ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells
Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts witho...
Saved in:
Published in | Progress in natural science Vol. 30; no. 6; pp. 855 - 860 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts without Fenton catalytic activity should be a worthier ORR catalyst being explored. Although the high ORR activity of Co–N–C catalyst has been demonstrated in aqueous half-cell tests, their performance under PEMFC working condition is still far away from that of state-of-the-art Fe–N–C catalysts. In this study, a high-performance Co–N–C catalyst was synthesized by one-step pyrolyzing Co-doped ZIF-8 (zeolitic imidazolate framework-8) particles in-situ grown on the high-surface-area KJ600 carbon black with high electronic conductivity. The resulting Co–N–C catalyst exhibited high intrinsic ORR activity, fast mass transfer rate and high electronic conductivity, and thus yielded a remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC, which is comparable to state-of-the-art Fe–N–C catalyst. This strategy is helpful to synthesize highly active M-N-C ORR catalysts with improved mass transfer and electric conductivity.
[Display omitted]
•Porous carbon supporting to prevent the aggregation of ZIF8 particles.•A high-performance ZIF-based Co–N–C catalyst is fabricated.•A remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC. |
---|---|
AbstractList | Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts without Fenton catalytic activity should be a worthier ORR catalyst being explored. Although the high ORR activity of Co–N–C catalyst has been demonstrated in aqueous half-cell tests, their performance under PEMFC working condition is still far away from that of state-of-the-art Fe–N–C catalysts. In this study, a high-performance Co–N–C catalyst was synthesized by one-step pyrolyzing Co-doped ZIF-8 (zeolitic imidazolate framework-8) particles in-situ grown on the high-surface-area KJ600 carbon black with high electronic conductivity. The resulting Co–N–C catalyst exhibited high intrinsic ORR activity, fast mass transfer rate and high electronic conductivity, and thus yielded a remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC, which is comparable to state-of-the-art Fe–N–C catalyst. This strategy is helpful to synthesize highly active M-N-C ORR catalysts with improved mass transfer and electric conductivity.
[Display omitted]
•Porous carbon supporting to prevent the aggregation of ZIF8 particles.•A high-performance ZIF-based Co–N–C catalyst is fabricated.•A remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC. |
Author | Wang, Yucheng Zaghib, Karim Zhou, Zhiyou Zhang, Pengyang Wang, Yuesheng Wang, Ruixiang |
Author_xml | – sequence: 1 givenname: Ruixiang surname: Wang fullname: Wang, Ruixiang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 2 givenname: Pengyang surname: Zhang fullname: Zhang, Pengyang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 3 givenname: Yucheng surname: Wang fullname: Wang, Yucheng email: wangyc@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China – sequence: 4 givenname: Yuesheng surname: Wang fullname: Wang, Yuesheng organization: Center of Excellence in Transportation Electrificationand Energy Storage Hydro Québec, Québec, J3 × 1S1, Canada – sequence: 5 givenname: Karim surname: Zaghib fullname: Zaghib, Karim organization: Center of Excellence in Transportation Electrificationand Energy Storage Hydro Québec, Québec, J3 × 1S1, Canada – sequence: 6 givenname: Zhiyou surname: Zhou fullname: Zhou, Zhiyou email: zhouzy@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China |
BookMark | eNp9kLFOwzAURT0UibbwA0z-gQTbSZNGYkERhUoVlSpYWIxjvzSuEjuyTaEb_8Af8iWkgomhw9W7y3nSPRM0MtYAQleUxJTQ7HoX98bLmBFGYlLEhJIRGlNCWERITs_RxPsdOdYsH6PXl-UiUuD0HhQu7ffn1-OQEq83GyxFEO3BB_yuQ4MbvW1wD662rhNGAtYG984GazB8yEaYLeAOusoJA7h-gxZLaFt_gc5q0Xq4_LtT9Ly4eyofotX6flneriKZpGmI2JyCLJKaCjpnkjKl0pmskkwBy1UqkiSpCKNDK-qMiiwjlFU5kzBLaVGkAzlF89-_0lnvHdRc6iCCtiY4oVtOCT_a4Tt-tMOPdjgp-GBnQNk_tHe6E-5wGrr5hWAYtdfguJcaBi9KO5CBK6tP4T8ER4SC |
CitedBy_id | crossref_primary_10_1039_D1RA08817C crossref_primary_10_1016_j_jallcom_2023_169739 crossref_primary_10_1021_acsaem_2c03384 crossref_primary_10_3390_nano12173057 crossref_primary_10_1002_slct_202301789 crossref_primary_10_1016_j_jallcom_2022_164504 crossref_primary_10_1016_j_pecs_2023_101101 crossref_primary_10_1016_j_ijhydene_2021_10_180 crossref_primary_10_1016_j_pnsc_2024_04_014 crossref_primary_10_1016_j_cej_2024_150673 crossref_primary_10_1016_j_jece_2024_111961 crossref_primary_10_1039_D3CY01746J crossref_primary_10_15826_chimtech_2025_12_1_10 crossref_primary_10_1039_D4CY00252K crossref_primary_10_1002_anie_202116727 crossref_primary_10_1016_j_jelechem_2024_118189 crossref_primary_10_1039_D2CY00348A crossref_primary_10_1007_s10853_023_08552_x crossref_primary_10_1016_j_ijhydene_2022_12_099 crossref_primary_10_1088_1361_6528_ac4fe3 crossref_primary_10_1039_D3QM01172K crossref_primary_10_1149_1945_7111_ac22cc crossref_primary_10_1016_j_jallcom_2024_175227 crossref_primary_10_1016_j_jpowsour_2022_232135 crossref_primary_10_1002_ente_202200992 crossref_primary_10_1021_acsaem_4c03250 crossref_primary_10_1039_D3NR06647A crossref_primary_10_1021_acs_jpclett_1c01905 crossref_primary_10_1016_j_psep_2023_10_009 crossref_primary_10_1039_D3CC05597C crossref_primary_10_1002_apj_2950 crossref_primary_10_1021_acsami_2c04786 crossref_primary_10_1016_j_cclet_2021_06_054 crossref_primary_10_3390_nano12193331 crossref_primary_10_1021_acscatal_2c03216 crossref_primary_10_1016_j_jcis_2024_10_085 crossref_primary_10_1002_ange_202116727 crossref_primary_10_1016_j_fuel_2024_132508 crossref_primary_10_3390_molecules28145544 crossref_primary_10_1063_5_0045801 crossref_primary_10_1007_s42823_024_00822_1 crossref_primary_10_1002_elan_202100601 crossref_primary_10_1002_celc_202300110 crossref_primary_10_1016_j_jallcom_2023_173293 crossref_primary_10_1021_prechem_4c00073 crossref_primary_10_1007_s11426_023_1863_8 |
Cites_doi | 10.1021/ja410076f 10.1038/s41929-019-0237-3 10.1002/anie.201709597 10.1016/j.carbon.2011.05.036 10.1021/ic9022486 10.1039/C4EE02281E 10.1016/j.nanoen.2016.02.038 10.1021/acsenergylett.6b00686 10.1126/science.1170051 10.1016/S0008-6223(03)00029-0 10.1021/jacs.5b11015 10.3866/PKU.WHXB201806131 10.1002/celc.201700939 10.1021/acs.chemrev.5b00462 10.1126/science.aad0832 10.1002/celc.201600163 10.1016/j.jpowsour.2012.03.098 10.1016/j.apsusc.2019.143818 10.1021/acsami.7b12666 10.1021/acsenergylett.7b00071 10.1016/j.electacta.2012.09.057 10.1126/science.aan2255 10.1039/C8EE02694G 10.1021/acs.jpcc.9b10173 10.1021/acsenergylett.6b00644 10.1038/ncomms1427 10.1016/j.jcis.2019.12.046 10.1021/jp2042526 10.1002/adma.201502315 10.1021/acscatal.8b02934 10.1016/j.ijhydene.2009.05.032 10.1021/jp030349j 10.1016/j.jpowsour.2015.03.047 10.1039/C9SC01154D 10.1002/anie.201503159 10.1016/j.apsusc.2019.07.157 10.1126/science.1200832 10.1021/jacs.7b10385 10.1016/j.jpowsour.2009.10.089 10.1002/adfm.201200264 |
ContentType | Journal Article |
Copyright | 2020 Chinese Materials Research Society |
Copyright_xml | – notice: 2020 Chinese Materials Research Society |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.pnsc.2020.09.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EndPage | 860 |
ExternalDocumentID | 10_1016_j_pnsc_2020_09_010 S1002007120305086 |
GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 123 1B1 1~5 29P 2B. 2C. 2DF 3YN 4.4 457 4G. 5VR 5VS 5XA 5XB 5XL 6I. 7-5 92E 92I 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABJNI ABMAC ACGFS ACNNM ACRLP ADEZE ADMUD AEFWE AEXQZ AEZYN AFTJW AFUIB AGHFR AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AWYRJ CAG CAJEA CAJUS CCEZO CCVFK CHBEP COF CS3 CW9 DU5 EBS EJD EO9 EP2 FA0 FDB GROUPED_DOAJ HH5 HZ~ IHE IPNFZ IXB JUIAU KQ8 M41 M4Z NCXOZ NQ- O-L O9- OK1 Q-- Q-0 R-A RIG ROL RPZ RT1 S.. SDG SPC SSZ T8Q TCJ TFW TGP U1F U1G U5A U5K UNMZH XFK ~02 ~L8 AATTM AAYWO AAYXX ABWVN ACRPL ADNMO ADVLN AEIPS AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION EFJIC FYGXN H13 SSH TDBHL |
ID | FETCH-LOGICAL-c344t-281ec93f1a182c12dd45cb36de27d4a333b021d4a9f61a66012b72ce541994c93 |
IEDL.DBID | AIKHN |
ISSN | 1002-0071 |
IngestDate | Thu Apr 24 22:57:47 EDT 2025 Tue Jul 01 04:26:25 EDT 2025 Fri Feb 23 02:45:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Non-precious metal electrocatalysts Oxygen reduction Co-based catalyst ZIF-8 Fuel cell |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-281ec93f1a182c12dd45cb36de27d4a333b021d4a9f61a66012b72ce541994c93 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1002007120305086 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_pnsc_2020_09_010 crossref_primary_10_1016_j_pnsc_2020_09_010 elsevier_sciencedirect_doi_10_1016_j_pnsc_2020_09_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Progress in natural science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Oh, Kim (bib37) 2012; 212 Zhang, Chenitz, Lefèvre, Sun, Dodelet (bib11) 2016; 29 Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib26) 2016; 351 Proietti, Jaouen, Lefevre, Larouche, Tian, Herranz, Dodelet (bib9) 2011; 2 Huang, Shown, Chang, Hsu, Du, Kuo, Wong, Wang, Wang, Chen, Chen (bib38) 2012; 22 Schulenburg, Stankov, Schünemann, Radnik, Dorbandt, Fiechter, Bogdanoff, Tributsch (bib43) 2003; 107 Wu, More, Johnston, Zelenay (bib5) 2011; 332 Shao, Chang, Dodelet, Chenitz (bib3) 2016; 116 Wang, Zhu, Yang, Huang, Wu, Rauf, Zhang, Dong, Wang, Zhou, Sun (bib35) 2018; 5 Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (bib14) 2015; 27 Wan, Liu, Li, Yu, Zheng, Yan, Wang, Xu, Shui (bib17) 2019; 2 Banham, Ye, Pei, Ozaki, Kishimoto, Imashiro (bib12) 2015; 285 Zhu, Liu, Liu, Shui (bib32) 2020; 124 Wang, Wang, Wan, Han, Hong, Huang, Yang, Wang, Zaghib, Zhou (bib22) 2019; 563 Wang, Lai, Song, Zhou, Liu, Wang, Yang, Chen, Shi, Zheng, Rauf, Sun (bib10) 2015; 54 Zhu, Xia, Zheng, Zou, Liu, Xu (bib16) 2017; 2 Xia, Zou, An, Xia, Guo (bib18) 2015; 8 Banham, Ye (bib2) 2017; 2 Chong, Goenaga, Williams, Barkholtz, Grabstanowicz, Brooksbank, Papandrew, Elzein, Schlaf, Zawodzinski, Zou, Ma, Liu (bib36) 2016; 3 Wu, Nelson, Ma, Meng, Cui, Shen (bib39) 2011; 49 Zhang, Yuan, Sun, Zeng, Jiang, Shao, Ma (bib40) 2010; 35 Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib15) 2017; 139 Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib6) 2017; 357 Jaouen, Goellner, Lefèvre, Herranz, Proietti, Dodelet (bib31) 2013; 87 Tong, Wang, Chen, Chen, Yan, Yang, Zhou, Chu, Feng, Liang (bib29) 2019; 10 Kramm, Lefevre, Larouche, Schmeisser, Dodelet (bib27) 2014; 136 Wang, Cullen, Pan, Hwang, Wang, Feng, Wang, Engelhard, Zhang, He, Shao, Su, More, Spendelow, Wu (bib24) 2018; 30 Wang, Huang, Zhang, Qiu, Sheng, Zhou, Wang, Liu, Rauf, Gu, Wu, Sun (bib33) 2017; 2 Herranz, Jaouen, Lefevre, Kramm, Proietti, Dodelet, Bogdanoff, Fiechter, Abs-Wurmbach, Bertrand, Arruda, Mukerjee (bib42) 2011; 115 El-Hendawy (bib23) 2003; 41 Wei, Zhang, Yang, Chenitz, Barham, Yang, Ye, Knights, Sun (bib30) 2017; 9 Kitahara, Konomi, Nakajima (bib34) 2010; 195 Kumar, Gairola, Lions, Ranjbar-Sahraie, Mermoux, Dubau, Zitolo, Jaouen, Maillard (bib41) 2018; 8 Quan, Yu, Wang, Yin, Liu, Wang, Zhang (bib20) 2019; 494 Liu, Liu, Zheng, Shui (bib8) 2018; 57 Zhang, Wang, An, Huang, Wang, Zhou, Lin (bib21) 2016; 29 Fu, Zamani, Choi, Hassan, Jiang, Higgins, Zhang, Hoque, Chen (bib7) 2017; 29 Gewirth, Thorum (bib1) 2010; 49 He, Hwang, Cullen, Uddin, Langhorst, Li, Karakalos, Kropf, Wegener, Sokolowski, Chen, Myers, Su, More, Wang, Litster, Wu (bib13) 2018; 12 Kramm, Herrmann-Geppert, Behrends, Lips, Fiechter, Bogdanoff (bib25) 2016; 138 Yang, Chen, Zhou, Sun (bib28) 2018; 35 Lefevre, Proietti, Jaouen, Dodelet (bib4) 2009; 324 Shen, Gao, Ji, Chen, Wu (bib19) 2019; 497 Wang (10.1016/j.pnsc.2020.09.010_bib33) 2017; 2 Kumar (10.1016/j.pnsc.2020.09.010_bib41) 2018; 8 Fu (10.1016/j.pnsc.2020.09.010_bib7) 2017; 29 Wu (10.1016/j.pnsc.2020.09.010_bib39) 2011; 49 Shen (10.1016/j.pnsc.2020.09.010_bib19) 2019; 497 Lefevre (10.1016/j.pnsc.2020.09.010_bib4) 2009; 324 Chung (10.1016/j.pnsc.2020.09.010_bib6) 2017; 357 Zhang (10.1016/j.pnsc.2020.09.010_bib40) 2010; 35 Xia (10.1016/j.pnsc.2020.09.010_bib18) 2015; 8 Wang (10.1016/j.pnsc.2020.09.010_bib35) 2018; 5 Wan (10.1016/j.pnsc.2020.09.010_bib17) 2019; 2 Yang (10.1016/j.pnsc.2020.09.010_bib28) 2018; 35 Zhu (10.1016/j.pnsc.2020.09.010_bib32) 2020; 124 Wei (10.1016/j.pnsc.2020.09.010_bib30) 2017; 9 Banham (10.1016/j.pnsc.2020.09.010_bib2) 2017; 2 He (10.1016/j.pnsc.2020.09.010_bib13) 2018; 12 Guo (10.1016/j.pnsc.2020.09.010_bib26) 2016; 351 Proietti (10.1016/j.pnsc.2020.09.010_bib9) 2011; 2 Wu (10.1016/j.pnsc.2020.09.010_bib5) 2011; 332 Herranz (10.1016/j.pnsc.2020.09.010_bib42) 2011; 115 Wang (10.1016/j.pnsc.2020.09.010_bib10) 2015; 54 Quan (10.1016/j.pnsc.2020.09.010_bib20) 2019; 494 Chen (10.1016/j.pnsc.2020.09.010_bib14) 2015; 27 Banham (10.1016/j.pnsc.2020.09.010_bib12) 2015; 285 Kramm (10.1016/j.pnsc.2020.09.010_bib25) 2016; 138 Zhu (10.1016/j.pnsc.2020.09.010_bib16) 2017; 2 Jaouen (10.1016/j.pnsc.2020.09.010_bib31) 2013; 87 El-Hendawy (10.1016/j.pnsc.2020.09.010_bib23) 2003; 41 Schulenburg (10.1016/j.pnsc.2020.09.010_bib43) 2003; 107 Kramm (10.1016/j.pnsc.2020.09.010_bib27) 2014; 136 Zhang (10.1016/j.pnsc.2020.09.010_bib21) 2016; 29 Shao (10.1016/j.pnsc.2020.09.010_bib3) 2016; 116 Wang (10.1016/j.pnsc.2020.09.010_bib24) 2018; 30 Wang (10.1016/j.pnsc.2020.09.010_bib15) 2017; 139 Wang (10.1016/j.pnsc.2020.09.010_bib22) 2019; 563 Gewirth (10.1016/j.pnsc.2020.09.010_bib1) 2010; 49 Chong (10.1016/j.pnsc.2020.09.010_bib36) 2016; 3 Liu (10.1016/j.pnsc.2020.09.010_bib8) 2018; 57 Tong (10.1016/j.pnsc.2020.09.010_bib29) 2019; 10 Huang (10.1016/j.pnsc.2020.09.010_bib38) 2012; 22 Kitahara (10.1016/j.pnsc.2020.09.010_bib34) 2010; 195 Zhang (10.1016/j.pnsc.2020.09.010_bib11) 2016; 29 Oh (10.1016/j.pnsc.2020.09.010_bib37) 2012; 212 |
References_xml | – volume: 115 start-page: 16087 year: 2011 end-page: 16097 ident: bib42 publication-title: J. Phys. Chem. C – volume: 124 start-page: 3069 year: 2020 end-page: 3079 ident: bib32 publication-title: J. Phys. Chem. C – volume: 195 start-page: 2202 year: 2010 end-page: 2211 ident: bib34 publication-title: J. Power Sources – volume: 2 start-page: 629 year: 2017 end-page: 638 ident: bib2 publication-title: ACS Energy Lett – volume: 35 start-page: 2900 year: 2010 end-page: 2903 ident: bib40 publication-title: Int. J. Hydrogen Energy – volume: 41 start-page: 713 year: 2003 end-page: 722 ident: bib23 publication-title: Carbon – volume: 12 start-page: 250 year: 2018 end-page: 260 ident: bib13 publication-title: Energy Environ. Sci. – volume: 2 start-page: 504 year: 2017 end-page: 511 ident: bib16 publication-title: ACS Energy Lett – volume: 29 year: 2016 ident: bib21 publication-title: Adv. Mater. – volume: 285 start-page: 334 year: 2015 end-page: 348 ident: bib12 publication-title: J. Power Sources – volume: 497 year: 2019 ident: bib19 publication-title: Appl. Surf. Sci. – volume: 29 year: 2017 ident: bib7 publication-title: Adv. Mater. – volume: 136 start-page: 978 year: 2014 end-page: 985 ident: bib27 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1541 year: 2016 end-page: 1545 ident: bib36 publication-title: Chemelectrochem – volume: 324 start-page: 71 year: 2009 end-page: 74 ident: bib4 publication-title: Science – volume: 8 start-page: 568 year: 2015 end-page: 576 ident: bib18 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1914 year: 2018 end-page: 1921 ident: bib35 publication-title: ChemElectroChem – volume: 27 start-page: 5010 year: 2015 end-page: 5016 ident: bib14 publication-title: Adv. Mater. – volume: 332 start-page: 443 year: 2011 end-page: 447 ident: bib5 publication-title: Science – volume: 29 start-page: 111 year: 2016 end-page: 125 ident: bib11 publication-title: Nanomater. Energy – volume: 49 start-page: 3972 year: 2011 end-page: 3982 ident: bib39 publication-title: Carbon – volume: 87 start-page: 619 year: 2013 end-page: 628 ident: bib31 publication-title: Electrochim. Acta – volume: 494 start-page: 691 year: 2019 end-page: 699 ident: bib20 publication-title: Appl. Surf. Sci. – volume: 212 start-page: 220 year: 2012 end-page: 225 ident: bib37 publication-title: J. Power Sources – volume: 107 start-page: 9034 year: 2003 end-page: 9041 ident: bib43 publication-title: J. Phys. Chem. B – volume: 8 start-page: 11264 year: 2018 end-page: 11276 ident: bib41 publication-title: ACS Catal. – volume: 57 start-page: 1204 year: 2018 end-page: 1208 ident: bib8 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 645 year: 2017 end-page: 650 ident: bib33 publication-title: ACS Energy Lett – volume: 2 start-page: 416 year: 2011 ident: bib9 publication-title: Nat. Commun. – volume: 22 start-page: 3500 year: 2012 end-page: 3508 ident: bib38 publication-title: Adv. Funct. Mater. – volume: 357 start-page: 479 year: 2017 end-page: 484 ident: bib6 publication-title: Science – volume: 49 start-page: 3557 year: 2010 end-page: 3566 ident: bib1 publication-title: Inorg. Chem. – volume: 35 start-page: 472 year: 2018 end-page: 482 ident: bib28 publication-title: Acta Phys. Chim. Sin. – volume: 563 start-page: 27 year: 2019 end-page: 32 ident: bib22 publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 36944 year: 2017 end-page: 36954 ident: bib30 publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 635 year: 2016 end-page: 640 ident: bib25 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 8236 year: 2019 end-page: 8240 ident: bib29 publication-title: Chem. Sci. – volume: 351 start-page: 361 year: 2016 end-page: 365 ident: bib26 publication-title: Science – volume: 116 start-page: 3594 year: 2016 end-page: 3657 ident: bib3 publication-title: Chem. Rev. – volume: 54 start-page: 9907 year: 2015 end-page: 9910 ident: bib10 publication-title: Angew. Chem. Int. Ed. – volume: 139 start-page: 17281 year: 2017 end-page: 17284 ident: bib15 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2018 ident: bib24 publication-title: Adv. Mater. – volume: 2 start-page: 259 year: 2019 end-page: 268 ident: bib17 publication-title: Nat. Catal. – volume: 136 start-page: 978 year: 2014 ident: 10.1016/j.pnsc.2020.09.010_bib27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410076f – volume: 2 start-page: 259 year: 2019 ident: 10.1016/j.pnsc.2020.09.010_bib17 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0237-3 – volume: 57 start-page: 1204 year: 2018 ident: 10.1016/j.pnsc.2020.09.010_bib8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709597 – volume: 49 start-page: 3972 year: 2011 ident: 10.1016/j.pnsc.2020.09.010_bib39 publication-title: Carbon doi: 10.1016/j.carbon.2011.05.036 – volume: 49 start-page: 3557 year: 2010 ident: 10.1016/j.pnsc.2020.09.010_bib1 publication-title: Inorg. Chem. doi: 10.1021/ic9022486 – volume: 8 start-page: 568 year: 2015 ident: 10.1016/j.pnsc.2020.09.010_bib18 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02281E – volume: 29 start-page: 111 year: 2016 ident: 10.1016/j.pnsc.2020.09.010_bib11 publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.02.038 – volume: 2 start-page: 504 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib16 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00686 – volume: 324 start-page: 71 year: 2009 ident: 10.1016/j.pnsc.2020.09.010_bib4 publication-title: Science doi: 10.1126/science.1170051 – volume: 41 start-page: 713 year: 2003 ident: 10.1016/j.pnsc.2020.09.010_bib23 publication-title: Carbon doi: 10.1016/S0008-6223(03)00029-0 – volume: 138 start-page: 635 year: 2016 ident: 10.1016/j.pnsc.2020.09.010_bib25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11015 – volume: 29 year: 2016 ident: 10.1016/j.pnsc.2020.09.010_bib21 publication-title: Adv. Mater. – volume: 35 start-page: 472 year: 2018 ident: 10.1016/j.pnsc.2020.09.010_bib28 publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB201806131 – volume: 5 start-page: 1914 year: 2018 ident: 10.1016/j.pnsc.2020.09.010_bib35 publication-title: ChemElectroChem doi: 10.1002/celc.201700939 – volume: 116 start-page: 3594 year: 2016 ident: 10.1016/j.pnsc.2020.09.010_bib3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00462 – volume: 351 start-page: 361 year: 2016 ident: 10.1016/j.pnsc.2020.09.010_bib26 publication-title: Science doi: 10.1126/science.aad0832 – volume: 3 start-page: 1541 year: 2016 ident: 10.1016/j.pnsc.2020.09.010_bib36 publication-title: Chemelectrochem doi: 10.1002/celc.201600163 – volume: 212 start-page: 220 year: 2012 ident: 10.1016/j.pnsc.2020.09.010_bib37 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.03.098 – volume: 29 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib7 publication-title: Adv. Mater. – volume: 497 year: 2019 ident: 10.1016/j.pnsc.2020.09.010_bib19 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143818 – volume: 9 start-page: 36944 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib30 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12666 – volume: 30 year: 2018 ident: 10.1016/j.pnsc.2020.09.010_bib24 publication-title: Adv. Mater. – volume: 2 start-page: 645 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib33 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b00071 – volume: 87 start-page: 619 year: 2013 ident: 10.1016/j.pnsc.2020.09.010_bib31 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.09.057 – volume: 357 start-page: 479 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib6 publication-title: Science doi: 10.1126/science.aan2255 – volume: 12 start-page: 250 year: 2018 ident: 10.1016/j.pnsc.2020.09.010_bib13 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02694G – volume: 124 start-page: 3069 year: 2020 ident: 10.1016/j.pnsc.2020.09.010_bib32 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10173 – volume: 2 start-page: 629 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib2 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00644 – volume: 2 start-page: 416 year: 2011 ident: 10.1016/j.pnsc.2020.09.010_bib9 publication-title: Nat. Commun. doi: 10.1038/ncomms1427 – volume: 563 start-page: 27 year: 2019 ident: 10.1016/j.pnsc.2020.09.010_bib22 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.046 – volume: 115 start-page: 16087 year: 2011 ident: 10.1016/j.pnsc.2020.09.010_bib42 publication-title: J. Phys. Chem. C doi: 10.1021/jp2042526 – volume: 27 start-page: 5010 year: 2015 ident: 10.1016/j.pnsc.2020.09.010_bib14 publication-title: Adv. Mater. doi: 10.1002/adma.201502315 – volume: 8 start-page: 11264 year: 2018 ident: 10.1016/j.pnsc.2020.09.010_bib41 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02934 – volume: 35 start-page: 2900 year: 2010 ident: 10.1016/j.pnsc.2020.09.010_bib40 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.032 – volume: 107 start-page: 9034 year: 2003 ident: 10.1016/j.pnsc.2020.09.010_bib43 publication-title: J. Phys. Chem. B doi: 10.1021/jp030349j – volume: 285 start-page: 334 year: 2015 ident: 10.1016/j.pnsc.2020.09.010_bib12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.047 – volume: 10 start-page: 8236 year: 2019 ident: 10.1016/j.pnsc.2020.09.010_bib29 publication-title: Chem. Sci. doi: 10.1039/C9SC01154D – volume: 54 start-page: 9907 year: 2015 ident: 10.1016/j.pnsc.2020.09.010_bib10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503159 – volume: 494 start-page: 691 year: 2019 ident: 10.1016/j.pnsc.2020.09.010_bib20 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.157 – volume: 332 start-page: 443 year: 2011 ident: 10.1016/j.pnsc.2020.09.010_bib5 publication-title: Science doi: 10.1126/science.1200832 – volume: 139 start-page: 17281 year: 2017 ident: 10.1016/j.pnsc.2020.09.010_bib15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 195 start-page: 2202 year: 2010 ident: 10.1016/j.pnsc.2020.09.010_bib34 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.10.089 – volume: 22 start-page: 3500 year: 2012 ident: 10.1016/j.pnsc.2020.09.010_bib38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200264 |
SSID | ssj0007167 |
Score | 2.4660075 |
Snippet | Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 855 |
SubjectTerms | Co-based catalyst Fuel cell Non-precious metal electrocatalysts Oxygen reduction ZIF-8 |
Title | ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells |
URI | https://dx.doi.org/10.1016/j.pnsc.2020.09.010 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76uHgR6wPro-zBgyKhze5m2xxrsbSKFaqF4iUm2Q1U2jTYVvTmf_Af-kucaTZVQXrwEMguGQgzs7Mzw8w3hJxIn3GwvYEV-W5kCelzKwBdspTwgxpTEJJE2Jx805OdgbgaOsMcaWW9MFhWaWx_atOX1trsVA03q8loVL1D8FC8IRnqLHjmeVJk3JWg2sVm97rTWxlkCAmWM1bw8OPK9M6kZV5JPEMkQ1Zbwp1iI-1f99OPO6e9RTaNs0ib6f-USE7H26RkjuOMnhrM6LMd8vjQbVsKtOlFK9qafr5_9OBp0dt-ny4zNG-zOcWcK0V8Ypp8twvQUUwRrGEaU_2atgHTiZ5AEB1rGi30mGJuf7ZLBu3L-1bHMsMTrJALMbdYw9ahyyPbhwgitJlSwgkDLpVmdRAE5xxkYcObG0nblxCXsaDOQu0IRAsGyj1SiKex3ieUKceROpQcXEWIb5jbUA3BaqFq-FxqEZSJnbHMCw2yOA64GHtZCdmTh2z2kM1ezfWAzWVyvqJJUlyNtV87mSS8X9rhgeFfQ3fwT7pDsoGrtGzliBTmzwt9DM7HPKgY5aqQfHd48QVf8tln |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HvQi1gfW5x48KBLa7G62zVGLpVVboSoUL2uS3UClpsVG0Zv_wX_oL3Em2fgA8eAhkNfAMjM7OzPMfEPIngwYB9sbOnHgx46QAXdC0CVHiyCsMQ0hSYzNyd2ebF-L04E3mCHNohcGyyqt7c9temat7Zuq5WZ1MhxWLxE8FE9IhjoLnvksmQNvoI7zGzqD409zDAFBNmEFtz4-2c6ZvMhrkkwRx5DVMrBTbKP97XT6duK0lsiidRXpUb6aMpkxyTIp2804pfsWMfpghdzedFqOBl16Mpo2x--vbz24mvSi36dZfuZlmlLMuFJEJ6aTr2YBOkwoQjWME2qe8yZgem_uIYRODI0fzYhiZn-6Sq5bJ1fNtmNHJzgRFyJ1WMM1kc9jN4D4IXKZ1sKLQi61YXUQA-ccJOHCnR9LN5AQlbGwziLjCcQKBso1UkrGiVknlGnPkyaSHBxFiG6Y39ANwWqRbgRcGhFWiFuwTEUWVxzHW4xUUUB2p5DNCtmsar4CNlfI4SfNJEfV-PNvr5CE-qEbCsz-H3Qb_6TbJfPtq-65Ou_0zjbJAn7JC1i2SCl9eDTb4Iak4U6mZh8xYNoy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZIF-derived+Co%E2%80%93N%E2%80%93C+ORR+catalyst+with+high+performance+in+proton+exchange+membrane+fuel+cells&rft.jtitle=Progress+in+natural+science&rft.au=Wang%2C+Ruixiang&rft.au=Zhang%2C+Pengyang&rft.au=Wang%2C+Yucheng&rft.au=Wang%2C+Yuesheng&rft.date=2020-12-01&rft.issn=1002-0071&rft.volume=30&rft.issue=6&rft.spage=855&rft.epage=860&rft_id=info:doi/10.1016%2Fj.pnsc.2020.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnsc_2020_09_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0071&client=summon |