Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review
With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, l...
Saved in:
Published in | Journal of ethnopharmacology Vol. 300; no. NA; p. 115748 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
10.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.ETHNOPHARMACOLOGICAL RELEVANCEWith high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.AIM OF THE REVIEWIn this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.MATERIALS AND METHODSWe collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.RESULTSBased on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.CONCLUSIONSTCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC. |
---|---|
AbstractList | Ethnopharmacological relevance With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. Aim of the review In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. Materials and methods We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were ''lung cancer, '' ''traditional Chinese medicine, '' ''pharmacology, '' and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. Results: Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. Conclusions: TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC. Graphical abstract Image 1 With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were “lung cancer,” “traditional Chinese medicine,” “pharmacology,” and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC. With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.ETHNOPHARMACOLOGICAL RELEVANCEWith high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.AIM OF THE REVIEWIn this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.MATERIALS AND METHODSWe collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.RESULTSBased on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.CONCLUSIONSTCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC. |
ArticleNumber | 115748 |
Author | Liu, Deming Liu, Conghai Guo, Julie Wei, Zhicheng Sun, Xiaodong Zuo, Fang Chen, Jing |
Author_xml | – sequence: 1 givenname: Zhicheng surname: Wei fullname: Wei, Zhicheng – sequence: 2 givenname: Jing surname: Chen fullname: Chen, Jing – sequence: 3 givenname: Fang surname: Zuo fullname: Zuo, Fang – sequence: 4 givenname: Julie surname: Guo fullname: Guo, Julie – sequence: 5 givenname: Xiaodong surname: Sun fullname: Sun, Xiaodong – sequence: 6 givenname: Deming surname: Liu fullname: Liu, Deming – sequence: 7 givenname: Conghai surname: Liu fullname: Liu, Conghai |
BookMark | eNqNkU1PAyEQhonRxPrxA7xx9LKVAXah3kzjV6LxokdDKAwtzXa3AtX4792mnjyoJybM804y8xyR_a7vkJAzYGNg0Fwsx0tcjznjfAxQK6n3yAi04pWqldgnIyaUrrSScEiOcl4yxhRINiKvz8n6WGLf2ZZOF7HDjPQRfXRDSRc203lCW-i6L9iVOEDDl7Odj94WpD5t5pmGPtF20823DYfpkl7RhO8RP07IQbBtxtPv95i83Fw_T--qh6fb--nVQ-WElKUCLwJXMx8wqAAyTJhrPKvBz6SeqWEpx1FMeC2tZlYJ6VxoghcKUNQTCFock_Pd3HXq3zaYi1nF7LBtbYf9JhuuhagFq0XzN6q4AK4bPvkHCroRSoAcULVDXepzThiMi8Vuz1qSja0BZraazNIMmsxWk9lpGpLwI7lOcWXT5y-ZL2cnl9k |
CitedBy_id | crossref_primary_10_1186_s13020_024_00987_x crossref_primary_10_1002_cbdv_202401063 crossref_primary_10_1016_j_jep_2024_118785 crossref_primary_10_2147_IJN_S455407 crossref_primary_10_1186_s40001_024_01637_6 crossref_primary_10_1155_2023_3301605 crossref_primary_10_53941_ijddp_2024_100001 crossref_primary_10_1016_j_molstruc_2024_139403 crossref_primary_10_1186_s12943_025_02245_6 crossref_primary_10_1142_S0219519424400669 crossref_primary_10_1016_j_chmed_2024_03_004 crossref_primary_10_3389_fonc_2025_1471110 crossref_primary_10_1016_j_fitote_2025_106443 crossref_primary_10_1007_s00432_023_05572_7 crossref_primary_10_1016_j_intimp_2024_111784 crossref_primary_10_32388_RN42KM crossref_primary_10_1007_s42114_024_01197_7 crossref_primary_10_1007_s44211_024_00515_9 crossref_primary_10_1016_j_phymed_2024_156218 crossref_primary_10_3389_fpubh_2024_1466462 crossref_primary_10_3892_ijo_2025_5732 crossref_primary_10_1016_j_biopha_2024_116614 crossref_primary_10_1016_j_jpba_2024_116472 crossref_primary_10_2174_1385272827666230807150910 crossref_primary_10_3390_cancers15205048 crossref_primary_10_3389_fonc_2024_1429194 crossref_primary_10_1016_j_prmcm_2024_100381 crossref_primary_10_1142_S0192415X2350091X crossref_primary_10_1186_s40001_024_02187_7 crossref_primary_10_2147_COPD_S459814 crossref_primary_10_1002_adbi_202300610 crossref_primary_10_1016_j_bioorg_2025_108196 crossref_primary_10_1016_j_carpta_2025_100770 crossref_primary_10_3390_antiox13101179 crossref_primary_10_1186_s12906_023_04306_z crossref_primary_10_1166_jbmb_2024_2369 crossref_primary_10_3390_plants12030654 crossref_primary_10_1088_1748_605X_ad9aef crossref_primary_10_4251_wjgo_v16_i7_2988 crossref_primary_10_1097_HM9_0000000000000118 crossref_primary_10_1002_cbdv_202402976 crossref_primary_10_1111_aji_70054 crossref_primary_10_3389_fphar_2024_1522787 crossref_primary_10_1016_j_ijnurstu_2023_104612 crossref_primary_10_2147_CMAR_S451657 crossref_primary_10_3892_etm_2024_12397 crossref_primary_10_2147_IJN_S449181 crossref_primary_10_1007_s11655_023_3639_7 crossref_primary_10_2147_COPD_S498477 crossref_primary_10_1016_j_eswa_2025_126383 crossref_primary_10_1080_02770903_2024_2349599 crossref_primary_10_1155_2023_7944733 crossref_primary_10_1016_j_heliyon_2023_e16158 crossref_primary_10_1016_j_lfs_2024_123280 crossref_primary_10_1016_j_tranon_2024_102137 crossref_primary_10_1002_tox_24041 crossref_primary_10_1016_j_jep_2024_117702 crossref_primary_10_3390_ijms24108996 crossref_primary_10_1016_j_jep_2024_119126 crossref_primary_10_1016_j_jep_2024_119127 crossref_primary_10_1016_j_biopha_2024_116833 crossref_primary_10_2147_IJN_S479675 crossref_primary_10_1002_cbdv_202401899 crossref_primary_10_1016_j_microc_2023_109446 crossref_primary_10_3390_ph16020302 crossref_primary_10_3892_ol_2025_14954 crossref_primary_10_1016_j_jri_2023_104154 crossref_primary_10_1007_s43450_025_00636_w |
Cites_doi | 10.1111/jcmm.15314 10.1002/ptr.6392 10.1186/s12885-016-2921-x 10.1038/s41401-021-00657-w 10.2147/OTT.S221228 10.3389/fphar.2020.00391 10.3390/ijms222212496 10.1038/s41419-021-03600-3 10.1002/1878-0261.12155 10.3892/ijo.2020.5079 10.1016/j.ijbiomac.2020.09.227 10.1016/j.taap.2016.09.009 10.1016/j.jep.2016.11.004 10.2174/1389557520666200212104742 10.1186/s12935-017-0487-6 10.21873/anticanres.11187 10.3727/096504018X15344989701565 10.1158/1535-7163.MCT-17-0384 10.1016/j.gene.2020.144556 10.1016/j.intimp.2020.107357 10.4062/biomolther.2017.097 10.1111/1759-7714.13328 10.1186/s13046-018-0878-0 10.3390/molecules25010224 10.7150/jca.30361 10.3390/ijms22126211 10.3390/molecules27175469 10.1016/j.lfs.2019.01.046 10.3892/mmr.2017.7633 10.1038/onc.2016.195 10.18632/oncotarget.9566 10.3892/ijo.2016.3488 10.3892/mmr.2016.6008 10.1007/s10529-021-03081-6 10.3390/molecules26041056 10.1038/s41388-020-01474-x 10.3322/caac.21660 10.1039/D0FO01177K 10.3390/ijms18081761 10.6004/jnccn.2021.0013 10.5114/aoms.2019.85152 10.1016/j.phymed.2022.153933 10.1016/j.taap.2019.114662 10.1158/1940-6207.CAPR-16-0129 10.3390/cells9092114 10.1002/JLB.5MA1120-776RR 10.1111/jcmm.15106 10.3390/ijms21093080 10.18632/oncotarget.17648 10.1142/S0192415X20500111 10.3390/cancers11010049 10.2174/1871520621666210903163407 10.1080/19336918.2016.1259058 10.3389/fphar.2018.00837 10.1002/ptr.6584 10.1007/s13402-020-00557-x 10.1002/tox.22214 10.1016/j.ijbiomac.2017.08.033 10.1159/000475438 10.1186/s13046-019-1234-8 10.1186/s12935-020-01711-z 10.1016/j.fitote.2020.104484 10.3390/cells9061451 10.1200/JCO.21.01589 10.1021/acs.jafc.6b04453 10.7150/jca.25921 10.1007/s00280-020-04050-y 10.1016/j.lfs.2019.06.003 10.1111/jcmm.13909 10.1001/jamaoncol.2016.5829 10.1159/000453175 10.1016/j.jtho.2021.07.018 10.1248/cpb.c19-00851 10.1186/s12967-018-1543-2 10.1016/j.acthis.2019.06.008 10.3390/ijms19092835 10.1017/erm.2021.15 10.1016/j.redox.2017.03.009 10.1177/0300060520937163 10.1042/BSR20193959 10.3389/fonc.2019.00769 10.2217/fon-2016-0437 10.1016/j.fct.2017.10.058 10.6004/jnccn.2021.0058 10.3390/nu11122989 10.1186/s12943-018-0781-5 10.1002/tox.22325 10.1016/j.yexcr.2016.11.002 10.1016/j.canlet.2021.05.019 10.4162/nrp.2020.14.2.127 10.1002/ijc.33588 10.3389/fphar.2018.00092 10.3892/mmr.2021.12429 10.1177/1010428317697555 10.3390/ijms21030758 10.3389/fphar.2018.00434 10.1097/CAD.0000000000000537 10.1016/j.phymed.2021.153786 10.1016/j.apjtm.2016.09.003 10.3389/fphar.2017.00199 10.2147/OTT.S246606 10.3892/mmr.2015.4493 10.1016/j.yexmp.2019.104285 10.2147/OTT.S266073 10.1016/j.lfs.2020.118211 10.21037/atm-21-5975 10.1016/j.phymed.2018.04.058 10.1038/s41572-020-00235-0 10.3389/fgene.2019.00809 10.3892/or.2016.5296 10.31083/j.fbl2706192 10.1097/CCO.0000000000000703 10.1016/j.lfs.2018.05.012 10.1002/JLB.6MA0720-344RRR 10.5582/bst.2021.01318 10.3892/ol.2016.4295 10.3390/ijms19082378 10.18632/oncotarget.15879 10.21037/tlcr-20-467 10.1111/bph.14652 10.3892/mmr.2016.4844 10.18632/oncotarget.27672 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jep.2022.115748 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1872-7573 |
ExternalDocumentID | 10_1016_j_jep_2022_115748 |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYWO AAYXX ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HX~ HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSH SSP SSZ T5K TN5 WUQ ZGI ~G- ~KM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c344t-1d3f27bdfef7f14f90c6d051db48b7202c2e39254a80a734ccf6fd371e3591f83 |
ISSN | 0378-8741 1872-7573 |
IngestDate | Fri Jul 11 03:06:54 EDT 2025 Fri Jul 11 05:57:12 EDT 2025 Tue Aug 05 10:52:18 EDT 2025 Thu Apr 24 22:57:13 EDT 2025 Tue Jul 01 03:09:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | NA |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-1d3f27bdfef7f14f90c6d051db48b7202c2e39254a80a734ccf6fd371e3591f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2718637314 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2833530536 proquest_miscellaneous_2723128629 proquest_miscellaneous_2718637314 crossref_citationtrail_10_1016_j_jep_2022_115748 crossref_primary_10_1016_j_jep_2022_115748 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-10 |
PublicationDateYYYYMMDD | 2023-01-10 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of ethnopharmacology |
PublicationYear | 2023 |
References | Bai (10.1016/j.jep.2022.115748_bib2) 2021; 109 Li (10.1016/j.jep.2022.115748_bib65) 2016; 13 Baumgartner (10.1016/j.jep.2022.115748_bib3) 2018; 17 Wang (10.1016/j.jep.2022.115748_bib108) 2022; 27 Montero (10.1016/j.jep.2022.115748_bib82) 2021; 22 Lin (10.1016/j.jep.2022.115748_bib69) 2020; 10 Hassanein (10.1016/j.jep.2022.115748_bib33) 2021; 22 Sun (10.1016/j.jep.2022.115748_bib98) 2018; 9 Wu (10.1016/j.jep.2022.115748_bib114) 2020; 48 Kim (10.1016/j.jep.2022.115748_bib54) 2017; 37 Huang (10.1016/j.jep.2022.115748_bib42) 2016; 194 Liu (10.1016/j.jep.2022.115748_bib75) 2018; 15 Yan (10.1016/j.jep.2022.115748_bib124) 2020; 258 Rudin (10.1016/j.jep.2022.115748_bib89) 2021; 7 Chen (10.1016/j.jep.2022.115748_bib11) 2021; 94 Hnit (10.1016/j.jep.2022.115748_bib37) 2021; 141 Wang (10.1016/j.jep.2022.115748_bib109) 2019; 10 Tan (10.1016/j.jep.2022.115748_bib101) 2020; 11 Liu (10.1016/j.jep.2022.115748_bib72) 2019; 23 Su (10.1016/j.jep.2022.115748_bib96) 2018; 9 Liu (10.1016/j.jep.2022.115748_bib74) 2017; 20 Li (10.1016/j.jep.2022.115748_bib62) 2016; 9 Sun (10.1016/j.jep.2022.115748_bib99) 2021; 110 Li (10.1016/j.jep.2022.115748_bib66) 2021; 44 Wei (10.1016/j.jep.2022.115748_bib110) 2020; 43 Jin (10.1016/j.jep.2022.115748_bib49) 2021; 43 Zhao (10.1016/j.jep.2022.115748_bib138) 2021; 11 Hsu (10.1016/j.jep.2022.115748_bib39) 2020; 165 Liu (10.1016/j.jep.2022.115748_bib73) 2020; 39 Zhao (10.1016/j.jep.2022.115748_bib139) 2019; 25 Dai (10.1016/j.jep.2022.115748_bib17) 2017; 39 Song (10.1016/j.jep.2022.115748_bib95) 2017; 8 Corveloni (10.1016/j.jep.2022.115748_bib16) 2020; 83 Pearson (10.1016/j.jep.2022.115748_bib86) 2018; 17 Giroux-Leprieur (10.1016/j.jep.2022.115748_bib30) 2018; 19 Zhang (10.1016/j.jep.2022.115748_bib131) 2021; 12 Abdul Satar (10.1016/j.jep.2022.115748_bib1) 2021; 26 Zhu (10.1016/j.jep.2022.115748_bib141) 2019; 221 Li (10.1016/j.jep.2022.115748_bib58) 2022; 22 Chen (10.1016/j.jep.2022.115748_bib12) 2019; 176 Huang (10.1016/j.jep.2022.115748_bib43) 2020; 48 Wu (10.1016/j.jep.2022.115748_bib115) 2017; 32 Herzog (10.1016/j.jep.2022.115748_bib36) 2021; 16 Xu (10.1016/j.jep.2022.115748_bib119) 2020; 24 Wang (10.1016/j.jep.2022.115748_bib107) 2019; 12 Jung (10.1016/j.jep.2022.115748_bib50) 2019; 11 Gao (10.1016/j.jep.2022.115748_bib27) 2020; 11 Zhang (10.1016/j.jep.2022.115748_bib128) 2020; 13 Chen (10.1016/j.jep.2022.115748_bib13) 2021; 9 Mirzaei (10.1016/j.jep.2022.115748_bib81) 2021; 23 Xu (10.1016/j.jep.2022.115748_bib118) 2018; 37 Chiu (10.1016/j.jep.2022.115748_bib15) 2017; 36 Tang (10.1016/j.jep.2022.115748_bib102) 2019; 10 Wang (10.1016/j.jep.2022.115748_bib106) 2020; 43 Yang (10.1016/j.jep.2022.115748_bib126) 2019; 110 Han (10.1016/j.jep.2022.115748_bib32) 2021; 12 Mui (10.1016/j.jep.2022.115748_bib83) 2022 Sun (10.1016/j.jep.2022.115748_bib97) 2018; 9 Gong (10.1016/j.jep.2022.115748_bib31) 2018; 16 Liu (10.1016/j.jep.2022.115748_bib71) 2022; 2022 Cao (10.1016/j.jep.2022.115748_bib5) 2019; 379 Park (10.1016/j.jep.2022.115748_bib85) 2018; 19 Zhang (10.1016/j.jep.2022.115748_bib132) 2017; 16 He (10.1016/j.jep.2022.115748_bib34) 2016; 40 Li (10.1016/j.jep.2022.115748_bib63) 2018; 16 Dong (10.1016/j.jep.2022.115748_bib21) 2021; 76 Zhu (10.1016/j.jep.2022.115748_bib142) 2020; 742 Yang (10.1016/j.jep.2022.115748_bib125) 2019; 9 Luo (10.1016/j.jep.2022.115748_bib76) 2017; 8 Kim (10.1016/j.jep.2022.115748_bib55) 2020; 40 Philips (10.1016/j.jep.2022.115748_bib87) 2020; 11 Zhang (10.1016/j.jep.2022.115748_bib135) 2021; 24 Chang (10.1016/j.jep.2022.115748_bib7) 2020; 9 Ganti (10.1016/j.jep.2022.115748_bib26) 2021; 19 Bose (10.1016/j.jep.2022.115748_bib4) 2020; 9 Jeng (10.1016/j.jep.2022.115748_bib45) 2020; 21 Doheny (10.1016/j.jep.2022.115748_bib20) 2020; 9 Sung (10.1016/j.jep.2022.115748_bib100) 2021; 71 Zheng (10.1016/j.jep.2022.115748_bib140) 2017; 15 Deng (10.1016/j.jep.2022.115748_bib18) 2021; 42 Kang (10.1016/j.jep.2022.115748_bib53) 2017; 41 Zhang (10.1016/j.jep.2022.115748_bib137) 2020; 16 Sigismund (10.1016/j.jep.2022.115748_bib93) 2018; 12 Tang (10.1016/j.jep.2022.115748_bib104) 2017; 12 Mi (10.1016/j.jep.2022.115748_bib80) 2016; 310 Li (10.1016/j.jep.2022.115748_bib64) 2016; 349 Jurisic (10.1016/j.jep.2022.115748_bib51) 2018 Kalaiarasi (10.1016/j.jep.2022.115748_bib52) 2016; 64 Shen (10.1016/j.jep.2022.115748_bib92) 2020; 21 Zhang (10.1016/j.jep.2022.115748_bib129) 2022; 95 Seok (10.1016/j.jep.2022.115748_bib91) 2018; 111 Xiao (10.1016/j.jep.2022.115748_bib116) 2016; 48 Zou (10.1016/j.jep.2022.115748_bib143) 2020; 24 Chaft (10.1016/j.jep.2022.115748_bib6) 2022; 40 Chen (10.1016/j.jep.2022.115748_bib8) 2018; 9 Salazar (10.1016/j.jep.2022.115748_bib90) 2017; 3 Zhang (10.1016/j.jep.2022.115748_bib134) 2021; 15 Li (10.1016/j.jep.2022.115748_bib57) 2020; 43 Dey (10.1016/j.jep.2022.115748_bib19) 2018; 26 Liao (10.1016/j.jep.2022.115748_bib67) 2019; 33 Zhang (10.1016/j.jep.2022.115748_bib130) 2022; 98 Liao (10.1016/j.jep.2022.115748_bib68) 2020; 34 Wu (10.1016/j.jep.2022.115748_bib112) 2021; 33 Duan (10.1016/j.jep.2022.115748_bib22) 2020; 11 Li (10.1016/j.jep.2022.115748_bib60) 2019; 231 Li (10.1016/j.jep.2022.115748_bib61) 2021; 21 Hua (10.1016/j.jep.2022.115748_bib41) 2016; 11 Chen (10.1016/j.jep.2022.115748_bib9) 2020; 86 Li (10.1016/j.jep.2022.115748_bib56) 2016; 7 Li (10.1016/j.jep.2022.115748_bib59) 2018; 15 Qiu (10.1016/j.jep.2022.115748_bib88) 2017; 18 Ge (10.1016/j.jep.2022.115748_bib29) 2020; 68 Feng (10.1016/j.jep.2022.115748_bib24) 2017; 11 Jia (10.1016/j.jep.2022.115748_bib46) 2019; 27 Chiu (10.1016/j.jep.2022.115748_bib14) 2017; 8 Xue (10.1016/j.jep.2022.115748_bib122) 2018; 15 Wu (10.1016/j.jep.2022.115748_bib113) 2018; 106 Ettinger (10.1016/j.jep.2022.115748_bib23) 2021; 19 Hsu (10.1016/j.jep.2022.115748_bib40) 2017; 32 Izdebska (10.1016/j.jep.2022.115748_bib44) 2019; 121 Hsia (10.1016/j.jep.2022.115748_bib38) 2016; 36 Ferlay (10.1016/j.jep.2022.115748_bib25) 2021; 149 Ma (10.1016/j.jep.2022.115748_bib77) 2022; 12 Masraksa (10.1016/j.jep.2022.115748_bib79) 2020; 14 Gao (10.1016/j.jep.2022.115748_bib28) 2020; 13 Wan Mohd Tajuddin (10.1016/j.jep.2022.115748_bib105) 2019; 11 Mao (10.1016/j.jep.2022.115748_bib78) 2018; 18 Zhang (10.1016/j.jep.2022.115748_bib133) 2018; 48 Zhang (10.1016/j.jep.2022.115748_bib136) 2017; 13 Pan (10.1016/j.jep.2022.115748_bib84) 2017; 10 Wu (10.1016/j.jep.2022.115748_bib111) 2017; 17 Jiang (10.1016/j.jep.2022.115748_bib47) 2016; 13 Liu (10.1016/j.jep.2022.115748_bib70) 2020; 141 Xie (10.1016/j.jep.2022.115748_bib117) 2016; 16 Chen (10.1016/j.jep.2022.115748_bib10) 2019; 38 Xu (10.1016/j.jep.2022.115748_bib121) 2020; 57 Xu (10.1016/j.jep.2022.115748_bib120) 2020; 20 Yan (10.1016/j.jep.2022.115748_bib123) 2022; 27 Yuwen (10.1016/j.jep.2022.115748_bib127) 2017; 28 Heng (10.1016/j.jep.2022.115748_bib35) 2020; 25 Tang (10.1016/j.jep.2022.115748_bib103) 2018; 204 Singh (10.1016/j.jep.2022.115748_bib94) 2020; 20 Jiang (10.1016/j.jep.2022.115748_bib48) 2021; 515 |
References_xml | – volume: 24 start-page: 6644 issue: 12 year: 2020 ident: 10.1016/j.jep.2022.115748_bib143 article-title: Endogenous thrombopoietin promotes non-small-cell lung carcinoma cell proliferation and migration by regulating EGFR signalling publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.15314 – volume: 15 start-page: 7409 issue: 5 year: 2018 ident: 10.1016/j.jep.2022.115748_bib59 article-title: Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways publication-title: Oncol. Lett. – volume: 33 start-page: 2298 issue: 9 year: 2019 ident: 10.1016/j.jep.2022.115748_bib67 article-title: Tanshinone IIA combined with cisplatin synergistically inhibits non-small-cell lung cancer in vitro and in vivo via down-regulating the phosphatidylinositol 3-kinase/Akt signalling pathway publication-title: Phytother Res. : PTR doi: 10.1002/ptr.6392 – volume: 16 start-page: 899 issue: 1 year: 2016 ident: 10.1016/j.jep.2022.115748_bib117 article-title: Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way publication-title: BMC Cancer doi: 10.1186/s12885-016-2921-x – volume: 42 start-page: 1486 issue: 9 year: 2021 ident: 10.1016/j.jep.2022.115748_bib18 article-title: Triptolide suppresses the growth and metastasis of non-small cell lung cancer by inhibiting beta-catenin-mediated epithelial-mesenchymal transition publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-021-00657-w – volume: 12 start-page: 9355 year: 2019 ident: 10.1016/j.jep.2022.115748_bib107 article-title: Tanshinone IIA reverses gefitinib-resistance in human non-small-cell lung cancer via regulation of VEGFR/akt pathway publication-title: OncoTargets Ther. doi: 10.2147/OTT.S221228 – volume: 11 start-page: 391 year: 2020 ident: 10.1016/j.jep.2022.115748_bib27 article-title: A novel benzofuran derivative moracin N induces autophagy and apoptosis through ROS generation in lung cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00391 – volume: 22 issue: 22 year: 2021 ident: 10.1016/j.jep.2022.115748_bib33 article-title: Cell behavior of non-small cell lung cancer is at EGFR and MicroRNAs hands publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222212496 – volume: 83 start-page: 412 issue: 10 year: 2020 ident: 10.1016/j.jep.2022.115748_bib16 article-title: Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells publication-title: J. Toxicol. Environ. Health – volume: 12 start-page: 384 issue: 4 year: 2021 ident: 10.1016/j.jep.2022.115748_bib32 article-title: WBP2 negatively regulates the Hippo pathway by competitively binding to WWC3 with LATS1 to promote non-small cell lung cancer progression publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03600-3 – volume: 12 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.jep.2022.115748_bib93 article-title: Emerging functions of the EGFR in cancer publication-title: Mol Oncol doi: 10.1002/1878-0261.12155 – volume: 2022 year: 2022 ident: 10.1016/j.jep.2022.115748_bib71 article-title: Rhein inhibits the progression of chemoresistant lung cancer cell lines via the stat3/snail/MMP2/MMP9 pathway publication-title: BioMed Res. Int. – volume: 12 year: 2022 ident: 10.1016/j.jep.2022.115748_bib77 article-title: Molecular mechanisms involving the sonic hedgehog pathway in lung cancer therapy: recent advances publication-title: Front. Oncol. – volume: 57 start-page: 550 issue: 2 year: 2020 ident: 10.1016/j.jep.2022.115748_bib121 article-title: Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROSregulated MAPK, STAT3 and NFkappaB signaling pathways publication-title: Int. J. Oncol. doi: 10.3892/ijo.2020.5079 – volume: 165 start-page: 1604 issue: Pt A year: 2020 ident: 10.1016/j.jep.2022.115748_bib39 article-title: Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.09.227 – volume: 43 start-page: 1863 issue: 6 year: 2020 ident: 10.1016/j.jep.2022.115748_bib106 article-title: Triptolide interrupts rRNA synthesis and induces the RPL23MDM2p53 pathway to repress lung cancer cells publication-title: Oncol. Rep. – volume: 310 start-page: 78 year: 2016 ident: 10.1016/j.jep.2022.115748_bib80 article-title: Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2016.09.009 – volume: 194 start-page: 1043 year: 2016 ident: 10.1016/j.jep.2022.115748_bib42 article-title: Bufalin inhibits gefitinib resistant NCI-H460 human lung cancer cell migration and invasion in vitro publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2016.11.004 – volume: 20 start-page: 942 issue: 11 year: 2020 ident: 10.1016/j.jep.2022.115748_bib94 article-title: Medicinal potential of heterocyclic compounds from diverse natural sources for the management of cancer publication-title: Mini Rev. Med. Chem. doi: 10.2174/1389557520666200212104742 – volume: 17 start-page: 115 year: 2017 ident: 10.1016/j.jep.2022.115748_bib111 article-title: Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells publication-title: Cancer Cell Int. doi: 10.1186/s12935-017-0487-6 – volume: 36 start-page: 5989 issue: 11 year: 2016 ident: 10.1016/j.jep.2022.115748_bib38 article-title: Cantharidin impairs cell migration and invasion of human lung cancer NCI-H460 cells via UPA and MAPK signaling pathways publication-title: Anticancer Res. doi: 10.21873/anticanres.11187 – volume: 15 start-page: 1869 issue: 2 year: 2018 ident: 10.1016/j.jep.2022.115748_bib122 article-title: Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells publication-title: Oncol. Lett. – volume: 27 start-page: 503 issue: 4 year: 2019 ident: 10.1016/j.jep.2022.115748_bib46 article-title: Astragaloside IV inhibits the progression of non-small cell lung cancer through the akt/GSK-3beta/beta-catenin pathway publication-title: Oncol. Res. doi: 10.3727/096504018X15344989701565 – volume: 17 start-page: 204 issue: 1 year: 2018 ident: 10.1016/j.jep.2022.115748_bib86 article-title: Overcoming resistance to cetuximab with honokiol, A small-molecule polyphenol publication-title: Mol. Cancer Therapeut. doi: 10.1158/1535-7163.MCT-17-0384 – volume: 742 year: 2020 ident: 10.1016/j.jep.2022.115748_bib142 article-title: Sophoridine inhibits lung cancer cell growth and enhances cisplatin sensitivity through activation of the p53 and Hippo signaling pathways publication-title: Gene doi: 10.1016/j.gene.2020.144556 – volume: 94 year: 2021 ident: 10.1016/j.jep.2022.115748_bib11 article-title: Isovitexin potentiated the antitumor activity of cisplatin by inhibiting the glucose metabolism of lung cancer cells and reduced cisplatin-induced immunotoxicity in mice publication-title: Int. Immunopharm. doi: 10.1016/j.intimp.2020.107357 – volume: 26 start-page: 409 issue: 4 year: 2018 ident: 10.1016/j.jep.2022.115748_bib19 article-title: Anti-proliferative activities of vasicinone on lung carcinoma cells mediated via activation of both mitochondria-dependent and independent pathways publication-title: Biomol Ther (Seoul) doi: 10.4062/biomolther.2017.097 – volume: 11 start-page: 511 issue: 3 year: 2020 ident: 10.1016/j.jep.2022.115748_bib101 article-title: Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC) publication-title: Thorac Cancer doi: 10.1111/1759-7714.13328 – volume: 37 start-page: 207 issue: 1 year: 2018 ident: 10.1016/j.jep.2022.115748_bib118 article-title: Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling publication-title: J. Exp. Clin. Cancer Res. : CR (Clim. Res.) doi: 10.1186/s13046-018-0878-0 – volume: 43 start-page: 1986 issue: 6 year: 2020 ident: 10.1016/j.jep.2022.115748_bib110 article-title: Costunolide induces apoptosis and inhibits migration and invasion in H1299 lung cancer cells publication-title: Oncol. Rep. – volume: 25 start-page: 224 issue: 1 year: 2020 ident: 10.1016/j.jep.2022.115748_bib35 article-title: Chelerythrine chloride downregulates beta-catenin and inhibits stem cell properties of non-small cell lung carcinoma publication-title: Molecules doi: 10.3390/molecules25010224 – volume: 10 start-page: 6666 issue: 26 year: 2019 ident: 10.1016/j.jep.2022.115748_bib102 article-title: The effects and mechanisms by which saikosaponin-D enhances the sensitivity of human non-small cell lung cancer cells to gefitinib publication-title: J. Cancer doi: 10.7150/jca.30361 – volume: 22 start-page: 6211 issue: 12 year: 2021 ident: 10.1016/j.jep.2022.115748_bib82 article-title: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22126211 – volume: 27 issue: 17 year: 2022 ident: 10.1016/j.jep.2022.115748_bib123 article-title: Ajuforrestin A, an abietane diterpenoid from ajuga ovalifolia var. calanthe, induces A549 cell apoptosis by targeting SHP2 publication-title: Molecules doi: 10.3390/molecules27175469 – volume: 221 start-page: 204 year: 2019 ident: 10.1016/j.jep.2022.115748_bib141 article-title: Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells publication-title: Life Sci. doi: 10.1016/j.lfs.2019.01.046 – volume: 16 start-page: 8549 issue: 6 year: 2017 ident: 10.1016/j.jep.2022.115748_bib132 article-title: Baicalin potentiates TRAILinduced apoptosis through p38 MAPK activation and intracellular reactive oxygen species production publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2017.7633 – volume: 36 start-page: 242 issue: 2 year: 2017 ident: 10.1016/j.jep.2022.115748_bib15 article-title: The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids publication-title: Oncogene doi: 10.1038/onc.2016.195 – volume: 18 start-page: 3041 issue: 3 year: 2018 ident: 10.1016/j.jep.2022.115748_bib78 article-title: Triptolide exhibits antitumor effects by reversing hypermethylation of WIF1 in lung cancer cells publication-title: Mol. Med. Rep. – volume: 7 start-page: 41715 issue: 27 year: 2016 ident: 10.1016/j.jep.2022.115748_bib56 article-title: Associations between genetic variants located in mature microRNAs and risk of lung cancer publication-title: Oncotarget doi: 10.18632/oncotarget.9566 – volume: 48 start-page: 2608 issue: 6 year: 2016 ident: 10.1016/j.jep.2022.115748_bib116 article-title: Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3488 – volume: 15 start-page: 375 issue: 1 year: 2017 ident: 10.1016/j.jep.2022.115748_bib140 article-title: Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2016.6008 – volume: 43 start-page: 1229 issue: 6 year: 2021 ident: 10.1016/j.jep.2022.115748_bib49 article-title: Bufalin inhibits the malignant development of non-small cell lung cancer by mediating the circ_0046264/miR-522-3p axis publication-title: Biotechnol. Lett. doi: 10.1007/s10529-021-03081-6 – volume: 26 start-page: 1056 issue: 4 year: 2021 ident: 10.1016/j.jep.2022.115748_bib1 article-title: Synergistic roles of curcumin in sensitising the cisplatin effect on a cancer stem cell-like population derived from non-small cell lung cancer cell lines publication-title: Molecules doi: 10.3390/molecules26041056 – volume: 39 start-page: 6893 issue: 45 year: 2020 ident: 10.1016/j.jep.2022.115748_bib73 article-title: Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1alpha mediated XPC transcription publication-title: Oncogene doi: 10.1038/s41388-020-01474-x – volume: 16 start-page: 4859 issue: 6 year: 2018 ident: 10.1016/j.jep.2022.115748_bib63 article-title: Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2 publication-title: Exp. Ther. Med. – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 10.1016/j.jep.2022.115748_bib100 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA A Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 11 start-page: 6332 issue: 7 year: 2020 ident: 10.1016/j.jep.2022.115748_bib22 article-title: Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer publication-title: Food Funct. doi: 10.1039/D0FO01177K – volume: 18 start-page: 1761 issue: 8 year: 2017 ident: 10.1016/j.jep.2022.115748_bib88 article-title: Licochalcone A inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and er stress publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18081761 – volume: 25 start-page: 7864 year: 2019 ident: 10.1016/j.jep.2022.115748_bib139 article-title: Antiproliferative activity of carnosic acid is mediated via inhibition of cell migration and invasion, and suppression of phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway publication-title: Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. Int. Med. J. Exp. Clin. Res. – volume: 19 start-page: 254 issue: 3 year: 2021 ident: 10.1016/j.jep.2022.115748_bib23 article-title: NCCN guidelines insights: non-small cell lung cancer, version 2.2021 publication-title: J. Natl. Compr. Cancer Netw. doi: 10.6004/jnccn.2021.0013 – volume: 16 start-page: 446 issue: 2 year: 2020 ident: 10.1016/j.jep.2022.115748_bib137 article-title: Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2019.85152 – volume: 98 year: 2022 ident: 10.1016/j.jep.2022.115748_bib130 article-title: Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27 publication-title: Phytomedicine : Int. J. Phytotherp. Phytopharmacol. doi: 10.1016/j.phymed.2022.153933 – volume: 379 year: 2019 ident: 10.1016/j.jep.2022.115748_bib5 article-title: Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2019.114662 – volume: 10 start-page: 133 issue: 2 year: 2017 ident: 10.1016/j.jep.2022.115748_bib84 article-title: Honokiol decreases lung cancer metastasis through inhibition of the STAT3 signaling pathway publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-16-0129 – volume: 9 start-page: 2114 issue: 9 year: 2020 ident: 10.1016/j.jep.2022.115748_bib20 article-title: Hedgehog signaling and truncated GLI1 in cancer publication-title: Cells doi: 10.3390/cells9092114 – volume: 110 start-page: 315 issue: 2 year: 2021 ident: 10.1016/j.jep.2022.115748_bib99 article-title: Tanshinone IIA enhances susceptibility of non-small cell lung cancer cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5 publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.5MA1120-776RR – volume: 24 start-page: 4480 issue: 8 year: 2020 ident: 10.1016/j.jep.2022.115748_bib119 article-title: Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.15106 – volume: 21 start-page: 3080 issue: 9 year: 2020 ident: 10.1016/j.jep.2022.115748_bib92 article-title: Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21093080 – volume: 8 start-page: 47365 issue: 29 year: 2017 ident: 10.1016/j.jep.2022.115748_bib14 article-title: ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling activation in lung cancer metastasis publication-title: Oncotarget doi: 10.18632/oncotarget.17648 – volume: 48 start-page: 201 issue: 1 year: 2020 ident: 10.1016/j.jep.2022.115748_bib43 article-title: Isoorientin decreases cell migration via decreasing functional activity and molecular expression of proton-linked monocarboxylate transporters in human lung cancer cells publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X20500111 – volume: 11 start-page: 49 issue: 1 year: 2019 ident: 10.1016/j.jep.2022.115748_bib50 article-title: Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in a lung cancer xenograft model publication-title: Cancers doi: 10.3390/cancers11010049 – volume: 22 start-page: 1523 issue: 8 year: 2022 ident: 10.1016/j.jep.2022.115748_bib58 article-title: Cepharanthine regulates autophagy via activating the p38 signaling pathway in lung adenocarcinoma cells publication-title: Anti Cancer Agents Med. Chem. doi: 10.2174/1871520621666210903163407 – volume: 11 start-page: 464 issue: 5–6 year: 2017 ident: 10.1016/j.jep.2022.115748_bib24 article-title: Osthole inhibited TGF beta-induced epithelial-mesenchymal transition (EMT) by suppressing NF-kappaB mediated Snail activation in lung cancer A549 cells publication-title: Cell Adhes. Migrat. doi: 10.1080/19336918.2016.1259058 – volume: 20 start-page: 629 issue: 9 year: 2017 ident: 10.1016/j.jep.2022.115748_bib74 article-title: [Role of Hippo signaling pathway in lung cancer] publication-title: Chin. J. Lung Cancer – year: 2022 ident: 10.1016/j.jep.2022.115748_bib83 article-title: Targeting YAP1/TAZ in nonsmall-cell lung carcinoma: from molecular mechanisms to precision medicine publication-title: Int. J. Cancer – volume: 9 start-page: 837 year: 2018 ident: 10.1016/j.jep.2022.115748_bib8 article-title: Lico A causes er stress and apoptosis via up-regulating miR-144-3p in human lung cancer cell line H292 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00837 – volume: 34 start-page: 1142 issue: 5 year: 2020 ident: 10.1016/j.jep.2022.115748_bib68 article-title: Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway publication-title: Phytother Res. : PTR doi: 10.1002/ptr.6584 – volume: 44 start-page: 135 issue: 1 year: 2021 ident: 10.1016/j.jep.2022.115748_bib66 article-title: Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction publication-title: Cell. Oncol. doi: 10.1007/s13402-020-00557-x – volume: 32 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.jep.2022.115748_bib40 article-title: Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: roles of apoptotic cell death and H460 tumor xenografts model publication-title: Environ. Toxicol. doi: 10.1002/tox.22214 – volume: 106 start-page: 464 year: 2018 ident: 10.1016/j.jep.2022.115748_bib113 article-title: Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.08.033 – volume: 41 start-page: 2067 issue: 5 year: 2017 ident: 10.1016/j.jep.2022.115748_bib53 article-title: Degradation of mcl-1 through GSK-3beta activation regulates apoptosis induced by bufalin in non-small cell lung cancer H1975 cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000475438 – volume: 76 start-page: 538 issue: 11 year: 2021 ident: 10.1016/j.jep.2022.115748_bib21 article-title: Curcumin enhances drug sensitivity of gemcitabine-resistant lung cancer cells and inhibits metastasis publication-title: Pharmazie – volume: 38 start-page: 254 issue: 1 year: 2019 ident: 10.1016/j.jep.2022.115748_bib10 article-title: Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death publication-title: J. Exp. Clin. Cancer Res. : CR (Clim. Res.) doi: 10.1186/s13046-019-1234-8 – volume: 21 start-page: 19 issue: 1 year: 2021 ident: 10.1016/j.jep.2022.115748_bib61 article-title: Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01711-z – volume: 141 year: 2020 ident: 10.1016/j.jep.2022.115748_bib70 article-title: A new abietane diterpenoid from Ajuga ovalifolia var. calantha induces human lung epithelial A549 cell apoptosis by inhibiting SHP2 publication-title: Fitoterapia doi: 10.1016/j.fitote.2020.104484 – volume: 9 start-page: 1451 issue: 6 year: 2020 ident: 10.1016/j.jep.2022.115748_bib4 article-title: Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy publication-title: Cells doi: 10.3390/cells9061451 – volume: 40 start-page: 546 issue: 6 year: 2022 ident: 10.1016/j.jep.2022.115748_bib6 article-title: Preoperative and postoperative systemic therapy for operable non-small-cell lung cancer publication-title: J. Clin. Oncol. Off. J Am. Soc. Clin. Oncol. doi: 10.1200/JCO.21.01589 – volume: 64 start-page: 9542 issue: 50 year: 2016 ident: 10.1016/j.jep.2022.115748_bib52 article-title: Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b04453 – volume: 9 start-page: 3247 issue: 18 year: 2018 ident: 10.1016/j.jep.2022.115748_bib97 article-title: Scutellarin induces apoptosis and autophagy in NSCLC cells through ERK1/2 and AKT Signaling Pathways in vitro and in vivo publication-title: J. Cancer doi: 10.7150/jca.25921 – volume: 86 start-page: 151 issue: 1 year: 2020 ident: 10.1016/j.jep.2022.115748_bib9 article-title: Berberine chloride suppresses non-small cell lung cancer by deregulating Sin3A/TOP2B pathway in vitro and in vivo publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-020-04050-y – volume: 231 year: 2019 ident: 10.1016/j.jep.2022.115748_bib60 article-title: Lycorine inhibited the cell growth of non-small cell lung cancer by modulating the miR-186/CDK1 axis publication-title: Life Sci. doi: 10.1016/j.lfs.2019.06.003 – volume: 23 start-page: 205 issue: 1 year: 2019 ident: 10.1016/j.jep.2022.115748_bib72 article-title: MiR-520b promotes the progression of non-small cell lung cancer through activating Hedgehog pathway publication-title: J. Cell Mol. Med. doi: 10.1111/jcmm.13909 – volume: 3 start-page: 610 issue: 5 year: 2017 ident: 10.1016/j.jep.2022.115748_bib90 article-title: Association of delayed adjuvant chemotherapy with survival after lung cancer surgery publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2016.5829 – volume: 40 start-page: 1221 issue: 5 year: 2016 ident: 10.1016/j.jep.2022.115748_bib34 article-title: Astragaloside IV enhances cisplatin chemosensitivity in non-small cell lung cancer cells through inhibition of B7-H3 publication-title: Cell. Physiol. Biochem. doi: 10.1159/000453175 – volume: 16 start-page: 2002 issue: 12 year: 2021 ident: 10.1016/j.jep.2022.115748_bib36 article-title: Overcoming chemotherapy resistance in SCLC publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2021.07.018 – volume: 68 start-page: 244 issue: 3 year: 2020 ident: 10.1016/j.jep.2022.115748_bib29 article-title: 11-Methoxytabersonine induces necroptosis with autophagy through AMPK/mTOR and JNK pathways in human lung cancer cells publication-title: Chem. Pharm. Bull. (Tokyo) doi: 10.1248/cpb.c19-00851 – volume: 16 start-page: 164 issue: 1 year: 2018 ident: 10.1016/j.jep.2022.115748_bib31 article-title: Knockdown of KLF5 suppresses hypoxia-induced resistance to cisplatin in NSCLC cells by regulating HIF-1alpha-dependent glycolysis through inactivation of the PI3K/Akt/mTOR pathway publication-title: J. Transl. Med. doi: 10.1186/s12967-018-1543-2 – volume: 121 start-page: 724 issue: 6 year: 2019 ident: 10.1016/j.jep.2022.115748_bib44 article-title: The cytotoxic effect of oxymatrine on basic cellular processes of A549 non-small lung cancer cells publication-title: Acta Histochem. doi: 10.1016/j.acthis.2019.06.008 – volume: 19 start-page: 2835 issue: 9 year: 2018 ident: 10.1016/j.jep.2022.115748_bib30 article-title: Hedgehog signaling in lung cancer: from oncogenesis to cancer treatment resistance publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19092835 – volume: 23 start-page: e13 year: 2021 ident: 10.1016/j.jep.2022.115748_bib81 article-title: MicroRNAs regulating SOX2 in cancer progression and therapy response publication-title: Expet Rev. Mol. Med. doi: 10.1017/erm.2021.15 – volume: 12 start-page: 367 year: 2017 ident: 10.1016/j.jep.2022.115748_bib104 article-title: Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells publication-title: Redox Biol. doi: 10.1016/j.redox.2017.03.009 – volume: 48 issue: 9 year: 2020 ident: 10.1016/j.jep.2022.115748_bib114 article-title: Saikosaponin D inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by inhibiting the STAT3 pathway publication-title: J. Int. Med. Res. doi: 10.1177/0300060520937163 – volume: 40 issue: 4 year: 2020 ident: 10.1016/j.jep.2022.115748_bib55 article-title: Bufalin down-regulates Axl expression to inhibit cell proliferation and induce apoptosis in non-small-cell lung cancer cells publication-title: Biosci. Rep. doi: 10.1042/BSR20193959 – volume: 9 start-page: 769 year: 2019 ident: 10.1016/j.jep.2022.115748_bib125 article-title: Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-Dependent autophagosome accumulation in A549 cells publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00769 – volume: 13 start-page: 1173 issue: 13 year: 2017 ident: 10.1016/j.jep.2022.115748_bib136 article-title: Combination radiotherapy and cantharidin inhibits lung cancer growth through altering tumor infiltrating lymphocytes publication-title: Future Oncol. doi: 10.2217/fon-2016-0437 – volume: 111 start-page: 9 year: 2018 ident: 10.1016/j.jep.2022.115748_bib91 article-title: Piperlongumine decreases cell proliferation and the expression of cell cycle-associated proteins by inhibiting Akt pathway in human lung cancer cells publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2017.10.058 – volume: 19 start-page: 1441 issue: 12 year: 2021 ident: 10.1016/j.jep.2022.115748_bib26 article-title: Small cell lung cancer, version 2.2022, NCCN clinical practice guidelines in oncology publication-title: J. Natl. Compr. Cancer Netw. doi: 10.6004/jnccn.2021.0058 – volume: 11 start-page: 2898 issue: 12 year: 2019 ident: 10.1016/j.jep.2022.115748_bib105 article-title: Mechanistic understanding of curcumin's therapeutic effects in lung cancer publication-title: Nutrients doi: 10.3390/nu11122989 – year: 2018 ident: 10.1016/j.jep.2022.115748_bib51 article-title: Epidermal growth factor receptor gene in non-small-cell lung cancer: the importance of promoter polymorphism investigation publication-title: Anal. Cell Pathol. – volume: 11 year: 2021 ident: 10.1016/j.jep.2022.115748_bib138 article-title: Sophoridine inhibits the tumour growth of non-small lung cancer by inducing macrophages M1 polarisation via MAPK-mediated inflammatory pathway publication-title: Front. Oncol. – volume: 17 start-page: 44 issue: 1 year: 2018 ident: 10.1016/j.jep.2022.115748_bib3 article-title: miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer publication-title: Mol. Cancer doi: 10.1186/s12943-018-0781-5 – volume: 32 start-page: 1305 issue: 4 year: 2017 ident: 10.1016/j.jep.2022.115748_bib115 article-title: Bufalin induces apoptosis in vitro and has Antitumor activity against human lung cancer xenografts in vivo publication-title: Environ. Toxicol. doi: 10.1002/tox.22325 – volume: 349 start-page: 320 issue: 2 year: 2016 ident: 10.1016/j.jep.2022.115748_bib64 article-title: Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2016.11.002 – volume: 515 start-page: 36 year: 2021 ident: 10.1016/j.jep.2022.115748_bib48 article-title: Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer publication-title: Cancer Lett. doi: 10.1016/j.canlet.2021.05.019 – volume: 14 start-page: 127 issue: 2 year: 2020 ident: 10.1016/j.jep.2022.115748_bib79 article-title: Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway publication-title: Nutr Res Pract doi: 10.4162/nrp.2020.14.2.127 – volume: 149 start-page: 778 issue: 4 year: 2021 ident: 10.1016/j.jep.2022.115748_bib25 article-title: Cancer statistics for the year 2020: an overview publication-title: Int. J. Cancer. doi: 10.1002/ijc.33588 – volume: 9 start-page: 92 year: 2018 ident: 10.1016/j.jep.2022.115748_bib98 article-title: Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00092 – volume: 24 start-page: 789 issue: 5 year: 2021 ident: 10.1016/j.jep.2022.115748_bib135 article-title: Inhibin betaA is an independent prognostic factor that promotes invasion via Hippo signaling in nonsmall cell lung cancer publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2021.12429 – volume: 12 year: 2021 ident: 10.1016/j.jep.2022.115748_bib131 article-title: Andrographolide induces noxa-dependent apoptosis by transactivating ATF4 in human lung adenocarcinoma cells publication-title: Front. Pharmacol. – volume: 39 issue: 4 year: 2017 ident: 10.1016/j.jep.2022.115748_bib17 article-title: Astragaloside IV sensitizes non-small cell lung cancer cells to gefitinib potentially via regulation of SIRT6 publication-title: Tumour Biol doi: 10.1177/1010428317697555 – volume: 21 issue: 3 year: 2020 ident: 10.1016/j.jep.2022.115748_bib45 article-title: Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21030758 – volume: 9 start-page: 434 year: 2018 ident: 10.1016/j.jep.2022.115748_bib96 article-title: Evodiamine, a novel NOTCH3 methylation stimulator, significantly suppresses lung carcinogenesis in vitro and in vivo publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00434 – volume: 15 start-page: 6527 issue: 5 year: 2018 ident: 10.1016/j.jep.2022.115748_bib75 article-title: Cantharidin suppresses cell growth and migration, and activates autophagy in human non-small cell lung cancer cells publication-title: Oncol. Lett. – volume: 28 start-page: 967 issue: 9 year: 2017 ident: 10.1016/j.jep.2022.115748_bib127 article-title: Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy publication-title: Anti Cancer Drugs doi: 10.1097/CAD.0000000000000537 – volume: 95 year: 2022 ident: 10.1016/j.jep.2022.115748_bib129 article-title: Emodin induces apoptosis and suppresses non-small-cell lung cancer growth via downregulation of sPLA2-IIa publication-title: Phytomedicine : Int. J. Phytotherp. Phytopharmacol. doi: 10.1016/j.phymed.2021.153786 – volume: 9 start-page: 1084 issue: 11 year: 2016 ident: 10.1016/j.jep.2022.115748_bib62 article-title: Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against Lewis mice with lung cancer publication-title: Asian Pac J Trop Med doi: 10.1016/j.apjtm.2016.09.003 – volume: 8 start-page: 199 year: 2017 ident: 10.1016/j.jep.2022.115748_bib76 article-title: Honokiol induces apoptosis, G1 arrest, and autophagy in KRAS mutant lung cancer cells publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00199 – volume: 13 start-page: 2757 year: 2020 ident: 10.1016/j.jep.2022.115748_bib28 article-title: Inhibition of EGFR signaling and activation of mitochondrial apoptosis contribute to tanshinone IIA-mediated tumor suppression in non-small cell lung cancer cells publication-title: OncoTargets Ther. doi: 10.2147/OTT.S246606 – volume: 13 start-page: 153 issue: 1 year: 2016 ident: 10.1016/j.jep.2022.115748_bib47 article-title: Triptolide reverses the Taxol resistance of lung adenocarcinoma by inhibiting the NF-kappaB signaling pathway and the expression of NF-kappaB-regulated drug-resistant genes publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4493 – volume: 110 year: 2019 ident: 10.1016/j.jep.2022.115748_bib126 article-title: Skullcapflavone I suppresses proliferation of human lung cancer cells via down-regulating microRNA-21 publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2019.104285 – volume: 13 start-page: 8951 year: 2020 ident: 10.1016/j.jep.2022.115748_bib128 article-title: Down-regulation of SREBP via PI3K/AKT/mTOR pathway inhibits the proliferation and invasion of non-small-cell lung cancer cells publication-title: OncoTargets Ther. doi: 10.2147/OTT.S266073 – volume: 20 start-page: 347 issue: 3 year: 2020 ident: 10.1016/j.jep.2022.115748_bib120 article-title: Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway publication-title: Bosn. J. Basic Med. Sci. – volume: 258 year: 2020 ident: 10.1016/j.jep.2022.115748_bib124 article-title: Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118211 – volume: 9 start-page: 1701 issue: 22 year: 2021 ident: 10.1016/j.jep.2022.115748_bib13 article-title: Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism publication-title: Ann. Transl. Med. doi: 10.21037/atm-21-5975 – volume: 48 start-page: 51 year: 2018 ident: 10.1016/j.jep.2022.115748_bib133 article-title: Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop publication-title: Phytomedicine : Int. J. Phytotherp. Phytopharmacol. doi: 10.1016/j.phymed.2018.04.058 – volume: 141 year: 2021 ident: 10.1016/j.jep.2022.115748_bib37 article-title: Agrimol B present in Agrimonia pilosa Ledeb impedes cell cycle progression of cancer cells through G0 state arrest publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie – volume: 7 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.jep.2022.115748_bib89 article-title: Small-cell lung cancer publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-020-00235-0 – volume: 10 start-page: 809 year: 2019 ident: 10.1016/j.jep.2022.115748_bib109 article-title: MicroRNA-608 promotes apoptosis in non-small cell lung cancer cells treated with doxorubicin through the inhibition of TFAP4 publication-title: Front. Genet. doi: 10.3389/fgene.2019.00809 – volume: 37 start-page: 777 issue: 2 year: 2017 ident: 10.1016/j.jep.2022.115748_bib54 article-title: Delphinidin inhibits angiogenesis through the suppression of HIF-1alpha and VEGF expression in A549 lung cancer cells publication-title: Oncol. Rep. doi: 10.3892/or.2016.5296 – volume: 27 start-page: 192 issue: 6 year: 2022 ident: 10.1016/j.jep.2022.115748_bib108 article-title: The role and mechanisms of action of natural compounds in the prevention and treatment of cancer and cancer metastasis publication-title: Front. Biosci. doi: 10.31083/j.fbl2706192 – volume: 33 start-page: 40 issue: 1 year: 2021 ident: 10.1016/j.jep.2022.115748_bib112 article-title: Lung cancer in China: current and prospect publication-title: Curr. Opin. Oncol. doi: 10.1097/CCO.0000000000000703 – volume: 204 start-page: 71 year: 2018 ident: 10.1016/j.jep.2022.115748_bib103 article-title: Shikonin enhances sensitization of gefitinib against wild-type EGFR non-small cell lung cancer via inhibition PKM2/stat3/cyclinD1 signal pathway publication-title: Life Sci. doi: 10.1016/j.lfs.2018.05.012 – volume: 109 start-page: 843 issue: 4 year: 2021 ident: 10.1016/j.jep.2022.115748_bib2 article-title: Inhibitory effect of sinomenine on lung cancer cells via negative regulation of alpha7 nicotinic acetylcholine receptor publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.6MA0720-344RRR – volume: 15 start-page: 283 issue: 5 year: 2021 ident: 10.1016/j.jep.2022.115748_bib134 article-title: The positive role of traditional Chinese medicine as an adjunctive therapy for cancer publication-title: Biosci Trends doi: 10.5582/bst.2021.01318 – volume: 43 start-page: 1569 issue: 5 year: 2020 ident: 10.1016/j.jep.2022.115748_bib57 article-title: Triptolide inhibits epithelialmesenchymal transition and induces apoptosis in gefitinibresistant lung cancer cells publication-title: Oncol. Rep. – volume: 11 start-page: 2780 issue: 4 year: 2016 ident: 10.1016/j.jep.2022.115748_bib41 article-title: Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells publication-title: Oncol. Lett. doi: 10.3892/ol.2016.4295 – volume: 19 start-page: 2378 issue: 8 year: 2018 ident: 10.1016/j.jep.2022.115748_bib85 article-title: Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19082378 – volume: 8 start-page: 26927 issue: 16 year: 2017 ident: 10.1016/j.jep.2022.115748_bib95 article-title: Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling publication-title: Oncotarget doi: 10.18632/oncotarget.15879 – volume: 9 start-page: 1379 issue: 4 year: 2020 ident: 10.1016/j.jep.2022.115748_bib7 article-title: Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell-maintenance factors and inducing apoptosis via the Hedgehog signaling blockade publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr-20-467 – volume: 176 start-page: 2079 issue: 12 year: 2019 ident: 10.1016/j.jep.2022.115748_bib12 article-title: Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14652 – volume: 13 start-page: 2763 issue: 3 year: 2016 ident: 10.1016/j.jep.2022.115748_bib65 article-title: Triptolide reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21 publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2016.4844 – volume: 11 start-page: 2793 issue: 28 year: 2020 ident: 10.1016/j.jep.2022.115748_bib87 article-title: Triptolide-induced apoptosis in non-small cell lung cancer via a novel miR204-5p/Caveolin-1/Akt-mediated pathway publication-title: Oncotarget doi: 10.18632/oncotarget.27672 – volume: 10 start-page: 3828 issue: 11 year: 2020 ident: 10.1016/j.jep.2022.115748_bib69 article-title: Resveratrol-mediated ADAM9 degradation decreases cancer progression and provides synergistic effects in combination with chemotherapy publication-title: Am J Cancer Res |
SSID | ssj0007140 |
Score | 2.6485481 |
SecondaryResourceType | review_article |
Snippet | With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face... Ethnopharmacological relevance With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 115748 |
SubjectTerms | apoptosis autophagy cell cycle chemical structure cytotoxicity drug resistance drug therapy Europe flavonoids human health lung neoplasms metastasis morbidity mortality neoplasm cells Oriental traditional medicine polyphenols terpenoids |
Title | Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review |
URI | https://www.proquest.com/docview/2718637314 https://www.proquest.com/docview/2723128629 https://www.proquest.com/docview/2833530536 |
Volume | 300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9swGBdbd9ll7MnaPdBg9LDUQZYUP3YLpV0pXdaDA7kMY8lSm1Ds4NiH9dC_fZ8sP-KthG4X4wg5Nt9PSN_z9yH0WRAvYXAQOZIK4nDPFU4ouHKI0IFWPBSkbtr3feadzfn5YrLoOwrW1SWlGMvbe-tK_gdVGANcTZXsPyDb_SkMwD3gC1dAGK4Pw7hI0mXjzDONsNVG2ciLUR2vk83oqnYArPPS5AQZVgBDRZ2lS2Pmj9KiuqrZGEY3lam8NfgXtlK96CMGfyuuqrzO8nVPed075dVyEOs4bis_Ou90lQ-Sib_Z3-fbrgdqEq-cJgm1KbkCEzTwLXNVu50yQrbWzWx67z5tXQar8UoZzlBKx4bzx1JuDjmxZz_i0_nFRRydLKLH6AkFY8D0qRjf9Yk8vi177T6mjV3XWXx_vGCofQwP31qjiJ6jZ41E8dTi-gI9UtlLdHhpBfvrCEd9adzmCB_iyy2Rv0I_t8DHDfi4BR8D-LgGH3fgYxjqwMc1-BjAxwZ8bMH_iqfYQv8azU9PouMzp-mV4UjGeem4KdPUF6lW2tcu1yGRXgobbip4IHyQgKQKVOEJTwKS-IxLqT2dMt9VbBK6OmBv0F6WZ-otwoz5oGXDbOaBNFUqQG6BTBLiKUklY_uItDKMZUMkb_qZ3MRtxuAqBrHHRuyxFfs--tI9srYsKrsmf2qBiWGvMwGsJFN5tYkpKFIefJ3Ld80Bi4WCnR7umGMqDeGgY97BA-a8Q0_7xf8e7ZVFpT6AJlqKj_VC_A3SiImE |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traditional+Chinese+Medicine+has+great+potential+as+candidate+drugs+for+lung+cancer%3A+A+review&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Wei%2C+Z&rft.au=Chen%2C+J&rft.au=Zuo%2C+F&rft.au=Guo%2C+J&rft.date=2023-01-10&rft.issn=0378-8741&rft.volume=300&rft.issue=NA&rft_id=info:doi/10.1016%2Fj.jep.2022.115748&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon |