Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities
•Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification of process phases.•RFA has better performance than DJA for the anomaly detection.•DJA underperforms for anomalies close to the thresholds, du...
Saved in:
Published in | Journal of manufacturing systems Vol. 56; pp. 117 - 132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification of process phases.•RFA has better performance than DJA for the anomaly detection.•DJA underperforms for anomalies close to the thresholds, due to its increase of generalization.
Anomaly detection is a crucial aspect for both safety and efficiency of modern process industries.
This paper proposes a two-steps methodology for anomaly detection in industrial processes, adopting machine learning classification algorithms. Starting from a real-time collection of process data, the first step identifies the ongoing process phase, the second step classifies the input data as “Expected”, “Warning”, or “Critical”. The proposed methodology is extremely relevant where machines carry out several operations without the evidence of production phases. In this context, the difficulty of attributing the real-time measurements to a specific production phase affects the success of the condition monitoring. The paper proposes the comparison of the anomaly detection step with and without the process phase identification step, validating its absolute necessity. The methodology applies the decision forests algorithm, as a well-known anomaly detector from industrial data, and decision jungle algorithm, never tested before in industrial applications. A real case study in the pharmaceutical industry validates the proposed anomaly detection methodology, using a 10 months database of 16 process parameters from a granulation process. |
---|---|
AbstractList | •Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification of process phases.•RFA has better performance than DJA for the anomaly detection.•DJA underperforms for anomalies close to the thresholds, due to its increase of generalization.
Anomaly detection is a crucial aspect for both safety and efficiency of modern process industries.
This paper proposes a two-steps methodology for anomaly detection in industrial processes, adopting machine learning classification algorithms. Starting from a real-time collection of process data, the first step identifies the ongoing process phase, the second step classifies the input data as “Expected”, “Warning”, or “Critical”. The proposed methodology is extremely relevant where machines carry out several operations without the evidence of production phases. In this context, the difficulty of attributing the real-time measurements to a specific production phase affects the success of the condition monitoring. The paper proposes the comparison of the anomaly detection step with and without the process phase identification step, validating its absolute necessity. The methodology applies the decision forests algorithm, as a well-known anomaly detector from industrial data, and decision jungle algorithm, never tested before in industrial applications. A real case study in the pharmaceutical industry validates the proposed anomaly detection methodology, using a 10 months database of 16 process parameters from a granulation process. |
Author | Quatrini, Elena Patriarca, Riccardo Costantino, Francesco Di Gravio, Giulio |
Author_xml | – sequence: 1 givenname: Elena orcidid: 0000-0001-9617-4491 surname: Quatrini fullname: Quatrini, Elena email: elena.quatrini@uniroma1.it – sequence: 2 givenname: Francesco orcidid: 0000-0002-0942-821X surname: Costantino fullname: Costantino, Francesco email: francesco.costantino@uniroma1.it – sequence: 3 givenname: Giulio orcidid: 0000-0001-9241-9121 surname: Di Gravio fullname: Di Gravio, Giulio email: giulio.digravio@uniroma1.it – sequence: 4 givenname: Riccardo orcidid: 0000-0001-5299-9993 surname: Patriarca fullname: Patriarca, Riccardo email: riccardo.patriarca@uniroma1.it |
BookMark | eNp9kMtqwzAQRbVIoUnaH-hKPxB3JEu2A92U0BekdNOuxUQeNwq2HCQRyN9XSbvqIquBmXsG7pmxiR89MXYnoBAgqvtdsRvisZAgoQBdgCgnbAqybhaVkPqazWLcAQipQE5Zeke7dZ54Txi889-8GwNHPw7YH3lLiWxyo8-blu_DaClGvt9iJG57jNF1zuI5kEbuhpw4EI_YUTqekQGdT-TRW-KYPx1cchRv2FWHfaTbvzlnX89Pn6vXxfrj5W31uF7YUqm0UEpAh0gbgTWpmqoSqARUWm5so_PBLrWEpqOl3OiqVqSXVNdKN52CDVZtOWfy968NY4yBOrMPbsBwNALMyZXZmZMrc3JlQJvsKkPNP8i6dO6YArr-Mvrwi1IudXAUTLSOcvfWhezRtKO7hP8A3cOM9A |
CitedBy_id | crossref_primary_10_1016_j_apergo_2020_103347 crossref_primary_10_1109_ACCESS_2024_3523519 crossref_primary_10_1515_auto_2023_0222 crossref_primary_10_1007_s11740_022_01150_x crossref_primary_10_1016_j_aei_2024_102910 crossref_primary_10_3390_su13073977 crossref_primary_10_1080_08839514_2024_2381317 crossref_primary_10_1088_1742_6596_2087_1_012095 crossref_primary_10_2139_ssrn_3860928 crossref_primary_10_1016_j_jmsy_2020_12_007 crossref_primary_10_1016_j_psep_2020_08_032 crossref_primary_10_1016_j_ress_2023_109162 crossref_primary_10_1007_s11044_024_10023_3 crossref_primary_10_3390_app13063725 crossref_primary_10_1016_j_jmsy_2021_07_001 crossref_primary_10_3390_ai4010010 crossref_primary_10_3390_s25010060 crossref_primary_10_1088_1361_6501_abfb1f crossref_primary_10_1016_j_eswa_2020_114060 crossref_primary_10_1016_j_eswa_2023_122459 crossref_primary_10_1016_j_jmsy_2021_10_007 crossref_primary_10_1016_j_jmsy_2023_10_003 crossref_primary_10_1088_1742_6596_2726_1_012008 crossref_primary_10_1007_s10845_021_01792_1 crossref_primary_10_3390_electronics10030302 crossref_primary_10_1016_j_rineng_2023_101034 crossref_primary_10_1016_j_jlp_2024_105343 crossref_primary_10_1016_j_ifacol_2024_08_062 crossref_primary_10_17093_alphanumeric_1214699 crossref_primary_10_1016_j_jmsy_2020_10_013 crossref_primary_10_1109_JIOT_2024_3446570 crossref_primary_10_1016_j_jii_2024_100559 crossref_primary_10_1016_j_csda_2022_107453 crossref_primary_10_1109_ACCESS_2021_3083060 crossref_primary_10_1016_j_jmsy_2021_03_024 crossref_primary_10_1016_j_trac_2025_118243 crossref_primary_10_1049_2024_8821891 crossref_primary_10_3390_logistics6020035 crossref_primary_10_33262_concienciadigital_v7i3_1_3120 crossref_primary_10_3390_app12094737 crossref_primary_10_1016_j_compchemeng_2024_108929 crossref_primary_10_3390_app11146370 crossref_primary_10_3390_app14010323 crossref_primary_10_1016_j_engappai_2023_106597 crossref_primary_10_1208_s12249_024_02901_y crossref_primary_10_1007_s12008_024_01858_3 crossref_primary_10_3390_electronics13010202 crossref_primary_10_3390_s22082837 crossref_primary_10_1016_j_engappai_2023_107566 crossref_primary_10_1177_08927057241231715 crossref_primary_10_1016_j_jmsy_2021_02_007 crossref_primary_10_1109_JSEN_2022_3179740 crossref_primary_10_1142_S2424862224500143 crossref_primary_10_3390_s22114143 crossref_primary_10_1088_2631_8695_ad66b2 crossref_primary_10_1016_j_ress_2023_109676 crossref_primary_10_1016_j_jmsy_2024_10_003 crossref_primary_10_1080_1206212X_2025_2449999 crossref_primary_10_3233_JIFS_219285 crossref_primary_10_3390_s21082762 crossref_primary_10_1007_s10462_023_10535_y |
Cites_doi | 10.1016/j.jmsy.2012.09.002 10.1016/j.engappai.2014.09.008 10.1016/j.inffus.2015.06.005 10.1016/j.jmsy.2018.02.003 10.1016/j.renene.2018.10.047 10.1109/ICIT.2018.8352513 10.1016/j.jmsy.2016.08.007 10.1016/j.ymssp.2016.07.046 10.1016/j.jmsy.2020.01.005 10.1016/j.eswa.2017.11.045 10.1016/j.jmsy.2012.06.005 10.1002/aic.16048 10.1016/j.jmsy.2019.04.003 10.1023/A:1010933404324 10.1016/j.jmsy.2015.06.001 10.1784/insi.2015.57.7.395 10.1109/PCT.2007.4538286 10.1016/j.renene.2018.12.045 10.1016/j.patcog.2010.02.025 10.1016/j.ipm.2009.03.002 10.1016/j.jmsy.2018.01.010 10.1016/j.ymssp.2017.06.012 10.1109/RIOS.2018.8406634 10.1016/j.promfg.2017.07.239 10.1016/j.jlp.2018.08.010 10.1016/j.jmsy.2017.04.012 10.1016/j.jlp.2016.01.024 10.1016/j.cmpb.2018.06.010 10.1021/ie901975c 10.1016/j.ymssp.2019.05.048 10.1088/1361-6501/aad1d4 10.1016/j.flowmeasinst.2018.11.015 10.1016/j.apacoust.2014.08.016 10.1016/j.compeleceng.2018.07.025 10.1016/j.jlp.2016.08.020 10.1016/j.procir.2018.03.221 10.1016/j.jlp.2016.01.011 10.1145/1541880.1541882 10.1561/0600000035 10.1016/j.cose.2018.06.002 10.1016/j.engappai.2016.01.038 10.1007/BF00058655 10.1016/j.eswa.2019.02.020 10.1016/j.jprocont.2019.02.006 10.1016/j.neucom.2018.05.017 10.1016/j.procir.2018.03.076 10.1016/j.measurement.2018.03.028 10.1016/j.ymssp.2019.106585 10.1016/j.jmsy.2007.12.001 10.5194/nhess-18-1013-2018 10.1016/j.engappai.2017.03.008 |
ContentType | Journal Article |
Copyright | 2020 The Society of Manufacturing Engineers |
Copyright_xml | – notice: 2020 The Society of Manufacturing Engineers |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmsy.2020.05.013 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 132 |
ExternalDocumentID | 10_1016_j_jmsy_2020_05_013 S0278612520300765 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 3EH 3V. 4.4 457 4G. 5GY 5VS 7-5 71M 7WY 883 88I 8AO 8FE 8FG 8FL 8FW 8G5 8P~ 8R4 8R5 9JN 9M8 AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJCF ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKRA AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BEZIV BGLVJ BJAXD BKOJK BKOMP BLXMC BPHCQ C1A CCPQU CS3 D-I DU5 DWQXO E3Z EBS EFJIC EJD EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FRNLG FYGXN G-2 GBLVA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HVGLF HZ~ H~9 IHE J1W JJJVA K60 K6V K6~ K7- KOM L6V LY7 M0C M0F M0N M2O M2P M41 M7S MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQBIZ PQBZA PQQKQ PRG PROAC PTHSS Q2X Q38 R2- RIG ROL RPZ RWL S0X SDF SES SET SPC SPCBC SST SSZ T5K TAE TN5 U5U WH7 WUQ ZHY ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION PHGZM PHGZT SSH |
ID | FETCH-LOGICAL-c344t-4410faaeb1a7e47e630e30a452bc85aaec95208fe92b5674e59e77458f40ba6d3 |
IEDL.DBID | .~1 |
ISSN | 0278-6125 |
IngestDate | Tue Jul 01 00:55:35 EDT 2025 Thu Apr 24 23:16:04 EDT 2025 Tue Dec 03 03:45:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Condition monitoring Random forests Condition-based maintenance Decision jungles Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-4410faaeb1a7e47e630e30a452bc85aaec95208fe92b5674e59e77458f40ba6d3 |
ORCID | 0000-0001-9617-4491 0000-0002-0942-821X 0000-0001-5299-9993 0000-0001-9241-9121 |
OpenAccessLink | http://hdl.handle.net/11573/1413335 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_jmsy_2020_05_013 crossref_citationtrail_10_1016_j_jmsy_2020_05_013 elsevier_sciencedirect_doi_10_1016_j_jmsy_2020_05_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of manufacturing systems |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sokolova, Lapalme (bib0345) 2009; 45 Su, Huang (bib0260) 2018; 71 Khaleghi, Moin (bib0080) 2018 Ariyaluran Habeeb, Nasaruddin, Gani, Targio Hashem, Ahmed, Imran (bib0075) 2018 Rokach (bib0245) 2016; 27 Ho (bib0315) 1995 Langone, Alzate, De Ketelaere, Vlasselaer, Meert, Suykens (bib0115) 2015; 37 Shotton, Sharp, Kohli, Nowozin, Winn, Criminisi (bib0290) 2013 Li, Valente De Oliveira, Cerrada, Pacheco, Cabrera, Sanchez (bib0130) 2016; 50 Zhao, Huang (bib0220) 2018; 64 Amit, Geman (bib0320) 1994; 401 De Benedetti, Leonardi, Messina, Santoro, Vasilakos (bib0190) 2018; 310 Yan, Zhou (bib0265) 2018 Accorsi, Manzini, Pascarella, Patella, Sassi (bib0255) 2017; 11 Wang, Liu, Gao, Yan (bib0105) 2012; 31 Akbulut, Ertugrul, Topcu (bib0300) 2018; 163 Chakraborty, Shah, Soltani, Swigart (bib0030) 2019 Goyal, Vanraj, Dhami (bib0025) 2019 Sardá-Espinosa, Subbiah, Bartz-Beielstein (bib0120) 2017; 62 Schneider, Helwig, Schütze (bib0165) 2018; 29 Cirera, Quiles, Carino, Zurita, Ortega (bib0225) 2018 Qian, Zhang, Tian, Si, Li (bib0180) 2019; 135 Kan, Cheng, Yang (bib0230) 2016; 41 Gunarathne, Perera, Kahandawaarachchi (bib0295) 2017 Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes (bib0185) 2019; 133 Amihai, Gitzel, Kotriwala, Pareschi, Subbiah, Sosale (bib0275) 2018; 1 Leturiondo, Mishra, Galar, Salgado (bib0055) 2015; 57 Yang, Zhao, Peng, Ma (bib0110) 2018; 47 Lu, Zhou (bib0145) 2019; 52 Harrou, Sun, Khadraoui (bib0010) 2016; 40 Liu, Kothuru, Zhang (bib0140) 2020; 54 Gandhi, Schmidt, Ng (bib0170) 2018; 72 Hajdarevic, Dzananovic, Banjanovic-Mehmedovic, Mehmedovic (bib0195) 2015 Zhao, Zhang, Qin, Cai, Ma (bib0035) 2019; 126 Abraham, Mandya, Bapat, Alali, Brown, Veeraraghavan (bib0070) 2018 Cerrada, Sánchez, Li, Pacheco, Cabrera, Valente de Oliveira (bib0160) 2018; 99 Auret, Aldrich (bib0270) 2010; 49 Breiman (bib0325) 2001; 45 Criminisi, Shotton, Konukoglu (bib0330) 2011; 7 Wickramasinghe, Perera, Kahandawaarachchi (bib0305) 2017 Milo, Roan, Harris (bib0235) 2015; 36 Robles-Durazno, Moradpoor, McWhinnie, Russell (bib0280) 2018 Kim, Huang, Shi (bib0100) 2007; 26 Parikh (bib0340) 2005 Rossetti, Squartini, Collura, Zhang (bib0200) 2018; 123 Aminu, McGlinchey, Cowell (bib0020) 2019; 65 Song, Suh (bib0090) 2019; 57 Kan, Yang, Kumara (bib0095) 2018; 46 Mansouri, Nounou, Nounou, Karim (bib0215) 2016; 40 Wang, Ananya, Gao (bib0135) 2017; 44 Ragab, El-Koujok, Poulin, Amazouz, Yacout (bib0250) 2018; 95 Wang, Davidson (bib0040) 2009 Breiman (bib0335) 1996; 24 Chandola, Banerjee, Kumar (bib0005) 2009; 41 Uma Maheswari, Umamaheswari (bib0050) 2017; 85 Lejon, Kyösti, Lindström (bib0175) 2018; 72 Zaher, McArthur (bib0015) 2007 D’Amato, Patanian (bib0065) 2016 Shabgard, Badamchizadeh, Ranjbary, Amini (bib0150) 2013; 32 Li, Yang, Bennett, Mba (bib0045) 2019; 131 Ben Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (bib0155) 2015; 89 Myers, Suriadi, Radke, Foo (bib0240) 2018; 78 Jiao, Zhao, Shan (bib0085) 2018; 18 Hendrickx, Meert, Mollet, Gyselinck, Cornelis, Gryllias (bib0060) 2020; 139 Li, Yang, Yang, Bennett, Collop, Mba (bib0125) 2019; 76 Harrou, Sun, Madakyaru (bib0205) 2016; 44 Li, Hu, Zhu, Leng, Ye, Xiao (bib0210) 2018; 192 Avdagic, Hajdarevic (bib0285) 2017 Chandra, Kothari, Paul (bib0310) 2010; 43 Gandhi (10.1016/j.jmsy.2020.05.013_bib0170) 2018; 72 Amihai (10.1016/j.jmsy.2020.05.013_bib0275) 2018; 1 Sardá-Espinosa (10.1016/j.jmsy.2020.05.013_bib0120) 2017; 62 Jiao (10.1016/j.jmsy.2020.05.013_bib0085) 2018; 18 Wang (10.1016/j.jmsy.2020.05.013_bib0040) 2009 Ariyaluran Habeeb (10.1016/j.jmsy.2020.05.013_bib0075) 2018 Harrou (10.1016/j.jmsy.2020.05.013_bib0205) 2016; 44 Rokach (10.1016/j.jmsy.2020.05.013_bib0245) 2016; 27 Robles-Durazno (10.1016/j.jmsy.2020.05.013_bib0280) 2018 Myers (10.1016/j.jmsy.2020.05.013_bib0240) 2018; 78 Amit (10.1016/j.jmsy.2020.05.013_bib0320) 1994; 401 Hajdarevic (10.1016/j.jmsy.2020.05.013_bib0195) 2015 Yan (10.1016/j.jmsy.2020.05.013_bib0265) 2018 Sokolova (10.1016/j.jmsy.2020.05.013_bib0345) 2009; 45 D’Amato (10.1016/j.jmsy.2020.05.013_bib0065) 2016 Li (10.1016/j.jmsy.2020.05.013_bib0045) 2019; 131 Breiman (10.1016/j.jmsy.2020.05.013_bib0335) 1996; 24 Kan (10.1016/j.jmsy.2020.05.013_bib0095) 2018; 46 Liu (10.1016/j.jmsy.2020.05.013_bib0140) 2020; 54 Ben Ali (10.1016/j.jmsy.2020.05.013_bib0155) 2015; 89 Auret (10.1016/j.jmsy.2020.05.013_bib0270) 2010; 49 Ho (10.1016/j.jmsy.2020.05.013_bib0315) 1995 Zhao (10.1016/j.jmsy.2020.05.013_bib0035) 2019; 126 Mansouri (10.1016/j.jmsy.2020.05.013_bib0215) 2016; 40 Zhao (10.1016/j.jmsy.2020.05.013_bib0220) 2018; 64 Chakraborty (10.1016/j.jmsy.2020.05.013_bib0030) 2019 Ragab (10.1016/j.jmsy.2020.05.013_bib0250) 2018; 95 Li (10.1016/j.jmsy.2020.05.013_bib0210) 2018; 192 Abraham (10.1016/j.jmsy.2020.05.013_bib0070) 2018 Wang (10.1016/j.jmsy.2020.05.013_bib0105) 2012; 31 Harrou (10.1016/j.jmsy.2020.05.013_bib0010) 2016; 40 Lu (10.1016/j.jmsy.2020.05.013_bib0145) 2019; 52 Goyal (10.1016/j.jmsy.2020.05.013_bib0025) 2019 Song (10.1016/j.jmsy.2020.05.013_bib0090) 2019; 57 Stetco (10.1016/j.jmsy.2020.05.013_bib0185) 2019; 133 Parikh (10.1016/j.jmsy.2020.05.013_bib0340) 2005 Langone (10.1016/j.jmsy.2020.05.013_bib0115) 2015; 37 Shotton (10.1016/j.jmsy.2020.05.013_bib0290) 2013 Wickramasinghe (10.1016/j.jmsy.2020.05.013_bib0305) 2017 Milo (10.1016/j.jmsy.2020.05.013_bib0235) 2015; 36 Avdagic (10.1016/j.jmsy.2020.05.013_bib0285) 2017 Chandola (10.1016/j.jmsy.2020.05.013_bib0005) 2009; 41 Chandra (10.1016/j.jmsy.2020.05.013_bib0310) 2010; 43 Cerrada (10.1016/j.jmsy.2020.05.013_bib0160) 2018; 99 Cirera (10.1016/j.jmsy.2020.05.013_bib0225) 2018 Yang (10.1016/j.jmsy.2020.05.013_bib0110) 2018; 47 Lejon (10.1016/j.jmsy.2020.05.013_bib0175) 2018; 72 Uma Maheswari (10.1016/j.jmsy.2020.05.013_bib0050) 2017; 85 Khaleghi (10.1016/j.jmsy.2020.05.013_bib0080) 2018 Kim (10.1016/j.jmsy.2020.05.013_bib0100) 2007; 26 Qian (10.1016/j.jmsy.2020.05.013_bib0180) 2019; 135 Leturiondo (10.1016/j.jmsy.2020.05.013_bib0055) 2015; 57 De Benedetti (10.1016/j.jmsy.2020.05.013_bib0190) 2018; 310 Shabgard (10.1016/j.jmsy.2020.05.013_bib0150) 2013; 32 Aminu (10.1016/j.jmsy.2020.05.013_bib0020) 2019; 65 Rossetti (10.1016/j.jmsy.2020.05.013_bib0200) 2018; 123 Li (10.1016/j.jmsy.2020.05.013_bib0125) 2019; 76 Gunarathne (10.1016/j.jmsy.2020.05.013_bib0295) 2017 Hendrickx (10.1016/j.jmsy.2020.05.013_bib0060) 2020; 139 Li (10.1016/j.jmsy.2020.05.013_bib0130) 2016; 50 Accorsi (10.1016/j.jmsy.2020.05.013_bib0255) 2017; 11 Akbulut (10.1016/j.jmsy.2020.05.013_bib0300) 2018; 163 Wang (10.1016/j.jmsy.2020.05.013_bib0135) 2017; 44 Zaher (10.1016/j.jmsy.2020.05.013_bib0015) 2007 Kan (10.1016/j.jmsy.2020.05.013_bib0230) 2016; 41 Criminisi (10.1016/j.jmsy.2020.05.013_bib0330) 2011; 7 Su (10.1016/j.jmsy.2020.05.013_bib0260) 2018; 71 Schneider (10.1016/j.jmsy.2020.05.013_bib0165) 2018; 29 Breiman (10.1016/j.jmsy.2020.05.013_bib0325) 2001; 45 |
References_xml | – start-page: 22 year: 2007 end-page: 27 ident: bib0015 article-title: A multi-agent fault detection system for wind turbine defect recognition and diagnosis publication-title: Proceedings of the 2007 IEEE Lausanne POWERTECH – start-page: 523 year: 2019 end-page: 528 ident: bib0030 article-title: Root cause detection among anomalous time series using temporal state alignment publication-title: Proceedings of the 18th IEEE international conference on machine learning and applications – volume: 57 start-page: 395 year: 2015 end-page: 400 ident: bib0055 article-title: Synthetic data generation in hybrid modelling of rolling element bearings publication-title: Insight Non-Destructive Test Cond Monit – volume: 11 start-page: 1153 year: 2017 end-page: 1161 ident: bib0255 article-title: Data mining and machine learning for condition-based maintenance publication-title: Procedia Manuf – volume: 192 year: 2018 ident: bib0210 article-title: The research of anomaly detection method for transformer oil temperature based on hybrid model of non-supervised learning and decision forests publication-title: IOP Conf Ser Earth Environ Sci – start-page: 129 year: 2016 end-page: 136 ident: bib0065 article-title: Method and system for predicting hydraulic valve degradation on a gas turbine publication-title: Proceedings of the annual conference of the prognostics and health management society 2016 – volume: 47 start-page: 12 year: 2018 end-page: 34 ident: bib0110 article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits publication-title: Int J Ind Manuf Syst Eng – volume: 85 start-page: 296 year: 2017 end-page: 311 ident: bib0050 article-title: Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – a contemporary survey publication-title: Mech Syst Signal Process – start-page: 1 year: 2018 end-page: 8 ident: bib0280 article-title: A supervised energy monitoring-based machine learning approach for anomaly detection in a clean water supply system publication-title: Proceedings of the 2018 international conference on cyber security and protection of digital services (Cyber Security) – volume: 65 start-page: 33 year: 2019 end-page: 44 ident: bib0020 article-title: Acoustic signal processing with robust machine learning algorithm for improved monitoring of particulate solid materials in a gas flowline publication-title: Flow Meas Instrum – volume: 44 start-page: 310 year: 2017 end-page: 316 ident: bib0135 article-title: Virtualization and deep recognition for system fault classification publication-title: Int J Ind Manuf Syst Eng – volume: 95 start-page: 368 year: 2018 end-page: 383 ident: bib0250 article-title: Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data publication-title: Expert Syst Appl – volume: 44 start-page: 73 year: 2016 end-page: 87 ident: bib0205 article-title: Kullback-Leibler distance-based enhanced detection of incipient anomalies publication-title: J Loss Prev Process Ind – volume: 40 start-page: 365 year: 2016 end-page: 377 ident: bib0010 article-title: Amalgamation of anomaly-detection indices for enhanced process monitoring publication-title: J Loss Prev Process Ind – volume: 139 year: 2020 ident: bib0060 article-title: A general anomaly detection framework for fleet-based condition monitoring of machines publication-title: Mech Syst Signal Process – volume: 99 start-page: 169 year: 2018 end-page: 196 ident: bib0160 article-title: A review on data-driven fault severity assessment in rolling bearings publication-title: Mech Syst Signal Process – volume: 32 start-page: 32 year: 2013 ident: bib0150 article-title: Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes publication-title: Int J Ind Manuf Syst Eng – start-page: 1 year: 2005 end-page: 625 ident: bib0340 article-title: Handbook of pharmaceutical granulation technology. Handb. Pharm. Granulation technol. – volume: 71 start-page: 93 year: 2018 end-page: 101 ident: bib0260 article-title: Real-time big data analytics for hard disk drive predictive maintenance publication-title: Comput Electr Eng – volume: 18 start-page: 1013 year: 2018 end-page: 1036 ident: bib0085 article-title: Pre-seismic anomalies from optical satellite observations: a review publication-title: Nat Hazards Earth Syst Sci Discuss – volume: 64 start-page: 1662 year: 2018 end-page: 1681 ident: bib0220 article-title: A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis publication-title: AIChE J – start-page: 291 year: 2017 end-page: 296 ident: bib0295 article-title: Performance evaluation on machine learning classification techniques for disease (CKD) – volume: 57 start-page: 47 year: 2019 end-page: 54 ident: bib0090 article-title: Narrative texts-based anomaly detection using accident report documents: the case of chemical process safety publication-title: J Loss Prev Process Ind – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0335 article-title: Bagging predictors publication-title: Mach Learn – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: bib0345 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf Process Manag – volume: 54 start-page: 285 year: 2020 end-page: 293 ident: bib0140 article-title: Calibration-based tool condition monitoring for repetitive machining operations publication-title: Int J Ind Manuf Syst Eng – volume: 46 start-page: 282 year: 2018 end-page: 293 ident: bib0095 article-title: Parallel computing and network analytics for fast Industrial Internet-of-Things (IIoT) machine information processing and condition monitoring publication-title: Int J Ind Manuf Syst Eng – volume: 37 start-page: 268 year: 2015 end-page: 278 ident: bib0115 article-title: LS-SVM based spectral clustering and regression for predicting maintenance of industrial machines publication-title: Eng Appl Artif Intell – volume: 76 start-page: 87 year: 2019 end-page: 97 ident: bib0125 article-title: Canonical variate residuals-based contribution map for slowly evolving faults publication-title: J Process Control – start-page: 73 year: 2018 end-page: 81 ident: bib0080 article-title: Improved anomaly detection in surveillance videos based on a deep learning method publication-title: Proceedings of the 2018 8th conference of AI & robotics and 10th RoboCup Iranopen international Symposium (IRANOPEN) IEEE – volume: 31 start-page: 380 year: 2012 end-page: 387 ident: bib0105 article-title: Current envelope analysis for defect identification and diagnosis in induction motors publication-title: Int J Ind Manuf Syst Eng – volume: 72 start-page: 1079 year: 2018 end-page: 1083 ident: bib0175 article-title: Machine learning for detection of anomalies in press-hardening: selection of efficient methods publication-title: Procedia Cirp – start-page: 1034 year: 2009 end-page: 1039 ident: bib0040 article-title: Discovering contexts and contextual outliers using random walks in graphs publication-title: Proc eedings of IEEE International Conference on Data Mining, ICDM – start-page: 828 year: 2018 end-page: 831 ident: bib0265 article-title: Predictive modeling of aircraft systems failure using term frequency-inverse document frequency and random forest publication-title: Proceedings of the IEEE international conference on industrial engineering and engineering management – start-page: 234 year: 2013 end-page: 242 ident: bib0290 article-title: Decision jungles: compact and richmodels for classification publication-title: Advances in neural information processing systems 26 – start-page: 2099 year: 2018 end-page: 2104 ident: bib0225 article-title: Data-driven operation performance evaluation of multi-chiller system using self-organizing maps publication-title: Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT) – year: 2018 ident: bib0070 article-title: A comparison of machinelearningapproaches to detectbotnettraffic publication-title: Proceedings of the international joint conference on neural networks – start-page: 1118 year: 2015 end-page: 1123 ident: bib0195 article-title: Anomaly detection in thermal power plant using probabilistic neural network publication-title: Proceedings of the 2015 38th international convention on information and communication technology – volume: 36 start-page: 159 year: 2015 end-page: 167 ident: bib0235 article-title: A new statistical approach to automated quality control in manufacturing processes publication-title: Int J Ind Manuf Syst Eng – volume: 131 start-page: 348 year: 2019 end-page: 363 ident: bib0045 article-title: Condition monitoring of rotating machines under time-varying conditions based on adaptive canonical variate analysis publication-title: Mech Syst Signal Process – volume: 43 start-page: 2725 year: 2010 end-page: 2731 ident: bib0310 article-title: A new node splitting measure for decision tree construction publication-title: Pattern Recognit – year: 2017 ident: bib0285 article-title: Survey on machine learning algorithms as cloud service for CIDPS publication-title: Proceedings of the 2017 25th telecommunication forum – volume: 133 start-page: 620 year: 2019 end-page: 635 ident: bib0185 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renew Energy – volume: 310 start-page: 59 year: 2018 end-page: 68 ident: bib0190 article-title: Anomaly detection and predictive maintenance for photovoltaic systems publication-title: Neurocomputing – volume: 78 start-page: 103 year: 2018 end-page: 125 ident: bib0240 article-title: Anomaly detection for industrial control systems using process mining publication-title: Comput Secur – volume: 123 start-page: 39 year: 2018 end-page: 47 ident: bib0200 article-title: Power plant condition monitoring by means of coal powder granulometry classification publication-title: Meas J Int Meas Confed – volume: 40 start-page: 334 year: 2016 end-page: 347 ident: bib0215 article-title: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes publication-title: J Loss Prev Process Ind – volume: 72 start-page: 261 year: 2018 end-page: 265 ident: bib0170 article-title: Towards data mining based decision support in manufacturing maintenance publication-title: Procedia Cirp – volume: 89 start-page: 16 year: 2015 end-page: 27 ident: bib0155 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl Acoust – volume: 401 start-page: 49 year: 1994 ident: bib0320 article-title: Randomized inquiries about shape; an application to handwritten digit recognition publication-title: Tech Rep – volume: 62 start-page: 26 year: 2017 end-page: 37 ident: bib0120 article-title: Conditional inference trees for knowledge extraction from motor health condition data publication-title: Eng Appl Artif Intell – volume: 7 start-page: 81 year: 2011 end-page: 227 ident: bib0330 article-title: decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning publication-title: Found Trends Comput Graph Vis – year: 2019 ident: bib0025 article-title: Non-contact sensor placement strategy for condition monitoring of rotating machine-elements publication-title: Eng Sci Technol Int J – start-page: 300 year: 2017 end-page: 303 ident: bib0305 article-title: Dietary prediction for patients with chronickidneydisease (CKD) by considering blood potassium level using machine learning algorithms publication-title: Proceedings of the 2017 IEEE life sciences conference (LSC) – volume: 41 year: 2009 ident: bib0005 article-title: Anomaly detection: a survey publication-title: ACM Comput Surv – start-page: 1 year: 2018 end-page: 19 ident: bib0075 article-title: Real-time big data processing for anomaly detection: a Survey publication-title: Int J Inf Manage – volume: 26 start-page: 53 year: 2007 end-page: 61 ident: bib0100 article-title: Latent variable based key process variable identification and process monitoring for forging publication-title: Int J Ind Manuf Syst Eng – volume: 52 start-page: 76 year: 2019 end-page: 85 ident: bib0145 article-title: Quality and reliability oriented maintenance for multistage manufacturing systems subject to condition monitoring publication-title: Int J Ind Manuf Syst Eng – volume: 135 start-page: 390 year: 2019 end-page: 398 ident: bib0180 article-title: A novel wind turbine condition monitoring method based on cloud computing publication-title: Renew Energy – volume: 163 start-page: 87 year: 2018 end-page: 100 ident: bib0300 article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques publication-title: Comput Methods Programs Biomed – start-page: 278 year: 1995 end-page: 282 ident: bib0315 article-title: Random decisionforests publication-title: Proceedings of 3rd international conference on document analysis and recognition – volume: 50 start-page: 287 year: 2016 end-page: 301 ident: bib0130 article-title: Observer-biased bearing condition monitoring: from fault detection to multi-fault classification publication-title: Eng Appl Artif Intell – volume: 1 start-page: 178 year: 2018 end-page: 185 ident: bib0275 article-title: An industrial case study using vibration data and machine learning to predict asset health publication-title: Proceeding of the 20th international conference on business informatics – volume: 126 start-page: 158 year: 2019 end-page: 170 ident: bib0035 article-title: Parallel mining of contextual outlier using sparse subspace publication-title: Expert Syst Appl – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0325 article-title: Random forest publication-title: Mach Learn – volume: 41 start-page: 178 year: 2016 end-page: 187 ident: bib0230 article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes publication-title: Int J Ind Manuf Syst Eng – volume: 29 year: 2018 ident: bib0165 article-title: Industrial condition monitoring with smart sensors using automated feature extraction and selection publication-title: Meas Sci Technol – volume: 27 start-page: 111 year: 2016 end-page: 125 ident: bib0245 article-title: Decision forest: twenty years of research publication-title: Inf Fusion – volume: 49 start-page: 9184 year: 2010 end-page: 9194 ident: bib0270 article-title: Unsupervised process fault detection with random forests publication-title: Ind Eng Chem Res – volume: 32 start-page: 32 year: 2013 ident: 10.1016/j.jmsy.2020.05.013_bib0150 article-title: Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2012.09.002 – year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0070 article-title: A comparison of machinelearningapproaches to detectbotnettraffic – volume: 37 start-page: 268 year: 2015 ident: 10.1016/j.jmsy.2020.05.013_bib0115 article-title: LS-SVM based spectral clustering and regression for predicting maintenance of industrial machines publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.09.008 – volume: 27 start-page: 111 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0245 article-title: Decision forest: twenty years of research publication-title: Inf Fusion doi: 10.1016/j.inffus.2015.06.005 – volume: 47 start-page: 12 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0110 article-title: Opportunistic maintenance of production systems subject to random wait time and multiple control limits publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2018.02.003 – volume: 133 start-page: 620 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0185 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.047 – start-page: 828 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0265 article-title: Predictive modeling of aircraft systems failure using term frequency-inverse document frequency and random forest publication-title: Proceedings of the IEEE international conference on industrial engineering and engineering management – start-page: 2099 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0225 article-title: Data-driven operation performance evaluation of multi-chiller system using self-organizing maps publication-title: Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT) doi: 10.1109/ICIT.2018.8352513 – volume: 41 start-page: 178 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0230 article-title: Heterogeneous recurrence monitoring of dynamic transients in ultraprecision machining processes publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2016.08.007 – start-page: 523 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0030 article-title: Root cause detection among anomalous time series using temporal state alignment publication-title: Proceedings of the 18th IEEE international conference on machine learning and applications – volume: 85 start-page: 296 year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0050 article-title: Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – a contemporary survey publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.07.046 – volume: 54 start-page: 285 year: 2020 ident: 10.1016/j.jmsy.2020.05.013_bib0140 article-title: Calibration-based tool condition monitoring for repetitive machining operations publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2020.01.005 – volume: 95 start-page: 368 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0250 article-title: Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.11.045 – start-page: 1 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0075 article-title: Real-time big data processing for anomaly detection: a Survey publication-title: Int J Inf Manage – volume: 31 start-page: 380 year: 2012 ident: 10.1016/j.jmsy.2020.05.013_bib0105 article-title: Current envelope analysis for defect identification and diagnosis in induction motors publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2012.06.005 – volume: 64 start-page: 1662 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0220 article-title: A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis publication-title: AIChE J doi: 10.1002/aic.16048 – volume: 52 start-page: 76 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0145 article-title: Quality and reliability oriented maintenance for multistage manufacturing systems subject to condition monitoring publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2019.04.003 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jmsy.2020.05.013_bib0325 article-title: Random forest publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 401 start-page: 49 year: 1994 ident: 10.1016/j.jmsy.2020.05.013_bib0320 article-title: Randomized inquiries about shape; an application to handwritten digit recognition publication-title: Tech Rep – volume: 36 start-page: 159 year: 2015 ident: 10.1016/j.jmsy.2020.05.013_bib0235 article-title: A new statistical approach to automated quality control in manufacturing processes publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2015.06.001 – start-page: 1 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0280 article-title: A supervised energy monitoring-based machine learning approach for anomaly detection in a clean water supply system publication-title: Proceedings of the 2018 international conference on cyber security and protection of digital services (Cyber Security) – volume: 57 start-page: 395 year: 2015 ident: 10.1016/j.jmsy.2020.05.013_bib0055 article-title: Synthetic data generation in hybrid modelling of rolling element bearings publication-title: Insight Non-Destructive Test Cond Monit doi: 10.1784/insi.2015.57.7.395 – start-page: 22 year: 2007 ident: 10.1016/j.jmsy.2020.05.013_bib0015 article-title: A multi-agent fault detection system for wind turbine defect recognition and diagnosis publication-title: Proceedings of the 2007 IEEE Lausanne POWERTECH doi: 10.1109/PCT.2007.4538286 – volume: 135 start-page: 390 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0180 article-title: A novel wind turbine condition monitoring method based on cloud computing publication-title: Renew Energy doi: 10.1016/j.renene.2018.12.045 – volume: 43 start-page: 2725 year: 2010 ident: 10.1016/j.jmsy.2020.05.013_bib0310 article-title: A new node splitting measure for decision tree construction publication-title: Pattern Recognit doi: 10.1016/j.patcog.2010.02.025 – volume: 45 start-page: 427 year: 2009 ident: 10.1016/j.jmsy.2020.05.013_bib0345 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf Process Manag doi: 10.1016/j.ipm.2009.03.002 – volume: 46 start-page: 282 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0095 article-title: Parallel computing and network analytics for fast Industrial Internet-of-Things (IIoT) machine information processing and condition monitoring publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2018.01.010 – volume: 99 start-page: 169 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0160 article-title: A review on data-driven fault severity assessment in rolling bearings publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.06.012 – start-page: 291 year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0295 – year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0025 article-title: Non-contact sensor placement strategy for condition monitoring of rotating machine-elements publication-title: Eng Sci Technol Int J – start-page: 129 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0065 article-title: Method and system for predicting hydraulic valve degradation on a gas turbine publication-title: Proceedings of the annual conference of the prognostics and health management society 2016 – start-page: 1034 year: 2009 ident: 10.1016/j.jmsy.2020.05.013_bib0040 article-title: Discovering contexts and contextual outliers using random walks in graphs publication-title: Proc eedings of IEEE International Conference on Data Mining, ICDM – start-page: 73 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0080 article-title: Improved anomaly detection in surveillance videos based on a deep learning method publication-title: Proceedings of the 2018 8th conference of AI & robotics and 10th RoboCup Iranopen international Symposium (IRANOPEN) IEEE doi: 10.1109/RIOS.2018.8406634 – start-page: 1118 year: 2015 ident: 10.1016/j.jmsy.2020.05.013_bib0195 article-title: Anomaly detection in thermal power plant using probabilistic neural network publication-title: Proceedings of the 2015 38th international convention on information and communication technology – start-page: 1 year: 2005 ident: 10.1016/j.jmsy.2020.05.013_bib0340 – volume: 11 start-page: 1153 year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0255 article-title: Data mining and machine learning for condition-based maintenance publication-title: Procedia Manuf doi: 10.1016/j.promfg.2017.07.239 – volume: 57 start-page: 47 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0090 article-title: Narrative texts-based anomaly detection using accident report documents: the case of chemical process safety publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2018.08.010 – volume: 44 start-page: 310 year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0135 article-title: Virtualization and deep recognition for system fault classification publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2017.04.012 – volume: 40 start-page: 365 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0010 article-title: Amalgamation of anomaly-detection indices for enhanced process monitoring publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2016.01.024 – volume: 163 start-page: 87 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0300 article-title: Fetal health status prediction based on maternal clinical history using machine learning techniques publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.06.010 – start-page: 300 year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0305 article-title: Dietary prediction for patients with chronickidneydisease (CKD) by considering blood potassium level using machine learning algorithms – year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0285 article-title: Survey on machine learning algorithms as cloud service for CIDPS – volume: 49 start-page: 9184 year: 2010 ident: 10.1016/j.jmsy.2020.05.013_bib0270 article-title: Unsupervised process fault detection with random forests publication-title: Ind Eng Chem Res doi: 10.1021/ie901975c – volume: 131 start-page: 348 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0045 article-title: Condition monitoring of rotating machines under time-varying conditions based on adaptive canonical variate analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.05.048 – volume: 192 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0210 article-title: The research of anomaly detection method for transformer oil temperature based on hybrid model of non-supervised learning and decision forests publication-title: IOP Conf Ser Earth Environ Sci – start-page: 278 year: 1995 ident: 10.1016/j.jmsy.2020.05.013_bib0315 article-title: Random decisionforests publication-title: Proceedings of 3rd international conference on document analysis and recognition – volume: 29 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0165 article-title: Industrial condition monitoring with smart sensors using automated feature extraction and selection publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aad1d4 – volume: 65 start-page: 33 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0020 article-title: Acoustic signal processing with robust machine learning algorithm for improved monitoring of particulate solid materials in a gas flowline publication-title: Flow Meas Instrum doi: 10.1016/j.flowmeasinst.2018.11.015 – volume: 89 start-page: 16 year: 2015 ident: 10.1016/j.jmsy.2020.05.013_bib0155 article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals publication-title: Appl Acoust doi: 10.1016/j.apacoust.2014.08.016 – volume: 71 start-page: 93 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0260 article-title: Real-time big data analytics for hard disk drive predictive maintenance publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2018.07.025 – volume: 44 start-page: 73 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0205 article-title: Kullback-Leibler distance-based enhanced detection of incipient anomalies publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2016.08.020 – volume: 72 start-page: 1079 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0175 article-title: Machine learning for detection of anomalies in press-hardening: selection of efficient methods publication-title: Procedia Cirp doi: 10.1016/j.procir.2018.03.221 – volume: 40 start-page: 334 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0215 article-title: Kernel PCA-based GLRT for nonlinear fault detection of chemical processes publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2016.01.011 – volume: 1 start-page: 178 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0275 article-title: An industrial case study using vibration data and machine learning to predict asset health publication-title: Proceeding of the 20th international conference on business informatics – volume: 41 year: 2009 ident: 10.1016/j.jmsy.2020.05.013_bib0005 article-title: Anomaly detection: a survey publication-title: ACM Comput Surv doi: 10.1145/1541880.1541882 – volume: 7 start-page: 81 year: 2011 ident: 10.1016/j.jmsy.2020.05.013_bib0330 article-title: decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000035 – volume: 78 start-page: 103 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0240 article-title: Anomaly detection for industrial control systems using process mining publication-title: Comput Secur doi: 10.1016/j.cose.2018.06.002 – volume: 50 start-page: 287 year: 2016 ident: 10.1016/j.jmsy.2020.05.013_bib0130 article-title: Observer-biased bearing condition monitoring: from fault detection to multi-fault classification publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.01.038 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.jmsy.2020.05.013_bib0335 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 – volume: 126 start-page: 158 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0035 article-title: Parallel mining of contextual outlier using sparse subspace publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.02.020 – volume: 76 start-page: 87 year: 2019 ident: 10.1016/j.jmsy.2020.05.013_bib0125 article-title: Canonical variate residuals-based contribution map for slowly evolving faults publication-title: J Process Control doi: 10.1016/j.jprocont.2019.02.006 – volume: 310 start-page: 59 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0190 article-title: Anomaly detection and predictive maintenance for photovoltaic systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.017 – volume: 72 start-page: 261 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0170 article-title: Towards data mining based decision support in manufacturing maintenance publication-title: Procedia Cirp doi: 10.1016/j.procir.2018.03.076 – volume: 123 start-page: 39 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0200 article-title: Power plant condition monitoring by means of coal powder granulometry classification publication-title: Meas J Int Meas Confed doi: 10.1016/j.measurement.2018.03.028 – volume: 139 year: 2020 ident: 10.1016/j.jmsy.2020.05.013_bib0060 article-title: A general anomaly detection framework for fleet-based condition monitoring of machines publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106585 – volume: 26 start-page: 53 year: 2007 ident: 10.1016/j.jmsy.2020.05.013_bib0100 article-title: Latent variable based key process variable identification and process monitoring for forging publication-title: Int J Ind Manuf Syst Eng doi: 10.1016/j.jmsy.2007.12.001 – volume: 18 start-page: 1013 year: 2018 ident: 10.1016/j.jmsy.2020.05.013_bib0085 article-title: Pre-seismic anomalies from optical satellite observations: a review publication-title: Nat Hazards Earth Syst Sci Discuss doi: 10.5194/nhess-18-1013-2018 – volume: 62 start-page: 26 year: 2017 ident: 10.1016/j.jmsy.2020.05.013_bib0120 article-title: Conditional inference trees for knowledge extraction from motor health condition data publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.03.008 – start-page: 234 year: 2013 ident: 10.1016/j.jmsy.2020.05.013_bib0290 article-title: Decision jungles: compact and richmodels for classification |
SSID | ssj0012402 |
Score | 2.4971972 |
Snippet | •Define a methodology for anomaly detection with real time data from multiphase industrial process.•RFA and DJA have comparable results for the identification... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117 |
SubjectTerms | Condition monitoring Condition-based maintenance Decision jungles forests Machine learning Random |
Title | Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities |
URI | https://dx.doi.org/10.1016/j.jmsy.2020.05.013 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb8IwDI4Qu2yHaU-NPVAOu00dpU1IOSI0xDbBZUPiVqWts4GgoNFN4rLfPjttEZMmDjs2iaXKsezPyWeHsVsf057ASOHgvOcgIgZHCx052ggKEOgQfap3Hgxb_ZF4GstxhXXLWhiiVRa-P_fp1lsXI41Cm43lZNJ4oTszis8e2ilm41RoLoQiK7__3tA8mnR7YM9ZMFui1UXhTM7xms5Xa8wRPTfv3un_HZy2Ak7viB0WSJF38p85ZhVIT9jBVv_AU5YNLBUSePH2wxtHCMp1upjr2ZonkFmeVYojCV_mFQF8-Y5xi8cEmoklZDeGZws-sacLwFfaQLa2InNNzSSoIwdwqn_4st1Xz9io9_Da7TvFMwpO7AuROQh4XKM1OmWtQCho-S74rhbSi-JA4kTcRh0GBtpeJFtKgGwDgkIZGOFGupX456yaLlK4YNxoBJDgKdXUvogktGWQaGMiFcWxVApqrFnqL4yLHuP01MUsLMlk05B0HpLOQ1eGqPMau9vILPMOGztXy3Jbwl92EmII2CF3-U-5K7ZPXzlB95pVs49PuEEYkkV1a2d1ttd5fO4PfwAEyt9z |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgHIAD4lN8kwM3VK20SdsdEQJtwHZhk3aL0s6BTayboCDt32O32TQkxIFrUkuVE9nPyfMLwGVIZU9ilfRoPvAIEaNnpEk9YyUnCAqIIfc7tztRsycf-qq_ArfzXhimVbrYX8X0Mlq7kbrzZn06HNaf-c6M83NA-5SqcbUKa6xOpWqwdtN6bHYWlwl8gVAetVDBxAaud6aieY3GHzMqEwO_EvAMf89PSznnfhu2HFgUN9X_7MAK5ruwuSQhuAdFu2RDonDPP7wIQqHC5JOxeZuJARYl1SqnkYGYVk0BYvpKqUtkjJuZKFSujSgmYlgeMKD4MBaLWWkyNqwnwaIcKLgF4qsUYN2H3v1d97bpuZcUvCyUsvAI8_jWGIrLJkYZYxT6GPpGqiDNEkUTWYPcmFhsBKmKYomqgYQLVWKln5poEB5ALZ_keAjCGsKQGMTxtQllqrChkoGxNo3TLFNxjEdwPfefzpzMOL928abnfLKRZp9r9rn2lSafH8HVwmZaiWz8-bWaL4v-sVU0ZYE_7I7_aXcB681u-0k_tTqPJ7DBMxVf9xRqxfsnnhEqKdJzt-u-Aa-I4iQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+anomaly+detection+and+process+phase+classification+to+improve+safety+and+maintenance+activities&rft.jtitle=Journal+of+manufacturing+systems&rft.au=Quatrini%2C+Elena&rft.au=Costantino%2C+Francesco&rft.au=Di+Gravio%2C+Giulio&rft.au=Patriarca%2C+Riccardo&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0278-6125&rft.volume=56&rft.spage=117&rft.epage=132&rft_id=info:doi/10.1016%2Fj.jmsy.2020.05.013&rft.externalDocID=S0278612520300765 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-6125&client=summon |