Sub‐Nanometer Porous Carbon Materials for High‐Performance Supercapacitors Using Carbon Dots as Self‐templated Pore‐Makers

Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 16
Main Authors Zhang, Xi‐Rong, Song, Tian‐Bing, He, Tian‐Le, Ma, Qian‐Li, Wu, Zhao‐Fan, Wang, Yong‐Gang, Xiong, Huan‐Ming
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 18.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3) displays outstanding capacitances (gravimetric 515.5 F g−1, areal 5.16 F cm−2, and volumetric 417.6 F cm−3 respectively at 1 A g−1) at the commercial‐level mass‐loading of 10 mg cm−2. The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1, as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts. The well‐designed carbon dots are used as self‐templates to produce porous carbon with uniform pore diameters of 0.64–0.80 nm and high surface areas, which benefit ion storage in supercapacitors and result in excellent electrochemical performances.
AbstractList Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm −3 ) displays outstanding capacitances (gravimetric 515.5 F g −1 , areal 5.16 F cm −2 , and volumetric 417.6 F cm −3 respectively at 1 A g −1 ) at the commercial‐level mass‐loading of 10 mg cm −2 . The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg −1 at 3500 W kg −1 , as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g −1 ) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts.
Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3) displays outstanding capacitances (gravimetric 515.5 F g−1, areal 5.16 F cm−2, and volumetric 417.6 F cm−3 respectively at 1 A g−1) at the commercial‐level mass‐loading of 10 mg cm−2. The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1, as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts.
Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3) displays outstanding capacitances (gravimetric 515.5 F g−1, areal 5.16 F cm−2, and volumetric 417.6 F cm−3 respectively at 1 A g−1) at the commercial‐level mass‐loading of 10 mg cm−2. The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1, as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts. The well‐designed carbon dots are used as self‐templates to produce porous carbon with uniform pore diameters of 0.64–0.80 nm and high surface areas, which benefit ion storage in supercapacitors and result in excellent electrochemical performances.
Author Xiong, Huan‐Ming
Zhang, Xi‐Rong
Wang, Yong‐Gang
Song, Tian‐Bing
He, Tian‐Le
Wu, Zhao‐Fan
Ma, Qian‐Li
Author_xml – sequence: 1
  givenname: Xi‐Rong
  surname: Zhang
  fullname: Zhang, Xi‐Rong
  organization: Fudan University
– sequence: 2
  givenname: Tian‐Bing
  surname: Song
  fullname: Song, Tian‐Bing
  organization: Fudan University
– sequence: 3
  givenname: Tian‐Le
  surname: He
  fullname: He, Tian‐Le
  organization: Fudan University
– sequence: 4
  givenname: Qian‐Li
  surname: Ma
  fullname: Ma, Qian‐Li
  organization: Fudan University
– sequence: 5
  givenname: Zhao‐Fan
  surname: Wu
  fullname: Wu, Zhao‐Fan
  organization: Fudan University
– sequence: 6
  givenname: Yong‐Gang
  orcidid: 0000-0002-2447-4679
  surname: Wang
  fullname: Wang, Yong‐Gang
  email: ygwang@fudan.edu.cn
  organization: Fudan University
– sequence: 7
  givenname: Huan‐Ming
  surname: Xiong
  fullname: Xiong, Huan‐Ming
  email: hmxiong@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkM1OAjEUhRuDiYBuXTdxDbad3y4JiJiAkiCJu0mnc4uDM9OxnYlhZ3wCn9EnsQTFpav7d757ktNDnUpXgNAlJUNKCLsWmSqHjDCfckb5CerSkIYDj7C4c-zp0xnqWbslhEaR53fRx6pNv94_70WlS2jA4KU2urV4LEyqK7wQbpeLwmKlDZ7lm2cnXoJxUykqCXjV1mCkqIXMG20sXtu82vzSE91YLCxeQaEc10BZF-5htjcBt1iIFzD2HJ0q5wAXP7WP1tObx_FsMH-4vRuP5gPp-T4fMBkLCl6QEhJwxiQnyuNprLgfBqGSQhGaZlHmUenHJKMQZNQNAXFHmoLr--jq8Lc2-rUF2yRb3ZrKWSYe5Z4LKPJjpxoeVNJoaw2opDZ5KcwuoSTZ55zsc06OOTuAH4C3vIDdP-pkNJku_thvaDyI6g
Cites_doi 10.1016/j.carbon.2006.05.022
10.1016/j.nanoen.2015.10.038
10.1016/j.nanoen.2020.104531
10.1002/anie.202411066
10.1021/jacs.4c05647
10.1002/anie.202203967
10.1021/acsnano.0c10624
10.1002/adfm.201202764
10.1016/j.ensm.2019.12.038
10.1002/adma.202401220
10.1007/s40820-020-0393-7
10.1002/aenm.201100654
10.1002/adma.202404393
10.1016/j.cej.2020.124104
10.1351/pac198557040603
10.1039/D0EE00477D
10.1002/smtd.201900853
10.1002/ange.202217808
10.1016/j.apsusc.2024.160551
10.1039/C6TA05607E
10.1002/adma.202403033
10.1002/adma.202401493
10.1016/j.jelechem.2023.117254
10.1016/j.ensm.2019.07.009
10.1039/C8TA06471G
10.1002/adma.202209186
10.1016/j.nanoen.2019.06.032
10.1039/C7TA10106F
10.1039/C8TA10158B
10.1002/adma.202402628
10.1021/nn501796r
10.1016/j.jpowsour.2020.228830
10.1002/ange.200703864
10.1093/nsr/nwae207
10.1002/anie.201509054
10.1002/cey2.134
10.1007/s12274-022-4382-7
10.1016/j.mattod.2021.07.028
10.1002/adma.202209963
10.1002/adma.201806197
10.1002/adma.202405924
10.1002/adma.201104942
10.1007/s12274-022-4452-x
10.1016/j.cej.2023.141930
10.1002/aenm.202001239
10.1126/science.1132195
10.1002/adma.202310422
10.1002/adfm.202314962
10.1021/ja407552k
10.1002/adma.202408685
10.1002/anie.202408569
10.1038/s41598-019-41769-y
10.1016/j.carbon.2020.01.020
10.1002/adma.202311655
10.1002/adma.202304465
10.1002/adfm.201504004
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202419219
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202419219
ADFM202419219
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U24A20565; 21975048
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 2024ZDSYS02
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGQPQ
AGXDD
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3449-2c8a1e35b005922c90f39b8f94656fcaf01bd7d31c480d1e5d1d315056f1be1d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 04:10:48 EDT 2025
Sun Jul 06 05:08:45 EDT 2025
Wed Apr 23 09:40:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3449-2c8a1e35b005922c90f39b8f94656fcaf01bd7d31c480d1e5d1d315056f1be1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2447-4679
PQID 3193616748
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3193616748
crossref_primary_10_1002_adfm_202419219
wiley_primary_10_1002_adfm_202419219_ADFM202419219
PublicationCentury 2000
PublicationDate April 18, 2025
PublicationDateYYYYMMDD 2025-04-18
PublicationDate_xml – month: 04
  year: 2025
  text: April 18, 2025
  day: 18
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2020; 6 387
2019; 9
2023 2022; 461 15
2023 2024 2024 2024; 35 34 63 36
2018 2013; 6 23
2021 2021; 3 51
2020; 161
2024; 146
2024; 36
2006; 313
2008; 120
2024 2023; 11 35
2024 2024 2024; 36 36 36
2012 2013; 2 135
2016; 4
2020 2020; 12 480
2021; 15
2020; 4
2019 2020; 7 10
2019; 63
2022; 61
2024; 670
2020 2020; 26 70
2022; 15
2020; 24
2024 2023 2023; 63 135 35
2023; 932
2014; 8
2016 2016; 19 26
2019 2006 2020; 31 44 13
1985; 57
2016 2012; 55 24
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_26_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_32_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 11 35
  year: 2024 2023
  publication-title: Nati. Sci. Rev. Adv. Mater.
– volume: 6 23
  start-page: 3162 2322
  year: 2018 2013
  publication-title: J. Mater. Chem. A Adv. Funct. Mater.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 5431
  year: 2019
  publication-title: Sci. Rep.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 3 51
  start-page: 795 188
  year: 2021 2021
  publication-title: Carbon Energy Mater. Today
– volume: 24
  start-page: 486
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 146
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 19 26
  start-page: 165 111
  year: 2016 2016
  publication-title: Nano Energy Adv. Funct. Mater.
– volume: 63 135 35
  year: 2024 2023 2023
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 603
  year: 1985
  publication-title: Pure Appl. Chem.
– volume: 55 24
  start-page: 2032 4197
  year: 2016 2012
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 31 44 13
  start-page: 2498 2431
  year: 2019 2006 2020
  publication-title: Adv. Mater. Carbon Energy Environ. Sci.
– volume: 8
  start-page: 6312
  year: 2014
  publication-title: ACS Nano
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 161
  start-page: 62
  year: 2020
  publication-title: Carbon
– volume: 120
  start-page: 530
  year: 2008
  publication-title: Angew. Chem., Int. Ed.
– volume: 6 387
  year: 2018 2020
  publication-title: J. Mater. Chem. A Chem. Eng. J.
– volume: 15
  start-page: 7759
  year: 2022
  publication-title: Nano Res.
– volume: 15
  start-page: 6872
  year: 2021
  publication-title: ACS Nano
– volume: 2 135
  start-page: 419
  year: 2012 2013
  publication-title: Adv. Energy Mater. J. Am. Chem. Soc.
– volume: 36 36 36
  year: 2024 2024 2024
  publication-title: Adv. Mater. Adv. Mater. Adv. Mater.
– volume: 26 70
  start-page: 119
  year: 2020 2020
  publication-title: Energy Storage Mater. Nano Energy
– volume: 461 15
  start-page: 7209
  year: 2023 2022
  publication-title: Chem. Eng. J. Nano Res.
– volume: 932
  year: 2023
  publication-title: J. Electroanal. Chem.
– volume: 35 34 63 36
  year: 2023 2024 2024 2024
  publication-title: Adv. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 12 480
  start-page: 63
  year: 2020 2020
  publication-title: Nano‐Micro Lett. J. Power Sources
– volume: 7 10
  start-page: 1177
  year: 2019 2020
  publication-title: J. Mater. Chem. A. Adv. Energy Mater.
– volume: 670
  year: 2024
  publication-title: Appl. Surf. Sci.
– volume: 313
  start-page: 1760
  year: 2006
  publication-title: Science
– ident: e_1_2_8_17_2
  doi: 10.1016/j.carbon.2006.05.022
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2015.10.038
– ident: e_1_2_8_18_2
  doi: 10.1016/j.nanoen.2020.104531
– ident: e_1_2_8_3_1
  doi: 10.1002/anie.202411066
– ident: e_1_2_8_19_1
  doi: 10.1021/jacs.4c05647
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.202203967
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.0c10624
– ident: e_1_2_8_11_2
  doi: 10.1002/adfm.201202764
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ensm.2019.12.038
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202401220
– ident: e_1_2_8_30_1
  doi: 10.1007/s40820-020-0393-7
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.201100654
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202404393
– ident: e_1_2_8_26_2
  doi: 10.1016/j.cej.2020.124104
– ident: e_1_2_8_4_1
  doi: 10.1351/pac198557040603
– ident: e_1_2_8_17_3
  doi: 10.1039/D0EE00477D
– ident: e_1_2_8_9_1
  doi: 10.1002/smtd.201900853
– ident: e_1_2_8_3_2
  doi: 10.1002/ange.202217808
– ident: e_1_2_8_20_1
  doi: 10.1016/j.apsusc.2024.160551
– ident: e_1_2_8_22_1
  doi: 10.1039/C6TA05607E
– ident: e_1_2_8_1_2
  doi: 10.1002/adma.202403033
– ident: e_1_2_8_13_2
  doi: 10.1002/adma.202401493
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jelechem.2023.117254
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ensm.2019.07.009
– ident: e_1_2_8_26_1
  doi: 10.1039/C8TA06471G
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.202209186
– ident: e_1_2_8_29_1
  doi: 10.1016/j.nanoen.2019.06.032
– ident: e_1_2_8_11_1
  doi: 10.1039/C7TA10106F
– ident: e_1_2_8_28_1
  doi: 10.1039/C8TA10158B
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.202402628
– ident: e_1_2_8_15_1
  doi: 10.1021/nn501796r
– ident: e_1_2_8_30_2
  doi: 10.1016/j.jpowsour.2020.228830
– ident: e_1_2_8_5_1
  doi: 10.1002/ange.200703864
– ident: e_1_2_8_8_1
  doi: 10.1093/nsr/nwae207
– ident: e_1_2_8_6_1
  doi: 10.1002/anie.201509054
– ident: e_1_2_8_14_1
  doi: 10.1002/cey2.134
– ident: e_1_2_8_25_2
  doi: 10.1007/s12274-022-4382-7
– ident: e_1_2_8_14_2
  doi: 10.1016/j.mattod.2021.07.028
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.202209963
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201806197
– ident: e_1_2_8_2_4
  doi: 10.1002/adma.202405924
– ident: e_1_2_8_6_2
  doi: 10.1002/adma.201104942
– ident: e_1_2_8_33_1
  doi: 10.1007/s12274-022-4452-x
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cej.2023.141930
– ident: e_1_2_8_28_2
  doi: 10.1002/aenm.202001239
– ident: e_1_2_8_7_1
  doi: 10.1126/science.1132195
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.202310422
– ident: e_1_2_8_2_2
  doi: 10.1002/adfm.202314962
– ident: e_1_2_8_10_2
  doi: 10.1021/ja407552k
– ident: e_1_2_8_13_3
  doi: 10.1002/adma.202408685
– ident: e_1_2_8_2_3
  doi: 10.1002/anie.202408569
– ident: e_1_2_8_31_1
  doi: 10.1038/s41598-019-41769-y
– ident: e_1_2_8_34_1
  doi: 10.1016/j.carbon.2020.01.020
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202311655
– ident: e_1_2_8_3_3
  doi: 10.1002/adma.202304465
– ident: e_1_2_8_12_2
  doi: 10.1002/adfm.201504004
SSID ssj0017734
Score 2.5132878
Snippet Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Aqueous electrolytes
Carbon
Carbon dots
Electrode materials
Packing density
porous carbon
Porous materials
self‐template
sub‐nanometer pore
Supercapacitors
Title Sub‐Nanometer Porous Carbon Materials for High‐Performance Supercapacitors Using Carbon Dots as Self‐templated Pore‐Makers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202419219
https://www.proquest.com/docview/3193616748
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQJzgsj1205SUfkPYUiO2kSY4IqBBSUUUXqbdo_JJWQIOa9MIJ8Qv4jfwSZpKmLVyQllvsZJzE9sx8iWc-M3YkMwDnkzgQStsgMjoMIAMZCO-xwuNZoA_F_nX38ja6GsWjpSz-hh9i_sONNKO216TgoMuTBWkoWE-Z5JKWMWveTwrYIlR0M-ePEknSLCt3BQV4iVHL2hjKk4_iH73SAmouA9ba4_Q2GLTP2gSa3B1PK31snj7ROH7nZTbZjxkc5afN_NliK268zdaXSAp_she0LW_Pr2iGiweKneGDYlJMS34GE12MeR-qZhJzhL-cwkbw4sEiHYEPp49uYtAnm3-0sw-vgxRa6fOiKjmUfOjuPcoRUdY9NmjpJg4r-nCH-PQXu-1d_D27DGY7NwRGRVEWSJOCcComHc-kNFnoVaZTnxE7mzfgQ6FtYpUwURpa4WIrsEBgzAvt8HiHrY6LsfvNuFUgY5ehWQEbeSMBbBJpRIlKGa0j6LA_7cjljw1BR95QMcucejWf92qH7bcDm88UtczRAqkuZWKkHSbrEfqilfz0vNefl3b_R2iPrUnaRZgYI9N9tlpNpu4AoU2lD-vp-w4r2_c5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHCgHoLQVWx71oVJPgdhONskRAauFEoR4SNyi8UtCCxu0m730VPUX8Bv5Jcwkm13opVK5xU7GSfwYf7ZnvmHsu8wAnE_iQChtg8joMIAMZCC8xwyPd4EWivl5t38Tnd7GrTUh-cI0_BCzDTcaGbW-pgFOG9L7c9ZQsJ5cySWdYxLx5xKF9a5XVZczBimRJM3BcleQiZe4bXkbQ7n_Vv7tvDQHm68haz3n9NaYbr-2MTUZ7E0qvWd-_UXk-K7fWWerU0TKD5ou9JEtuOEGW3nFU_iJ_UH18vz7CTVx-UDmM_yiHJWTMT-EkS6HPIeq6cccETAnyxF8-GLukcCvJo9uZHBaNncU3IfXdgqt9FFZjTmM-ZW79yhHXFn3WKCllzjMyGGAEPUzu-kdXx_2g2nwhsCoKMoCaVIQTsU0zDMpTRZ6lenUZ0TQ5g34UGibWCVMlIZWuNgKTBAe80I7vP7CFofl0G0ybhXI2GWoWcBG3kgAm0QagaJSRusIOuxH23TFY8PRUTRszLKgWi1mtdph223LFtOxOi5QCakuOWOkHSbrJvpHKcXBUS-fpb7-j9A3tty_zs-Ks5Pzn1vsg6SgwkQgmW6zxWo0cTuIdCq9W_flF5EQ-1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hKqH20NKXGgp0D5U4GbwPx_YRESJaCIqgSLlZsy-pgsZR4lw4Vf0F_Y38EmbsOAm9VGpv3rVnbe_OzH72znzL2GeZA_iQJpFQxkXamjiCHGQkQsCKgGeBPhQHl92zG_11lIzWsvgbfojlDzeyjNpfk4FPXDhakYaCC5RJLmkZk3g_n-lunJFe966WBFIiTZt15a6gCC8xamkbY3n0VP7ptLTCmuuItZ5y-q8YtA_bRJrcHs4rc2jv_-Bx_J-32WYvF3iUHzcK9Jpt-PEb9mKNpfAt-4XO5eHnb_TD5Q8KnuHDclrOZ_wEpqYc8wFUjRZzxL-c4kbw4uEqH4Ffzyd-anFStt9pax9eRym00r2ymnGY8Wt_F1COmLLusEFHN_FYMYBbBKjv2E3_9NvJWbTYuiGySus8kjYD4VVCRp5LafM4qNxkISd6tmAhxMK41ClhdRY74RMnsEBoLAjj8fg92xyXY_-BcadAJj5HvwJOBysBXKoNwkSlrDEaOuygHbli0jB0FA0XsyyoV4tlr3bYbjuwxcJSZwW6INWlVIysw2Q9Qn9ppTju9QfL0s6_CH1iW8Nev7j4cnn-kT2XtKMwsUdmu2yzms79HsKcyuzXmvwIyJb6DA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub%E2%80%90Nanometer+Porous+Carbon+Materials+for+High%E2%80%90Performance+Supercapacitors+Using+Carbon+Dots+as+Self%E2%80%90templated+Pore%E2%80%90Makers&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Xi%E2%80%90Rong&rft.au=Song%2C+Tian%E2%80%90Bing&rft.au=He%2C+Tian%E2%80%90Le&rft.au=Ma%2C+Qian%E2%80%90Li&rft.date=2025-04-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202419219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202419219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon