Sub‐Nanometer Porous Carbon Materials for High‐Performance Supercapacitors Using Carbon Dots as Self‐templated Pore‐Makers
Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
18.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3) displays outstanding capacitances (gravimetric 515.5 F g−1, areal 5.16 F cm−2, and volumetric 417.6 F cm−3 respectively at 1 A g−1) at the commercial‐level mass‐loading of 10 mg cm−2. The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1, as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts.
The well‐designed carbon dots are used as self‐templates to produce porous carbon with uniform pore diameters of 0.64–0.80 nm and high surface areas, which benefit ion storage in supercapacitors and result in excellent electrochemical performances. |
---|---|
AbstractList | Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm −3 ) displays outstanding capacitances (gravimetric 515.5 F g −1 , areal 5.16 F cm −2 , and volumetric 417.6 F cm −3 respectively at 1 A g −1 ) at the commercial‐level mass‐loading of 10 mg cm −2 . The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg −1 at 3500 W kg −1 , as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g −1 ) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts. Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3) displays outstanding capacitances (gravimetric 515.5 F g−1, areal 5.16 F cm−2, and volumetric 417.6 F cm−3 respectively at 1 A g−1) at the commercial‐level mass‐loading of 10 mg cm−2. The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1, as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts. Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels remains a great challenge. For supercapacitors, the preferred carbon materials should own high specific capacitance, nice rate performance, large density, low self‐discharge, and high mass‐loading, which could be accomplished by sub‐nanometer pores (0.5–1.0 nm). Herein, a new method of using carbon dots (CDs) as self‐templates is reported to produce porous carbon with uniform pore diameters of 0.64–0.80 nm. As a result, the optimal sample with a high packing density (0.81 g cm−3) displays outstanding capacitances (gravimetric 515.5 F g−1, areal 5.16 F cm−2, and volumetric 417.6 F cm−3 respectively at 1 A g−1) at the commercial‐level mass‐loading of 10 mg cm−2. The assembled high‐loading symmetric supercapacitor shows a high energy density of 22.3 Wh kg−1 at 3500 W kg−1, as well as a long cycle stability (99.9% of retention rate after 10 000 cycles at 2 A g−1) in an ultrawide voltage range of 1.4 V with aqueous electrolytes. This work suggests a micropore‐forming strategy for the preferred porous carbon, which can be applied in supercapacitors, batteries, filters, adsorbents, and catalysts. The well‐designed carbon dots are used as self‐templates to produce porous carbon with uniform pore diameters of 0.64–0.80 nm and high surface areas, which benefit ion storage in supercapacitors and result in excellent electrochemical performances. |
Author | Xiong, Huan‐Ming Zhang, Xi‐Rong Wang, Yong‐Gang Song, Tian‐Bing He, Tian‐Le Wu, Zhao‐Fan Ma, Qian‐Li |
Author_xml | – sequence: 1 givenname: Xi‐Rong surname: Zhang fullname: Zhang, Xi‐Rong organization: Fudan University – sequence: 2 givenname: Tian‐Bing surname: Song fullname: Song, Tian‐Bing organization: Fudan University – sequence: 3 givenname: Tian‐Le surname: He fullname: He, Tian‐Le organization: Fudan University – sequence: 4 givenname: Qian‐Li surname: Ma fullname: Ma, Qian‐Li organization: Fudan University – sequence: 5 givenname: Zhao‐Fan surname: Wu fullname: Wu, Zhao‐Fan organization: Fudan University – sequence: 6 givenname: Yong‐Gang orcidid: 0000-0002-2447-4679 surname: Wang fullname: Wang, Yong‐Gang email: ygwang@fudan.edu.cn organization: Fudan University – sequence: 7 givenname: Huan‐Ming surname: Xiong fullname: Xiong, Huan‐Ming email: hmxiong@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkM1OAjEUhRuDiYBuXTdxDbad3y4JiJiAkiCJu0mnc4uDM9OxnYlhZ3wCn9EnsQTFpav7d757ktNDnUpXgNAlJUNKCLsWmSqHjDCfckb5CerSkIYDj7C4c-zp0xnqWbslhEaR53fRx6pNv94_70WlS2jA4KU2urV4LEyqK7wQbpeLwmKlDZ7lm2cnXoJxUykqCXjV1mCkqIXMG20sXtu82vzSE91YLCxeQaEc10BZF-5htjcBt1iIFzD2HJ0q5wAXP7WP1tObx_FsMH-4vRuP5gPp-T4fMBkLCl6QEhJwxiQnyuNprLgfBqGSQhGaZlHmUenHJKMQZNQNAXFHmoLr--jq8Lc2-rUF2yRb3ZrKWSYe5Z4LKPJjpxoeVNJoaw2opDZ5KcwuoSTZ55zsc06OOTuAH4C3vIDdP-pkNJku_thvaDyI6g |
Cites_doi | 10.1016/j.carbon.2006.05.022 10.1016/j.nanoen.2015.10.038 10.1016/j.nanoen.2020.104531 10.1002/anie.202411066 10.1021/jacs.4c05647 10.1002/anie.202203967 10.1021/acsnano.0c10624 10.1002/adfm.201202764 10.1016/j.ensm.2019.12.038 10.1002/adma.202401220 10.1007/s40820-020-0393-7 10.1002/aenm.201100654 10.1002/adma.202404393 10.1016/j.cej.2020.124104 10.1351/pac198557040603 10.1039/D0EE00477D 10.1002/smtd.201900853 10.1002/ange.202217808 10.1016/j.apsusc.2024.160551 10.1039/C6TA05607E 10.1002/adma.202403033 10.1002/adma.202401493 10.1016/j.jelechem.2023.117254 10.1016/j.ensm.2019.07.009 10.1039/C8TA06471G 10.1002/adma.202209186 10.1016/j.nanoen.2019.06.032 10.1039/C7TA10106F 10.1039/C8TA10158B 10.1002/adma.202402628 10.1021/nn501796r 10.1016/j.jpowsour.2020.228830 10.1002/ange.200703864 10.1093/nsr/nwae207 10.1002/anie.201509054 10.1002/cey2.134 10.1007/s12274-022-4382-7 10.1016/j.mattod.2021.07.028 10.1002/adma.202209963 10.1002/adma.201806197 10.1002/adma.202405924 10.1002/adma.201104942 10.1007/s12274-022-4452-x 10.1016/j.cej.2023.141930 10.1002/aenm.202001239 10.1126/science.1132195 10.1002/adma.202310422 10.1002/adfm.202314962 10.1021/ja407552k 10.1002/adma.202408685 10.1002/anie.202408569 10.1038/s41598-019-41769-y 10.1016/j.carbon.2020.01.020 10.1002/adma.202311655 10.1002/adma.202304465 10.1002/adfm.201504004 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202419219 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202419219 ADFM202419219 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U24A20565; 21975048 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 2024ZDSYS02 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGQPQ AGXDD AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3449-2c8a1e35b005922c90f39b8f94656fcaf01bd7d31c480d1e5d1d315056f1be1d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 04:10:48 EDT 2025 Sun Jul 06 05:08:45 EDT 2025 Wed Apr 23 09:40:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3449-2c8a1e35b005922c90f39b8f94656fcaf01bd7d31c480d1e5d1d315056f1be1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2447-4679 |
PQID | 3193616748 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3193616748 crossref_primary_10_1002_adfm_202419219 wiley_primary_10_1002_adfm_202419219_ADFM202419219 |
PublicationCentury | 2000 |
PublicationDate | April 18, 2025 |
PublicationDateYYYYMMDD | 2025-04-18 |
PublicationDate_xml | – month: 04 year: 2025 text: April 18, 2025 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2020; 6 387 2019; 9 2023 2022; 461 15 2023 2024 2024 2024; 35 34 63 36 2018 2013; 6 23 2021 2021; 3 51 2020; 161 2024; 146 2024; 36 2006; 313 2008; 120 2024 2023; 11 35 2024 2024 2024; 36 36 36 2012 2013; 2 135 2016; 4 2020 2020; 12 480 2021; 15 2020; 4 2019 2020; 7 10 2019; 63 2022; 61 2024; 670 2020 2020; 26 70 2022; 15 2020; 24 2024 2023 2023; 63 135 35 2023; 932 2014; 8 2016 2016; 19 26 2019 2006 2020; 31 44 13 1985; 57 2016 2012; 55 24 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_15_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 11 35 year: 2024 2023 publication-title: Nati. Sci. Rev. Adv. Mater. – volume: 6 23 start-page: 3162 2322 year: 2018 2013 publication-title: J. Mater. Chem. A Adv. Funct. Mater. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 5431 year: 2019 publication-title: Sci. Rep. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 3 51 start-page: 795 188 year: 2021 2021 publication-title: Carbon Energy Mater. Today – volume: 24 start-page: 486 year: 2020 publication-title: Energy Storage Mater. – volume: 146 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 19 26 start-page: 165 111 year: 2016 2016 publication-title: Nano Energy Adv. Funct. Mater. – volume: 63 135 35 year: 2024 2023 2023 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 603 year: 1985 publication-title: Pure Appl. Chem. – volume: 55 24 start-page: 2032 4197 year: 2016 2012 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 31 44 13 start-page: 2498 2431 year: 2019 2006 2020 publication-title: Adv. Mater. Carbon Energy Environ. Sci. – volume: 8 start-page: 6312 year: 2014 publication-title: ACS Nano – volume: 4 year: 2020 publication-title: Small Methods – volume: 161 start-page: 62 year: 2020 publication-title: Carbon – volume: 120 start-page: 530 year: 2008 publication-title: Angew. Chem., Int. Ed. – volume: 6 387 year: 2018 2020 publication-title: J. Mater. Chem. A Chem. Eng. J. – volume: 15 start-page: 7759 year: 2022 publication-title: Nano Res. – volume: 15 start-page: 6872 year: 2021 publication-title: ACS Nano – volume: 2 135 start-page: 419 year: 2012 2013 publication-title: Adv. Energy Mater. J. Am. Chem. Soc. – volume: 36 36 36 year: 2024 2024 2024 publication-title: Adv. Mater. Adv. Mater. Adv. Mater. – volume: 26 70 start-page: 119 year: 2020 2020 publication-title: Energy Storage Mater. Nano Energy – volume: 461 15 start-page: 7209 year: 2023 2022 publication-title: Chem. Eng. J. Nano Res. – volume: 932 year: 2023 publication-title: J. Electroanal. Chem. – volume: 35 34 63 36 year: 2023 2024 2024 2024 publication-title: Adv. Mater. Adv. Funct. Mater. Angew. Chem., Int. Ed. Adv. Mater. – volume: 12 480 start-page: 63 year: 2020 2020 publication-title: Nano‐Micro Lett. J. Power Sources – volume: 7 10 start-page: 1177 year: 2019 2020 publication-title: J. Mater. Chem. A. Adv. Energy Mater. – volume: 670 year: 2024 publication-title: Appl. Surf. Sci. – volume: 313 start-page: 1760 year: 2006 publication-title: Science – ident: e_1_2_8_17_2 doi: 10.1016/j.carbon.2006.05.022 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2015.10.038 – ident: e_1_2_8_18_2 doi: 10.1016/j.nanoen.2020.104531 – ident: e_1_2_8_3_1 doi: 10.1002/anie.202411066 – ident: e_1_2_8_19_1 doi: 10.1021/jacs.4c05647 – ident: e_1_2_8_23_1 doi: 10.1002/anie.202203967 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.0c10624 – ident: e_1_2_8_11_2 doi: 10.1002/adfm.201202764 – ident: e_1_2_8_18_1 doi: 10.1016/j.ensm.2019.12.038 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202401220 – ident: e_1_2_8_30_1 doi: 10.1007/s40820-020-0393-7 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.201100654 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202404393 – ident: e_1_2_8_26_2 doi: 10.1016/j.cej.2020.124104 – ident: e_1_2_8_4_1 doi: 10.1351/pac198557040603 – ident: e_1_2_8_17_3 doi: 10.1039/D0EE00477D – ident: e_1_2_8_9_1 doi: 10.1002/smtd.201900853 – ident: e_1_2_8_3_2 doi: 10.1002/ange.202217808 – ident: e_1_2_8_20_1 doi: 10.1016/j.apsusc.2024.160551 – ident: e_1_2_8_22_1 doi: 10.1039/C6TA05607E – ident: e_1_2_8_1_2 doi: 10.1002/adma.202403033 – ident: e_1_2_8_13_2 doi: 10.1002/adma.202401493 – ident: e_1_2_8_32_1 doi: 10.1016/j.jelechem.2023.117254 – ident: e_1_2_8_24_1 doi: 10.1016/j.ensm.2019.07.009 – ident: e_1_2_8_26_1 doi: 10.1039/C8TA06471G – ident: e_1_2_8_2_1 doi: 10.1002/adma.202209186 – ident: e_1_2_8_29_1 doi: 10.1016/j.nanoen.2019.06.032 – ident: e_1_2_8_11_1 doi: 10.1039/C7TA10106F – ident: e_1_2_8_28_1 doi: 10.1039/C8TA10158B – ident: e_1_2_8_1_3 doi: 10.1002/adma.202402628 – ident: e_1_2_8_15_1 doi: 10.1021/nn501796r – ident: e_1_2_8_30_2 doi: 10.1016/j.jpowsour.2020.228830 – ident: e_1_2_8_5_1 doi: 10.1002/ange.200703864 – ident: e_1_2_8_8_1 doi: 10.1093/nsr/nwae207 – ident: e_1_2_8_6_1 doi: 10.1002/anie.201509054 – ident: e_1_2_8_14_1 doi: 10.1002/cey2.134 – ident: e_1_2_8_25_2 doi: 10.1007/s12274-022-4382-7 – ident: e_1_2_8_14_2 doi: 10.1016/j.mattod.2021.07.028 – ident: e_1_2_8_8_2 doi: 10.1002/adma.202209963 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201806197 – ident: e_1_2_8_2_4 doi: 10.1002/adma.202405924 – ident: e_1_2_8_6_2 doi: 10.1002/adma.201104942 – ident: e_1_2_8_33_1 doi: 10.1007/s12274-022-4452-x – ident: e_1_2_8_25_1 doi: 10.1016/j.cej.2023.141930 – ident: e_1_2_8_28_2 doi: 10.1002/aenm.202001239 – ident: e_1_2_8_7_1 doi: 10.1126/science.1132195 – ident: e_1_2_8_27_1 doi: 10.1002/adma.202310422 – ident: e_1_2_8_2_2 doi: 10.1002/adfm.202314962 – ident: e_1_2_8_10_2 doi: 10.1021/ja407552k – ident: e_1_2_8_13_3 doi: 10.1002/adma.202408685 – ident: e_1_2_8_2_3 doi: 10.1002/anie.202408569 – ident: e_1_2_8_31_1 doi: 10.1038/s41598-019-41769-y – ident: e_1_2_8_34_1 doi: 10.1016/j.carbon.2020.01.020 – ident: e_1_2_8_1_1 doi: 10.1002/adma.202311655 – ident: e_1_2_8_3_3 doi: 10.1002/adma.202304465 – ident: e_1_2_8_12_2 doi: 10.1002/adfm.201504004 |
SSID | ssj0017734 |
Score | 2.5132878 |
Snippet | Customizable porous carbon structures are critical for high‐performance electrode materials, and the modulation of the pore parameters at different levels... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Aqueous electrolytes Carbon Carbon dots Electrode materials Packing density porous carbon Porous materials self‐template sub‐nanometer pore Supercapacitors |
Title | Sub‐Nanometer Porous Carbon Materials for High‐Performance Supercapacitors Using Carbon Dots as Self‐templated Pore‐Makers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202419219 https://www.proquest.com/docview/3193616748 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQJzgsj1205SUfkPYUiO2kSY4IqBBSUUUXqbdo_JJWQIOa9MIJ8Qv4jfwSZpKmLVyQllvsZJzE9sx8iWc-M3YkMwDnkzgQStsgMjoMIAMZCO-xwuNZoA_F_nX38ja6GsWjpSz-hh9i_sONNKO216TgoMuTBWkoWE-Z5JKWMWveTwrYIlR0M-ePEknSLCt3BQV4iVHL2hjKk4_iH73SAmouA9ba4_Q2GLTP2gSa3B1PK31snj7ROH7nZTbZjxkc5afN_NliK268zdaXSAp_she0LW_Pr2iGiweKneGDYlJMS34GE12MeR-qZhJzhL-cwkbw4sEiHYEPp49uYtAnm3-0sw-vgxRa6fOiKjmUfOjuPcoRUdY9NmjpJg4r-nCH-PQXu-1d_D27DGY7NwRGRVEWSJOCcComHc-kNFnoVaZTnxE7mzfgQ6FtYpUwURpa4WIrsEBgzAvt8HiHrY6LsfvNuFUgY5ehWQEbeSMBbBJpRIlKGa0j6LA_7cjljw1BR95QMcucejWf92qH7bcDm88UtczRAqkuZWKkHSbrEfqilfz0vNefl3b_R2iPrUnaRZgYI9N9tlpNpu4AoU2lD-vp-w4r2_c5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHCgHoLQVWx71oVJPgdhONskRAauFEoR4SNyi8UtCCxu0m730VPUX8Bv5Jcwkm13opVK5xU7GSfwYf7ZnvmHsu8wAnE_iQChtg8joMIAMZCC8xwyPd4EWivl5t38Tnd7GrTUh-cI0_BCzDTcaGbW-pgFOG9L7c9ZQsJ5cySWdYxLx5xKF9a5XVZczBimRJM3BcleQiZe4bXkbQ7n_Vv7tvDQHm68haz3n9NaYbr-2MTUZ7E0qvWd-_UXk-K7fWWerU0TKD5ou9JEtuOEGW3nFU_iJ_UH18vz7CTVx-UDmM_yiHJWTMT-EkS6HPIeq6cccETAnyxF8-GLukcCvJo9uZHBaNncU3IfXdgqt9FFZjTmM-ZW79yhHXFn3WKCllzjMyGGAEPUzu-kdXx_2g2nwhsCoKMoCaVIQTsU0zDMpTRZ6lenUZ0TQ5g34UGibWCVMlIZWuNgKTBAe80I7vP7CFofl0G0ybhXI2GWoWcBG3kgAm0QagaJSRusIOuxH23TFY8PRUTRszLKgWi1mtdph223LFtOxOi5QCakuOWOkHSbrJvpHKcXBUS-fpb7-j9A3tty_zs-Ks5Pzn1vsg6SgwkQgmW6zxWo0cTuIdCq9W_flF5EQ-1Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hKqH20NKXGgp0D5U4GbwPx_YRESJaCIqgSLlZsy-pgsZR4lw4Vf0F_Y38EmbsOAm9VGpv3rVnbe_OzH72znzL2GeZA_iQJpFQxkXamjiCHGQkQsCKgGeBPhQHl92zG_11lIzWsvgbfojlDzeyjNpfk4FPXDhakYaCC5RJLmkZk3g_n-lunJFe966WBFIiTZt15a6gCC8xamkbY3n0VP7ptLTCmuuItZ5y-q8YtA_bRJrcHs4rc2jv_-Bx_J-32WYvF3iUHzcK9Jpt-PEb9mKNpfAt-4XO5eHnb_TD5Q8KnuHDclrOZ_wEpqYc8wFUjRZzxL-c4kbw4uEqH4Ffzyd-anFStt9pax9eRym00r2ymnGY8Wt_F1COmLLusEFHN_FYMYBbBKjv2E3_9NvJWbTYuiGySus8kjYD4VVCRp5LafM4qNxkISd6tmAhxMK41ClhdRY74RMnsEBoLAjj8fg92xyXY_-BcadAJj5HvwJOBysBXKoNwkSlrDEaOuygHbli0jB0FA0XsyyoV4tlr3bYbjuwxcJSZwW6INWlVIysw2Q9Qn9ppTju9QfL0s6_CH1iW8Nev7j4cnn-kT2XtKMwsUdmu2yzms79HsKcyuzXmvwIyJb6DA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sub%E2%80%90Nanometer+Porous+Carbon+Materials+for+High%E2%80%90Performance+Supercapacitors+Using+Carbon+Dots+as+Self%E2%80%90templated+Pore%E2%80%90Makers&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Xi%E2%80%90Rong&rft.au=Song%2C+Tian%E2%80%90Bing&rft.au=He%2C+Tian%E2%80%90Le&rft.au=Ma%2C+Qian%E2%80%90Li&rft.date=2025-04-18&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=16&rft_id=info:doi/10.1002%2Fadfm.202419219&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202419219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |