ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells

Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts witho...

Full description

Saved in:
Bibliographic Details
Published inProgress in natural science Vol. 30; no. 6; pp. 855 - 860
Main Authors Wang, Ruixiang, Zhang, Pengyang, Wang, Yucheng, Wang, Yuesheng, Zaghib, Karim, Zhou, Zhiyou
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts without Fenton catalytic activity should be a worthier ORR catalyst being explored. Although the high ORR activity of Co–N–C catalyst has been demonstrated in aqueous half-cell tests, their performance under PEMFC working condition is still far away from that of state-of-the-art Fe–N–C catalysts. In this study, a high-performance Co–N–C catalyst was synthesized by one-step pyrolyzing Co-doped ZIF-8 (zeolitic imidazolate framework-8) particles in-situ grown on the high-surface-area KJ600 carbon black with high electronic conductivity. The resulting Co–N–C catalyst exhibited high intrinsic ORR activity, fast mass transfer rate and high electronic conductivity, and thus yielded a remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC, which is comparable to state-of-the-art Fe–N–C catalyst. This strategy is helpful to synthesize highly active M-N-C ORR catalysts with improved mass transfer and electric conductivity. [Display omitted] •Porous carbon supporting to prevent the aggregation of ZIF8 particles.•A high-performance ZIF-based Co–N–C catalyst is fabricated.•A remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC.
AbstractList Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts without Fenton catalytic activity should be a worthier ORR catalyst being explored. Although the high ORR activity of Co–N–C catalyst has been demonstrated in aqueous half-cell tests, their performance under PEMFC working condition is still far away from that of state-of-the-art Fe–N–C catalysts. In this study, a high-performance Co–N–C catalyst was synthesized by one-step pyrolyzing Co-doped ZIF-8 (zeolitic imidazolate framework-8) particles in-situ grown on the high-surface-area KJ600 carbon black with high electronic conductivity. The resulting Co–N–C catalyst exhibited high intrinsic ORR activity, fast mass transfer rate and high electronic conductivity, and thus yielded a remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC, which is comparable to state-of-the-art Fe–N–C catalyst. This strategy is helpful to synthesize highly active M-N-C ORR catalysts with improved mass transfer and electric conductivity. [Display omitted] •Porous carbon supporting to prevent the aggregation of ZIF8 particles.•A high-performance ZIF-based Co–N–C catalyst is fabricated.•A remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC.
Author Wang, Yucheng
Zaghib, Karim
Zhou, Zhiyou
Zhang, Pengyang
Wang, Yuesheng
Wang, Ruixiang
Author_xml – sequence: 1
  givenname: Ruixiang
  surname: Wang
  fullname: Wang, Ruixiang
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 2
  givenname: Pengyang
  surname: Zhang
  fullname: Zhang, Pengyang
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 3
  givenname: Yucheng
  surname: Wang
  fullname: Wang, Yucheng
  email: wangyc@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
– sequence: 4
  givenname: Yuesheng
  surname: Wang
  fullname: Wang, Yuesheng
  organization: Center of Excellence in Transportation Electrificationand Energy Storage Hydro Québec, Québec, J3 × 1S1, Canada
– sequence: 5
  givenname: Karim
  surname: Zaghib
  fullname: Zaghib, Karim
  organization: Center of Excellence in Transportation Electrificationand Energy Storage Hydro Québec, Québec, J3 × 1S1, Canada
– sequence: 6
  givenname: Zhiyou
  surname: Zhou
  fullname: Zhou, Zhiyou
  email: zhouzy@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
BookMark eNp9kLFOwzAURT0UibbwA0z-gQTbSZNGYkERhUoVlSpYWIxjvzSuEjuyTaEb_8Af8iWkgomhw9W7y3nSPRM0MtYAQleUxJTQ7HoX98bLmBFGYlLEhJIRGlNCWERITs_RxPsdOdYsH6PXl-UiUuD0HhQu7ffn1-OQEq83GyxFEO3BB_yuQ4MbvW1wD662rhNGAtYG984GazB8yEaYLeAOusoJA7h-gxZLaFt_gc5q0Xq4_LtT9Ly4eyofotX6flneriKZpGmI2JyCLJKaCjpnkjKl0pmskkwBy1UqkiSpCKNDK-qMiiwjlFU5kzBLaVGkAzlF89-_0lnvHdRc6iCCtiY4oVtOCT_a4Tt-tMOPdjgp-GBnQNk_tHe6E-5wGrr5hWAYtdfguJcaBi9KO5CBK6tP4T8ER4SC
CitedBy_id crossref_primary_10_1039_D1RA08817C
crossref_primary_10_1016_j_jallcom_2023_169739
crossref_primary_10_1021_acsaem_2c03384
crossref_primary_10_3390_nano12173057
crossref_primary_10_1002_slct_202301789
crossref_primary_10_1016_j_jallcom_2022_164504
crossref_primary_10_1016_j_pecs_2023_101101
crossref_primary_10_1016_j_ijhydene_2021_10_180
crossref_primary_10_1016_j_pnsc_2024_04_014
crossref_primary_10_1016_j_cej_2024_150673
crossref_primary_10_1016_j_jece_2024_111961
crossref_primary_10_1039_D3CY01746J
crossref_primary_10_15826_chimtech_2025_12_1_10
crossref_primary_10_1039_D4CY00252K
crossref_primary_10_1002_anie_202116727
crossref_primary_10_1016_j_jelechem_2024_118189
crossref_primary_10_1039_D2CY00348A
crossref_primary_10_1007_s10853_023_08552_x
crossref_primary_10_1016_j_ijhydene_2022_12_099
crossref_primary_10_1088_1361_6528_ac4fe3
crossref_primary_10_1039_D3QM01172K
crossref_primary_10_1149_1945_7111_ac22cc
crossref_primary_10_1016_j_jallcom_2024_175227
crossref_primary_10_1016_j_jpowsour_2022_232135
crossref_primary_10_1002_ente_202200992
crossref_primary_10_1021_acsaem_4c03250
crossref_primary_10_1039_D3NR06647A
crossref_primary_10_1021_acs_jpclett_1c01905
crossref_primary_10_1016_j_psep_2023_10_009
crossref_primary_10_1039_D3CC05597C
crossref_primary_10_1002_apj_2950
crossref_primary_10_1021_acsami_2c04786
crossref_primary_10_1016_j_cclet_2021_06_054
crossref_primary_10_3390_nano12193331
crossref_primary_10_1021_acscatal_2c03216
crossref_primary_10_1016_j_jcis_2024_10_085
crossref_primary_10_1002_ange_202116727
crossref_primary_10_1016_j_fuel_2024_132508
crossref_primary_10_3390_molecules28145544
crossref_primary_10_1063_5_0045801
crossref_primary_10_1007_s42823_024_00822_1
crossref_primary_10_1002_elan_202100601
crossref_primary_10_1002_celc_202300110
crossref_primary_10_1016_j_jallcom_2023_173293
crossref_primary_10_1021_prechem_4c00073
crossref_primary_10_1007_s11426_023_1863_8
Cites_doi 10.1021/ja410076f
10.1038/s41929-019-0237-3
10.1002/anie.201709597
10.1016/j.carbon.2011.05.036
10.1021/ic9022486
10.1039/C4EE02281E
10.1016/j.nanoen.2016.02.038
10.1021/acsenergylett.6b00686
10.1126/science.1170051
10.1016/S0008-6223(03)00029-0
10.1021/jacs.5b11015
10.3866/PKU.WHXB201806131
10.1002/celc.201700939
10.1021/acs.chemrev.5b00462
10.1126/science.aad0832
10.1002/celc.201600163
10.1016/j.jpowsour.2012.03.098
10.1016/j.apsusc.2019.143818
10.1021/acsami.7b12666
10.1021/acsenergylett.7b00071
10.1016/j.electacta.2012.09.057
10.1126/science.aan2255
10.1039/C8EE02694G
10.1021/acs.jpcc.9b10173
10.1021/acsenergylett.6b00644
10.1038/ncomms1427
10.1016/j.jcis.2019.12.046
10.1021/jp2042526
10.1002/adma.201502315
10.1021/acscatal.8b02934
10.1016/j.ijhydene.2009.05.032
10.1021/jp030349j
10.1016/j.jpowsour.2015.03.047
10.1039/C9SC01154D
10.1002/anie.201503159
10.1016/j.apsusc.2019.07.157
10.1126/science.1200832
10.1021/jacs.7b10385
10.1016/j.jpowsour.2009.10.089
10.1002/adfm.201200264
ContentType Journal Article
Copyright 2020 Chinese Materials Research Society
Copyright_xml – notice: 2020 Chinese Materials Research Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.pnsc.2020.09.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EndPage 860
ExternalDocumentID 10_1016_j_pnsc_2020_09_010
S1002007120305086
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
123
1B1
1~5
29P
2B.
2C.
2DF
3YN
4.4
457
4G.
5VR
5VS
5XA
5XB
5XL
6I.
7-5
92E
92I
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABJNI
ABMAC
ACGFS
ACNNM
ACRLP
ADEZE
ADMUD
AEFWE
AEXQZ
AEZYN
AFTJW
AFUIB
AGHFR
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AWYRJ
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
COF
CS3
CW9
DU5
EBS
EJD
EO9
EP2
FA0
FDB
GROUPED_DOAJ
HH5
HZ~
IHE
IPNFZ
IXB
JUIAU
KQ8
M41
M4Z
NCXOZ
NQ-
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RPZ
RT1
S..
SDG
SPC
SSZ
T8Q
TCJ
TFW
TGP
U1F
U1G
U5A
U5K
UNMZH
XFK
~02
~L8
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
EFJIC
FYGXN
H13
SSH
TDBHL
ID FETCH-LOGICAL-c344t-281ec93f1a182c12dd45cb36de27d4a333b021d4a9f61a66012b72ce541994c93
IEDL.DBID AIKHN
ISSN 1002-0071
IngestDate Thu Apr 24 22:57:47 EDT 2025
Tue Jul 01 04:26:25 EDT 2025
Fri Feb 23 02:45:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Non-precious metal electrocatalysts
Oxygen reduction
Co-based catalyst
ZIF-8
Fuel cell
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-281ec93f1a182c12dd45cb36de27d4a333b021d4a9f61a66012b72ce541994c93
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1002007120305086
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_pnsc_2020_09_010
crossref_primary_10_1016_j_pnsc_2020_09_010
elsevier_sciencedirect_doi_10_1016_j_pnsc_2020_09_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Progress in natural science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Oh, Kim (bib37) 2012; 212
Zhang, Chenitz, Lefèvre, Sun, Dodelet (bib11) 2016; 29
Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib26) 2016; 351
Proietti, Jaouen, Lefevre, Larouche, Tian, Herranz, Dodelet (bib9) 2011; 2
Huang, Shown, Chang, Hsu, Du, Kuo, Wong, Wang, Wang, Chen, Chen (bib38) 2012; 22
Schulenburg, Stankov, Schünemann, Radnik, Dorbandt, Fiechter, Bogdanoff, Tributsch (bib43) 2003; 107
Wu, More, Johnston, Zelenay (bib5) 2011; 332
Shao, Chang, Dodelet, Chenitz (bib3) 2016; 116
Wang, Zhu, Yang, Huang, Wu, Rauf, Zhang, Dong, Wang, Zhou, Sun (bib35) 2018; 5
Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (bib14) 2015; 27
Wan, Liu, Li, Yu, Zheng, Yan, Wang, Xu, Shui (bib17) 2019; 2
Banham, Ye, Pei, Ozaki, Kishimoto, Imashiro (bib12) 2015; 285
Zhu, Liu, Liu, Shui (bib32) 2020; 124
Wang, Wang, Wan, Han, Hong, Huang, Yang, Wang, Zaghib, Zhou (bib22) 2019; 563
Wang, Lai, Song, Zhou, Liu, Wang, Yang, Chen, Shi, Zheng, Rauf, Sun (bib10) 2015; 54
Zhu, Xia, Zheng, Zou, Liu, Xu (bib16) 2017; 2
Xia, Zou, An, Xia, Guo (bib18) 2015; 8
Banham, Ye (bib2) 2017; 2
Chong, Goenaga, Williams, Barkholtz, Grabstanowicz, Brooksbank, Papandrew, Elzein, Schlaf, Zawodzinski, Zou, Ma, Liu (bib36) 2016; 3
Wu, Nelson, Ma, Meng, Cui, Shen (bib39) 2011; 49
Zhang, Yuan, Sun, Zeng, Jiang, Shao, Ma (bib40) 2010; 35
Wang, Huang, Liu, Chang, Tang, Li, Chen, Jia, Yao, Wei, Wu, Li (bib15) 2017; 139
Chung, Cullen, Higgins, Sneed, Holby, More, Zelenay (bib6) 2017; 357
Jaouen, Goellner, Lefèvre, Herranz, Proietti, Dodelet (bib31) 2013; 87
Tong, Wang, Chen, Chen, Yan, Yang, Zhou, Chu, Feng, Liang (bib29) 2019; 10
Kramm, Lefevre, Larouche, Schmeisser, Dodelet (bib27) 2014; 136
Wang, Cullen, Pan, Hwang, Wang, Feng, Wang, Engelhard, Zhang, He, Shao, Su, More, Spendelow, Wu (bib24) 2018; 30
Wang, Huang, Zhang, Qiu, Sheng, Zhou, Wang, Liu, Rauf, Gu, Wu, Sun (bib33) 2017; 2
Herranz, Jaouen, Lefevre, Kramm, Proietti, Dodelet, Bogdanoff, Fiechter, Abs-Wurmbach, Bertrand, Arruda, Mukerjee (bib42) 2011; 115
El-Hendawy (bib23) 2003; 41
Wei, Zhang, Yang, Chenitz, Barham, Yang, Ye, Knights, Sun (bib30) 2017; 9
Kitahara, Konomi, Nakajima (bib34) 2010; 195
Kumar, Gairola, Lions, Ranjbar-Sahraie, Mermoux, Dubau, Zitolo, Jaouen, Maillard (bib41) 2018; 8
Quan, Yu, Wang, Yin, Liu, Wang, Zhang (bib20) 2019; 494
Liu, Liu, Zheng, Shui (bib8) 2018; 57
Zhang, Wang, An, Huang, Wang, Zhou, Lin (bib21) 2016; 29
Fu, Zamani, Choi, Hassan, Jiang, Higgins, Zhang, Hoque, Chen (bib7) 2017; 29
Gewirth, Thorum (bib1) 2010; 49
He, Hwang, Cullen, Uddin, Langhorst, Li, Karakalos, Kropf, Wegener, Sokolowski, Chen, Myers, Su, More, Wang, Litster, Wu (bib13) 2018; 12
Kramm, Herrmann-Geppert, Behrends, Lips, Fiechter, Bogdanoff (bib25) 2016; 138
Yang, Chen, Zhou, Sun (bib28) 2018; 35
Lefevre, Proietti, Jaouen, Dodelet (bib4) 2009; 324
Shen, Gao, Ji, Chen, Wu (bib19) 2019; 497
Wang (10.1016/j.pnsc.2020.09.010_bib33) 2017; 2
Kumar (10.1016/j.pnsc.2020.09.010_bib41) 2018; 8
Fu (10.1016/j.pnsc.2020.09.010_bib7) 2017; 29
Wu (10.1016/j.pnsc.2020.09.010_bib39) 2011; 49
Shen (10.1016/j.pnsc.2020.09.010_bib19) 2019; 497
Lefevre (10.1016/j.pnsc.2020.09.010_bib4) 2009; 324
Chung (10.1016/j.pnsc.2020.09.010_bib6) 2017; 357
Zhang (10.1016/j.pnsc.2020.09.010_bib40) 2010; 35
Xia (10.1016/j.pnsc.2020.09.010_bib18) 2015; 8
Wang (10.1016/j.pnsc.2020.09.010_bib35) 2018; 5
Wan (10.1016/j.pnsc.2020.09.010_bib17) 2019; 2
Yang (10.1016/j.pnsc.2020.09.010_bib28) 2018; 35
Zhu (10.1016/j.pnsc.2020.09.010_bib32) 2020; 124
Wei (10.1016/j.pnsc.2020.09.010_bib30) 2017; 9
Banham (10.1016/j.pnsc.2020.09.010_bib2) 2017; 2
He (10.1016/j.pnsc.2020.09.010_bib13) 2018; 12
Guo (10.1016/j.pnsc.2020.09.010_bib26) 2016; 351
Proietti (10.1016/j.pnsc.2020.09.010_bib9) 2011; 2
Wu (10.1016/j.pnsc.2020.09.010_bib5) 2011; 332
Herranz (10.1016/j.pnsc.2020.09.010_bib42) 2011; 115
Wang (10.1016/j.pnsc.2020.09.010_bib10) 2015; 54
Quan (10.1016/j.pnsc.2020.09.010_bib20) 2019; 494
Chen (10.1016/j.pnsc.2020.09.010_bib14) 2015; 27
Banham (10.1016/j.pnsc.2020.09.010_bib12) 2015; 285
Kramm (10.1016/j.pnsc.2020.09.010_bib25) 2016; 138
Zhu (10.1016/j.pnsc.2020.09.010_bib16) 2017; 2
Jaouen (10.1016/j.pnsc.2020.09.010_bib31) 2013; 87
El-Hendawy (10.1016/j.pnsc.2020.09.010_bib23) 2003; 41
Schulenburg (10.1016/j.pnsc.2020.09.010_bib43) 2003; 107
Kramm (10.1016/j.pnsc.2020.09.010_bib27) 2014; 136
Zhang (10.1016/j.pnsc.2020.09.010_bib21) 2016; 29
Shao (10.1016/j.pnsc.2020.09.010_bib3) 2016; 116
Wang (10.1016/j.pnsc.2020.09.010_bib24) 2018; 30
Wang (10.1016/j.pnsc.2020.09.010_bib15) 2017; 139
Wang (10.1016/j.pnsc.2020.09.010_bib22) 2019; 563
Gewirth (10.1016/j.pnsc.2020.09.010_bib1) 2010; 49
Chong (10.1016/j.pnsc.2020.09.010_bib36) 2016; 3
Liu (10.1016/j.pnsc.2020.09.010_bib8) 2018; 57
Tong (10.1016/j.pnsc.2020.09.010_bib29) 2019; 10
Huang (10.1016/j.pnsc.2020.09.010_bib38) 2012; 22
Kitahara (10.1016/j.pnsc.2020.09.010_bib34) 2010; 195
Zhang (10.1016/j.pnsc.2020.09.010_bib11) 2016; 29
Oh (10.1016/j.pnsc.2020.09.010_bib37) 2012; 212
References_xml – volume: 115
  start-page: 16087
  year: 2011
  end-page: 16097
  ident: bib42
  publication-title: J. Phys. Chem. C
– volume: 124
  start-page: 3069
  year: 2020
  end-page: 3079
  ident: bib32
  publication-title: J. Phys. Chem. C
– volume: 195
  start-page: 2202
  year: 2010
  end-page: 2211
  ident: bib34
  publication-title: J. Power Sources
– volume: 2
  start-page: 629
  year: 2017
  end-page: 638
  ident: bib2
  publication-title: ACS Energy Lett
– volume: 35
  start-page: 2900
  year: 2010
  end-page: 2903
  ident: bib40
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 713
  year: 2003
  end-page: 722
  ident: bib23
  publication-title: Carbon
– volume: 12
  start-page: 250
  year: 2018
  end-page: 260
  ident: bib13
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 504
  year: 2017
  end-page: 511
  ident: bib16
  publication-title: ACS Energy Lett
– volume: 29
  year: 2016
  ident: bib21
  publication-title: Adv. Mater.
– volume: 285
  start-page: 334
  year: 2015
  end-page: 348
  ident: bib12
  publication-title: J. Power Sources
– volume: 497
  year: 2019
  ident: bib19
  publication-title: Appl. Surf. Sci.
– volume: 29
  year: 2017
  ident: bib7
  publication-title: Adv. Mater.
– volume: 136
  start-page: 978
  year: 2014
  end-page: 985
  ident: bib27
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1541
  year: 2016
  end-page: 1545
  ident: bib36
  publication-title: Chemelectrochem
– volume: 324
  start-page: 71
  year: 2009
  end-page: 74
  ident: bib4
  publication-title: Science
– volume: 8
  start-page: 568
  year: 2015
  end-page: 576
  ident: bib18
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1914
  year: 2018
  end-page: 1921
  ident: bib35
  publication-title: ChemElectroChem
– volume: 27
  start-page: 5010
  year: 2015
  end-page: 5016
  ident: bib14
  publication-title: Adv. Mater.
– volume: 332
  start-page: 443
  year: 2011
  end-page: 447
  ident: bib5
  publication-title: Science
– volume: 29
  start-page: 111
  year: 2016
  end-page: 125
  ident: bib11
  publication-title: Nanomater. Energy
– volume: 49
  start-page: 3972
  year: 2011
  end-page: 3982
  ident: bib39
  publication-title: Carbon
– volume: 87
  start-page: 619
  year: 2013
  end-page: 628
  ident: bib31
  publication-title: Electrochim. Acta
– volume: 494
  start-page: 691
  year: 2019
  end-page: 699
  ident: bib20
  publication-title: Appl. Surf. Sci.
– volume: 212
  start-page: 220
  year: 2012
  end-page: 225
  ident: bib37
  publication-title: J. Power Sources
– volume: 107
  start-page: 9034
  year: 2003
  end-page: 9041
  ident: bib43
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 11264
  year: 2018
  end-page: 11276
  ident: bib41
  publication-title: ACS Catal.
– volume: 57
  start-page: 1204
  year: 2018
  end-page: 1208
  ident: bib8
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 645
  year: 2017
  end-page: 650
  ident: bib33
  publication-title: ACS Energy Lett
– volume: 2
  start-page: 416
  year: 2011
  ident: bib9
  publication-title: Nat. Commun.
– volume: 22
  start-page: 3500
  year: 2012
  end-page: 3508
  ident: bib38
  publication-title: Adv. Funct. Mater.
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  ident: bib6
  publication-title: Science
– volume: 49
  start-page: 3557
  year: 2010
  end-page: 3566
  ident: bib1
  publication-title: Inorg. Chem.
– volume: 35
  start-page: 472
  year: 2018
  end-page: 482
  ident: bib28
  publication-title: Acta Phys. Chim. Sin.
– volume: 563
  start-page: 27
  year: 2019
  end-page: 32
  ident: bib22
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 36944
  year: 2017
  end-page: 36954
  ident: bib30
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  start-page: 635
  year: 2016
  end-page: 640
  ident: bib25
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 8236
  year: 2019
  end-page: 8240
  ident: bib29
  publication-title: Chem. Sci.
– volume: 351
  start-page: 361
  year: 2016
  end-page: 365
  ident: bib26
  publication-title: Science
– volume: 116
  start-page: 3594
  year: 2016
  end-page: 3657
  ident: bib3
  publication-title: Chem. Rev.
– volume: 54
  start-page: 9907
  year: 2015
  end-page: 9910
  ident: bib10
  publication-title: Angew. Chem. Int. Ed.
– volume: 139
  start-page: 17281
  year: 2017
  end-page: 17284
  ident: bib15
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  ident: bib24
  publication-title: Adv. Mater.
– volume: 2
  start-page: 259
  year: 2019
  end-page: 268
  ident: bib17
  publication-title: Nat. Catal.
– volume: 136
  start-page: 978
  year: 2014
  ident: 10.1016/j.pnsc.2020.09.010_bib27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410076f
– volume: 2
  start-page: 259
  year: 2019
  ident: 10.1016/j.pnsc.2020.09.010_bib17
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0237-3
– volume: 57
  start-page: 1204
  year: 2018
  ident: 10.1016/j.pnsc.2020.09.010_bib8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709597
– volume: 49
  start-page: 3972
  year: 2011
  ident: 10.1016/j.pnsc.2020.09.010_bib39
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.05.036
– volume: 49
  start-page: 3557
  year: 2010
  ident: 10.1016/j.pnsc.2020.09.010_bib1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9022486
– volume: 8
  start-page: 568
  year: 2015
  ident: 10.1016/j.pnsc.2020.09.010_bib18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02281E
– volume: 29
  start-page: 111
  year: 2016
  ident: 10.1016/j.pnsc.2020.09.010_bib11
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.02.038
– volume: 2
  start-page: 504
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib16
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00686
– volume: 324
  start-page: 71
  year: 2009
  ident: 10.1016/j.pnsc.2020.09.010_bib4
  publication-title: Science
  doi: 10.1126/science.1170051
– volume: 41
  start-page: 713
  year: 2003
  ident: 10.1016/j.pnsc.2020.09.010_bib23
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00029-0
– volume: 138
  start-page: 635
  year: 2016
  ident: 10.1016/j.pnsc.2020.09.010_bib25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11015
– volume: 29
  year: 2016
  ident: 10.1016/j.pnsc.2020.09.010_bib21
  publication-title: Adv. Mater.
– volume: 35
  start-page: 472
  year: 2018
  ident: 10.1016/j.pnsc.2020.09.010_bib28
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201806131
– volume: 5
  start-page: 1914
  year: 2018
  ident: 10.1016/j.pnsc.2020.09.010_bib35
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700939
– volume: 116
  start-page: 3594
  year: 2016
  ident: 10.1016/j.pnsc.2020.09.010_bib3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00462
– volume: 351
  start-page: 361
  year: 2016
  ident: 10.1016/j.pnsc.2020.09.010_bib26
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 3
  start-page: 1541
  year: 2016
  ident: 10.1016/j.pnsc.2020.09.010_bib36
  publication-title: Chemelectrochem
  doi: 10.1002/celc.201600163
– volume: 212
  start-page: 220
  year: 2012
  ident: 10.1016/j.pnsc.2020.09.010_bib37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.03.098
– volume: 29
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib7
  publication-title: Adv. Mater.
– volume: 497
  year: 2019
  ident: 10.1016/j.pnsc.2020.09.010_bib19
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143818
– volume: 9
  start-page: 36944
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12666
– volume: 30
  year: 2018
  ident: 10.1016/j.pnsc.2020.09.010_bib24
  publication-title: Adv. Mater.
– volume: 2
  start-page: 645
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib33
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00071
– volume: 87
  start-page: 619
  year: 2013
  ident: 10.1016/j.pnsc.2020.09.010_bib31
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.09.057
– volume: 357
  start-page: 479
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib6
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 12
  start-page: 250
  year: 2018
  ident: 10.1016/j.pnsc.2020.09.010_bib13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02694G
– volume: 124
  start-page: 3069
  year: 2020
  ident: 10.1016/j.pnsc.2020.09.010_bib32
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10173
– volume: 2
  start-page: 629
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib2
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00644
– volume: 2
  start-page: 416
  year: 2011
  ident: 10.1016/j.pnsc.2020.09.010_bib9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1427
– volume: 563
  start-page: 27
  year: 2019
  ident: 10.1016/j.pnsc.2020.09.010_bib22
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.046
– volume: 115
  start-page: 16087
  year: 2011
  ident: 10.1016/j.pnsc.2020.09.010_bib42
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2042526
– volume: 27
  start-page: 5010
  year: 2015
  ident: 10.1016/j.pnsc.2020.09.010_bib14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502315
– volume: 8
  start-page: 11264
  year: 2018
  ident: 10.1016/j.pnsc.2020.09.010_bib41
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02934
– volume: 35
  start-page: 2900
  year: 2010
  ident: 10.1016/j.pnsc.2020.09.010_bib40
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.05.032
– volume: 107
  start-page: 9034
  year: 2003
  ident: 10.1016/j.pnsc.2020.09.010_bib43
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp030349j
– volume: 285
  start-page: 334
  year: 2015
  ident: 10.1016/j.pnsc.2020.09.010_bib12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.047
– volume: 10
  start-page: 8236
  year: 2019
  ident: 10.1016/j.pnsc.2020.09.010_bib29
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01154D
– volume: 54
  start-page: 9907
  year: 2015
  ident: 10.1016/j.pnsc.2020.09.010_bib10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503159
– volume: 494
  start-page: 691
  year: 2019
  ident: 10.1016/j.pnsc.2020.09.010_bib20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.07.157
– volume: 332
  start-page: 443
  year: 2011
  ident: 10.1016/j.pnsc.2020.09.010_bib5
  publication-title: Science
  doi: 10.1126/science.1200832
– volume: 139
  start-page: 17281
  year: 2017
  ident: 10.1016/j.pnsc.2020.09.010_bib15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 195
  start-page: 2202
  year: 2010
  ident: 10.1016/j.pnsc.2020.09.010_bib34
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.089
– volume: 22
  start-page: 3500
  year: 2012
  ident: 10.1016/j.pnsc.2020.09.010_bib38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200264
SSID ssj0007167
Score 2.4660075
Snippet Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 855
SubjectTerms Co-based catalyst
Fuel cell
Non-precious metal electrocatalysts
Oxygen reduction
ZIF-8
Title ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells
URI https://dx.doi.org/10.1016/j.pnsc.2020.09.010
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF76uHgR6wPro-zBgyKhze5m2xxrsbSKFaqF4iUm2Q1U2jTYVvTmf_Af-kucaTZVQXrwEMguGQgzs7Mzw8w3hJxIn3GwvYEV-W5kCelzKwBdspTwgxpTEJJE2Jx805OdgbgaOsMcaWW9MFhWaWx_atOX1trsVA03q8loVL1D8FC8IRnqLHjmeVJk3JWg2sVm97rTWxlkCAmWM1bw8OPK9M6kZV5JPEMkQ1Zbwp1iI-1f99OPO6e9RTaNs0ib6f-USE7H26RkjuOMnhrM6LMd8vjQbVsKtOlFK9qafr5_9OBp0dt-ny4zNG-zOcWcK0V8Ypp8twvQUUwRrGEaU_2atgHTiZ5AEB1rGi30mGJuf7ZLBu3L-1bHMsMTrJALMbdYw9ahyyPbhwgitJlSwgkDLpVmdRAE5xxkYcObG0nblxCXsaDOQu0IRAsGyj1SiKex3ieUKceROpQcXEWIb5jbUA3BaqFq-FxqEZSJnbHMCw2yOA64GHtZCdmTh2z2kM1ezfWAzWVyvqJJUlyNtV87mSS8X9rhgeFfQ3fwT7pDsoGrtGzliBTmzwt9DM7HPKgY5aqQfHd48QVf8tln
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HvQi1gfW5x48KBLa7G62zVGLpVVboSoUL2uS3UClpsVG0Zv_wX_oL3Em2fgA8eAhkNfAMjM7OzPMfEPIngwYB9sbOnHgx46QAXdC0CVHiyCsMQ0hSYzNyd2ebF-L04E3mCHNohcGyyqt7c9temat7Zuq5WZ1MhxWLxE8FE9IhjoLnvksmQNvoI7zGzqD409zDAFBNmEFtz4-2c6ZvMhrkkwRx5DVMrBTbKP97XT6duK0lsiidRXpUb6aMpkxyTIp2804pfsWMfpghdzedFqOBl16Mpo2x--vbz24mvSi36dZfuZlmlLMuFJEJ6aTr2YBOkwoQjWME2qe8yZgem_uIYRODI0fzYhiZn-6Sq5bJ1fNtmNHJzgRFyJ1WMM1kc9jN4D4IXKZ1sKLQi61YXUQA-ccJOHCnR9LN5AQlbGwziLjCcQKBso1UkrGiVknlGnPkyaSHBxFiG6Y39ANwWqRbgRcGhFWiFuwTEUWVxzHW4xUUUB2p5DNCtmsar4CNlfI4SfNJEfV-PNvr5CE-qEbCsz-H3Qb_6TbJfPtq-65Ou_0zjbJAn7JC1i2SCl9eDTb4Iak4U6mZh8xYNoy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ZIF-derived+Co%E2%80%93N%E2%80%93C+ORR+catalyst+with+high+performance+in+proton+exchange+membrane+fuel+cells&rft.jtitle=Progress+in+natural+science&rft.au=Wang%2C+Ruixiang&rft.au=Zhang%2C+Pengyang&rft.au=Wang%2C+Yucheng&rft.au=Wang%2C+Yuesheng&rft.date=2020-12-01&rft.issn=1002-0071&rft.volume=30&rft.issue=6&rft.spage=855&rft.epage=860&rft_id=info:doi/10.1016%2Fj.pnsc.2020.09.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pnsc_2020_09_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1002-0071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1002-0071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1002-0071&client=summon