Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities

•Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification of process phases.•RFA has better performance than DJA for the anomaly detection.•DJA underperforms for anomalies close to the thresholds, du...

Full description

Saved in:
Bibliographic Details
Published inJournal of manufacturing systems Vol. 56; pp. 117 - 132
Main Authors Quatrini, Elena, Costantino, Francesco, Di Gravio, Giulio, Patriarca, Riccardo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification of process phases.•RFA has better performance than DJA for the anomaly detection.•DJA underperforms for anomalies close to the thresholds, due to its increase of generalization. Anomaly detection is a crucial aspect for both safety and efficiency of modern process industries. This paper proposes a two-steps methodology for anomaly detection in industrial processes, adopting machine learning classification algorithms. Starting from a real-time collection of process data, the first step identifies the ongoing process phase, the second step classifies the input data as “Expected”, “Warning”, or “Critical”. The proposed methodology is extremely relevant where machines carry out several operations without the evidence of production phases. In this context, the difficulty of attributing the real-time measurements to a specific production phase affects the success of the condition monitoring. The paper proposes the comparison of the anomaly detection step with and without the process phase identification step, validating its absolute necessity. The methodology applies the decision forests algorithm, as a well-known anomaly detector from industrial data, and decision jungle algorithm, never tested before in industrial applications. A real case study in the pharmaceutical industry validates the proposed anomaly detection methodology, using a 10 months database of 16 process parameters from a granulation process.
AbstractList •Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification of process phases.•RFA has better performance than DJA for the anomaly detection.•DJA underperforms for anomalies close to the thresholds, due to its increase of generalization. Anomaly detection is a crucial aspect for both safety and efficiency of modern process industries. This paper proposes a two-steps methodology for anomaly detection in industrial processes, adopting machine learning classification algorithms. Starting from a real-time collection of process data, the first step identifies the ongoing process phase, the second step classifies the input data as “Expected”, “Warning”, or “Critical”. The proposed methodology is extremely relevant where machines carry out several operations without the evidence of production phases. In this context, the difficulty of attributing the real-time measurements to a specific production phase affects the success of the condition monitoring. The paper proposes the comparison of the anomaly detection step with and without the process phase identification step, validating its absolute necessity. The methodology applies the decision forests algorithm, as a well-known anomaly detector from industrial data, and decision jungle algorithm, never tested before in industrial applications. A real case study in the pharmaceutical industry validates the proposed anomaly detection methodology, using a 10 months database of 16 process parameters from a granulation process.
Author Quatrini, Elena
Patriarca, Riccardo
Costantino, Francesco
Di Gravio, Giulio
Author_xml – sequence: 1
  givenname: Elena
  orcidid: 0000-0001-9617-4491
  surname: Quatrini
  fullname: Quatrini, Elena
  email: elena.quatrini@uniroma1.it
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0002-0942-821X
  surname: Costantino
  fullname: Costantino, Francesco
  email: francesco.costantino@uniroma1.it
– sequence: 3
  givenname: Giulio
  orcidid: 0000-0001-9241-9121
  surname: Di Gravio
  fullname: Di Gravio, Giulio
  email: giulio.digravio@uniroma1.it
– sequence: 4
  givenname: Riccardo
  orcidid: 0000-0001-5299-9993
  surname: Patriarca
  fullname: Patriarca, Riccardo
  email: riccardo.patriarca@uniroma1.it
BookMark eNp9kMtqwzAQRbVIoUnaH-hKPxB3JEu2A92U0BekdNOuxUQeNwq2HCQRyN9XSbvqIquBmXsG7pmxiR89MXYnoBAgqvtdsRvisZAgoQBdgCgnbAqybhaVkPqazWLcAQipQE5Zeke7dZ54Txi889-8GwNHPw7YH3lLiWxyo8-blu_DaClGvt9iJG57jNF1zuI5kEbuhpw4EI_YUTqekQGdT-TRW-KYPx1cchRv2FWHfaTbvzlnX89Pn6vXxfrj5W31uF7YUqm0UEpAh0gbgTWpmqoSqARUWm5so_PBLrWEpqOl3OiqVqSXVNdKN52CDVZtOWfy968NY4yBOrMPbsBwNALMyZXZmZMrc3JlQJvsKkPNP8i6dO6YArr-Mvrwi1IudXAUTLSOcvfWhezRtKO7hP8A3cOM9A
CitedBy_id crossref_primary_10_1016_j_apergo_2020_103347
crossref_primary_10_1109_ACCESS_2024_3523519
crossref_primary_10_1515_auto_2023_0222
crossref_primary_10_1007_s11740_022_01150_x
crossref_primary_10_1016_j_aei_2024_102910
crossref_primary_10_3390_su13073977
crossref_primary_10_1080_08839514_2024_2381317
crossref_primary_10_1088_1742_6596_2087_1_012095
crossref_primary_10_2139_ssrn_3860928
crossref_primary_10_1016_j_jmsy_2020_12_007
crossref_primary_10_1016_j_psep_2020_08_032
crossref_primary_10_1016_j_ress_2023_109162
crossref_primary_10_1007_s11044_024_10023_3
crossref_primary_10_3390_app13063725
crossref_primary_10_1016_j_jmsy_2021_07_001
crossref_primary_10_3390_ai4010010
crossref_primary_10_3390_s25010060
crossref_primary_10_1088_1361_6501_abfb1f
crossref_primary_10_1016_j_eswa_2020_114060
crossref_primary_10_1016_j_eswa_2023_122459
crossref_primary_10_1016_j_jmsy_2021_10_007
crossref_primary_10_1016_j_jmsy_2023_10_003
crossref_primary_10_1088_1742_6596_2726_1_012008
crossref_primary_10_1007_s10845_021_01792_1
crossref_primary_10_3390_electronics10030302
crossref_primary_10_1016_j_rineng_2023_101034
crossref_primary_10_1016_j_jlp_2024_105343
crossref_primary_10_1016_j_ifacol_2024_08_062
crossref_primary_10_17093_alphanumeric_1214699
crossref_primary_10_1016_j_jmsy_2020_10_013
crossref_primary_10_1109_JIOT_2024_3446570
crossref_primary_10_1016_j_jii_2024_100559
crossref_primary_10_1016_j_csda_2022_107453
crossref_primary_10_1109_ACCESS_2021_3083060
crossref_primary_10_1016_j_jmsy_2021_03_024
crossref_primary_10_1016_j_trac_2025_118243
crossref_primary_10_1049_2024_8821891
crossref_primary_10_3390_logistics6020035
crossref_primary_10_33262_concienciadigital_v7i3_1_3120
crossref_primary_10_3390_app12094737
crossref_primary_10_1016_j_compchemeng_2024_108929
crossref_primary_10_3390_app11146370
crossref_primary_10_3390_app14010323
crossref_primary_10_1016_j_engappai_2023_106597
crossref_primary_10_1208_s12249_024_02901_y
crossref_primary_10_1007_s12008_024_01858_3
crossref_primary_10_3390_electronics13010202
crossref_primary_10_3390_s22082837
crossref_primary_10_1016_j_engappai_2023_107566
crossref_primary_10_1177_08927057241231715
crossref_primary_10_1016_j_jmsy_2021_02_007
crossref_primary_10_1109_JSEN_2022_3179740
crossref_primary_10_1142_S2424862224500143
crossref_primary_10_3390_s22114143
crossref_primary_10_1088_2631_8695_ad66b2
crossref_primary_10_1016_j_ress_2023_109676
crossref_primary_10_1016_j_jmsy_2024_10_003
crossref_primary_10_1080_1206212X_2025_2449999
crossref_primary_10_3233_JIFS_219285
crossref_primary_10_3390_s21082762
crossref_primary_10_1007_s10462_023_10535_y
Cites_doi 10.1016/j.jmsy.2012.09.002
10.1016/j.engappai.2014.09.008
10.1016/j.inffus.2015.06.005
10.1016/j.jmsy.2018.02.003
10.1016/j.renene.2018.10.047
10.1109/ICIT.2018.8352513
10.1016/j.jmsy.2016.08.007
10.1016/j.ymssp.2016.07.046
10.1016/j.jmsy.2020.01.005
10.1016/j.eswa.2017.11.045
10.1016/j.jmsy.2012.06.005
10.1002/aic.16048
10.1016/j.jmsy.2019.04.003
10.1023/A:1010933404324
10.1016/j.jmsy.2015.06.001
10.1784/insi.2015.57.7.395
10.1109/PCT.2007.4538286
10.1016/j.renene.2018.12.045
10.1016/j.patcog.2010.02.025
10.1016/j.ipm.2009.03.002
10.1016/j.jmsy.2018.01.010
10.1016/j.ymssp.2017.06.012
10.1109/RIOS.2018.8406634
10.1016/j.promfg.2017.07.239
10.1016/j.jlp.2018.08.010
10.1016/j.jmsy.2017.04.012
10.1016/j.jlp.2016.01.024
10.1016/j.cmpb.2018.06.010
10.1021/ie901975c
10.1016/j.ymssp.2019.05.048
10.1088/1361-6501/aad1d4
10.1016/j.flowmeasinst.2018.11.015
10.1016/j.apacoust.2014.08.016
10.1016/j.compeleceng.2018.07.025
10.1016/j.jlp.2016.08.020
10.1016/j.procir.2018.03.221
10.1016/j.jlp.2016.01.011
10.1145/1541880.1541882
10.1561/0600000035
10.1016/j.cose.2018.06.002
10.1016/j.engappai.2016.01.038
10.1007/BF00058655
10.1016/j.eswa.2019.02.020
10.1016/j.jprocont.2019.02.006
10.1016/j.neucom.2018.05.017
10.1016/j.procir.2018.03.076
10.1016/j.measurement.2018.03.028
10.1016/j.ymssp.2019.106585
10.1016/j.jmsy.2007.12.001
10.5194/nhess-18-1013-2018
10.1016/j.engappai.2017.03.008
ContentType Journal Article
Copyright 2020 The Society of Manufacturing Engineers
Copyright_xml – notice: 2020 The Society of Manufacturing Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.jmsy.2020.05.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 132
ExternalDocumentID 10_1016_j_jmsy_2020_05_013
S0278612520300765
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
3EH
3V.
4.4
457
4G.
5GY
5VS
7-5
71M
7WY
883
88I
8AO
8FE
8FG
8FL
8FW
8G5
8P~
8R4
8R5
9JN
9M8
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJCF
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKRA
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BEZIV
BGLVJ
BJAXD
BKOJK
BKOMP
BLXMC
BPHCQ
C1A
CCPQU
CS3
D-I
DU5
DWQXO
E3Z
EBS
EFJIC
EJD
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRNLG
FYGXN
G-2
GBLVA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K60
K6V
K6~
K7-
KOM
L6V
LY7
M0C
M0F
M0N
M2O
M2P
M41
M7S
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
Q2X
Q38
R2-
RIG
ROL
RPZ
RWL
S0X
SDF
SES
SET
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZHY
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
PHGZM
PHGZT
SSH
ID FETCH-LOGICAL-c344t-4410faaeb1a7e47e630e30a452bc85aaec95208fe92b5674e59e77458f40ba6d3
IEDL.DBID .~1
ISSN 0278-6125
IngestDate Tue Jul 01 00:55:35 EDT 2025
Thu Apr 24 23:16:04 EDT 2025
Tue Dec 03 03:45:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Condition monitoring
Random
forests
Condition-based maintenance
Decision jungles
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-4410faaeb1a7e47e630e30a452bc85aaec95208fe92b5674e59e77458f40ba6d3
ORCID 0000-0001-9617-4491
0000-0002-0942-821X
0000-0001-5299-9993
0000-0001-9241-9121
OpenAccessLink http://hdl.handle.net/11573/1413335
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_jmsy_2020_05_013
crossref_citationtrail_10_1016_j_jmsy_2020_05_013
elsevier_sciencedirect_doi_10_1016_j_jmsy_2020_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Journal of manufacturing systems
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sokolova, Lapalme (bib0345) 2009; 45
Su, Huang (bib0260) 2018; 71
Khaleghi, Moin (bib0080) 2018
Ariyaluran Habeeb, Nasaruddin, Gani, Targio Hashem, Ahmed, Imran (bib0075) 2018
Rokach (bib0245) 2016; 27
Ho (bib0315) 1995
Langone, Alzate, De Ketelaere, Vlasselaer, Meert, Suykens (bib0115) 2015; 37
Shotton, Sharp, Kohli, Nowozin, Winn, Criminisi (bib0290) 2013
Li, Valente De Oliveira, Cerrada, Pacheco, Cabrera, Sanchez (bib0130) 2016; 50
Zhao, Huang (bib0220) 2018; 64
Amit, Geman (bib0320) 1994; 401
De Benedetti, Leonardi, Messina, Santoro, Vasilakos (bib0190) 2018; 310
Yan, Zhou (bib0265) 2018
Accorsi, Manzini, Pascarella, Patella, Sassi (bib0255) 2017; 11
Wang, Liu, Gao, Yan (bib0105) 2012; 31
Akbulut, Ertugrul, Topcu (bib0300) 2018; 163
Chakraborty, Shah, Soltani, Swigart (bib0030) 2019
Goyal, Vanraj, Dhami (bib0025) 2019
Sardá-Espinosa, Subbiah, Bartz-Beielstein (bib0120) 2017; 62
Schneider, Helwig, Schütze (bib0165) 2018; 29
Cirera, Quiles, Carino, Zurita, Ortega (bib0225) 2018
Qian, Zhang, Tian, Si, Li (bib0180) 2019; 135
Kan, Cheng, Yang (bib0230) 2016; 41
Gunarathne, Perera, Kahandawaarachchi (bib0295) 2017
Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes (bib0185) 2019; 133
Amihai, Gitzel, Kotriwala, Pareschi, Subbiah, Sosale (bib0275) 2018; 1
Leturiondo, Mishra, Galar, Salgado (bib0055) 2015; 57
Yang, Zhao, Peng, Ma (bib0110) 2018; 47
Lu, Zhou (bib0145) 2019; 52
Harrou, Sun, Khadraoui (bib0010) 2016; 40
Liu, Kothuru, Zhang (bib0140) 2020; 54
Gandhi, Schmidt, Ng (bib0170) 2018; 72
Hajdarevic, Dzananovic, Banjanovic-Mehmedovic, Mehmedovic (bib0195) 2015
Zhao, Zhang, Qin, Cai, Ma (bib0035) 2019; 126
Abraham, Mandya, Bapat, Alali, Brown, Veeraraghavan (bib0070) 2018
Cerrada, Sánchez, Li, Pacheco, Cabrera, Valente de Oliveira (bib0160) 2018; 99
Auret, Aldrich (bib0270) 2010; 49
Breiman (bib0325) 2001; 45
Criminisi, Shotton, Konukoglu (bib0330) 2011; 7
Wickramasinghe, Perera, Kahandawaarachchi (bib0305) 2017
Milo, Roan, Harris (bib0235) 2015; 36
Robles-Durazno, Moradpoor, McWhinnie, Russell (bib0280) 2018
Kim, Huang, Shi (bib0100) 2007; 26
Parikh (bib0340) 2005
Rossetti, Squartini, Collura, Zhang (bib0200) 2018; 123
Aminu, McGlinchey, Cowell (bib0020) 2019; 65
Song, Suh (bib0090) 2019; 57
Kan, Yang, Kumara (bib0095) 2018; 46
Mansouri, Nounou, Nounou, Karim (bib0215) 2016; 40
Wang, Ananya, Gao (bib0135) 2017; 44
Ragab, El-Koujok, Poulin, Amazouz, Yacout (bib0250) 2018; 95
Wang, Davidson (bib0040) 2009
Breiman (bib0335) 1996; 24
Chandola, Banerjee, Kumar (bib0005) 2009; 41
Uma Maheswari, Umamaheswari (bib0050) 2017; 85
Lejon, Kyösti, Lindström (bib0175) 2018; 72
Zaher, McArthur (bib0015) 2007
D’Amato, Patanian (bib0065) 2016
Shabgard, Badamchizadeh, Ranjbary, Amini (bib0150) 2013; 32
Li, Yang, Bennett, Mba (bib0045) 2019; 131
Ben Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (bib0155) 2015; 89
Myers, Suriadi, Radke, Foo (bib0240) 2018; 78
Jiao, Zhao, Shan (bib0085) 2018; 18
Hendrickx, Meert, Mollet, Gyselinck, Cornelis, Gryllias (bib0060) 2020; 139
Li, Yang, Yang, Bennett, Collop, Mba (bib0125) 2019; 76
Harrou, Sun, Madakyaru (bib0205) 2016; 44
Li, Hu, Zhu, Leng, Ye, Xiao (bib0210) 2018; 192
Avdagic, Hajdarevic (bib0285) 2017
Chandra, Kothari, Paul (bib0310) 2010; 43
Gandhi (10.1016/j.jmsy.2020.05.013_bib0170) 2018; 72
Amihai (10.1016/j.jmsy.2020.05.013_bib0275) 2018; 1
Sardá-Espinosa (10.1016/j.jmsy.2020.05.013_bib0120) 2017; 62
Jiao (10.1016/j.jmsy.2020.05.013_bib0085) 2018; 18
Wang (10.1016/j.jmsy.2020.05.013_bib0040) 2009
Ariyaluran Habeeb (10.1016/j.jmsy.2020.05.013_bib0075) 2018
Harrou (10.1016/j.jmsy.2020.05.013_bib0205) 2016; 44
Rokach (10.1016/j.jmsy.2020.05.013_bib0245) 2016; 27
Robles-Durazno (10.1016/j.jmsy.2020.05.013_bib0280) 2018
Myers (10.1016/j.jmsy.2020.05.013_bib0240) 2018; 78
Amit (10.1016/j.jmsy.2020.05.013_bib0320) 1994; 401
Hajdarevic (10.1016/j.jmsy.2020.05.013_bib0195) 2015
Yan (10.1016/j.jmsy.2020.05.013_bib0265) 2018
Sokolova (10.1016/j.jmsy.2020.05.013_bib0345) 2009; 45
D’Amato (10.1016/j.jmsy.2020.05.013_bib0065) 2016
Li (10.1016/j.jmsy.2020.05.013_bib0045) 2019; 131
Breiman (10.1016/j.jmsy.2020.05.013_bib0335) 1996; 24
Kan (10.1016/j.jmsy.2020.05.013_bib0095) 2018; 46
Liu (10.1016/j.jmsy.2020.05.013_bib0140) 2020; 54
Ben Ali (10.1016/j.jmsy.2020.05.013_bib0155) 2015; 89
Auret (10.1016/j.jmsy.2020.05.013_bib0270) 2010; 49
Ho (10.1016/j.jmsy.2020.05.013_bib0315) 1995
Zhao (10.1016/j.jmsy.2020.05.013_bib0035) 2019; 126
Mansouri (10.1016/j.jmsy.2020.05.013_bib0215) 2016; 40
Zhao (10.1016/j.jmsy.2020.05.013_bib0220) 2018; 64
Chakraborty (10.1016/j.jmsy.2020.05.013_bib0030) 2019
Ragab (10.1016/j.jmsy.2020.05.013_bib0250) 2018; 95
Li (10.1016/j.jmsy.2020.05.013_bib0210) 2018; 192
Abraham (10.1016/j.jmsy.2020.05.013_bib0070) 2018
Wang (10.1016/j.jmsy.2020.05.013_bib0105) 2012; 31
Harrou (10.1016/j.jmsy.2020.05.013_bib0010) 2016; 40
Lu (10.1016/j.jmsy.2020.05.013_bib0145) 2019; 52
Goyal (10.1016/j.jmsy.2020.05.013_bib0025) 2019
Song (10.1016/j.jmsy.2020.05.013_bib0090) 2019; 57
Stetco (10.1016/j.jmsy.2020.05.013_bib0185) 2019; 133
Parikh (10.1016/j.jmsy.2020.05.013_bib0340) 2005
Langone (10.1016/j.jmsy.2020.05.013_bib0115) 2015; 37
Shotton (10.1016/j.jmsy.2020.05.013_bib0290) 2013
Wickramasinghe (10.1016/j.jmsy.2020.05.013_bib0305) 2017
Milo (10.1016/j.jmsy.2020.05.013_bib0235) 2015; 36
Avdagic (10.1016/j.jmsy.2020.05.013_bib0285) 2017
Chandola (10.1016/j.jmsy.2020.05.013_bib0005) 2009; 41
Chandra (10.1016/j.jmsy.2020.05.013_bib0310) 2010; 43
Cerrada (10.1016/j.jmsy.2020.05.013_bib0160) 2018; 99
Cirera (10.1016/j.jmsy.2020.05.013_bib0225) 2018
Yang (10.1016/j.jmsy.2020.05.013_bib0110) 2018; 47
Lejon (10.1016/j.jmsy.2020.05.013_bib0175) 2018; 72
Uma Maheswari (10.1016/j.jmsy.2020.05.013_bib0050) 2017; 85
Khaleghi (10.1016/j.jmsy.2020.05.013_bib0080) 2018
Kim (10.1016/j.jmsy.2020.05.013_bib0100) 2007; 26
Qian (10.1016/j.jmsy.2020.05.013_bib0180) 2019; 135
Leturiondo (10.1016/j.jmsy.2020.05.013_bib0055) 2015; 57
De Benedetti (10.1016/j.jmsy.2020.05.013_bib0190) 2018; 310
Shabgard (10.1016/j.jmsy.2020.05.013_bib0150) 2013; 32
Aminu (10.1016/j.jmsy.2020.05.013_bib0020) 2019; 65
Rossetti (10.1016/j.jmsy.2020.05.013_bib0200) 2018; 123
Li (10.1016/j.jmsy.2020.05.013_bib0125) 2019; 76
Gunarathne (10.1016/j.jmsy.2020.05.013_bib0295) 2017
Hendrickx (10.1016/j.jmsy.2020.05.013_bib0060) 2020; 139
Li (10.1016/j.jmsy.2020.05.013_bib0130) 2016; 50
Accorsi (10.1016/j.jmsy.2020.05.013_bib0255) 2017; 11
Akbulut (10.1016/j.jmsy.2020.05.013_bib0300) 2018; 163
Wang (10.1016/j.jmsy.2020.05.013_bib0135) 2017; 44
Zaher (10.1016/j.jmsy.2020.05.013_bib0015) 2007
Kan (10.1016/j.jmsy.2020.05.013_bib0230) 2016; 41
Criminisi (10.1016/j.jmsy.2020.05.013_bib0330) 2011; 7
Su (10.1016/j.jmsy.2020.05.013_bib0260) 2018; 71
Schneider (10.1016/j.jmsy.2020.05.013_bib0165) 2018; 29
Breiman (10.1016/j.jmsy.2020.05.013_bib0325) 2001; 45
References_xml – start-page: 22
  year: 2007
  end-page: 27
  ident: bib0015
  article-title: A multi-agent fault detection system for wind turbine defect recognition and diagnosis
  publication-title: Proceedings of the 2007 IEEE Lausanne POWERTECH
– start-page: 523
  year: 2019
  end-page: 528
  ident: bib0030
  article-title: Root cause detection among anomalous time series using temporal state alignment
  publication-title: Proceedings of the 18th IEEE international conference on machine learning and applications
– volume: 57
  start-page: 395
  year: 2015
  end-page: 400
  ident: bib0055
  article-title: Synthetic data generation in hybrid modelling of rolling element bearings
  publication-title: Insight Non-Destructive Test Cond Monit
– volume: 11
  start-page: 1153
  year: 2017
  end-page: 1161
  ident: bib0255
  article-title: Data mining and machine learning for condition-based maintenance
  publication-title: Procedia Manuf
– volume: 192
  year: 2018
  ident: bib0210
  article-title: The research of anomaly detection method for transformer oil temperature based on hybrid model of non-supervised learning and decision forests
  publication-title: IOP Conf Ser Earth Environ Sci
– start-page: 129
  year: 2016
  end-page: 136
  ident: bib0065
  article-title: Method and system for predicting hydraulic valve degradation on a gas turbine
  publication-title: Proceedings of the annual conference of the prognostics and health management society 2016
– volume: 47
  start-page: 12
  year: 2018
  end-page: 34
  ident: bib0110
  article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits
  publication-title: Int J Ind Manuf Syst Eng
– volume: 85
  start-page: 296
  year: 2017
  end-page: 311
  ident: bib0050
  article-title: Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – a contemporary survey
  publication-title: Mech Syst Signal Process
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0280
  article-title: A supervised energy monitoring-based machine learning approach for anomaly detection in a clean water supply system
  publication-title: Proceedings of the 2018 international conference on cyber security and protection of digital services (Cyber Security)
– volume: 65
  start-page: 33
  year: 2019
  end-page: 44
  ident: bib0020
  article-title: Acoustic signal processing with robust machine learning algorithm for improved monitoring of particulate solid materials in a gas flowline
  publication-title: Flow Meas Instrum
– volume: 44
  start-page: 310
  year: 2017
  end-page: 316
  ident: bib0135
  article-title: Virtualization and deep recognition for system fault classification
  publication-title: Int J Ind Manuf Syst Eng
– volume: 95
  start-page: 368
  year: 2018
  end-page: 383
  ident: bib0250
  article-title: Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data
  publication-title: Expert Syst Appl
– volume: 44
  start-page: 73
  year: 2016
  end-page: 87
  ident: bib0205
  article-title: Kullback-Leibler distance-based enhanced detection of incipient anomalies
  publication-title: J Loss Prev Process Ind
– volume: 40
  start-page: 365
  year: 2016
  end-page: 377
  ident: bib0010
  article-title: Amalgamation of anomaly-detection indices for enhanced process monitoring
  publication-title: J Loss Prev Process Ind
– volume: 139
  year: 2020
  ident: bib0060
  article-title: A general anomaly detection framework for fleet-based condition monitoring of machines
  publication-title: Mech Syst Signal Process
– volume: 99
  start-page: 169
  year: 2018
  end-page: 196
  ident: bib0160
  article-title: A review on data-driven fault severity assessment in rolling bearings
  publication-title: Mech Syst Signal Process
– volume: 32
  start-page: 32
  year: 2013
  ident: bib0150
  article-title: Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes
  publication-title: Int J Ind Manuf Syst Eng
– start-page: 1
  year: 2005
  end-page: 625
  ident: bib0340
  article-title: Handbook of pharmaceutical granulation technology. Handb. Pharm. Granulation technol.
– volume: 71
  start-page: 93
  year: 2018
  end-page: 101
  ident: bib0260
  article-title: Real-time big data analytics for hard disk drive predictive maintenance
  publication-title: Comput Electr Eng
– volume: 18
  start-page: 1013
  year: 2018
  end-page: 1036
  ident: bib0085
  article-title: Pre-seismic anomalies from optical satellite observations: a review
  publication-title: Nat Hazards Earth Syst Sci Discuss
– volume: 64
  start-page: 1662
  year: 2018
  end-page: 1681
  ident: bib0220
  article-title: A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis
  publication-title: AIChE J
– start-page: 291
  year: 2017
  end-page: 296
  ident: bib0295
  article-title: Performance evaluation on machine learning classification techniques for disease (CKD)
– volume: 57
  start-page: 47
  year: 2019
  end-page: 54
  ident: bib0090
  article-title: Narrative texts-based anomaly detection using accident report documents: the case of chemical process safety
  publication-title: J Loss Prev Process Ind
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0335
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: bib0345
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf Process Manag
– volume: 54
  start-page: 285
  year: 2020
  end-page: 293
  ident: bib0140
  article-title: Calibration-based tool condition monitoring for repetitive machining operations
  publication-title: Int J Ind Manuf Syst Eng
– volume: 46
  start-page: 282
  year: 2018
  end-page: 293
  ident: bib0095
  article-title: Parallel computing and network analytics for fast Industrial Internet-of-Things (IIoT) machine information processing and condition monitoring
  publication-title: Int J Ind Manuf Syst Eng
– volume: 37
  start-page: 268
  year: 2015
  end-page: 278
  ident: bib0115
  article-title: LS-SVM based spectral clustering and regression for predicting maintenance of industrial machines
  publication-title: Eng Appl Artif Intell
– volume: 76
  start-page: 87
  year: 2019
  end-page: 97
  ident: bib0125
  article-title: Canonical variate residuals-based contribution map for slowly evolving faults
  publication-title: J Process Control
– start-page: 73
  year: 2018
  end-page: 81
  ident: bib0080
  article-title: Improved anomaly detection in surveillance videos based on a deep learning method
  publication-title: Proceedings of the 2018 8th conference of AI & robotics and 10th RoboCup Iranopen international Symposium (IRANOPEN) IEEE
– volume: 31
  start-page: 380
  year: 2012
  end-page: 387
  ident: bib0105
  article-title: Current envelope analysis for defect identification and diagnosis in induction motors
  publication-title: Int J Ind Manuf Syst Eng
– volume: 72
  start-page: 1079
  year: 2018
  end-page: 1083
  ident: bib0175
  article-title: Machine learning for detection of anomalies in press-hardening: selection of efficient methods
  publication-title: Procedia Cirp
– start-page: 1034
  year: 2009
  end-page: 1039
  ident: bib0040
  article-title: Discovering contexts and contextual outliers using random walks in graphs
  publication-title: Proc eedings of IEEE International Conference on Data Mining, ICDM
– start-page: 828
  year: 2018
  end-page: 831
  ident: bib0265
  article-title: Predictive modeling of aircraft systems failure using term frequency-inverse document frequency and random forest
  publication-title: Proceedings of the IEEE international conference on industrial engineering and engineering management
– start-page: 234
  year: 2013
  end-page: 242
  ident: bib0290
  article-title: Decision jungles: compact and richmodels for classification
  publication-title: Advances in neural information processing systems 26
– start-page: 2099
  year: 2018
  end-page: 2104
  ident: bib0225
  article-title: Data-driven operation performance evaluation of multi-chiller system using self-organizing maps
  publication-title: Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT)
– year: 2018
  ident: bib0070
  article-title: A comparison of machinelearningapproaches to detectbotnettraffic
  publication-title: Proceedings of the international joint conference on neural networks
– start-page: 1118
  year: 2015
  end-page: 1123
  ident: bib0195
  article-title: Anomaly detection in thermal power plant using probabilistic neural network
  publication-title: Proceedings of the 2015 38th international convention on information and communication technology
– volume: 36
  start-page: 159
  year: 2015
  end-page: 167
  ident: bib0235
  article-title: A new statistical approach to automated quality control in manufacturing processes
  publication-title: Int J Ind Manuf Syst Eng
– volume: 131
  start-page: 348
  year: 2019
  end-page: 363
  ident: bib0045
  article-title: Condition monitoring of rotating machines under time-varying conditions based on adaptive canonical variate analysis
  publication-title: Mech Syst Signal Process
– volume: 43
  start-page: 2725
  year: 2010
  end-page: 2731
  ident: bib0310
  article-title: A new node splitting measure for decision tree construction
  publication-title: Pattern Recognit
– year: 2017
  ident: bib0285
  article-title: Survey on machine learning algorithms as cloud service for CIDPS
  publication-title: Proceedings of the 2017 25th telecommunication forum
– volume: 133
  start-page: 620
  year: 2019
  end-page: 635
  ident: bib0185
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew Energy
– volume: 310
  start-page: 59
  year: 2018
  end-page: 68
  ident: bib0190
  article-title: Anomaly detection and predictive maintenance for photovoltaic systems
  publication-title: Neurocomputing
– volume: 78
  start-page: 103
  year: 2018
  end-page: 125
  ident: bib0240
  article-title: Anomaly detection for industrial control systems using process mining
  publication-title: Comput Secur
– volume: 123
  start-page: 39
  year: 2018
  end-page: 47
  ident: bib0200
  article-title: Power plant condition monitoring by means of coal powder granulometry classification
  publication-title: Meas J Int Meas Confed
– volume: 40
  start-page: 334
  year: 2016
  end-page: 347
  ident: bib0215
  article-title: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes
  publication-title: J Loss Prev Process Ind
– volume: 72
  start-page: 261
  year: 2018
  end-page: 265
  ident: bib0170
  article-title: Towards data mining based decision support in manufacturing maintenance
  publication-title: Procedia Cirp
– volume: 89
  start-page: 16
  year: 2015
  end-page: 27
  ident: bib0155
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl Acoust
– volume: 401
  start-page: 49
  year: 1994
  ident: bib0320
  article-title: Randomized inquiries about shape; an application to handwritten digit recognition
  publication-title: Tech Rep
– volume: 62
  start-page: 26
  year: 2017
  end-page: 37
  ident: bib0120
  article-title: Conditional inference trees for knowledge extraction from motor health condition data
  publication-title: Eng Appl Artif Intell
– volume: 7
  start-page: 81
  year: 2011
  end-page: 227
  ident: bib0330
  article-title: decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
  publication-title: Found Trends Comput Graph Vis
– year: 2019
  ident: bib0025
  article-title: Non-contact sensor placement strategy for condition monitoring of rotating machine-elements
  publication-title: Eng Sci Technol Int J
– start-page: 300
  year: 2017
  end-page: 303
  ident: bib0305
  article-title: Dietary prediction for patients with chronickidneydisease (CKD) by considering blood potassium level using machine learning algorithms
  publication-title: Proceedings of the 2017 IEEE life sciences conference (LSC)
– volume: 41
  year: 2009
  ident: bib0005
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput Surv
– start-page: 1
  year: 2018
  end-page: 19
  ident: bib0075
  article-title: Real-time big data processing for anomaly detection: a Survey
  publication-title: Int J Inf Manage
– volume: 26
  start-page: 53
  year: 2007
  end-page: 61
  ident: bib0100
  article-title: Latent variable based key process variable identification and process monitoring for forging
  publication-title: Int J Ind Manuf Syst Eng
– volume: 52
  start-page: 76
  year: 2019
  end-page: 85
  ident: bib0145
  article-title: Quality and reliability oriented maintenance for multistage manufacturing systems subject to condition monitoring
  publication-title: Int J Ind Manuf Syst Eng
– volume: 135
  start-page: 390
  year: 2019
  end-page: 398
  ident: bib0180
  article-title: A novel wind turbine condition monitoring method based on cloud computing
  publication-title: Renew Energy
– volume: 163
  start-page: 87
  year: 2018
  end-page: 100
  ident: bib0300
  article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques
  publication-title: Comput Methods Programs Biomed
– start-page: 278
  year: 1995
  end-page: 282
  ident: bib0315
  article-title: Random decisionforests
  publication-title: Proceedings of 3rd international conference on document analysis and recognition
– volume: 50
  start-page: 287
  year: 2016
  end-page: 301
  ident: bib0130
  article-title: Observer-biased bearing condition monitoring: from fault detection to multi-fault classification
  publication-title: Eng Appl Artif Intell
– volume: 1
  start-page: 178
  year: 2018
  end-page: 185
  ident: bib0275
  article-title: An industrial case study using vibration data and machine learning to predict asset health
  publication-title: Proceeding of the 20th international conference on business informatics
– volume: 126
  start-page: 158
  year: 2019
  end-page: 170
  ident: bib0035
  article-title: Parallel mining of contextual outlier using sparse subspace
  publication-title: Expert Syst Appl
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0325
  article-title: Random forest
  publication-title: Mach Learn
– volume: 41
  start-page: 178
  year: 2016
  end-page: 187
  ident: bib0230
  article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes
  publication-title: Int J Ind Manuf Syst Eng
– volume: 29
  year: 2018
  ident: bib0165
  article-title: Industrial condition monitoring with smart sensors using automated feature extraction and selection
  publication-title: Meas Sci Technol
– volume: 27
  start-page: 111
  year: 2016
  end-page: 125
  ident: bib0245
  article-title: Decision forest: twenty years of research
  publication-title: Inf Fusion
– volume: 49
  start-page: 9184
  year: 2010
  end-page: 9194
  ident: bib0270
  article-title: Unsupervised process fault detection with random forests
  publication-title: Ind Eng Chem Res
– volume: 32
  start-page: 32
  year: 2013
  ident: 10.1016/j.jmsy.2020.05.013_bib0150
  article-title: Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2012.09.002
– year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0070
  article-title: A comparison of machinelearningapproaches to detectbotnettraffic
– volume: 37
  start-page: 268
  year: 2015
  ident: 10.1016/j.jmsy.2020.05.013_bib0115
  article-title: LS-SVM based spectral clustering and regression for predicting maintenance of industrial machines
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.09.008
– volume: 27
  start-page: 111
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0245
  article-title: Decision forest: twenty years of research
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2015.06.005
– volume: 47
  start-page: 12
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0110
  article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2018.02.003
– volume: 133
  start-page: 620
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0185
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.047
– start-page: 828
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0265
  article-title: Predictive modeling of aircraft systems failure using term frequency-inverse document frequency and random forest
  publication-title: Proceedings of the IEEE international conference on industrial engineering and engineering management
– start-page: 2099
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0225
  article-title: Data-driven operation performance evaluation of multi-chiller system using self-organizing maps
  publication-title: Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT)
  doi: 10.1109/ICIT.2018.8352513
– volume: 41
  start-page: 178
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0230
  article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2016.08.007
– start-page: 523
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0030
  article-title: Root cause detection among anomalous time series using temporal state alignment
  publication-title: Proceedings of the 18th IEEE international conference on machine learning and applications
– volume: 85
  start-page: 296
  year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0050
  article-title: Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – a contemporary survey
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.07.046
– volume: 54
  start-page: 285
  year: 2020
  ident: 10.1016/j.jmsy.2020.05.013_bib0140
  article-title: Calibration-based tool condition monitoring for repetitive machining operations
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2020.01.005
– volume: 95
  start-page: 368
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0250
  article-title: Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.045
– start-page: 1
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0075
  article-title: Real-time big data processing for anomaly detection: a Survey
  publication-title: Int J Inf Manage
– volume: 31
  start-page: 380
  year: 2012
  ident: 10.1016/j.jmsy.2020.05.013_bib0105
  article-title: Current envelope analysis for defect identification and diagnosis in induction motors
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2012.06.005
– volume: 64
  start-page: 1662
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0220
  article-title: A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis
  publication-title: AIChE J
  doi: 10.1002/aic.16048
– volume: 52
  start-page: 76
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0145
  article-title: Quality and reliability oriented maintenance for multistage manufacturing systems subject to condition monitoring
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2019.04.003
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jmsy.2020.05.013_bib0325
  article-title: Random forest
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 401
  start-page: 49
  year: 1994
  ident: 10.1016/j.jmsy.2020.05.013_bib0320
  article-title: Randomized inquiries about shape; an application to handwritten digit recognition
  publication-title: Tech Rep
– volume: 36
  start-page: 159
  year: 2015
  ident: 10.1016/j.jmsy.2020.05.013_bib0235
  article-title: A new statistical approach to automated quality control in manufacturing processes
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2015.06.001
– start-page: 1
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0280
  article-title: A supervised energy monitoring-based machine learning approach for anomaly detection in a clean water supply system
  publication-title: Proceedings of the 2018 international conference on cyber security and protection of digital services (Cyber Security)
– volume: 57
  start-page: 395
  year: 2015
  ident: 10.1016/j.jmsy.2020.05.013_bib0055
  article-title: Synthetic data generation in hybrid modelling of rolling element bearings
  publication-title: Insight Non-Destructive Test Cond Monit
  doi: 10.1784/insi.2015.57.7.395
– start-page: 22
  year: 2007
  ident: 10.1016/j.jmsy.2020.05.013_bib0015
  article-title: A multi-agent fault detection system for wind turbine defect recognition and diagnosis
  publication-title: Proceedings of the 2007 IEEE Lausanne POWERTECH
  doi: 10.1109/PCT.2007.4538286
– volume: 135
  start-page: 390
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0180
  article-title: A novel wind turbine condition monitoring method based on cloud computing
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.12.045
– volume: 43
  start-page: 2725
  year: 2010
  ident: 10.1016/j.jmsy.2020.05.013_bib0310
  article-title: A new node splitting measure for decision tree construction
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.02.025
– volume: 45
  start-page: 427
  year: 2009
  ident: 10.1016/j.jmsy.2020.05.013_bib0345
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2009.03.002
– volume: 46
  start-page: 282
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0095
  article-title: Parallel computing and network analytics for fast Industrial Internet-of-Things (IIoT) machine information processing and condition monitoring
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2018.01.010
– volume: 99
  start-page: 169
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0160
  article-title: A review on data-driven fault severity assessment in rolling bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.06.012
– start-page: 291
  year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0295
– year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0025
  article-title: Non-contact sensor placement strategy for condition monitoring of rotating machine-elements
  publication-title: Eng Sci Technol Int J
– start-page: 129
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0065
  article-title: Method and system for predicting hydraulic valve degradation on a gas turbine
  publication-title: Proceedings of the annual conference of the prognostics and health management society 2016
– start-page: 1034
  year: 2009
  ident: 10.1016/j.jmsy.2020.05.013_bib0040
  article-title: Discovering contexts and contextual outliers using random walks in graphs
  publication-title: Proc eedings of IEEE International Conference on Data Mining, ICDM
– start-page: 73
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0080
  article-title: Improved anomaly detection in surveillance videos based on a deep learning method
  publication-title: Proceedings of the 2018 8th conference of AI & robotics and 10th RoboCup Iranopen international Symposium (IRANOPEN) IEEE
  doi: 10.1109/RIOS.2018.8406634
– start-page: 1118
  year: 2015
  ident: 10.1016/j.jmsy.2020.05.013_bib0195
  article-title: Anomaly detection in thermal power plant using probabilistic neural network
  publication-title: Proceedings of the 2015 38th international convention on information and communication technology
– start-page: 1
  year: 2005
  ident: 10.1016/j.jmsy.2020.05.013_bib0340
– volume: 11
  start-page: 1153
  year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0255
  article-title: Data mining and machine learning for condition-based maintenance
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2017.07.239
– volume: 57
  start-page: 47
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0090
  article-title: Narrative texts-based anomaly detection using accident report documents: the case of chemical process safety
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2018.08.010
– volume: 44
  start-page: 310
  year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0135
  article-title: Virtualization and deep recognition for system fault classification
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2017.04.012
– volume: 40
  start-page: 365
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0010
  article-title: Amalgamation of anomaly-detection indices for enhanced process monitoring
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2016.01.024
– volume: 163
  start-page: 87
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0300
  article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.06.010
– start-page: 300
  year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0305
  article-title: Dietary prediction for patients with chronickidneydisease (CKD) by considering blood potassium level using machine learning algorithms
– year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0285
  article-title: Survey on machine learning algorithms as cloud service for CIDPS
– volume: 49
  start-page: 9184
  year: 2010
  ident: 10.1016/j.jmsy.2020.05.013_bib0270
  article-title: Unsupervised process fault detection with random forests
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie901975c
– volume: 131
  start-page: 348
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0045
  article-title: Condition monitoring of rotating machines under time-varying conditions based on adaptive canonical variate analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.05.048
– volume: 192
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0210
  article-title: The research of anomaly detection method for transformer oil temperature based on hybrid model of non-supervised learning and decision forests
  publication-title: IOP Conf Ser Earth Environ Sci
– start-page: 278
  year: 1995
  ident: 10.1016/j.jmsy.2020.05.013_bib0315
  article-title: Random decisionforests
  publication-title: Proceedings of 3rd international conference on document analysis and recognition
– volume: 29
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0165
  article-title: Industrial condition monitoring with smart sensors using automated feature extraction and selection
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aad1d4
– volume: 65
  start-page: 33
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0020
  article-title: Acoustic signal processing with robust machine learning algorithm for improved monitoring of particulate solid materials in a gas flowline
  publication-title: Flow Meas Instrum
  doi: 10.1016/j.flowmeasinst.2018.11.015
– volume: 89
  start-page: 16
  year: 2015
  ident: 10.1016/j.jmsy.2020.05.013_bib0155
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2014.08.016
– volume: 71
  start-page: 93
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0260
  article-title: Real-time big data analytics for hard disk drive predictive maintenance
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2018.07.025
– volume: 44
  start-page: 73
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0205
  article-title: Kullback-Leibler distance-based enhanced detection of incipient anomalies
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2016.08.020
– volume: 72
  start-page: 1079
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0175
  article-title: Machine learning for detection of anomalies in press-hardening: selection of efficient methods
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2018.03.221
– volume: 40
  start-page: 334
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0215
  article-title: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2016.01.011
– volume: 1
  start-page: 178
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0275
  article-title: An industrial case study using vibration data and machine learning to predict asset health
  publication-title: Proceeding of the 20th international conference on business informatics
– volume: 41
  year: 2009
  ident: 10.1016/j.jmsy.2020.05.013_bib0005
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput Surv
  doi: 10.1145/1541880.1541882
– volume: 7
  start-page: 81
  year: 2011
  ident: 10.1016/j.jmsy.2020.05.013_bib0330
  article-title: decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
  publication-title: Found Trends Comput Graph Vis
  doi: 10.1561/0600000035
– volume: 78
  start-page: 103
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0240
  article-title: Anomaly detection for industrial control systems using process mining
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.06.002
– volume: 50
  start-page: 287
  year: 2016
  ident: 10.1016/j.jmsy.2020.05.013_bib0130
  article-title: Observer-biased bearing condition monitoring: from fault detection to multi-fault classification
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.01.038
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.jmsy.2020.05.013_bib0335
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 126
  start-page: 158
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0035
  article-title: Parallel mining of contextual outlier using sparse subspace
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.02.020
– volume: 76
  start-page: 87
  year: 2019
  ident: 10.1016/j.jmsy.2020.05.013_bib0125
  article-title: Canonical variate residuals-based contribution map for slowly evolving faults
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2019.02.006
– volume: 310
  start-page: 59
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0190
  article-title: Anomaly detection and predictive maintenance for photovoltaic systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.017
– volume: 72
  start-page: 261
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0170
  article-title: Towards data mining based decision support in manufacturing maintenance
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2018.03.076
– volume: 123
  start-page: 39
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0200
  article-title: Power plant condition monitoring by means of coal powder granulometry classification
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2018.03.028
– volume: 139
  year: 2020
  ident: 10.1016/j.jmsy.2020.05.013_bib0060
  article-title: A general anomaly detection framework for fleet-based condition monitoring of machines
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106585
– volume: 26
  start-page: 53
  year: 2007
  ident: 10.1016/j.jmsy.2020.05.013_bib0100
  article-title: Latent variable based key process variable identification and process monitoring for forging
  publication-title: Int J Ind Manuf Syst Eng
  doi: 10.1016/j.jmsy.2007.12.001
– volume: 18
  start-page: 1013
  year: 2018
  ident: 10.1016/j.jmsy.2020.05.013_bib0085
  article-title: Pre-seismic anomalies from optical satellite observations: a review
  publication-title: Nat Hazards Earth Syst Sci Discuss
  doi: 10.5194/nhess-18-1013-2018
– volume: 62
  start-page: 26
  year: 2017
  ident: 10.1016/j.jmsy.2020.05.013_bib0120
  article-title: Conditional inference trees for knowledge extraction from motor health condition data
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.03.008
– start-page: 234
  year: 2013
  ident: 10.1016/j.jmsy.2020.05.013_bib0290
  article-title: Decision jungles: compact and richmodels for classification
SSID ssj0012402
Score 2.4971972
Snippet •Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Condition monitoring
Condition-based maintenance
Decision jungles
forests
Machine learning
Random
Title Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities
URI https://dx.doi.org/10.1016/j.jmsy.2020.05.013
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDI4Qu2yHaU-NPVAOu00dpU1IOSI0xDbBZUPiVqWts4GgoNFN4rLfPjttEZMmDjs2iaXKsezPyWeHsVsf057ASOHgvOcgIgZHCx052ggKEOgQfap3Hgxb_ZF4GstxhXXLWhiiVRa-P_fp1lsXI41Cm43lZNJ4oTszis8e2ilm41RoLoQiK7__3tA8mnR7YM9ZMFui1UXhTM7xms5Xa8wRPTfv3un_HZy2Ak7viB0WSJF38p85ZhVIT9jBVv_AU5YNLBUSePH2wxtHCMp1upjr2ZonkFmeVYojCV_mFQF8-Y5xi8cEmoklZDeGZws-sacLwFfaQLa2InNNzSSoIwdwqn_4st1Xz9io9_Da7TvFMwpO7AuROQh4XKM1OmWtQCho-S74rhbSi-JA4kTcRh0GBtpeJFtKgGwDgkIZGOFGupX456yaLlK4YNxoBJDgKdXUvogktGWQaGMiFcWxVApqrFnqL4yLHuP01MUsLMlk05B0HpLOQ1eGqPMau9vILPMOGztXy3Jbwl92EmII2CF3-U-5K7ZPXzlB95pVs49PuEEYkkV1a2d1ttd5fO4PfwAEyt9z
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgHIAD4lN8kwM3VK20SdsdEQJtwHZhk3aL0s6BTayboCDt32O32TQkxIFrUkuVE9nPyfMLwGVIZU9ilfRoPvAIEaNnpEk9YyUnCAqIIfc7tztRsycf-qq_ArfzXhimVbrYX8X0Mlq7kbrzZn06HNaf-c6M83NA-5SqcbUKa6xOpWqwdtN6bHYWlwl8gVAetVDBxAaud6aieY3GHzMqEwO_EvAMf89PSznnfhu2HFgUN9X_7MAK5ruwuSQhuAdFu2RDonDPP7wIQqHC5JOxeZuJARYl1SqnkYGYVk0BYvpKqUtkjJuZKFSujSgmYlgeMKD4MBaLWWkyNqwnwaIcKLgF4qsUYN2H3v1d97bpuZcUvCyUsvAI8_jWGIrLJkYZYxT6GPpGqiDNEkUTWYPcmFhsBKmKYomqgYQLVWKln5poEB5ALZ_keAjCGsKQGMTxtQllqrChkoGxNo3TLFNxjEdwPfefzpzMOL928abnfLKRZp9r9rn2lSafH8HVwmZaiWz8-bWaL4v-sVU0ZYE_7I7_aXcB681u-0k_tTqPJ7DBMxVf9xRqxfsnnhEqKdJzt-u-Aa-I4iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+anomaly+detection+and+process+phase+classification+to+improve+safety+and+maintenance+activities&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Quatrini%2C+Elena&rft.au=Costantino%2C+Francesco&rft.au=Di+Gravio%2C+Giulio&rft.au=Patriarca%2C+Riccardo&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.volume=56&rft.spage=117&rft.epage=132&rft_id=info:doi/10.1016%2Fj.jmsy.2020.05.013&rft.externalDocID=S0278612520300765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon