Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods
The evaluation of feature selection methods for text classification with small sample datasets must consider classification performance, stability, and efficiency. It is, thus, a multiple criteria decision-making (MCDM) problem. Yet there has been few research in feature selection evaluation using M...
Saved in:
Published in | Applied soft computing Vol. 86; p. 105836 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The evaluation of feature selection methods for text classification with small sample datasets must consider classification performance, stability, and efficiency. It is, thus, a multiple criteria decision-making (MCDM) problem. Yet there has been few research in feature selection evaluation using MCDM methods which considering multiple criteria. Therefore, we use MCDM-based methods for evaluating feature selection methods for text classification with small sample datasets. An experimental study is designed to compare five MCDM methods to validate the proposed approach with 10 feature selection methods, nine evaluation measures for binary classification, seven evaluation measures for multi-class classification, and three classifiers with 10 small datasets. Based on the ranked results of the five MCDM methods, we make recommendations concerning feature selection methods. The results demonstrate the effectiveness of the used MCDM-based method in evaluating feature selection methods.
•Evaluating feature selection methods for text classification with small datasets.•Comparing five MCDM-based methods to validate the proposed approach.•Providing recommendation of feature selection methods. |
---|---|
AbstractList | The evaluation of feature selection methods for text classification with small sample datasets must consider classification performance, stability, and efficiency. It is, thus, a multiple criteria decision-making (MCDM) problem. Yet there has been few research in feature selection evaluation using MCDM methods which considering multiple criteria. Therefore, we use MCDM-based methods for evaluating feature selection methods for text classification with small sample datasets. An experimental study is designed to compare five MCDM methods to validate the proposed approach with 10 feature selection methods, nine evaluation measures for binary classification, seven evaluation measures for multi-class classification, and three classifiers with 10 small datasets. Based on the ranked results of the five MCDM methods, we make recommendations concerning feature selection methods. The results demonstrate the effectiveness of the used MCDM-based method in evaluating feature selection methods.
•Evaluating feature selection methods for text classification with small datasets.•Comparing five MCDM-based methods to validate the proposed approach.•Providing recommendation of feature selection methods. |
ArticleNumber | 105836 |
Author | Chen, Yang Kou, Gang Peng, Yi Xiao, Feng Alsaadi, Fawaz E. Yang, Pei |
Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0002-9220-8647 surname: Kou fullname: Kou, Gang organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China – sequence: 2 givenname: Pei surname: Yang fullname: Yang, Pei organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China – sequence: 3 givenname: Yi orcidid: 0000-0003-0373-6665 surname: Peng fullname: Peng, Yi email: pengyi@uestc.edu.cn organization: School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 4 givenname: Feng orcidid: 0000-0003-3412-5816 surname: Xiao fullname: Xiao, Feng organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China – sequence: 5 givenname: Yang surname: Chen fullname: Chen, Yang organization: School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China – sequence: 6 givenname: Fawaz E. surname: Alsaadi fullname: Alsaadi, Fawaz E. organization: Department of information Technology, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD6TEieM6EhtUlYeExAbW1tQeUxcnqWy3wJofJ21YsehqRldzrjRnQkZt1yIh1yyfsZyJm80MYqdnRc7qPqhkKc7ImMl5kdVCslG_V0JmvObigkxi3OQ9VBdyTH6We_A7SK5raWepRUi7gDSiR30MG0zrzkRqu0ATfiWqPcTorNMD9OnSmsYGvKcGEkRMke6ia99ps_PJbT1SHVzC4IAa1C72UNbAx_Fi6L4k5xZ8xKu_OSVv98vXxWP2_PLwtLh7znTJecpYyWwNTOPKWIFVrY0pJOiVsDgHXXG03GJVcix1JVHKApkw81pwXpSVLaGckmLo1aGLMaBV2-AaCN-K5eqgUW3UQaM6aFSDxh6S_yDt0vH1FMD50-jtgGL_1N5hUFE7bDUaF3q7ynTuFP4LrRaVTw |
CitedBy_id | crossref_primary_10_1142_S0219622022300014 crossref_primary_10_1142_S0219622021410017 crossref_primary_10_1109_ACCESS_2022_3197671 crossref_primary_10_1016_j_asoc_2025_112737 crossref_primary_10_35193_bseufbd_993833 crossref_primary_10_1017_dap_2024_25 crossref_primary_10_1109_TGRS_2024_3410277 crossref_primary_10_1142_S021962202150005X crossref_primary_10_1007_s11042_023_15459_x crossref_primary_10_1007_s10489_021_02291_9 crossref_primary_10_1016_j_asoc_2022_109715 crossref_primary_10_1109_ACCESS_2020_3041651 crossref_primary_10_1016_j_ijar_2022_09_012 crossref_primary_10_1016_j_knosys_2022_109092 crossref_primary_10_1186_s40854_020_00195_0 crossref_primary_10_3390_app14093654 crossref_primary_10_1016_j_eswa_2022_116755 crossref_primary_10_1016_j_jksuci_2022_03_012 crossref_primary_10_1142_S0219622023500244 crossref_primary_10_1007_s00500_024_10386_x crossref_primary_10_1142_S0219622020500546 crossref_primary_10_1142_S0219622020500303 crossref_primary_10_3390_brainsci12020235 crossref_primary_10_1007_s11227_021_03627_5 crossref_primary_10_1108_INTR_07_2019_0296 crossref_primary_10_1186_s40854_020_00205_1 crossref_primary_10_1109_ACCESS_2023_3284975 crossref_primary_10_1142_S0219622022500481 crossref_primary_10_1142_S0219622022500249 crossref_primary_10_1093_jcde_qwac040 crossref_primary_10_1142_S021962202050008X crossref_primary_10_1016_j_asoc_2021_107815 crossref_primary_10_1080_09540091_2023_2231171 crossref_primary_10_1142_S0219622021500644 crossref_primary_10_1007_s13042_021_01324_6 crossref_primary_10_1007_s12667_023_00648_2 crossref_primary_10_2139_ssrn_3509776 crossref_primary_10_1186_s40854_019_0166_9 crossref_primary_10_3390_electronics11010114 crossref_primary_10_1108_IJESM_10_2020_0009 crossref_primary_10_3390_s23031312 crossref_primary_10_1186_s40854_020_00179_0 crossref_primary_10_1016_j_jksuci_2024_102205 crossref_primary_10_1142_S0219622020500285 crossref_primary_10_1007_s10115_023_02010_5 crossref_primary_10_1016_j_ins_2020_12_008 crossref_primary_10_3233_ICA_210664 crossref_primary_10_1007_s10479_022_04677_5 crossref_primary_10_1016_j_eswa_2021_114658 crossref_primary_10_1016_j_knosys_2020_106597 crossref_primary_10_1142_S021962202050039X crossref_primary_10_1016_j_eswa_2022_116563 crossref_primary_10_1142_S0219622020500169 crossref_primary_10_1080_00051144_2022_2060652 crossref_primary_10_1007_s40747_025_01784_1 crossref_primary_10_1109_ACCESS_2022_3177752 crossref_primary_10_1016_j_asoc_2023_110477 crossref_primary_10_1007_s42979_023_02487_5 crossref_primary_10_1016_j_matcom_2023_07_022 crossref_primary_10_1142_S0219622023500037 crossref_primary_10_1186_s12874_024_02426_9 crossref_primary_10_1002_pa_2119 crossref_primary_10_1142_S0219622022500742 crossref_primary_10_1109_ACCESS_2022_3205618 crossref_primary_10_1002_pra2_332 crossref_primary_10_1142_S0219622021500024 crossref_primary_10_1142_S0219622022500857 crossref_primary_10_1080_19186444_2020_1771123 crossref_primary_10_32604_cmc_2023_032671 crossref_primary_10_1007_s10639_023_12139_z crossref_primary_10_1371_journal_pone_0301472 crossref_primary_10_1007_s13132_023_01307_8 crossref_primary_10_1177_17483026231184171 crossref_primary_10_1371_journal_pone_0287754 crossref_primary_10_2174_2666255813999200831104047 crossref_primary_10_1016_j_datak_2022_102060 crossref_primary_10_1142_S0219622022500973 crossref_primary_10_1186_s40854_023_00501_6 crossref_primary_10_3390_bdcc7010045 crossref_primary_10_1002_cpe_6594 crossref_primary_10_1142_S0219622020500066 crossref_primary_10_1016_j_comnet_2021_108453 crossref_primary_10_1007_s00521_021_06180_7 crossref_primary_10_1016_j_engappai_2023_106662 crossref_primary_10_1016_j_inffus_2020_03_001 crossref_primary_10_1016_j_inffus_2022_07_021 crossref_primary_10_15388_20_INFOR417 crossref_primary_10_3846_tede_2022_16544 crossref_primary_10_1007_s10115_025_02365_x crossref_primary_10_1111_exsy_13079 crossref_primary_10_1007_s11356_020_09609_z crossref_primary_10_2196_29806 crossref_primary_10_1142_S0219622022500043 crossref_primary_10_2139_ssrn_3601960 crossref_primary_10_1007_s00500_020_05385_7 crossref_primary_10_1016_j_isatra_2021_07_005 crossref_primary_10_1142_S0219622023500013 crossref_primary_10_1016_j_asoc_2022_109796 crossref_primary_10_1080_08839514_2021_2001177 crossref_primary_10_1142_S0219622020500054 crossref_primary_10_1007_s42979_021_00480_4 crossref_primary_10_1142_S0219622020500297 crossref_primary_10_1016_j_inffus_2020_08_018 crossref_primary_10_2139_ssrn_3623840 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1016_j_eswa_2020_114448 crossref_primary_10_1016_j_eswa_2021_115151 crossref_primary_10_15388_20_INFOR423 crossref_primary_10_2174_2666255813999200930163857 crossref_primary_10_3390_healthcare8010029 crossref_primary_10_1016_j_heliyon_2024_e34478 crossref_primary_10_1088_1742_5468_ac8807 crossref_primary_10_1142_S0219622023500384 crossref_primary_10_3390_s23125578 crossref_primary_10_3390_math11051255 crossref_primary_10_1142_S0219622020500121 crossref_primary_10_2139_ssrn_3571728 crossref_primary_10_1142_S0219622020500248 crossref_primary_10_1016_j_elerap_2023_101340 crossref_primary_10_1016_j_heliyon_2024_e40600 crossref_primary_10_1186_s40854_022_00441_7 crossref_primary_10_2174_2666255813999200904112438 crossref_primary_10_1007_s10115_024_02143_1 crossref_primary_10_1155_2022_3991870 crossref_primary_10_2139_ssrn_3495898 crossref_primary_10_1177_03063070211023448 crossref_primary_10_1109_TFUZZ_2022_3185285 crossref_primary_10_1016_j_neunet_2024_106494 crossref_primary_10_1142_S0219622022500663 crossref_primary_10_1145_3627820 crossref_primary_10_1108_IJWIS_11_2020_0067 crossref_primary_10_1109_ACCESS_2020_2987941 crossref_primary_10_1080_13511610_2020_1745058 crossref_primary_10_1016_j_nepr_2024_103919 crossref_primary_10_1007_s00521_022_07950_7 crossref_primary_10_1142_S0219622020500479 crossref_primary_10_1142_S0219622021500462 crossref_primary_10_1142_S0219622020500236 crossref_primary_10_4108_eetiot_v8i29_987 crossref_primary_10_1016_j_knosys_2021_107134 crossref_primary_10_1088_2631_8695_ad4e99 crossref_primary_10_1016_j_eswa_2022_118419 crossref_primary_10_2174_2666255813999200904161500 crossref_primary_10_1007_s11227_020_03168_3 crossref_primary_10_1142_S0219622023500402 crossref_primary_10_1142_S0219622023300045 crossref_primary_10_3390_su16051885 crossref_primary_10_1142_S0219622020500029 crossref_primary_10_3390_su12051715 crossref_primary_10_1142_S0219622020500388 crossref_primary_10_1142_S0219622021500231 crossref_primary_10_1142_S021962202050025X crossref_primary_10_32604_cmc_2021_017199 crossref_primary_10_1016_j_eswa_2023_121655 crossref_primary_10_1016_j_asoc_2022_109355 crossref_primary_10_1142_S0219622022500523 crossref_primary_10_1016_j_jclepro_2023_138695 crossref_primary_10_1007_s41060_023_00448_y crossref_primary_10_1016_j_asoc_2020_106942 crossref_primary_10_1142_S0219622020500133 crossref_primary_10_1142_S0219622021500127 crossref_primary_10_1142_S0219622020500017 crossref_primary_10_1007_s12652_021_03621_y crossref_primary_10_1142_S0219622020500376 crossref_primary_10_1145_3715918 crossref_primary_10_3390_math12182827 crossref_primary_10_1038_s41598_025_92223_1 crossref_primary_10_3390_info12110451 crossref_primary_10_1007_s11042_023_14641_5 crossref_primary_10_3846_tede_2020_12037 crossref_primary_10_1186_s40854_020_00175_4 crossref_primary_10_3390_su15020938 crossref_primary_10_1016_j_petrol_2021_109244 crossref_primary_10_1007_s12144_022_03731_6 crossref_primary_10_1109_JBHI_2023_3279340 crossref_primary_10_2139_ssrn_3647547 crossref_primary_10_3390_app13116671 crossref_primary_10_1016_j_ejor_2021_04_051 crossref_primary_10_1142_S0219622023500438 crossref_primary_10_1109_ACCESS_2024_3461948 crossref_primary_10_1142_S0219622020500327 crossref_primary_10_1007_s00521_023_08763_y crossref_primary_10_1007_s11227_023_05124_3 crossref_primary_10_1016_j_eswa_2021_115224 crossref_primary_10_1016_j_knosys_2022_108771 crossref_primary_10_1007_s13369_020_04972_y crossref_primary_10_1108_GM_08_2019_0146 crossref_primary_10_1016_j_engappai_2022_105226 crossref_primary_10_1007_s11135_021_01110_0 crossref_primary_10_1038_s41598_024_73069_5 crossref_primary_10_3390_met13010169 crossref_primary_10_1016_j_eswa_2022_117363 crossref_primary_10_1016_j_knosys_2021_107331 crossref_primary_10_3233_JIFS_212987 crossref_primary_10_5351_KJAS_2022_35_4_469 crossref_primary_10_1142_S021962202050042X crossref_primary_10_3934_mbe_2020163 crossref_primary_10_3390_fi14070194 crossref_primary_10_1142_S0219622022500213 crossref_primary_10_1007_s13132_020_00668_8 crossref_primary_10_1002_wer_10893 crossref_primary_10_1007_s10611_021_09936_3 crossref_primary_10_1016_j_knosys_2021_107224 crossref_primary_10_1080_1206212X_2023_2218244 crossref_primary_10_1142_S0219622021500310 crossref_primary_10_1142_S0219622020500108 crossref_primary_10_1142_S0219622020500467 crossref_primary_10_21105_joss_04611 crossref_primary_10_1155_2022_6306025 crossref_primary_10_1088_1757_899X_1076_1_012044 crossref_primary_10_1186_s40854_021_00258_w crossref_primary_10_2139_ssrn_3522373 crossref_primary_10_1142_S0219622020300049 crossref_primary_10_1177_01655515211041333 crossref_primary_10_2139_ssrn_3765926 crossref_primary_10_1142_S0219622022500201 crossref_primary_10_1016_j_eswa_2023_120491 crossref_primary_10_1108_ACI_09_2024_0353 crossref_primary_10_1142_S0219622020500339 crossref_primary_10_1016_j_artmed_2023_102627 crossref_primary_10_1142_S0219622020500212 crossref_primary_10_1142_S0219622021300019 crossref_primary_10_1080_15228835_2022_2163452 crossref_primary_10_1016_j_knosys_2023_111084 crossref_primary_10_1142_S0219622022500791 crossref_primary_10_1007_s10462_022_10274_6 crossref_primary_10_1016_j_eswa_2023_121227 crossref_primary_10_1142_S0219622020300037 crossref_primary_10_1007_s13369_021_06493_8 crossref_primary_10_1016_j_csl_2022_101364 crossref_primary_10_1016_j_joi_2022_101260 crossref_primary_10_1142_S0219622022500432 crossref_primary_10_1016_j_swevo_2024_101760 |
Cites_doi | 10.1016/j.ins.2017.08.036 10.1016/0030-5073(81)90015-5 10.1016/j.eswa.2014.10.011 10.1109/TSMC.2018.2841063 10.1186/s40854-019-0138-0 10.1007/s10462-009-9124-7 10.1016/j.eswa.2010.09.153 10.1016/j.ins.2014.02.137 10.1016/j.ipm.2011.12.005 10.1016/j.ipm.2004.08.006 10.1016/j.patrec.2008.08.010 10.3846/20294913.2014.892037 10.1016/j.asoc.2010.11.028 10.1023/A:1007692713085 10.1016/j.eswa.2008.08.022 10.1016/j.ins.2016.08.073 10.1186/s40854-019-0131-7 10.1016/j.eswa.2014.12.013 10.1016/j.eswa.2015.08.050 10.1016/j.eswa.2012.05.008 10.1142/S0219622012500095 10.3846/20294913.2016.1210694 10.1016/j.csda.2013.07.012 10.1109/TSMC.2015.2422267 10.1016/j.patcog.2015.02.025 10.1186/s40854-019-0125-5 10.1016/j.neucom.2015.01.031 10.1186/s40854-018-0086-0 10.1016/j.knosys.2012.06.005 10.1145/505282.505283 10.1016/j.ipm.2009.03.002 10.1016/j.ejor.2019.03.009 10.1016/j.ejor.2013.11.035 10.1016/j.eswa.2008.06.054 10.1186/s40854-019-0144-2 10.1109/TPAMI.2010.34 10.1016/j.omega.2011.01.009 10.1016/j.ins.2015.06.033 10.1016/j.cie.2007.12.002 10.1016/j.eswa.2006.04.001 10.1016/j.knosys.2013.09.019 10.1016/j.knosys.2011.04.014 10.1016/j.ejor.2013.10.019 10.1016/j.eswa.2013.02.019 10.1111/1467-8667.00269 10.1007/s10115-006-0040-8 10.1016/j.inffus.2016.11.012 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) |
Copyright_xml | – notice: 2019 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.105836 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2019_105836 S1568494619306179 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c344t-131f9a1cebdf6e59cdd28acb6fe7ac54ef4fe534e3c58e882e16d79644235f3a3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:04 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:49:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Small sample dataset Feature selection MCDM Text classification |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c344t-131f9a1cebdf6e59cdd28acb6fe7ac54ef4fe534e3c58e882e16d79644235f3a3 |
ORCID | 0000-0002-9220-8647 0000-0003-3412-5816 0000-0003-0373-6665 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568494619306179 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_105836 crossref_citationtrail_10_1016_j_asoc_2019_105836 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105836 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Huang, Tian (b48) 2009; 36 Uysal, Gunal (b18) 2012; 36 Toloie-Eshlaghy, Homayonfar (b34) 2011 Opricovic (b52) 1998; 2 Ogura, Amano, Kondo (b31) 2011; 38 Peng, Fan (b6) 2017; 418–419 Taşcı, Güngör (b14) 2013; 40 Kuo, Yang, Huang (b12) 2008; 55 P. Bo, L. Lee, Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales (2005), pp. 115–124. Sebastiani (b3) 2001; 34 Shang, Li, Feng (b7) 2013; 54 Maas, Daly, Pham (b55) 2011 Aghdam, Ghasem-Aghaee, Basiri (b29) 2009; 36 Pinheiro, Cavalcanti, Correa (b32) 2012; 39 Mesterharm, M.J. (b56) 2011 Shang, Huang, Zhu (b17) 2007; 33 Zhang, Kou, Peng (b36) 2019; 277 Cortes (b25) 2004 Y. Saeys, T. Abeel, Y.V.D. Peer, Robust feature selection using ensemble feature selection techniques, in: Machine Learning and Knowledge Discovery in Databases, European Conference, Ecml/pkdd 2008, Antwerp, Belgium, September (2008) 15-19, Proceedings, DBLP, 2008, pp. 313–325. Uğuz (b19) 2011; 24 Kou, Lin (b38) 2014; 235 Zeng, Zhang, Zhang (b8) 2015; 48 Rosset (b26) 2004 Selvamuthu, Kumar, Mishra (b59) 2019; 5 Kou, Ergu, Lin (b39) 2016; 22 Stillwell, Seaver, Edwards (b62) 1981; 28 Alias, Hashim, Samsudin (b44) 2008 Fazelabdolabadi (b61) 2019; 5 Rehman, Javed, Babri (b20) 2015; 42 Liu, Bi, Fan (b41) 2017; 36 Peng, Wang, Kou (b46) 2011; 11 Zhong, Enke (b5) 2019; 5 Somol, Novovicová (b9) 2010; 32 Singh, Kumar, Singla (b43) 2013; 5 Rokach (b45) 2010; 33 Uysal (b22) 2016; 43 Yang, Pedersen (b15) 1997 Pinheiro, Cavalcanti, Ren (b21) 2015; 42 Li, Kou, Peng (b35) 2016 Davis, Goadrich (b27) 2006 Lee, Lee (b16) 2006; 42 Peng, Kou, Wang (b42) 2011; 39 Dernoncourt, Hanczar, Zucker (b10) 2014; 71 Nigam, Mccallum, Thrun (b49) 2000; 39 Junejo, Karim, Hassan (b2) 2016; 372 Song, Wang, Zhu (b60) 2018; 4 Opricovic, Tzeng (b53) 2010; 17 Kou, Lu, Peng (b47) 2012; 11 Yang, Liu, Zhu (b13) 2012; 48 Gao, Zhou, Guan (b1) 2015; 323 Hwang, Yoon (b51) 2012 Kalousis, Prados, Hilario (b33) 2007; 12 Kou, Peng, Wang (b11) 2014; 275 Ferri, Hernández-Orallo, Modroiu (b24) 2009; 30 Neumayer, Mayer, Nørvåg (b30) 2011 Kou, Ergu, Shang (b40) 2014; 236 Sokolova, Lapalme (b23) 2009; 45 Almeida, Yamakami (b57) 2011 Liu, Dong, Liang, Chiclana, Herrera-Viedma (b63) 2018 Zavadskas, Turskis, Kildienė (b37) 2014; 20 T. Joachims, A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization, in: International Conference on Machine Learning, 1996. Javed, Maruf, Babri (b28) 2015; 157 Kong, Owusu-Akomeah, Antwi (b4) 2019; 5 Nigam (10.1016/j.asoc.2019.105836_b49) 2000; 39 Stillwell (10.1016/j.asoc.2019.105836_b62) 1981; 28 Cortes (10.1016/j.asoc.2019.105836_b25) 2004 Neumayer (10.1016/j.asoc.2019.105836_b30) 2011 Junejo (10.1016/j.asoc.2019.105836_b2) 2016; 372 Sokolova (10.1016/j.asoc.2019.105836_b23) 2009; 45 Lee (10.1016/j.asoc.2019.105836_b16) 2006; 42 Singh (10.1016/j.asoc.2019.105836_b43) 2013; 5 Zavadskas (10.1016/j.asoc.2019.105836_b37) 2014; 20 Pinheiro (10.1016/j.asoc.2019.105836_b32) 2012; 39 Hwang (10.1016/j.asoc.2019.105836_b51) 2012 Kou (10.1016/j.asoc.2019.105836_b11) 2014; 275 Aghdam (10.1016/j.asoc.2019.105836_b29) 2009; 36 Mesterharm (10.1016/j.asoc.2019.105836_b56) 2011 Fazelabdolabadi (10.1016/j.asoc.2019.105836_b61) 2019; 5 Opricovic (10.1016/j.asoc.2019.105836_b52) 1998; 2 Peng (10.1016/j.asoc.2019.105836_b6) 2017; 418–419 Ogura (10.1016/j.asoc.2019.105836_b31) 2011; 38 Toloie-Eshlaghy (10.1016/j.asoc.2019.105836_b34) 2011 Chen (10.1016/j.asoc.2019.105836_b48) 2009; 36 Zhong (10.1016/j.asoc.2019.105836_b5) 2019; 5 Somol (10.1016/j.asoc.2019.105836_b9) 2010; 32 Shang (10.1016/j.asoc.2019.105836_b17) 2007; 33 Opricovic (10.1016/j.asoc.2019.105836_b53) 2010; 17 Peng (10.1016/j.asoc.2019.105836_b46) 2011; 11 Selvamuthu (10.1016/j.asoc.2019.105836_b59) 2019; 5 Zhang (10.1016/j.asoc.2019.105836_b36) 2019; 277 Kuo (10.1016/j.asoc.2019.105836_b12) 2008; 55 Yang (10.1016/j.asoc.2019.105836_b15) 1997 Li (10.1016/j.asoc.2019.105836_b35) 2016 Uysal (10.1016/j.asoc.2019.105836_b22) 2016; 43 Kong (10.1016/j.asoc.2019.105836_b4) 2019; 5 Yang (10.1016/j.asoc.2019.105836_b13) 2012; 48 Taşcı (10.1016/j.asoc.2019.105836_b14) 2013; 40 Gao (10.1016/j.asoc.2019.105836_b1) 2015; 323 Kou (10.1016/j.asoc.2019.105836_b47) 2012; 11 Zeng (10.1016/j.asoc.2019.105836_b8) 2015; 48 Ferri (10.1016/j.asoc.2019.105836_b24) 2009; 30 Liu (10.1016/j.asoc.2019.105836_b63) 2018 Sebastiani (10.1016/j.asoc.2019.105836_b3) 2001; 34 Davis (10.1016/j.asoc.2019.105836_b27) 2006 Kou (10.1016/j.asoc.2019.105836_b39) 2016; 22 Javed (10.1016/j.asoc.2019.105836_b28) 2015; 157 Maas (10.1016/j.asoc.2019.105836_b55) 2011 Shang (10.1016/j.asoc.2019.105836_b7) 2013; 54 Kalousis (10.1016/j.asoc.2019.105836_b33) 2007; 12 Pinheiro (10.1016/j.asoc.2019.105836_b21) 2015; 42 Song (10.1016/j.asoc.2019.105836_b60) 2018; 4 Kou (10.1016/j.asoc.2019.105836_b38) 2014; 235 Kou (10.1016/j.asoc.2019.105836_b40) 2014; 236 Almeida (10.1016/j.asoc.2019.105836_b57) 2011 Dernoncourt (10.1016/j.asoc.2019.105836_b10) 2014; 71 Uğuz (10.1016/j.asoc.2019.105836_b19) 2011; 24 Rehman (10.1016/j.asoc.2019.105836_b20) 2015; 42 Alias (10.1016/j.asoc.2019.105836_b44) 2008 Rosset (10.1016/j.asoc.2019.105836_b26) 2004 Liu (10.1016/j.asoc.2019.105836_b41) 2017; 36 Rokach (10.1016/j.asoc.2019.105836_b45) 2010; 33 Uysal (10.1016/j.asoc.2019.105836_b18) 2012; 36 10.1016/j.asoc.2019.105836_b58 10.1016/j.asoc.2019.105836_b54 10.1016/j.asoc.2019.105836_b50 Peng (10.1016/j.asoc.2019.105836_b42) 2011; 39 |
References_xml | – start-page: 1 year: 2016 end-page: 11 ident: b35 article-title: A group decision making model for integrating heterogeneous information publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 38 start-page: 4978 year: 2011 end-page: 4989 ident: b31 article-title: Comparison of metrics for feature selection in imbalanced text classification publication-title: Expert Syst. Appl. – start-page: 850 year: 2011 end-page: 858 ident: b56 article-title: Active learning using on-line algorithms publication-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 2 start-page: 5 year: 1998 end-page: 21 ident: b52 article-title: Multicriteria optimization of civil engineering systems publication-title: Fac. Civ. Eng. – volume: 5 start-page: 16 year: 2019 ident: b59 article-title: Indian stock market prediction using artificial neural networks on tick data publication-title: Financial Innov. – volume: 36 start-page: 5432 year: 2009 end-page: 5435 ident: b48 article-title: Feature selection for text classification with Naïve Bayes publication-title: Expert Syst. Appl. – volume: 372 start-page: 518 year: 2016 end-page: 538 ident: b2 article-title: Terms-based discriminative information space for robust text classification publication-title: Inform. Sci. – volume: 39 start-page: 677 year: 2011 end-page: 689 ident: b42 article-title: FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms publication-title: Omega – start-page: 313 year: 2004 end-page: 320 ident: b25 article-title: AUC optimization vs. error rate minimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 36 start-page: 226 year: 2012 end-page: 235 ident: b18 article-title: A novel probabilistic feature selection method for text classification publication-title: Knowl.-Based Syst. – volume: 32 start-page: 1921 year: 2010 end-page: 1939 ident: b9 article-title: Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 33 start-page: 1 year: 2007 end-page: 5 ident: b17 article-title: A novel feature selection algorithm for text categorization publication-title: Expert Syst. Appl. – volume: 235 start-page: 225 year: 2014 end-page: 232 ident: b38 article-title: A cosine maximization method for the priority vector derivation in AHP publication-title: European J. Oper. Res. – volume: 323 start-page: 130 year: 2015 end-page: 142 ident: b1 article-title: Effectively classifying short texts by structured sparse representation with dictionary filtering publication-title: Inform. Sci. – volume: 236 start-page: 261 year: 2014 end-page: 271 ident: b40 article-title: Enhancing data consistency in decision matrix: Adapting hadamard model to mitigate judgment contradiction publication-title: European J. Oper. Res. – volume: 20 start-page: 165 year: 2014 end-page: 179 ident: b37 article-title: State of art surveys of overviews on MCDM/madm methods publication-title: Technol. Econ. Dev. Econ. – volume: 48 start-page: 741 year: 2012 end-page: 754 ident: b13 article-title: A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization publication-title: Inf. Process. Manage. Int. J. – year: 2008 ident: b44 article-title: Multi crteria decision making and its applications : A literature review publication-title: Jurnal Teknologi Maklumat – start-page: 412 year: 1997 end-page: 420 ident: b15 article-title: A comparative study on feature selection in text categorization publication-title: Fourteenth International Conference on Machine Learning – volume: 55 start-page: 80 year: 2008 end-page: 93 ident: b12 article-title: The use of grey relational analysis in solving multiple attribute decision-making problems publication-title: Comput. Ind. Eng. – reference: T. Joachims, A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization, in: International Conference on Machine Learning, 1996. – start-page: 86 year: 2011 end-page: 137 ident: b34 article-title: MCDM methodologies and applications: A literature review from 1999 to 2009 publication-title: Res.J. Int. Stud. – start-page: 763 year: 2011 end-page: 766 ident: b30 article-title: Combination of feature selection methods for text categorisation publication-title: Advances in Information Retrieval – volume: 36 start-page: 149 year: 2017 end-page: 161 ident: b41 article-title: Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory publication-title: Inf. Fusion – reference: Y. Saeys, T. Abeel, Y.V.D. Peer, Robust feature selection using ensemble feature selection techniques, in: Machine Learning and Knowledge Discovery in Databases, European Conference, Ecml/pkdd 2008, Antwerp, Belgium, September (2008) 15-19, Proceedings, DBLP, 2008, pp. 313–325. – start-page: 1 year: 2018 end-page: 12 ident: b63 article-title: Multiple attribute strategic weight manipulation with minimum cost in a group decision making context with interval attribute weights information publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 11 start-page: 2906 year: 2011 end-page: 2915 ident: b46 article-title: An empirical study of classification algorithm evaluation for financial risk prediction publication-title: Appl. Soft Comput. – volume: 157 start-page: 91 year: 2015 end-page: 104 ident: b28 article-title: A two-stage Markov blanket based feature selection algorithm for text classification publication-title: Neurocomputing – volume: 30 start-page: 27 year: 2009 end-page: 38 ident: b24 article-title: An experimental comparison of performance measures for classification publication-title: Pattern Recognit. Lett. – volume: 42 start-page: 155 year: 2006 end-page: 165 ident: b16 article-title: Information gain and divergence-based feature selection for machine learning-based text categorization publication-title: Inf. Process. Manage. – volume: 24 start-page: 1024 year: 2011 end-page: 1032 ident: b19 article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm publication-title: Knowl.-Based Syst. – volume: 5 start-page: 30 year: 2019 ident: b61 article-title: A hybrid Bayesian-network proposition for forecasting the crude oil price publication-title: Financial Innov. – start-page: 259 year: 2011 end-page: 262 ident: b57 article-title: Contributions to the study of SMS spam filtering: New collection and results publication-title: Proceedings of the 11th ACM Symposium on Document Engineering – volume: 4 start-page: 2 year: 2018 ident: b60 article-title: Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR publication-title: Financial Innov. – volume: 5 start-page: 10 year: 2019 ident: b4 article-title: Evaluation of the robusticity of mutual fund performance in ghana using enhanced resilient backpropagation neural network (ERBPNN) and fast adaptive neural network classifier (FANNC) publication-title: Financial Innov. – volume: 71 start-page: 681 year: 2014 end-page: 693 ident: b10 article-title: Analysis of feature selection stability on high dimension and small sample data publication-title: Comput. Statist. Data Anal. – volume: 33 start-page: 1 year: 2010 end-page: 39 ident: b45 article-title: Ensemble-based classifiers publication-title: Artif. Intell. Rev. – volume: 42 start-page: 3670 year: 2015 end-page: 3681 ident: b20 article-title: Relative discrimination criterion – A novel feature ranking method for text data publication-title: Expert Syst. Appl. – start-page: 233 year: 2006 end-page: 240 ident: b27 article-title: The relationship between precision-recall and ROC curves publication-title: ICML ’06 : Proceedings of the, International Conference on Machine Learning – volume: 12 start-page: 95 year: 2007 end-page: 116 ident: b33 article-title: Stability of feature selection algorithms: A study on high-dimensional spaces publication-title: Knowledge & Information Systems – year: 2012 ident: b51 article-title: Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey – volume: 39 start-page: 12851 year: 2012 end-page: 12857 ident: b32 article-title: A global-ranking local feature selection method for text categorization publication-title: Expert Syst. Appl. – volume: 34 start-page: 1 year: 2001 end-page: 47 ident: b3 article-title: Machine learning in automated text categorization publication-title: Acm Comput. Surv. – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: b23 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – reference: P. Bo, L. Lee, Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales (2005), pp. 115–124. – volume: 36 start-page: 6843 year: 2009 end-page: 6853 ident: b29 article-title: Text feature selection using ant colony optimization publication-title: Expert Syst. Appl. – start-page: 142 year: 2011 end-page: 150 ident: b55 article-title: Learning word vectors for sentiment analysis publication-title: Meeting of the Association for Computational Linguistics: Human Language Technologies – volume: 17 start-page: 211 year: 2010 end-page: 220 ident: b53 article-title: Multicriteria planning of post earthquake sustainable reconstruction publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 40 start-page: 4871 year: 2013 end-page: 4886 ident: b14 article-title: Comparison of text feature selection policies and using an adaptive framework publication-title: Expert Syst. Appl. – volume: 11 start-page: 197 year: 2012 end-page: 225 ident: b47 article-title: Evaluation of classification algorithms using mcdm and rank correlation publication-title: Int. J. Inf. Technol. Decis. Mak. – volume: 39 start-page: 103 year: 2000 end-page: 134 ident: b49 article-title: Text classification from labeled and unlabeled documents using EM publication-title: Mach. Learn. – volume: 418–419 start-page: 652 year: 2017 end-page: 667 ident: b6 article-title: Feature selection by optimizing a lower bound of conditional mutual information publication-title: Inform. Sci. – volume: 277 start-page: 964 year: 2019 end-page: 980 ident: b36 article-title: Soft consensus cost models for group decision making and economic interpretations publication-title: European J. Oper. Res. – start-page: 89 year: 2004 ident: b26 article-title: Model selection via the AUC publication-title: International Conference on Machine Learning – volume: 28 start-page: 62 year: 1981 end-page: 77 ident: b62 article-title: A comparison of weight approximation techniques in multiattribute utility decision making publication-title: Organ. Behav. Hum. Perform. – volume: 275 start-page: 1 year: 2014 end-page: 12 ident: b11 article-title: Evaluation of clustering algorithms for financial risk analysis using MCDM methods publication-title: Inform. Sci. – volume: 5 start-page: 4598 year: 2013 end-page: 4604 ident: b43 article-title: TOPSIS based multi-criteria decision making of feature selection techniques for network traffic dataset publication-title: Int. J. Eng. Technol. – volume: 42 start-page: 1941 year: 2015 end-page: 1949 ident: b21 article-title: Data-driven global-ranking local feature selection methods for text categorization publication-title: Expert Syst. Appl. – volume: 48 start-page: 2656 year: 2015 end-page: 2666 ident: b8 article-title: A novel feature selection method considering feature interaction publication-title: Pattern Recognit. – volume: 43 start-page: 82 year: 2016 end-page: 92 ident: b22 article-title: An improved global feature selection scheme for text classification publication-title: Expert Syst. Appl. – volume: 5 start-page: 4 year: 2019 ident: b5 article-title: Predicting the daily return direction of the stock market using hybrid machine learning algorithms publication-title: Financial Innov. – volume: 22 start-page: 738 year: 2016 end-page: 765 ident: b39 article-title: Pairwise comparison matrix in multiple criteria decision making publication-title: Technol. Econ. Develop. Econ. – volume: 54 start-page: 298 year: 2013 end-page: 309 ident: b7 article-title: Feature selection via maximizing global information gain for text classification publication-title: Knowl.-Based Syst. – volume: 418–419 start-page: 652 year: 2017 ident: 10.1016/j.asoc.2019.105836_b6 article-title: Feature selection by optimizing a lower bound of conditional mutual information publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.08.036 – volume: 28 start-page: 62 issue: 1 year: 1981 ident: 10.1016/j.asoc.2019.105836_b62 article-title: A comparison of weight approximation techniques in multiattribute utility decision making publication-title: Organ. Behav. Hum. Perform. doi: 10.1016/0030-5073(81)90015-5 – volume: 42 start-page: 1941 issue: 4 year: 2015 ident: 10.1016/j.asoc.2019.105836_b21 article-title: Data-driven global-ranking local feature selection methods for text categorization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.10.011 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105836_b63 article-title: Multiple attribute strategic weight manipulation with minimum cost in a group decision making context with interval attribute weights information publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2018.2841063 – volume: 5 start-page: 4 issue: 1 year: 2019 ident: 10.1016/j.asoc.2019.105836_b5 article-title: Predicting the daily return direction of the stock market using hybrid machine learning algorithms publication-title: Financial Innov. doi: 10.1186/s40854-019-0138-0 – volume: 33 start-page: 1 issue: 1–2 year: 2010 ident: 10.1016/j.asoc.2019.105836_b45 article-title: Ensemble-based classifiers publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-009-9124-7 – start-page: 89 year: 2004 ident: 10.1016/j.asoc.2019.105836_b26 article-title: Model selection via the AUC – volume: 38 start-page: 4978 issue: 5 year: 2011 ident: 10.1016/j.asoc.2019.105836_b31 article-title: Comparison of metrics for feature selection in imbalanced text classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.153 – volume: 275 start-page: 1 issue: 11 year: 2014 ident: 10.1016/j.asoc.2019.105836_b11 article-title: Evaluation of clustering algorithms for financial risk analysis using MCDM methods publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.02.137 – volume: 48 start-page: 741 issue: 4 year: 2012 ident: 10.1016/j.asoc.2019.105836_b13 article-title: A new feature selection based on comprehensive measurement both in inter-category and intra-category for text categorization publication-title: Inf. Process. Manage. Int. J. doi: 10.1016/j.ipm.2011.12.005 – volume: 42 start-page: 155 issue: 1 year: 2006 ident: 10.1016/j.asoc.2019.105836_b16 article-title: Information gain and divergence-based feature selection for machine learning-based text categorization publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2004.08.006 – year: 2012 ident: 10.1016/j.asoc.2019.105836_b51 – volume: 30 start-page: 27 issue: 1 year: 2009 ident: 10.1016/j.asoc.2019.105836_b24 article-title: An experimental comparison of performance measures for classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.08.010 – volume: 20 start-page: 165 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105836_b37 article-title: State of art surveys of overviews on MCDM/madm methods publication-title: Technol. Econ. Dev. Econ. doi: 10.3846/20294913.2014.892037 – volume: 11 start-page: 2906 issue: 2 year: 2011 ident: 10.1016/j.asoc.2019.105836_b46 article-title: An empirical study of classification algorithm evaluation for financial risk prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.11.028 – volume: 39 start-page: 103 issue: 2–3 year: 2000 ident: 10.1016/j.asoc.2019.105836_b49 article-title: Text classification from labeled and unlabeled documents using EM publication-title: Mach. Learn. doi: 10.1023/A:1007692713085 – volume: 36 start-page: 6843 issue: 3 year: 2009 ident: 10.1016/j.asoc.2019.105836_b29 article-title: Text feature selection using ant colony optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.08.022 – start-page: 850 year: 2011 ident: 10.1016/j.asoc.2019.105836_b56 article-title: Active learning using on-line algorithms – volume: 372 start-page: 518 year: 2016 ident: 10.1016/j.asoc.2019.105836_b2 article-title: Terms-based discriminative information space for robust text classification publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.08.073 – volume: 5 start-page: 16 issue: 1 year: 2019 ident: 10.1016/j.asoc.2019.105836_b59 article-title: Indian stock market prediction using artificial neural networks on tick data publication-title: Financial Innov. doi: 10.1186/s40854-019-0131-7 – volume: 42 start-page: 3670 issue: 7 year: 2015 ident: 10.1016/j.asoc.2019.105836_b20 article-title: Relative discrimination criterion – A novel feature ranking method for text data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.013 – volume: 43 start-page: 82 issue: C year: 2016 ident: 10.1016/j.asoc.2019.105836_b22 article-title: An improved global feature selection scheme for text classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.050 – volume: 39 start-page: 12851 issue: 17 year: 2012 ident: 10.1016/j.asoc.2019.105836_b32 article-title: A global-ranking local feature selection method for text categorization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.008 – volume: 11 start-page: 197 issue: 01 year: 2012 ident: 10.1016/j.asoc.2019.105836_b47 article-title: Evaluation of classification algorithms using mcdm and rank correlation publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622012500095 – volume: 22 start-page: 738 issue: 5 year: 2016 ident: 10.1016/j.asoc.2019.105836_b39 article-title: Pairwise comparison matrix in multiple criteria decision making publication-title: Technol. Econ. Develop. Econ. doi: 10.3846/20294913.2016.1210694 – start-page: 142 year: 2011 ident: 10.1016/j.asoc.2019.105836_b55 article-title: Learning word vectors for sentiment analysis – volume: 71 start-page: 681 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105836_b10 article-title: Analysis of feature selection stability on high dimension and small sample data publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2013.07.012 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2019.105836_b35 article-title: A group decision making model for integrating heterogeneous information publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2015.2422267 – start-page: 763 year: 2011 ident: 10.1016/j.asoc.2019.105836_b30 article-title: Combination of feature selection methods for text categorisation – volume: 48 start-page: 2656 issue: 8 year: 2015 ident: 10.1016/j.asoc.2019.105836_b8 article-title: A novel feature selection method considering feature interaction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.02.025 – volume: 5 start-page: 10 issue: 1 year: 2019 ident: 10.1016/j.asoc.2019.105836_b4 article-title: Evaluation of the robusticity of mutual fund performance in ghana using enhanced resilient backpropagation neural network (ERBPNN) and fast adaptive neural network classifier (FANNC) publication-title: Financial Innov. doi: 10.1186/s40854-019-0125-5 – volume: 157 start-page: 91 year: 2015 ident: 10.1016/j.asoc.2019.105836_b28 article-title: A two-stage Markov blanket based feature selection algorithm for text classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.031 – volume: 4 start-page: 2 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105836_b60 article-title: Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR publication-title: Financial Innov. doi: 10.1186/s40854-018-0086-0 – volume: 36 start-page: 226 issue: 6 year: 2012 ident: 10.1016/j.asoc.2019.105836_b18 article-title: A novel probabilistic feature selection method for text classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.06.005 – year: 2008 ident: 10.1016/j.asoc.2019.105836_b44 article-title: Multi crteria decision making and its applications : A literature review publication-title: Jurnal Teknologi Maklumat – volume: 34 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.asoc.2019.105836_b3 article-title: Machine learning in automated text categorization publication-title: Acm Comput. Surv. doi: 10.1145/505282.505283 – start-page: 259 year: 2011 ident: 10.1016/j.asoc.2019.105836_b57 article-title: Contributions to the study of SMS spam filtering: New collection and results – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.asoc.2019.105836_b23 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – volume: 277 start-page: 964 issue: 3 year: 2019 ident: 10.1016/j.asoc.2019.105836_b36 article-title: Soft consensus cost models for group decision making and economic interpretations publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2019.03.009 – volume: 236 start-page: 261 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105836_b40 article-title: Enhancing data consistency in decision matrix: Adapting hadamard model to mitigate judgment contradiction publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2013.11.035 – start-page: 412 year: 1997 ident: 10.1016/j.asoc.2019.105836_b15 article-title: A comparative study on feature selection in text categorization – volume: 36 start-page: 5432 issue: 3 year: 2009 ident: 10.1016/j.asoc.2019.105836_b48 article-title: Feature selection for text classification with Naïve Bayes publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.06.054 – volume: 5 start-page: 30 issue: 1 year: 2019 ident: 10.1016/j.asoc.2019.105836_b61 article-title: A hybrid Bayesian-network proposition for forecasting the crude oil price publication-title: Financial Innov. doi: 10.1186/s40854-019-0144-2 – start-page: 313 year: 2004 ident: 10.1016/j.asoc.2019.105836_b25 article-title: AUC optimization vs. error rate minimization publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.asoc.2019.105836_b54 – volume: 32 start-page: 1921 issue: 11 year: 2010 ident: 10.1016/j.asoc.2019.105836_b9 article-title: Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.34 – volume: 39 start-page: 677 issue: 6 year: 2011 ident: 10.1016/j.asoc.2019.105836_b42 article-title: FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms publication-title: Omega doi: 10.1016/j.omega.2011.01.009 – ident: 10.1016/j.asoc.2019.105836_b58 – volume: 2 start-page: 5 issue: 1 year: 1998 ident: 10.1016/j.asoc.2019.105836_b52 article-title: Multicriteria optimization of civil engineering systems publication-title: Fac. Civ. Eng. – ident: 10.1016/j.asoc.2019.105836_b50 – volume: 323 start-page: 130 year: 2015 ident: 10.1016/j.asoc.2019.105836_b1 article-title: Effectively classifying short texts by structured sparse representation with dictionary filtering publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.06.033 – volume: 55 start-page: 80 issue: 1 year: 2008 ident: 10.1016/j.asoc.2019.105836_b12 article-title: The use of grey relational analysis in solving multiple attribute decision-making problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2007.12.002 – volume: 33 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105836_b17 article-title: A novel feature selection algorithm for text categorization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.04.001 – start-page: 233 year: 2006 ident: 10.1016/j.asoc.2019.105836_b27 article-title: The relationship between precision-recall and ROC curves – volume: 54 start-page: 298 issue: 4 year: 2013 ident: 10.1016/j.asoc.2019.105836_b7 article-title: Feature selection via maximizing global information gain for text classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.09.019 – volume: 24 start-page: 1024 issue: 7 year: 2011 ident: 10.1016/j.asoc.2019.105836_b19 article-title: A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.04.014 – volume: 235 start-page: 225 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105836_b38 article-title: A cosine maximization method for the priority vector derivation in AHP publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2013.10.019 – volume: 5 start-page: 4598 issue: 6 year: 2013 ident: 10.1016/j.asoc.2019.105836_b43 article-title: TOPSIS based multi-criteria decision making of feature selection techniques for network traffic dataset publication-title: Int. J. Eng. Technol. – volume: 40 start-page: 4871 issue: 12 year: 2013 ident: 10.1016/j.asoc.2019.105836_b14 article-title: Comparison of text feature selection policies and using an adaptive framework publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.019 – volume: 17 start-page: 211 issue: 3 year: 2010 ident: 10.1016/j.asoc.2019.105836_b53 article-title: Multicriteria planning of post earthquake sustainable reconstruction publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/1467-8667.00269 – start-page: 86 year: 2011 ident: 10.1016/j.asoc.2019.105836_b34 article-title: MCDM methodologies and applications: A literature review from 1999 to 2009 publication-title: Res.J. Int. Stud. – volume: 12 start-page: 95 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.105836_b33 article-title: Stability of feature selection algorithms: A study on high-dimensional spaces publication-title: Knowledge & Information Systems doi: 10.1007/s10115-006-0040-8 – volume: 36 start-page: 149 year: 2017 ident: 10.1016/j.asoc.2019.105836_b41 article-title: Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.11.012 |
SSID | ssj0016928 |
Score | 2.665019 |
Snippet | The evaluation of feature selection methods for text classification with small sample datasets must consider classification performance, stability, and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105836 |
SubjectTerms | Feature selection MCDM Small sample dataset Text classification |
Title | Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods |
URI | https://dx.doi.org/10.1016/j.asoc.2019.105836 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBN1jbdJN09ltJSX0XUQm9LNjuRSl-49erFP25mky0K0oOnhZAJITM7MwnfzEfIpWlLHXGug5g3TcBjngWptYugrVgmpEl1yLDe-WEoByN-OxbjCumWtTAIq_S-3_n0wlv7kYY_zcZyMmk825tHZBe3N4AQ4zAW8XHeRiu__lzDPJiMC35VnIxbkb5wxmG8lD0BhHfFSHfr2jT_EZx-BJz-HtnxmSLtuM3skwrMD8huycJA_U95SL5664bddGGogaJVJ80LghscdCTRObXpKUWcB9WYMSNEyAnhUyzNZ2o6pYgXzWGVU4TDv9ISbUita8GezopmnpInmBUsVuXaR2TU7710B4GnVgh0yDkS0DMTK6YhzYwEEessa0VKp9JAW2nBwXADIuQQahGBzcKByQyrVm32JUyowmNSnS_mcEKoZliLC6GJmoZHwNKWVDYH0IwzJUFDjbDyTBPt-44j_cU0KQFmbwnqIUE9JE4PNXK1llm6rhsbZ4tSVckv20lsWNggd_pPuTOy3cJbd_EQc06qq_cPuLCpySqtF7ZXJ1ud7tP9I35v7gbDb3db6MM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjXjjASYUihPHTQYGBFQF2i6AxBYc54xApVSkCLGw8JP4g_gSpwIJMSCxWrEV353uYX13H8C2aUgdCaG9WOwbT8Qi81JrF15D8SyUJtUBp37nTle2rsTZdXg9Bh9VLwzBKp3vL3164a3dSt1Jsz64u6tf2MojsofbCiCgOBw7ZOU5vr7Yui0_OD22St7x_ebJ5VHLc9QCng6EIAJ2bmLFNaaZkRjGOsv8SOlUGmwoHQo0wmAYCAx0GKHNQpHLjLo2bfYRmkAF9txxmBDWXRBtwt7bCFfCZVwQutLf0d2l69QpQWXKipzwZDHx65ZzoX-Ihl8iXHMWpl1qyg7L28_BGPbnYaaifWDOCyzA-8loQjh7NMxgMRuU5QWjDi2WrNQ5s_kwI2AJ05SiEyap3ERvvyx_UL0eI4BqjsOcEf7-llXwRmZ9GQ2RVixzHEDeQ0GbVZ29CFf_IvAlqPUf-7gMTHNq_sXARPtGRMhTXyqbdGguuJKocQV4JdNEu0HnxLfRSypE231CekhID0mphxXYHe0ZlGM-fv06rFSVfDPWxMahX_at_nHfFky2LjvtpH3aPV-DKZ9K_uIVaB1qw6dn3LB50TDdLOyQwc1_G_4nXtAkqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+feature+selection+methods+for+text+classification+with+small+datasets+using+multiple+criteria+decision-making+methods&rft.jtitle=Applied+soft+computing&rft.au=Kou%2C+Gang&rft.au=Yang%2C+Pei&rft.au=Peng%2C+Yi&rft.au=Xiao%2C+Feng&rft.date=2020-01-01&rft.issn=1568-4946&rft.volume=86&rft.spage=105836&rft_id=info:doi/10.1016%2Fj.asoc.2019.105836&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105836 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |