Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review

With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, l...

Full description

Saved in:
Bibliographic Details
Published inJournal of ethnopharmacology Vol. 300; no. NA; p. 115748
Main Authors Wei, Zhicheng, Chen, Jing, Zuo, Fang, Guo, Julie, Sun, Xiaodong, Liu, Deming, Liu, Conghai
Format Journal Article
LanguageEnglish
Published 10.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.ETHNOPHARMACOLOGICAL RELEVANCEWith high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.AIM OF THE REVIEWIn this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.MATERIALS AND METHODSWe collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.RESULTSBased on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.CONCLUSIONSTCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
AbstractList Ethnopharmacological relevance With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. Aim of the review In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. Materials and methods We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were ''lung cancer, '' ''traditional Chinese medicine, '' ''pharmacology, '' and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. Results: Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. Conclusions: TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC. Graphical abstract Image 1
With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were “lung cancer,” “traditional Chinese medicine,” “pharmacology,” and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.ETHNOPHARMACOLOGICAL RELEVANCEWith high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM.In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.AIM OF THE REVIEWIn this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC.We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.MATERIALS AND METHODSWe collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers.Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.RESULTSBased on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients.TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.CONCLUSIONSTCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
ArticleNumber 115748
Author Liu, Deming
Liu, Conghai
Guo, Julie
Wei, Zhicheng
Sun, Xiaodong
Zuo, Fang
Chen, Jing
Author_xml – sequence: 1
  givenname: Zhicheng
  surname: Wei
  fullname: Wei, Zhicheng
– sequence: 2
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
– sequence: 3
  givenname: Fang
  surname: Zuo
  fullname: Zuo, Fang
– sequence: 4
  givenname: Julie
  surname: Guo
  fullname: Guo, Julie
– sequence: 5
  givenname: Xiaodong
  surname: Sun
  fullname: Sun, Xiaodong
– sequence: 6
  givenname: Deming
  surname: Liu
  fullname: Liu, Deming
– sequence: 7
  givenname: Conghai
  surname: Liu
  fullname: Liu, Conghai
BookMark eNqNkU1PAyEQhonRxPrxA7xx9LKVAXah3kzjV6LxokdDKAwtzXa3AtX4792mnjyoJybM804y8xyR_a7vkJAzYGNg0Fwsx0tcjznjfAxQK6n3yAi04pWqldgnIyaUrrSScEiOcl4yxhRINiKvz8n6WGLf2ZZOF7HDjPQRfXRDSRc203lCW-i6L9iVOEDDl7Odj94WpD5t5pmGPtF20823DYfpkl7RhO8RP07IQbBtxtPv95i83Fw_T--qh6fb--nVQ-WElKUCLwJXMx8wqAAyTJhrPKvBz6SeqWEpx1FMeC2tZlYJ6VxoghcKUNQTCFock_Pd3HXq3zaYi1nF7LBtbYf9JhuuhagFq0XzN6q4AK4bPvkHCroRSoAcULVDXepzThiMi8Vuz1qSja0BZraazNIMmsxWk9lpGpLwI7lOcWXT5y-ZL2cnl9k
CitedBy_id crossref_primary_10_1186_s13020_024_00987_x
crossref_primary_10_1002_cbdv_202401063
crossref_primary_10_1016_j_jep_2024_118785
crossref_primary_10_2147_IJN_S455407
crossref_primary_10_1186_s40001_024_01637_6
crossref_primary_10_1155_2023_3301605
crossref_primary_10_53941_ijddp_2024_100001
crossref_primary_10_1016_j_molstruc_2024_139403
crossref_primary_10_1186_s12943_025_02245_6
crossref_primary_10_1142_S0219519424400669
crossref_primary_10_1016_j_chmed_2024_03_004
crossref_primary_10_3389_fonc_2025_1471110
crossref_primary_10_1016_j_fitote_2025_106443
crossref_primary_10_1007_s00432_023_05572_7
crossref_primary_10_1016_j_intimp_2024_111784
crossref_primary_10_32388_RN42KM
crossref_primary_10_1007_s42114_024_01197_7
crossref_primary_10_1007_s44211_024_00515_9
crossref_primary_10_1016_j_phymed_2024_156218
crossref_primary_10_3389_fpubh_2024_1466462
crossref_primary_10_3892_ijo_2025_5732
crossref_primary_10_1016_j_biopha_2024_116614
crossref_primary_10_1016_j_jpba_2024_116472
crossref_primary_10_2174_1385272827666230807150910
crossref_primary_10_3390_cancers15205048
crossref_primary_10_3389_fonc_2024_1429194
crossref_primary_10_1016_j_prmcm_2024_100381
crossref_primary_10_1142_S0192415X2350091X
crossref_primary_10_1186_s40001_024_02187_7
crossref_primary_10_2147_COPD_S459814
crossref_primary_10_1002_adbi_202300610
crossref_primary_10_1016_j_bioorg_2025_108196
crossref_primary_10_1016_j_carpta_2025_100770
crossref_primary_10_3390_antiox13101179
crossref_primary_10_1186_s12906_023_04306_z
crossref_primary_10_1166_jbmb_2024_2369
crossref_primary_10_3390_plants12030654
crossref_primary_10_1088_1748_605X_ad9aef
crossref_primary_10_4251_wjgo_v16_i7_2988
crossref_primary_10_1097_HM9_0000000000000118
crossref_primary_10_1002_cbdv_202402976
crossref_primary_10_1111_aji_70054
crossref_primary_10_3389_fphar_2024_1522787
crossref_primary_10_1016_j_ijnurstu_2023_104612
crossref_primary_10_2147_CMAR_S451657
crossref_primary_10_3892_etm_2024_12397
crossref_primary_10_2147_IJN_S449181
crossref_primary_10_1007_s11655_023_3639_7
crossref_primary_10_2147_COPD_S498477
crossref_primary_10_1016_j_eswa_2025_126383
crossref_primary_10_1080_02770903_2024_2349599
crossref_primary_10_1155_2023_7944733
crossref_primary_10_1016_j_heliyon_2023_e16158
crossref_primary_10_1016_j_lfs_2024_123280
crossref_primary_10_1016_j_tranon_2024_102137
crossref_primary_10_1002_tox_24041
crossref_primary_10_1016_j_jep_2024_117702
crossref_primary_10_3390_ijms24108996
crossref_primary_10_1016_j_jep_2024_119126
crossref_primary_10_1016_j_jep_2024_119127
crossref_primary_10_1016_j_biopha_2024_116833
crossref_primary_10_2147_IJN_S479675
crossref_primary_10_1002_cbdv_202401899
crossref_primary_10_1016_j_microc_2023_109446
crossref_primary_10_3390_ph16020302
crossref_primary_10_3892_ol_2025_14954
crossref_primary_10_1016_j_jri_2023_104154
crossref_primary_10_1007_s43450_025_00636_w
Cites_doi 10.1111/jcmm.15314
10.1002/ptr.6392
10.1186/s12885-016-2921-x
10.1038/s41401-021-00657-w
10.2147/OTT.S221228
10.3389/fphar.2020.00391
10.3390/ijms222212496
10.1038/s41419-021-03600-3
10.1002/1878-0261.12155
10.3892/ijo.2020.5079
10.1016/j.ijbiomac.2020.09.227
10.1016/j.taap.2016.09.009
10.1016/j.jep.2016.11.004
10.2174/1389557520666200212104742
10.1186/s12935-017-0487-6
10.21873/anticanres.11187
10.3727/096504018X15344989701565
10.1158/1535-7163.MCT-17-0384
10.1016/j.gene.2020.144556
10.1016/j.intimp.2020.107357
10.4062/biomolther.2017.097
10.1111/1759-7714.13328
10.1186/s13046-018-0878-0
10.3390/molecules25010224
10.7150/jca.30361
10.3390/ijms22126211
10.3390/molecules27175469
10.1016/j.lfs.2019.01.046
10.3892/mmr.2017.7633
10.1038/onc.2016.195
10.18632/oncotarget.9566
10.3892/ijo.2016.3488
10.3892/mmr.2016.6008
10.1007/s10529-021-03081-6
10.3390/molecules26041056
10.1038/s41388-020-01474-x
10.3322/caac.21660
10.1039/D0FO01177K
10.3390/ijms18081761
10.6004/jnccn.2021.0013
10.5114/aoms.2019.85152
10.1016/j.phymed.2022.153933
10.1016/j.taap.2019.114662
10.1158/1940-6207.CAPR-16-0129
10.3390/cells9092114
10.1002/JLB.5MA1120-776RR
10.1111/jcmm.15106
10.3390/ijms21093080
10.18632/oncotarget.17648
10.1142/S0192415X20500111
10.3390/cancers11010049
10.2174/1871520621666210903163407
10.1080/19336918.2016.1259058
10.3389/fphar.2018.00837
10.1002/ptr.6584
10.1007/s13402-020-00557-x
10.1002/tox.22214
10.1016/j.ijbiomac.2017.08.033
10.1159/000475438
10.1186/s13046-019-1234-8
10.1186/s12935-020-01711-z
10.1016/j.fitote.2020.104484
10.3390/cells9061451
10.1200/JCO.21.01589
10.1021/acs.jafc.6b04453
10.7150/jca.25921
10.1007/s00280-020-04050-y
10.1016/j.lfs.2019.06.003
10.1111/jcmm.13909
10.1001/jamaoncol.2016.5829
10.1159/000453175
10.1016/j.jtho.2021.07.018
10.1248/cpb.c19-00851
10.1186/s12967-018-1543-2
10.1016/j.acthis.2019.06.008
10.3390/ijms19092835
10.1017/erm.2021.15
10.1016/j.redox.2017.03.009
10.1177/0300060520937163
10.1042/BSR20193959
10.3389/fonc.2019.00769
10.2217/fon-2016-0437
10.1016/j.fct.2017.10.058
10.6004/jnccn.2021.0058
10.3390/nu11122989
10.1186/s12943-018-0781-5
10.1002/tox.22325
10.1016/j.yexcr.2016.11.002
10.1016/j.canlet.2021.05.019
10.4162/nrp.2020.14.2.127
10.1002/ijc.33588
10.3389/fphar.2018.00092
10.3892/mmr.2021.12429
10.1177/1010428317697555
10.3390/ijms21030758
10.3389/fphar.2018.00434
10.1097/CAD.0000000000000537
10.1016/j.phymed.2021.153786
10.1016/j.apjtm.2016.09.003
10.3389/fphar.2017.00199
10.2147/OTT.S246606
10.3892/mmr.2015.4493
10.1016/j.yexmp.2019.104285
10.2147/OTT.S266073
10.1016/j.lfs.2020.118211
10.21037/atm-21-5975
10.1016/j.phymed.2018.04.058
10.1038/s41572-020-00235-0
10.3389/fgene.2019.00809
10.3892/or.2016.5296
10.31083/j.fbl2706192
10.1097/CCO.0000000000000703
10.1016/j.lfs.2018.05.012
10.1002/JLB.6MA0720-344RRR
10.5582/bst.2021.01318
10.3892/ol.2016.4295
10.3390/ijms19082378
10.18632/oncotarget.15879
10.21037/tlcr-20-467
10.1111/bph.14652
10.3892/mmr.2016.4844
10.18632/oncotarget.27672
ContentType Journal Article
Copyright Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jep.2022.115748
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1872-7573
ExternalDocumentID 10_1016_j_jep_2022_115748
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HX~
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSH
SSP
SSZ
T5K
TN5
WUQ
ZGI
~G-
~KM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c344t-1d3f27bdfef7f14f90c6d051db48b7202c2e39254a80a734ccf6fd371e3591f83
ISSN 0378-8741
1872-7573
IngestDate Fri Jul 11 03:06:54 EDT 2025
Fri Jul 11 05:57:12 EDT 2025
Tue Aug 05 10:52:18 EDT 2025
Thu Apr 24 22:57:13 EDT 2025
Tue Jul 01 03:09:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue NA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-1d3f27bdfef7f14f90c6d051db48b7202c2e39254a80a734ccf6fd371e3591f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2718637314
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2833530536
proquest_miscellaneous_2723128629
proquest_miscellaneous_2718637314
crossref_citationtrail_10_1016_j_jep_2022_115748
crossref_primary_10_1016_j_jep_2022_115748
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-10
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of ethnopharmacology
PublicationYear 2023
References Bai (10.1016/j.jep.2022.115748_bib2) 2021; 109
Li (10.1016/j.jep.2022.115748_bib65) 2016; 13
Baumgartner (10.1016/j.jep.2022.115748_bib3) 2018; 17
Wang (10.1016/j.jep.2022.115748_bib108) 2022; 27
Montero (10.1016/j.jep.2022.115748_bib82) 2021; 22
Lin (10.1016/j.jep.2022.115748_bib69) 2020; 10
Hassanein (10.1016/j.jep.2022.115748_bib33) 2021; 22
Sun (10.1016/j.jep.2022.115748_bib98) 2018; 9
Wu (10.1016/j.jep.2022.115748_bib114) 2020; 48
Kim (10.1016/j.jep.2022.115748_bib54) 2017; 37
Huang (10.1016/j.jep.2022.115748_bib42) 2016; 194
Liu (10.1016/j.jep.2022.115748_bib75) 2018; 15
Yan (10.1016/j.jep.2022.115748_bib124) 2020; 258
Rudin (10.1016/j.jep.2022.115748_bib89) 2021; 7
Chen (10.1016/j.jep.2022.115748_bib11) 2021; 94
Hnit (10.1016/j.jep.2022.115748_bib37) 2021; 141
Wang (10.1016/j.jep.2022.115748_bib109) 2019; 10
Tan (10.1016/j.jep.2022.115748_bib101) 2020; 11
Liu (10.1016/j.jep.2022.115748_bib72) 2019; 23
Su (10.1016/j.jep.2022.115748_bib96) 2018; 9
Liu (10.1016/j.jep.2022.115748_bib74) 2017; 20
Li (10.1016/j.jep.2022.115748_bib62) 2016; 9
Sun (10.1016/j.jep.2022.115748_bib99) 2021; 110
Li (10.1016/j.jep.2022.115748_bib66) 2021; 44
Wei (10.1016/j.jep.2022.115748_bib110) 2020; 43
Jin (10.1016/j.jep.2022.115748_bib49) 2021; 43
Zhao (10.1016/j.jep.2022.115748_bib138) 2021; 11
Hsu (10.1016/j.jep.2022.115748_bib39) 2020; 165
Liu (10.1016/j.jep.2022.115748_bib73) 2020; 39
Zhao (10.1016/j.jep.2022.115748_bib139) 2019; 25
Dai (10.1016/j.jep.2022.115748_bib17) 2017; 39
Song (10.1016/j.jep.2022.115748_bib95) 2017; 8
Corveloni (10.1016/j.jep.2022.115748_bib16) 2020; 83
Pearson (10.1016/j.jep.2022.115748_bib86) 2018; 17
Giroux-Leprieur (10.1016/j.jep.2022.115748_bib30) 2018; 19
Zhang (10.1016/j.jep.2022.115748_bib131) 2021; 12
Abdul Satar (10.1016/j.jep.2022.115748_bib1) 2021; 26
Zhu (10.1016/j.jep.2022.115748_bib141) 2019; 221
Li (10.1016/j.jep.2022.115748_bib58) 2022; 22
Chen (10.1016/j.jep.2022.115748_bib12) 2019; 176
Huang (10.1016/j.jep.2022.115748_bib43) 2020; 48
Wu (10.1016/j.jep.2022.115748_bib115) 2017; 32
Herzog (10.1016/j.jep.2022.115748_bib36) 2021; 16
Xu (10.1016/j.jep.2022.115748_bib119) 2020; 24
Wang (10.1016/j.jep.2022.115748_bib107) 2019; 12
Jung (10.1016/j.jep.2022.115748_bib50) 2019; 11
Gao (10.1016/j.jep.2022.115748_bib27) 2020; 11
Zhang (10.1016/j.jep.2022.115748_bib128) 2020; 13
Chen (10.1016/j.jep.2022.115748_bib13) 2021; 9
Mirzaei (10.1016/j.jep.2022.115748_bib81) 2021; 23
Xu (10.1016/j.jep.2022.115748_bib118) 2018; 37
Chiu (10.1016/j.jep.2022.115748_bib15) 2017; 36
Tang (10.1016/j.jep.2022.115748_bib102) 2019; 10
Wang (10.1016/j.jep.2022.115748_bib106) 2020; 43
Yang (10.1016/j.jep.2022.115748_bib126) 2019; 110
Han (10.1016/j.jep.2022.115748_bib32) 2021; 12
Mui (10.1016/j.jep.2022.115748_bib83) 2022
Sun (10.1016/j.jep.2022.115748_bib97) 2018; 9
Gong (10.1016/j.jep.2022.115748_bib31) 2018; 16
Liu (10.1016/j.jep.2022.115748_bib71) 2022; 2022
Cao (10.1016/j.jep.2022.115748_bib5) 2019; 379
Park (10.1016/j.jep.2022.115748_bib85) 2018; 19
Zhang (10.1016/j.jep.2022.115748_bib132) 2017; 16
He (10.1016/j.jep.2022.115748_bib34) 2016; 40
Li (10.1016/j.jep.2022.115748_bib63) 2018; 16
Dong (10.1016/j.jep.2022.115748_bib21) 2021; 76
Zhu (10.1016/j.jep.2022.115748_bib142) 2020; 742
Yang (10.1016/j.jep.2022.115748_bib125) 2019; 9
Luo (10.1016/j.jep.2022.115748_bib76) 2017; 8
Kim (10.1016/j.jep.2022.115748_bib55) 2020; 40
Philips (10.1016/j.jep.2022.115748_bib87) 2020; 11
Zhang (10.1016/j.jep.2022.115748_bib135) 2021; 24
Chang (10.1016/j.jep.2022.115748_bib7) 2020; 9
Ganti (10.1016/j.jep.2022.115748_bib26) 2021; 19
Bose (10.1016/j.jep.2022.115748_bib4) 2020; 9
Jeng (10.1016/j.jep.2022.115748_bib45) 2020; 21
Doheny (10.1016/j.jep.2022.115748_bib20) 2020; 9
Sung (10.1016/j.jep.2022.115748_bib100) 2021; 71
Zheng (10.1016/j.jep.2022.115748_bib140) 2017; 15
Deng (10.1016/j.jep.2022.115748_bib18) 2021; 42
Kang (10.1016/j.jep.2022.115748_bib53) 2017; 41
Zhang (10.1016/j.jep.2022.115748_bib137) 2020; 16
Sigismund (10.1016/j.jep.2022.115748_bib93) 2018; 12
Tang (10.1016/j.jep.2022.115748_bib104) 2017; 12
Mi (10.1016/j.jep.2022.115748_bib80) 2016; 310
Li (10.1016/j.jep.2022.115748_bib64) 2016; 349
Jurisic (10.1016/j.jep.2022.115748_bib51) 2018
Kalaiarasi (10.1016/j.jep.2022.115748_bib52) 2016; 64
Shen (10.1016/j.jep.2022.115748_bib92) 2020; 21
Zhang (10.1016/j.jep.2022.115748_bib129) 2022; 95
Seok (10.1016/j.jep.2022.115748_bib91) 2018; 111
Xiao (10.1016/j.jep.2022.115748_bib116) 2016; 48
Zou (10.1016/j.jep.2022.115748_bib143) 2020; 24
Chaft (10.1016/j.jep.2022.115748_bib6) 2022; 40
Chen (10.1016/j.jep.2022.115748_bib8) 2018; 9
Salazar (10.1016/j.jep.2022.115748_bib90) 2017; 3
Zhang (10.1016/j.jep.2022.115748_bib134) 2021; 15
Li (10.1016/j.jep.2022.115748_bib57) 2020; 43
Dey (10.1016/j.jep.2022.115748_bib19) 2018; 26
Liao (10.1016/j.jep.2022.115748_bib67) 2019; 33
Zhang (10.1016/j.jep.2022.115748_bib130) 2022; 98
Liao (10.1016/j.jep.2022.115748_bib68) 2020; 34
Wu (10.1016/j.jep.2022.115748_bib112) 2021; 33
Duan (10.1016/j.jep.2022.115748_bib22) 2020; 11
Li (10.1016/j.jep.2022.115748_bib60) 2019; 231
Li (10.1016/j.jep.2022.115748_bib61) 2021; 21
Hua (10.1016/j.jep.2022.115748_bib41) 2016; 11
Chen (10.1016/j.jep.2022.115748_bib9) 2020; 86
Li (10.1016/j.jep.2022.115748_bib56) 2016; 7
Li (10.1016/j.jep.2022.115748_bib59) 2018; 15
Qiu (10.1016/j.jep.2022.115748_bib88) 2017; 18
Ge (10.1016/j.jep.2022.115748_bib29) 2020; 68
Feng (10.1016/j.jep.2022.115748_bib24) 2017; 11
Jia (10.1016/j.jep.2022.115748_bib46) 2019; 27
Chiu (10.1016/j.jep.2022.115748_bib14) 2017; 8
Xue (10.1016/j.jep.2022.115748_bib122) 2018; 15
Wu (10.1016/j.jep.2022.115748_bib113) 2018; 106
Ettinger (10.1016/j.jep.2022.115748_bib23) 2021; 19
Hsu (10.1016/j.jep.2022.115748_bib40) 2017; 32
Izdebska (10.1016/j.jep.2022.115748_bib44) 2019; 121
Hsia (10.1016/j.jep.2022.115748_bib38) 2016; 36
Ferlay (10.1016/j.jep.2022.115748_bib25) 2021; 149
Ma (10.1016/j.jep.2022.115748_bib77) 2022; 12
Masraksa (10.1016/j.jep.2022.115748_bib79) 2020; 14
Gao (10.1016/j.jep.2022.115748_bib28) 2020; 13
Wan Mohd Tajuddin (10.1016/j.jep.2022.115748_bib105) 2019; 11
Mao (10.1016/j.jep.2022.115748_bib78) 2018; 18
Zhang (10.1016/j.jep.2022.115748_bib133) 2018; 48
Zhang (10.1016/j.jep.2022.115748_bib136) 2017; 13
Pan (10.1016/j.jep.2022.115748_bib84) 2017; 10
Wu (10.1016/j.jep.2022.115748_bib111) 2017; 17
Jiang (10.1016/j.jep.2022.115748_bib47) 2016; 13
Liu (10.1016/j.jep.2022.115748_bib70) 2020; 141
Xie (10.1016/j.jep.2022.115748_bib117) 2016; 16
Chen (10.1016/j.jep.2022.115748_bib10) 2019; 38
Xu (10.1016/j.jep.2022.115748_bib121) 2020; 57
Xu (10.1016/j.jep.2022.115748_bib120) 2020; 20
Yan (10.1016/j.jep.2022.115748_bib123) 2022; 27
Yuwen (10.1016/j.jep.2022.115748_bib127) 2017; 28
Heng (10.1016/j.jep.2022.115748_bib35) 2020; 25
Tang (10.1016/j.jep.2022.115748_bib103) 2018; 204
Singh (10.1016/j.jep.2022.115748_bib94) 2020; 20
Jiang (10.1016/j.jep.2022.115748_bib48) 2021; 515
References_xml – volume: 24
  start-page: 6644
  issue: 12
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib143
  article-title: Endogenous thrombopoietin promotes non-small-cell lung carcinoma cell proliferation and migration by regulating EGFR signalling
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.15314
– volume: 15
  start-page: 7409
  issue: 5
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib59
  article-title: Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways
  publication-title: Oncol. Lett.
– volume: 33
  start-page: 2298
  issue: 9
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib67
  article-title: Tanshinone IIA combined with cisplatin synergistically inhibits non-small-cell lung cancer in vitro and in vivo via down-regulating the phosphatidylinositol 3-kinase/Akt signalling pathway
  publication-title: Phytother Res. : PTR
  doi: 10.1002/ptr.6392
– volume: 16
  start-page: 899
  issue: 1
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib117
  article-title: Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-2921-x
– volume: 42
  start-page: 1486
  issue: 9
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib18
  article-title: Triptolide suppresses the growth and metastasis of non-small cell lung cancer by inhibiting beta-catenin-mediated epithelial-mesenchymal transition
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-021-00657-w
– volume: 12
  start-page: 9355
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib107
  article-title: Tanshinone IIA reverses gefitinib-resistance in human non-small-cell lung cancer via regulation of VEGFR/akt pathway
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S221228
– volume: 11
  start-page: 391
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib27
  article-title: A novel benzofuran derivative moracin N induces autophagy and apoptosis through ROS generation in lung cancer
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00391
– volume: 22
  issue: 22
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib33
  article-title: Cell behavior of non-small cell lung cancer is at EGFR and MicroRNAs hands
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222212496
– volume: 83
  start-page: 412
  issue: 10
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib16
  article-title: Carnosic acid exhibits antiproliferative and proapoptotic effects in tumoral NCI-H460 and nontumoral IMR-90 lung cells
  publication-title: J. Toxicol. Environ. Health
– volume: 12
  start-page: 384
  issue: 4
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib32
  article-title: WBP2 negatively regulates the Hippo pathway by competitively binding to WWC3 with LATS1 to promote non-small cell lung cancer progression
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03600-3
– volume: 12
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib93
  article-title: Emerging functions of the EGFR in cancer
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.12155
– volume: 2022
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib71
  article-title: Rhein inhibits the progression of chemoresistant lung cancer cell lines via the stat3/snail/MMP2/MMP9 pathway
  publication-title: BioMed Res. Int.
– volume: 12
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib77
  article-title: Molecular mechanisms involving the sonic hedgehog pathway in lung cancer therapy: recent advances
  publication-title: Front. Oncol.
– volume: 57
  start-page: 550
  issue: 2
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib121
  article-title: Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROSregulated MAPK, STAT3 and NFkappaB signaling pathways
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2020.5079
– volume: 165
  start-page: 1604
  issue: Pt A
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib39
  article-title: Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.09.227
– volume: 43
  start-page: 1863
  issue: 6
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib106
  article-title: Triptolide interrupts rRNA synthesis and induces the RPL23MDM2p53 pathway to repress lung cancer cells
  publication-title: Oncol. Rep.
– volume: 310
  start-page: 78
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib80
  article-title: Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2016.09.009
– volume: 194
  start-page: 1043
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib42
  article-title: Bufalin inhibits gefitinib resistant NCI-H460 human lung cancer cell migration and invasion in vitro
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2016.11.004
– volume: 20
  start-page: 942
  issue: 11
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib94
  article-title: Medicinal potential of heterocyclic compounds from diverse natural sources for the management of cancer
  publication-title: Mini Rev. Med. Chem.
  doi: 10.2174/1389557520666200212104742
– volume: 17
  start-page: 115
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib111
  article-title: Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-017-0487-6
– volume: 36
  start-page: 5989
  issue: 11
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib38
  article-title: Cantharidin impairs cell migration and invasion of human lung cancer NCI-H460 cells via UPA and MAPK signaling pathways
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.11187
– volume: 15
  start-page: 1869
  issue: 2
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib122
  article-title: Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells
  publication-title: Oncol. Lett.
– volume: 27
  start-page: 503
  issue: 4
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib46
  article-title: Astragaloside IV inhibits the progression of non-small cell lung cancer through the akt/GSK-3beta/beta-catenin pathway
  publication-title: Oncol. Res.
  doi: 10.3727/096504018X15344989701565
– volume: 17
  start-page: 204
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib86
  article-title: Overcoming resistance to cetuximab with honokiol, A small-molecule polyphenol
  publication-title: Mol. Cancer Therapeut.
  doi: 10.1158/1535-7163.MCT-17-0384
– volume: 742
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib142
  article-title: Sophoridine inhibits lung cancer cell growth and enhances cisplatin sensitivity through activation of the p53 and Hippo signaling pathways
  publication-title: Gene
  doi: 10.1016/j.gene.2020.144556
– volume: 94
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib11
  article-title: Isovitexin potentiated the antitumor activity of cisplatin by inhibiting the glucose metabolism of lung cancer cells and reduced cisplatin-induced immunotoxicity in mice
  publication-title: Int. Immunopharm.
  doi: 10.1016/j.intimp.2020.107357
– volume: 26
  start-page: 409
  issue: 4
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib19
  article-title: Anti-proliferative activities of vasicinone on lung carcinoma cells mediated via activation of both mitochondria-dependent and independent pathways
  publication-title: Biomol Ther (Seoul)
  doi: 10.4062/biomolther.2017.097
– volume: 11
  start-page: 511
  issue: 3
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib101
  article-title: Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC)
  publication-title: Thorac Cancer
  doi: 10.1111/1759-7714.13328
– volume: 37
  start-page: 207
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib118
  article-title: Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling
  publication-title: J. Exp. Clin. Cancer Res. : CR (Clim. Res.)
  doi: 10.1186/s13046-018-0878-0
– volume: 43
  start-page: 1986
  issue: 6
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib110
  article-title: Costunolide induces apoptosis and inhibits migration and invasion in H1299 lung cancer cells
  publication-title: Oncol. Rep.
– volume: 25
  start-page: 224
  issue: 1
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib35
  article-title: Chelerythrine chloride downregulates beta-catenin and inhibits stem cell properties of non-small cell lung carcinoma
  publication-title: Molecules
  doi: 10.3390/molecules25010224
– volume: 10
  start-page: 6666
  issue: 26
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib102
  article-title: The effects and mechanisms by which saikosaponin-D enhances the sensitivity of human non-small cell lung cancer cells to gefitinib
  publication-title: J. Cancer
  doi: 10.7150/jca.30361
– volume: 22
  start-page: 6211
  issue: 12
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib82
  article-title: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22126211
– volume: 27
  issue: 17
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib123
  article-title: Ajuforrestin A, an abietane diterpenoid from ajuga ovalifolia var. calanthe, induces A549 cell apoptosis by targeting SHP2
  publication-title: Molecules
  doi: 10.3390/molecules27175469
– volume: 221
  start-page: 204
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib141
  article-title: Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.01.046
– volume: 16
  start-page: 8549
  issue: 6
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib132
  article-title: Baicalin potentiates TRAILinduced apoptosis through p38 MAPK activation and intracellular reactive oxygen species production
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2017.7633
– volume: 36
  start-page: 242
  issue: 2
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib15
  article-title: The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids
  publication-title: Oncogene
  doi: 10.1038/onc.2016.195
– volume: 18
  start-page: 3041
  issue: 3
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib78
  article-title: Triptolide exhibits antitumor effects by reversing hypermethylation of WIF1 in lung cancer cells
  publication-title: Mol. Med. Rep.
– volume: 7
  start-page: 41715
  issue: 27
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib56
  article-title: Associations between genetic variants located in mature microRNAs and risk of lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9566
– volume: 48
  start-page: 2608
  issue: 6
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib116
  article-title: Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2016.3488
– volume: 15
  start-page: 375
  issue: 1
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib140
  article-title: Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2016.6008
– volume: 43
  start-page: 1229
  issue: 6
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib49
  article-title: Bufalin inhibits the malignant development of non-small cell lung cancer by mediating the circ_0046264/miR-522-3p axis
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-021-03081-6
– volume: 26
  start-page: 1056
  issue: 4
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib1
  article-title: Synergistic roles of curcumin in sensitising the cisplatin effect on a cancer stem cell-like population derived from non-small cell lung cancer cell lines
  publication-title: Molecules
  doi: 10.3390/molecules26041056
– volume: 39
  start-page: 6893
  issue: 45
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib73
  article-title: Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1alpha mediated XPC transcription
  publication-title: Oncogene
  doi: 10.1038/s41388-020-01474-x
– volume: 16
  start-page: 4859
  issue: 6
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib63
  article-title: Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2
  publication-title: Exp. Ther. Med.
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib100
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA A Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 11
  start-page: 6332
  issue: 7
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib22
  article-title: Phenolic compound ellagic acid inhibits mitochondrial respiration and tumor growth in lung cancer
  publication-title: Food Funct.
  doi: 10.1039/D0FO01177K
– volume: 18
  start-page: 1761
  issue: 8
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib88
  article-title: Licochalcone A inhibits the proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and er stress
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18081761
– volume: 25
  start-page: 7864
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib139
  article-title: Antiproliferative activity of carnosic acid is mediated via inhibition of cell migration and invasion, and suppression of phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway
  publication-title: Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. Int. Med. J. Exp. Clin. Res.
– volume: 19
  start-page: 254
  issue: 3
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib23
  article-title: NCCN guidelines insights: non-small cell lung cancer, version 2.2021
  publication-title: J. Natl. Compr. Cancer Netw.
  doi: 10.6004/jnccn.2021.0013
– volume: 16
  start-page: 446
  issue: 2
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib137
  article-title: Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2019.85152
– volume: 98
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib130
  article-title: Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27
  publication-title: Phytomedicine : Int. J. Phytotherp. Phytopharmacol.
  doi: 10.1016/j.phymed.2022.153933
– volume: 379
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib5
  article-title: Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2019.114662
– volume: 10
  start-page: 133
  issue: 2
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib84
  article-title: Honokiol decreases lung cancer metastasis through inhibition of the STAT3 signaling pathway
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-16-0129
– volume: 9
  start-page: 2114
  issue: 9
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib20
  article-title: Hedgehog signaling and truncated GLI1 in cancer
  publication-title: Cells
  doi: 10.3390/cells9092114
– volume: 110
  start-page: 315
  issue: 2
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib99
  article-title: Tanshinone IIA enhances susceptibility of non-small cell lung cancer cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.5MA1120-776RR
– volume: 24
  start-page: 4480
  issue: 8
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib119
  article-title: Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.15106
– volume: 21
  start-page: 3080
  issue: 9
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib92
  article-title: Sinomenine inhibits migration and invasion of human lung cancer cell through downregulating expression of miR-21 and MMPs
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21093080
– volume: 8
  start-page: 47365
  issue: 29
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib14
  article-title: ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling activation in lung cancer metastasis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17648
– volume: 48
  start-page: 201
  issue: 1
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib43
  article-title: Isoorientin decreases cell migration via decreasing functional activity and molecular expression of proton-linked monocarboxylate transporters in human lung cancer cells
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X20500111
– volume: 11
  start-page: 49
  issue: 1
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib50
  article-title: Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in a lung cancer xenograft model
  publication-title: Cancers
  doi: 10.3390/cancers11010049
– volume: 22
  start-page: 1523
  issue: 8
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib58
  article-title: Cepharanthine regulates autophagy via activating the p38 signaling pathway in lung adenocarcinoma cells
  publication-title: Anti Cancer Agents Med. Chem.
  doi: 10.2174/1871520621666210903163407
– volume: 11
  start-page: 464
  issue: 5–6
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib24
  article-title: Osthole inhibited TGF beta-induced epithelial-mesenchymal transition (EMT) by suppressing NF-kappaB mediated Snail activation in lung cancer A549 cells
  publication-title: Cell Adhes. Migrat.
  doi: 10.1080/19336918.2016.1259058
– volume: 20
  start-page: 629
  issue: 9
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib74
  article-title: [Role of Hippo signaling pathway in lung cancer]
  publication-title: Chin. J. Lung Cancer
– year: 2022
  ident: 10.1016/j.jep.2022.115748_bib83
  article-title: Targeting YAP1/TAZ in nonsmall-cell lung carcinoma: from molecular mechanisms to precision medicine
  publication-title: Int. J. Cancer
– volume: 9
  start-page: 837
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib8
  article-title: Lico A causes er stress and apoptosis via up-regulating miR-144-3p in human lung cancer cell line H292
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00837
– volume: 34
  start-page: 1142
  issue: 5
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib68
  article-title: Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway
  publication-title: Phytother Res. : PTR
  doi: 10.1002/ptr.6584
– volume: 44
  start-page: 135
  issue: 1
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib66
  article-title: Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-020-00557-x
– volume: 32
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib40
  article-title: Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: roles of apoptotic cell death and H460 tumor xenografts model
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.22214
– volume: 106
  start-page: 464
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib113
  article-title: Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.08.033
– volume: 41
  start-page: 2067
  issue: 5
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib53
  article-title: Degradation of mcl-1 through GSK-3beta activation regulates apoptosis induced by bufalin in non-small cell lung cancer H1975 cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000475438
– volume: 76
  start-page: 538
  issue: 11
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib21
  article-title: Curcumin enhances drug sensitivity of gemcitabine-resistant lung cancer cells and inhibits metastasis
  publication-title: Pharmazie
– volume: 38
  start-page: 254
  issue: 1
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib10
  article-title: Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death
  publication-title: J. Exp. Clin. Cancer Res. : CR (Clim. Res.)
  doi: 10.1186/s13046-019-1234-8
– volume: 21
  start-page: 19
  issue: 1
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib61
  article-title: Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-020-01711-z
– volume: 141
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib70
  article-title: A new abietane diterpenoid from Ajuga ovalifolia var. calantha induces human lung epithelial A549 cell apoptosis by inhibiting SHP2
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2020.104484
– volume: 9
  start-page: 1451
  issue: 6
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib4
  article-title: Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy
  publication-title: Cells
  doi: 10.3390/cells9061451
– volume: 40
  start-page: 546
  issue: 6
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib6
  article-title: Preoperative and postoperative systemic therapy for operable non-small-cell lung cancer
  publication-title: J. Clin. Oncol. Off. J Am. Soc. Clin. Oncol.
  doi: 10.1200/JCO.21.01589
– volume: 64
  start-page: 9542
  issue: 50
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib52
  article-title: Plant isoquinoline alkaloid berberine exhibits chromatin remodeling by modulation of histone deacetylase to induce growth arrest and apoptosis in the A549 cell line
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b04453
– volume: 9
  start-page: 3247
  issue: 18
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib97
  article-title: Scutellarin induces apoptosis and autophagy in NSCLC cells through ERK1/2 and AKT Signaling Pathways in vitro and in vivo
  publication-title: J. Cancer
  doi: 10.7150/jca.25921
– volume: 86
  start-page: 151
  issue: 1
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib9
  article-title: Berberine chloride suppresses non-small cell lung cancer by deregulating Sin3A/TOP2B pathway in vitro and in vivo
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-020-04050-y
– volume: 231
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib60
  article-title: Lycorine inhibited the cell growth of non-small cell lung cancer by modulating the miR-186/CDK1 axis
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.06.003
– volume: 23
  start-page: 205
  issue: 1
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib72
  article-title: MiR-520b promotes the progression of non-small cell lung cancer through activating Hedgehog pathway
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.13909
– volume: 3
  start-page: 610
  issue: 5
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib90
  article-title: Association of delayed adjuvant chemotherapy with survival after lung cancer surgery
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2016.5829
– volume: 40
  start-page: 1221
  issue: 5
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib34
  article-title: Astragaloside IV enhances cisplatin chemosensitivity in non-small cell lung cancer cells through inhibition of B7-H3
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000453175
– volume: 16
  start-page: 2002
  issue: 12
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib36
  article-title: Overcoming chemotherapy resistance in SCLC
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2021.07.018
– volume: 68
  start-page: 244
  issue: 3
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib29
  article-title: 11-Methoxytabersonine induces necroptosis with autophagy through AMPK/mTOR and JNK pathways in human lung cancer cells
  publication-title: Chem. Pharm. Bull. (Tokyo)
  doi: 10.1248/cpb.c19-00851
– volume: 16
  start-page: 164
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib31
  article-title: Knockdown of KLF5 suppresses hypoxia-induced resistance to cisplatin in NSCLC cells by regulating HIF-1alpha-dependent glycolysis through inactivation of the PI3K/Akt/mTOR pathway
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-018-1543-2
– volume: 121
  start-page: 724
  issue: 6
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib44
  article-title: The cytotoxic effect of oxymatrine on basic cellular processes of A549 non-small lung cancer cells
  publication-title: Acta Histochem.
  doi: 10.1016/j.acthis.2019.06.008
– volume: 19
  start-page: 2835
  issue: 9
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib30
  article-title: Hedgehog signaling in lung cancer: from oncogenesis to cancer treatment resistance
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19092835
– volume: 23
  start-page: e13
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib81
  article-title: MicroRNAs regulating SOX2 in cancer progression and therapy response
  publication-title: Expet Rev. Mol. Med.
  doi: 10.1017/erm.2021.15
– volume: 12
  start-page: 367
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib104
  article-title: Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.03.009
– volume: 48
  issue: 9
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib114
  article-title: Saikosaponin D inhibits proliferation and induces apoptosis of non-small cell lung cancer cells by inhibiting the STAT3 pathway
  publication-title: J. Int. Med. Res.
  doi: 10.1177/0300060520937163
– volume: 40
  issue: 4
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib55
  article-title: Bufalin down-regulates Axl expression to inhibit cell proliferation and induce apoptosis in non-small-cell lung cancer cells
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20193959
– volume: 9
  start-page: 769
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib125
  article-title: Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-Dependent autophagosome accumulation in A549 cells
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00769
– volume: 13
  start-page: 1173
  issue: 13
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib136
  article-title: Combination radiotherapy and cantharidin inhibits lung cancer growth through altering tumor infiltrating lymphocytes
  publication-title: Future Oncol.
  doi: 10.2217/fon-2016-0437
– volume: 111
  start-page: 9
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib91
  article-title: Piperlongumine decreases cell proliferation and the expression of cell cycle-associated proteins by inhibiting Akt pathway in human lung cancer cells
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2017.10.058
– volume: 19
  start-page: 1441
  issue: 12
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib26
  article-title: Small cell lung cancer, version 2.2022, NCCN clinical practice guidelines in oncology
  publication-title: J. Natl. Compr. Cancer Netw.
  doi: 10.6004/jnccn.2021.0058
– volume: 11
  start-page: 2898
  issue: 12
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib105
  article-title: Mechanistic understanding of curcumin's therapeutic effects in lung cancer
  publication-title: Nutrients
  doi: 10.3390/nu11122989
– year: 2018
  ident: 10.1016/j.jep.2022.115748_bib51
  article-title: Epidermal growth factor receptor gene in non-small-cell lung cancer: the importance of promoter polymorphism investigation
  publication-title: Anal. Cell Pathol.
– volume: 11
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib138
  article-title: Sophoridine inhibits the tumour growth of non-small lung cancer by inducing macrophages M1 polarisation via MAPK-mediated inflammatory pathway
  publication-title: Front. Oncol.
– volume: 17
  start-page: 44
  issue: 1
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib3
  article-title: miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-018-0781-5
– volume: 32
  start-page: 1305
  issue: 4
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib115
  article-title: Bufalin induces apoptosis in vitro and has Antitumor activity against human lung cancer xenografts in vivo
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.22325
– volume: 349
  start-page: 320
  issue: 2
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib64
  article-title: Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2016.11.002
– volume: 515
  start-page: 36
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib48
  article-title: Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2021.05.019
– volume: 14
  start-page: 127
  issue: 2
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib79
  article-title: Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway
  publication-title: Nutr Res Pract
  doi: 10.4162/nrp.2020.14.2.127
– volume: 149
  start-page: 778
  issue: 4
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib25
  article-title: Cancer statistics for the year 2020: an overview
  publication-title: Int. J. Cancer.
  doi: 10.1002/ijc.33588
– volume: 9
  start-page: 92
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib98
  article-title: Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00092
– volume: 24
  start-page: 789
  issue: 5
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib135
  article-title: Inhibin betaA is an independent prognostic factor that promotes invasion via Hippo signaling in nonsmall cell lung cancer
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2021.12429
– volume: 12
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib131
  article-title: Andrographolide induces noxa-dependent apoptosis by transactivating ATF4 in human lung adenocarcinoma cells
  publication-title: Front. Pharmacol.
– volume: 39
  issue: 4
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib17
  article-title: Astragaloside IV sensitizes non-small cell lung cancer cells to gefitinib potentially via regulation of SIRT6
  publication-title: Tumour Biol
  doi: 10.1177/1010428317697555
– volume: 21
  issue: 3
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib45
  article-title: Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21030758
– volume: 9
  start-page: 434
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib96
  article-title: Evodiamine, a novel NOTCH3 methylation stimulator, significantly suppresses lung carcinogenesis in vitro and in vivo
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00434
– volume: 15
  start-page: 6527
  issue: 5
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib75
  article-title: Cantharidin suppresses cell growth and migration, and activates autophagy in human non-small cell lung cancer cells
  publication-title: Oncol. Lett.
– volume: 28
  start-page: 967
  issue: 9
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib127
  article-title: Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy
  publication-title: Anti Cancer Drugs
  doi: 10.1097/CAD.0000000000000537
– volume: 95
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib129
  article-title: Emodin induces apoptosis and suppresses non-small-cell lung cancer growth via downregulation of sPLA2-IIa
  publication-title: Phytomedicine : Int. J. Phytotherp. Phytopharmacol.
  doi: 10.1016/j.phymed.2021.153786
– volume: 9
  start-page: 1084
  issue: 11
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib62
  article-title: Anti-tumor activity of tanshinone IIA in combined with cyclophosphamide against Lewis mice with lung cancer
  publication-title: Asian Pac J Trop Med
  doi: 10.1016/j.apjtm.2016.09.003
– volume: 8
  start-page: 199
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib76
  article-title: Honokiol induces apoptosis, G1 arrest, and autophagy in KRAS mutant lung cancer cells
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2017.00199
– volume: 13
  start-page: 2757
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib28
  article-title: Inhibition of EGFR signaling and activation of mitochondrial apoptosis contribute to tanshinone IIA-mediated tumor suppression in non-small cell lung cancer cells
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S246606
– volume: 13
  start-page: 153
  issue: 1
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib47
  article-title: Triptolide reverses the Taxol resistance of lung adenocarcinoma by inhibiting the NF-kappaB signaling pathway and the expression of NF-kappaB-regulated drug-resistant genes
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.4493
– volume: 110
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib126
  article-title: Skullcapflavone I suppresses proliferation of human lung cancer cells via down-regulating microRNA-21
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2019.104285
– volume: 13
  start-page: 8951
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib128
  article-title: Down-regulation of SREBP via PI3K/AKT/mTOR pathway inhibits the proliferation and invasion of non-small-cell lung cancer cells
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S266073
– volume: 20
  start-page: 347
  issue: 3
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib120
  article-title: Inhibitory effect of microRNA-608 on lung cancer cell proliferation, migration, and invasion by targeting BRD4 through the JAK2/STAT3 pathway
  publication-title: Bosn. J. Basic Med. Sci.
– volume: 258
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib124
  article-title: Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.118211
– volume: 9
  start-page: 1701
  issue: 22
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib13
  article-title: Andrographolide inhibits non-small cell lung cancer cell proliferation through the activation of the mitochondrial apoptosis pathway and by reprogramming host glucose metabolism
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-21-5975
– volume: 48
  start-page: 51
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib133
  article-title: Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop
  publication-title: Phytomedicine : Int. J. Phytotherp. Phytopharmacol.
  doi: 10.1016/j.phymed.2018.04.058
– volume: 141
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib37
  article-title: Agrimol B present in Agrimonia pilosa Ledeb impedes cell cycle progression of cancer cells through G0 state arrest
  publication-title: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
– volume: 7
  start-page: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib89
  article-title: Small-cell lung cancer
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/s41572-020-00235-0
– volume: 10
  start-page: 809
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib109
  article-title: MicroRNA-608 promotes apoptosis in non-small cell lung cancer cells treated with doxorubicin through the inhibition of TFAP4
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00809
– volume: 37
  start-page: 777
  issue: 2
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib54
  article-title: Delphinidin inhibits angiogenesis through the suppression of HIF-1alpha and VEGF expression in A549 lung cancer cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.5296
– volume: 27
  start-page: 192
  issue: 6
  year: 2022
  ident: 10.1016/j.jep.2022.115748_bib108
  article-title: The role and mechanisms of action of natural compounds in the prevention and treatment of cancer and cancer metastasis
  publication-title: Front. Biosci.
  doi: 10.31083/j.fbl2706192
– volume: 33
  start-page: 40
  issue: 1
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib112
  article-title: Lung cancer in China: current and prospect
  publication-title: Curr. Opin. Oncol.
  doi: 10.1097/CCO.0000000000000703
– volume: 204
  start-page: 71
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib103
  article-title: Shikonin enhances sensitization of gefitinib against wild-type EGFR non-small cell lung cancer via inhibition PKM2/stat3/cyclinD1 signal pathway
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.05.012
– volume: 109
  start-page: 843
  issue: 4
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib2
  article-title: Inhibitory effect of sinomenine on lung cancer cells via negative regulation of alpha7 nicotinic acetylcholine receptor
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.6MA0720-344RRR
– volume: 15
  start-page: 283
  issue: 5
  year: 2021
  ident: 10.1016/j.jep.2022.115748_bib134
  article-title: The positive role of traditional Chinese medicine as an adjunctive therapy for cancer
  publication-title: Biosci Trends
  doi: 10.5582/bst.2021.01318
– volume: 43
  start-page: 1569
  issue: 5
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib57
  article-title: Triptolide inhibits epithelialmesenchymal transition and induces apoptosis in gefitinibresistant lung cancer cells
  publication-title: Oncol. Rep.
– volume: 11
  start-page: 2780
  issue: 4
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib41
  article-title: Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.4295
– volume: 19
  start-page: 2378
  issue: 8
  year: 2018
  ident: 10.1016/j.jep.2022.115748_bib85
  article-title: Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19082378
– volume: 8
  start-page: 26927
  issue: 16
  year: 2017
  ident: 10.1016/j.jep.2022.115748_bib95
  article-title: Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15879
– volume: 9
  start-page: 1379
  issue: 4
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib7
  article-title: Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell-maintenance factors and inducing apoptosis via the Hedgehog signaling blockade
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr-20-467
– volume: 176
  start-page: 2079
  issue: 12
  year: 2019
  ident: 10.1016/j.jep.2022.115748_bib12
  article-title: Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14652
– volume: 13
  start-page: 2763
  issue: 3
  year: 2016
  ident: 10.1016/j.jep.2022.115748_bib65
  article-title: Triptolide reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2016.4844
– volume: 11
  start-page: 2793
  issue: 28
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib87
  article-title: Triptolide-induced apoptosis in non-small cell lung cancer via a novel miR204-5p/Caveolin-1/Akt-mediated pathway
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.27672
– volume: 10
  start-page: 3828
  issue: 11
  year: 2020
  ident: 10.1016/j.jep.2022.115748_bib69
  article-title: Resveratrol-mediated ADAM9 degradation decreases cancer progression and provides synergistic effects in combination with chemotherapy
  publication-title: Am J Cancer Res
SSID ssj0007140
Score 2.6485481
SecondaryResourceType review_article
Snippet With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face...
Ethnopharmacological relevance With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 115748
SubjectTerms apoptosis
autophagy
cell cycle
chemical structure
cytotoxicity
drug resistance
drug therapy
Europe
flavonoids
human health
lung neoplasms
metastasis
morbidity
mortality
neoplasm cells
Oriental traditional medicine
polyphenols
terpenoids
Title Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review
URI https://www.proquest.com/docview/2718637314
https://www.proquest.com/docview/2723128629
https://www.proquest.com/docview/2833530536
Volume 300
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3La9swGBdbd9ll7MnaPdBg9LDUQZYUP3YLpV0pXdaDA7kMY8lSm1Ds4NiH9dC_fZ8sP-KthG4X4wg5Nt9PSN_z9yH0WRAvYXAQOZIK4nDPFU4ouHKI0IFWPBSkbtr3feadzfn5YrLoOwrW1SWlGMvbe-tK_gdVGANcTZXsPyDb_SkMwD3gC1dAGK4Pw7hI0mXjzDONsNVG2ciLUR2vk83oqnYArPPS5AQZVgBDRZ2lS2Pmj9KiuqrZGEY3lam8NfgXtlK96CMGfyuuqrzO8nVPed075dVyEOs4bis_Ou90lQ-Sib_Z3-fbrgdqEq-cJgm1KbkCEzTwLXNVu50yQrbWzWx67z5tXQar8UoZzlBKx4bzx1JuDjmxZz_i0_nFRRydLKLH6AkFY8D0qRjf9Yk8vi177T6mjV3XWXx_vGCofQwP31qjiJ6jZ41E8dTi-gI9UtlLdHhpBfvrCEd9adzmCB_iyy2Rv0I_t8DHDfi4BR8D-LgGH3fgYxjqwMc1-BjAxwZ8bMH_iqfYQv8azU9PouMzp-mV4UjGeem4KdPUF6lW2tcu1yGRXgobbip4IHyQgKQKVOEJTwKS-IxLqT2dMt9VbBK6OmBv0F6WZ-otwoz5oGXDbOaBNFUqQG6BTBLiKUklY_uItDKMZUMkb_qZ3MRtxuAqBrHHRuyxFfs--tI9srYsKrsmf2qBiWGvMwGsJFN5tYkpKFIefJ3Ld80Bi4WCnR7umGMqDeGgY97BA-a8Q0_7xf8e7ZVFpT6AJlqKj_VC_A3SiImE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traditional+Chinese+Medicine+has+great+potential+as+candidate+drugs+for+lung+cancer%3A+A+review&rft.jtitle=Journal+of+ethnopharmacology&rft.au=Wei%2C+Z&rft.au=Chen%2C+J&rft.au=Zuo%2C+F&rft.au=Guo%2C+J&rft.date=2023-01-10&rft.issn=0378-8741&rft.volume=300&rft.issue=NA&rft_id=info:doi/10.1016%2Fj.jep.2022.115748&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-8741&client=summon