.2021.107102_b15 doi: 10.1109/CVPR.2017.179 – volume: 2 start-page: 1395 year: 2005 ident: 10.1016/j.asoc.2021.107102_b34 article-title: Actions as space–time shapes – start-page: 6389 year: 2018 ident: 10.1016/j.asoc.2021.107102_b41 article-title: Visualizing the loss landscape of neural nets – volume: 86 year: 2020 ident: 10.1016/j.asoc.2021.107102_b52 article-title: Human action recognition using two-stream attention based LSTM networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105820 – volume: 15 start-page: 3113 issue: 5 year: 2019 ident: 10.1016/j.asoc.2021.107102_b43 article-title: Efficient fire detection for uncertain surveillance environment publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2897594 – volume: 13 start-page: 80 issue: 4 year: 2020 ident: 10.1016/j.asoc.2021.107102_b75 article-title: Hierarchical-matching-based online and real-time multi-object tracking with deep appearance features publication-title: Algorithms doi: 10.3390/a13040080 – start-page: 2929 year: 2009 ident: 10.1016/j.asoc.2021.107102_b61 article-title: Actions in context, in computer vision and pattern recognition – ident: 10.1016/j.asoc.2021.107102_b10 doi: 10.1109/CVPR.2018.00054 – volume: 96 start-page: 386 year: 2019 ident: 10.1016/j.asoc.2021.107102_b63 article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.01.029 – ident: 10.1016/j.asoc.2021.107102_b29 doi: 10.1109/CVPR.2016.90 – start-page: 2544 year: 2010 ident: 10.1016/j.asoc.2021.107102_b69 article-title: Visual object tracking using adaptive correlation filters – volume: 6 start-page: 9246 issue: 6 year: 2019 ident: 10.1016/j.asoc.2021.107102_b42 article-title: Efficient image recognition and retrieval on IoT-assisted energy-constrained platforms from big data repositories publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2896151 – volume: 37 start-page: 1 year: 2017 ident: 10.1016/j.asoc.2021.107102_b3 article-title: Kernel fusion based extreme learning machine for cross-location activity recognition publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.01.004 – volume: 24 start-page: 971 issue: 5 year: 2013 ident: 10.1016/j.asoc.2021.107102_b60 article-title: Recognizing 50 human action categories of web videos publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-012-0450-4 – ident: 10.1016/j.asoc.2021.107102_b14 doi: 10.1109/ICCV.2015.316 – volume: 8 start-page: 38060 year: 2020 ident: 10.1016/j.asoc.2021.107102_b73 article-title: Oneshotda: Online multi-object tracker with one-shot-learning-based data association publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975912 – volume: 396 start-page: 224 year: 2020 ident: 10.1016/j.asoc.2021.107102_b12 article-title: Correlational convolutional LSTM for human action recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.095 – start-page: 3371 year: 2019 ident: 10.1016/j.asoc.2021.107102_b77 |
SSID | ssj0016928 |
Score | 2.5972674 |
Snippet | Recognizing human activities has become a trend in smart surveillance that contains several challenges, such as performing effective analyses of huge video... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107102 |
SubjectTerms | Activity recognition Artificial intelligence Deep learning GRU IoT Machine learning Pattern recognition Video big data analytics |
Title | Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications |
URI | https://dx.doi.org/10.1016/j.asoc.2021.107102 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QXLjwRoyXcuCGyvpI0uY4lcd4TWhjErcqaRI0NHUINrjx27H7mIaEOHCqWsVt5Sb25_SzTchJELGca-68wFnfYzEsRUCtIbIsdMykH-Zl-eL7nugO2c0Tf1oiaZMLg7TK2vZXNr201vWVdq3N9uto1B5A5JEwyUSIW9SA4jGDHR4Gc_rsa07zCIQs-6viYA9H14kzFcdLgQYgRgwDuICu9nfntOBwLjfIWo0Uaad6mU2yZIstst50YaD1otwm9qKsAgHOg2KSAvaCoHNa0KSgyGx_pmMMwj_LfVCa9npUFYaeD7yr_pAWFROcAnyl77O3D4uNiODWdPHn9g4ZXl48pl2vbp7g5RFjU48lLGJWx0JxLX1njVCJi5XPkzB2ynCb5MzIKGcxNxHAkNBZEVid-BYgnXBBtEuWi0lh9whVykhmhA6sAxkjlRahlkYaAbFKrlyLBI3WsryuLI4NLsZZQyF7yVDTGWo6qzTdIqdzmdeqrsafo3nzMbIfsyMDw_-H3P4_5Q7IKp5VxMZDsjx9m9kjAB9TfVzOrmOy0kn7dw94vL7t9r4ByNbbMQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFNBwI25cQIXCJo7jxAUF4lquLYCV6IId2wiEAoIFRMNP8YOME2cFEqJAonUyljN25rCf5wGsRTErEpXYILImDFiKvyJGrdShLFTKREiLqnzxaYe3u-zoMrkcgI_mLoyDVXrbX9v0ylr7lpbXZuvh5qZ1jplHxgTj1G1RYxTvkZXH5u0V87anrcNdnOR1Svf3LnbagacWCIqYsV7AMhYzo1IuEyVCazSXmU1lmGQ0tVInJiuYFnHB0kTH6KSpNTwyKgsNBjzcRjH2OwjDDM2Fo03YfO_jSiIuKkJXN7rADc_f1KlBZRJVjkkpjbDB-fafveEXD7c_AWM-NCXb9ddPwoApp2C8oX0g3gpMg9mryk6gtyLuVoQjnyB9HNJ9SRyU_prcuaz_tdp4JTudDpGlJrvnwcFZl5Q19JxgvEyenh9fjGM-wq7J19P0Gej-i0pnYai8L80cECm1YJqryFiU0UIqTpXQQnNMjgpp5yFqtJYXvpS5Y9S4yxvM2m3uNJ07Tee1pudhoy_zUBfy-PXtpJmM_NtyzNHT_CK38Ee5VRhpX5ye5CeHneNFGHVPalTlEgz1Hp_NMkY-PbVSrTQCV_-9tD8BRzIVRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+activity+recognition+using+lightweight+CNN+and+DS-GRU+network+for+surveillance+applications&rft.jtitle=Applied+soft+computing&rft.au=Ullah%2C+Amin&rft.au=Muhammad%2C+Khan&rft.au=Ding%2C+Weiping&rft.au=Palade%2C+Vasile&rft.date=2021-05-01&rft.issn=1568-4946&rft.volume=103&rft.spage=107102&rft_id=info:doi/10.1016%2Fj.asoc.2021.107102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |