Footprint of Tropical Mesoscale Convective System Variability on Stratospheric Water Vapor

Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 47; no. 5
Main Authors Dong, W. H., Lin, Y. L., Zhang, M. H., Huang, X. M.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor. Plain Language Summary Mesoscale convective systems are essential ingredients of the tropical circulation and significantly regulate troposphere‐stratosphere exchange of atmospheric constituents. But little attention has been paid to their variations on a global scale, and their role in troposphere‐stratosphere water exchange is still a subject of ongoing debate. In this study, we show that there are prominent active and inactive phases of tropical mesoscale convective systems during 1985–2008. Specifically, their occurrence frequency during 1995–2002 is significantly lower than those before and after this period by over 10%. These stepwise transitions are closely related to the underlying sea surface temperature pattern in tropical central Pacific as well as the associated changes in Walker circulation. We further demonstrate that changes in these convective systems could strongly influence the stratospheric water vapor, which have significant implications for global climate variability. Key Points Distinct temporal variations of mesoscale convective systems over the whole tropics are detected for the first time Active tropical mesoscale convective system occurrences result in an overall drier stratosphere via modulation of the tropopause temperature, and vice versa Changes in these convective systems are closely related to the sea surface temperature patterns in the tropical central Pacific and shifts in Walker circulation
AbstractList Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor. Plain Language Summary Mesoscale convective systems are essential ingredients of the tropical circulation and significantly regulate troposphere‐stratosphere exchange of atmospheric constituents. But little attention has been paid to their variations on a global scale, and their role in troposphere‐stratosphere water exchange is still a subject of ongoing debate. In this study, we show that there are prominent active and inactive phases of tropical mesoscale convective systems during 1985–2008. Specifically, their occurrence frequency during 1995–2002 is significantly lower than those before and after this period by over 10%. These stepwise transitions are closely related to the underlying sea surface temperature pattern in tropical central Pacific as well as the associated changes in Walker circulation. We further demonstrate that changes in these convective systems could strongly influence the stratospheric water vapor, which have significant implications for global climate variability. Key Points Distinct temporal variations of mesoscale convective systems over the whole tropics are detected for the first time Active tropical mesoscale convective system occurrences result in an overall drier stratosphere via modulation of the tropopause temperature, and vice versa Changes in these convective systems are closely related to the sea surface temperature patterns in the tropical central Pacific and shifts in Walker circulation
Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor.
Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor. Mesoscale convective systems are essential ingredients of the tropical circulation and significantly regulate troposphere‐stratosphere exchange of atmospheric constituents. But little attention has been paid to their variations on a global scale, and their role in troposphere‐stratosphere water exchange is still a subject of ongoing debate. In this study, we show that there are prominent active and inactive phases of tropical mesoscale convective systems during 1985–2008. Specifically, their occurrence frequency during 1995–2002 is significantly lower than those before and after this period by over 10%. These stepwise transitions are closely related to the underlying sea surface temperature pattern in tropical central Pacific as well as the associated changes in Walker circulation. We further demonstrate that changes in these convective systems could strongly influence the stratospheric water vapor, which have significant implications for global climate variability. Distinct temporal variations of mesoscale convective systems over the whole tropics are detected for the first time Active tropical mesoscale convective system occurrences result in an overall drier stratosphere via modulation of the tropopause temperature, and vice versa Changes in these convective systems are closely related to the sea surface temperature patterns in the tropical central Pacific and shifts in Walker circulation
Author Lin, Y. L.
Huang, X. M.
Dong, W. H.
Zhang, M. H.
Author_xml – sequence: 1
  givenname: W. H.
  orcidid: 0000-0002-5662-5435
  surname: Dong
  fullname: Dong, W. H.
  organization: Now at NOAA/Geophysical Fluid Dynamics Laboratory
– sequence: 2
  givenname: Y. L.
  orcidid: 0000-0002-0865-0580
  surname: Lin
  fullname: Lin, Y. L.
  email: yanluan@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 3
  givenname: M. H.
  orcidid: 0000-0002-1927-5405
  surname: Zhang
  fullname: Zhang, M. H.
  organization: Stony Brook University
– sequence: 4
  givenname: X. M.
  orcidid: 0000-0002-4158-1089
  surname: Huang
  fullname: Huang, X. M.
  organization: Tsinghua University
BookMark eNp9kE9LAzEQxYNUsK3e_AABr1Ynyf49SrFVWBFsVfCypNlZTNlu1iSt7Lc30h5E0NM8ht-bN7wRGbSmRULOGVwx4Pk1B5bPC8gSweGIDFkeRZMMIB2QIUAeNE-TEzJybg0AAgQbkreZMb6zuvXU1HRpTaeVbOgDOuOCQDo17Q6V1zuki9553NAXabVc6Ub7npqWLryV3rjuHa1W9FV6tAHpjD0lx7VsHJ4d5pg8z26X07tJ8Ti_n94UEyWiKJ0onqtVziolsghXXElIqxyrGGtQwIAhQ8GiuIoBlGRZJrNKqQoS5CgirJUYk4v93c6ajy06X67N1rYhsuQijfM4SlgcKL6nlDXOWaxLpb302rThf92UDMrvDsufHQbT5S9TqGojbf8Xfsj41A32_7Ll_KlIwjIVXwbxg5A
CitedBy_id crossref_primary_10_3390_atmos16030245
crossref_primary_10_1007_s11227_025_07065_5
crossref_primary_10_1038_s41612_020_00138_7
crossref_primary_10_1029_2020GL090539
Cites_doi 10.1002/qj.49707532603
10.1007/s00382-012-1427-8
10.1007/s00382-018-4071-0
10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2
10.1002/joc.2407
10.1175/JAS-D-11-0293.1
10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2
10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2
10.1175/1520-0442(2000)013<3314:ACOTMC>2.0.CO;2
10.1175/JAS-D-16-0166.1
10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2
10.1002/qj.828
10.1029/2006GL027899
10.1029/95JD03422
10.1029/1999GL011197
10.1002/2014JD021712
10.1029/2002JD002670
10.1029/2018JD029522
10.1038/ngeo1733
10.1029/2004RG000150
10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2
10.1007/s00382-016-3231-3
10.1029/2008GL033641
10.1002/2015RG000488
10.1029/2001GL014063
10.1007/s00382-017-3774-y
10.1080/01621459.1968.10480934
10.1029/2005JD006744
10.1038/ngeo1008
10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
10.1038/nature14339
10.1029/2010GL044092
10.1002/2017JD027080
10.1175/2009JCLI2777.1
10.1073/pnas.1310344110
10.1038/ngeo2961
10.1029/1998GL900120
10.1029/2018JD028286
10.5194/essd-8-461-2016
10.1029/2001GL013148
10.1029/GL009i006p00605
10.1126/science.1182488
10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2
10.1029/2011JD016992
10.5194/acp-11-8433-2011
10.1029/JC084iC06p03155
10.1175/JCLI-D-13-00628.1
10.1002/qj.2174
10.1029/2004JD005516
10.1029/1999GL010868
10.1029/95RG02097
10.1029/2000GL011438
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2019GL086320
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2019GL086320
GRL60297
Genre article
GrantInformation_xml – fundername: The National Key Research Project of China
  funderid: 2018YFC1507001
– fundername: Tsinghua University Initiative Scientific Research Program
  funderid: 2019Z07L01001
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3447-c29cb91dc384eb2ca07d9ed5ef0c0101e1e3145d500ca188a8dccd06e2e34efc3
ISSN 0094-8276
IngestDate Fri Jul 25 09:01:41 EDT 2025
Tue Jul 01 01:41:04 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Wed Jan 22 16:34:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3447-c29cb91dc384eb2ca07d9ed5ef0c0101e1e3145d500ca188a8dccd06e2e34efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1927-5405
0000-0002-5662-5435
0000-0002-0865-0580
0000-0002-4158-1089
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL086320
PQID 2375954615
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_2375954615
crossref_citationtrail_10_1029_2019GL086320
crossref_primary_10_1029_2019GL086320
wiley_primary_10_1029_2019GL086320_GRL60297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 March 2020
PublicationDateYYYYMMDD 2020-03-16
PublicationDate_xml – month: 03
  year: 2020
  text: 16 March 2020
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2004; 61
2017; 48
2018; 123
1995; 33
2014; 27
2019; 124
2011; 11
2008; 35
2007; 34
1996; 101
2013; 6
1993; 121
1968; 63
2017; 74
2014; 4
2000; 17
1986; 43
2000; 13
1982; 9
2003; 4
1981; 38
2013; 110
2012; 69
2010; 3
2011; 137
2014; 119
2009; 22
2004; 42
2010; 37
2000; 27
1949; 75
2005; 110
2010; 327
2011
2015; 53
2013; 41
2001; 28
1996; 124
2012; 32
2006; 111
1998; 25
2003; 108
2002; 29
1950; 53
2017; 10
2013; 139
2019
2015; 519
2016
2018; 51
2018; 50
2012; 117
2016; 8
1979; 84
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_54_1
Theil H. (e_1_2_6_52_1) 1950; 53
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Xie F. (e_1_2_6_57_1) 2014; 4
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Moncrieff M. W. (e_1_2_6_33_1) 2019
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– volume: 84
  start-page: 3155
  issue: Nc6
  year: 1979
  end-page: 3158
  article-title: Thunderstorms as possible micrometeorological sink for stratospheric water
  publication-title: Journal of Geophysical Research: Oceans
– volume: 35
  issue: 10
  year: 2008
  article-title: Unprecedented evidence for deep convection hydrating the tropical stratosphere
  publication-title: Geophysical Research Letters
– volume: 27
  start-page: 4952
  issue: 13
  year: 2014
  end-page: 4958
  article-title: Robust observational quantification of the contribution of mesoscale convective systems to rainfall in the tropics
  publication-title: Journal of Climate
– volume: 69
  start-page: 2488
  issue: 8
  year: 2012
  end-page: 2504
  article-title: An object‐based approach to assessing the organization of tropical convection
  publication-title: Journal of the Atmospheric Sciences
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  end-page: 9
  article-title: Indo‐Pacific warm pool area expansion, Modoki activity, and tropical cold‐point tropopause temperature variations
  publication-title: Science Reports‐Uk
– volume: 43
  start-page: 1945
  issue: 18
  year: 1986
  end-page: 1960
  article-title: Thunderstorm cloud top dynamics as inferred from satellite‐observations and a cloud top parcel model
  publication-title: Journal of the Atmospheric Sciences
– volume: 124
  start-page: 6307
  issue: 12
  year: 2019
  end-page: 6326
  article-title: Improvements in the GISTEMP uncertainty model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 124
  start-page: 2417
  issue: 11
  year: 1996
  end-page: 2437
  article-title: Mesoscale convective systems defined by their 85‐GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents
  publication-title: Monthly Weather Review
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Q J Roy Meteor Soc
– volume: 9
  start-page: 605
  issue: 6
  year: 1982
  end-page: 608
  article-title: A dehydration mechanism for the stratosphere
  publication-title: Geophysical Research Letters
– volume: 121
  start-page: 1398
  issue: 5
  year: 1993
  end-page: 1415
  article-title: Cloud clusters and superclusters over the oceanic warm pool
  publication-title: Monthly Weather Review
– volume: 8
  start-page: 461
  issue: 2
  year: 2016
  end-page: 490
  article-title: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long‐term database for climate studies
  publication-title: Earth System Science Data
– volume: 33
  start-page: 403
  issue: 4
  year: 1995
  end-page: 439
  article-title: Stratosphere‐Troposphere Exchange
  publication-title: Reviews of Geophysics
– volume: 111
  issue: D12
  year: 2006
  article-title: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 110
  issue: D8
  year: 2005
  article-title: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 38
  start-page: 2789
  issue: 12
  year: 1981
  end-page: 2796
  article-title: A stratospheric fountain
  publication-title: Journal of the Atmospheric Sciences
– volume: 17
  start-page: 1296
  issue: 10
  year: 2000
  end-page: 1312
  article-title: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 101
  start-page: 3989
  issue: D2
  year: 1996
  end-page: 4006
  article-title: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 28
  start-page: 1551
  year: 2001
  end-page: 1554
  article-title: Climate and ozone response to increased stratospheric water vapor
  publication-title: Geophysical Research Letters
– volume: 29
  issue: 8
  year: 2002
  article-title: A global view of bio‐physical coupling from SeaWiFS and TOPEX satellite data, 1997‐2001
  publication-title: Geophysical Research Letters
– volume: 4
  start-page: 1147
  issue: 6
  year: 2003
  end-page: 1167
  article-title: The version‐2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979‐present)
  publication-title: Journal of Hydrometeorology
– volume: 123
  start-page: 4583
  year: 2018
  end-page: 4593
  article-title: Convective hydration of the upper troposphere and lower stratosphere
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 6
  start-page: 169
  issue: 3
  year: 2013
  end-page: 176
  article-title: Physical processes in the tropical tropopause layer and their roles in a changing climate
  publication-title: Nature Geoscience
– volume: 117
  year: 2012
  article-title: Seasonal differences of vertical‐transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large‐scale vertical ascent, and horizontal circulationes
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 25
  start-page: 4165
  issue: 22
  year: 1998
  end-page: 4168
  article-title: A reexamination of the “stratospheric fountain” hypothesis
  publication-title: Geophysical Research Letters
– volume: 123
  start-page: 590
  issue: 1
  year: 2018
  end-page: 606
  article-title: Convectively driven tropopause‐level cooling and its influences on stratospheric moisture
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 32
  start-page: 1921
  issue: 12
  year: 2012
  end-page: 1934
  article-title: Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation
  publication-title: International Journal of Climatology
– volume: 27
  start-page: 677
  issue: 5
  year: 2000
  end-page: 680
  article-title: A stratospheric “drain” over the maritime continent
  publication-title: Geophysical Research Letters
– volume: 53
  start-page: 386
  year: 1950
  end-page: 392
  article-title: A rank‐invariant method of linear and polynomial regression analysis I
  publication-title: Nederl. Akad. Wetensch. Proc.
– volume: 119
  start-page: 12,588
  year: 2014
  end-page: 12,598
  article-title: Variations of stratospheric water vapor over the past three decades
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 22
  start-page: 5797
  issue: 22
  year: 2009
  end-page: 5808
  article-title: Objective classification of tropical mesoscale convective systems
  publication-title: Journal of Climate
– volume: 27
  start-page: 2513
  issue: 16
  year: 2000
  end-page: 2516
  article-title: On the control of stratospheric humidity
  publication-title: Geophysical Research Letters
– volume: 34
  issue: 4
  year: 2007
  article-title: Observations of deep convective influence on stratospheric water vapor and its isotopic composition
  publication-title: Geophysical Research Letters
– volume: 37
  year: 2010
  article-title: Decadal changes in tropical convection suggest effects on stratospheric water vapor
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 8433
  year: 2011
  end-page: 8446
  article-title: Dehydration of the stratosphere
  publication-title: Atmospheric Chemistry and Physics
– volume: 61
  start-page: 2133
  issue: 17
  year: 2004
  end-page: 2148
  article-title: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures
  publication-title: Journal of the Atmospheric Sciences
– volume: 108
  issue: D14
  year: 2003
  article-title: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 75
  start-page: 351
  year: 1949
  end-page: 363
  article-title: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratopshere
  publication-title: Q J Roy Meteor Soc
– volume: 48
  start-page: 2671
  issue: 7‐8
  year: 2017
  end-page: 2683
  article-title: The linkage between stratospheric water vapor and surface temperature in an observation‐constrained coupled general circulation model
  publication-title: Climate Dynamics
– year: 2016
– volume: 53
  start-page: 994
  issue: 3
  year: 2015
  end-page: 1021
  article-title: The variable nature of convection in the tropics and subtropics: A legacy of 16years of the Tropical Rainfall Measuring Mission satellite
  publication-title: Reviews of Geophysics
– volume: 327
  start-page: 1219
  issue: 5970
  year: 2010
  end-page: 1223
  article-title: Contributions of stratospheric water vapor to decadal changes in the rate of global warming
  publication-title: Science
– volume: 74
  start-page: 1363
  year: 2017
  end-page: 1380
  article-title: Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models
  publication-title: Journal of the Atmospheric Sciences
– volume: 42
  issue: 4
  year: 2004
  article-title: Mesoscale convective systems
  publication-title: Reviews of Geophysics
– volume: 63
  start-page: 1379
  issue: 324
  year: 1968
  end-page: 1389
  article-title: Estimates of the regression coefficient based on Kendall's tau
  publication-title: Journal of the American Statistical Association
– volume: 41
  start-page: 327
  issue: 2
  year: 2013
  end-page: 340
  article-title: A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s
  publication-title: Climate Dynamics
– volume: 3
  start-page: 842
  issue: 12
  year: 2010
  end-page: 845
  article-title: Changes in the sea surface temperature threshold for tropical convection
  publication-title: Nature Geoscience
– volume: 50
  start-page: 2813
  issue: 7‐8
  year: 2018
  end-page: 2827
  article-title: A warming tropical central Pacific dries the lower stratosphere
  publication-title: Climate Dynamics
– volume: 519
  start-page: 451
  issue: 7544
  year: 2015
  article-title: Increases in tropical rainfall driven by changes in frequency of organized deep convection
  publication-title: Nature
– volume: 139
  start-page: 941
  issue: 673
  year: 2013
  end-page: 953
  article-title: Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: method and sampling considerations
  publication-title: Quarterly Journal of the Royal Meteorological Society
– start-page: 46
  year: 2019
  article-title: Toward a dynamical foundation for organized convection parameterization in GCMs
  publication-title: Geophysical Research Letters
– volume: 110
  start-page: 18,087
  issue: 45
  year: 2013
  end-page: 18,091
  article-title: Stratospheric water vapor feedback
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 13
  start-page: 3314
  issue: 18
  year: 2000
  end-page: 3326
  article-title: A comparison of tropical mesoscale convective systems in El Nino and La Nina
  publication-title: Journal of Climate
– volume: 10
  start-page: 405
  year: 2017
  end-page: 410
  article-title: Large anomalies in lower stratospheric water vapour and ice during the 2015‐2016 El Nino
  publication-title: Nature Geoscience
– volume: 28
  start-page: 2799
  issue: 14
  year: 2001
  end-page: 2802
  article-title: Horizontal transport and the dehydration of the stratosphere
  publication-title: Geophysical Research Letters
– volume: 51
  start-page: 3145
  issue: 7‐8
  year: 2018
  end-page: 3159
  article-title: A long‐term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm
  publication-title: Climate Dynamics
– ident: e_1_2_6_7_1
  doi: 10.1002/qj.49707532603
– ident: e_1_2_6_56_1
  doi: 10.1007/s00382-012-1427-8
– ident: e_1_2_6_26_1
  doi: 10.1007/s00382-018-4071-0
– ident: e_1_2_6_36_1
  doi: 10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2
– ident: e_1_2_6_19_1
  doi: 10.1002/joc.2407
– ident: e_1_2_6_15_1
  doi: 10.1175/JAS-D-11-0293.1
– ident: e_1_2_6_21_1
  doi: 10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2
– ident: e_1_2_6_31_1
  doi: 10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2
– ident: e_1_2_6_58_1
  doi: 10.1175/1520-0442(2000)013<3314:ACOTMC>2.0.CO;2
– ident: e_1_2_6_34_1
  doi: 10.1175/JAS-D-16-0166.1
– ident: e_1_2_6_39_1
  doi: 10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2
– ident: e_1_2_6_11_1
  doi: 10.1002/qj.828
– ident: e_1_2_6_20_1
  doi: 10.1029/2006GL027899
– ident: e_1_2_6_35_1
  doi: 10.1029/95JD03422
– ident: e_1_2_6_49_1
  doi: 10.1029/1999GL011197
– ident: e_1_2_6_14_1
  doi: 10.1002/2014JD021712
– ident: e_1_2_6_41_1
  doi: 10.1029/2002JD002670
– ident: e_1_2_6_30_1
  doi: 10.1029/2018JD029522
– ident: e_1_2_6_38_1
  doi: 10.1038/ngeo1733
– ident: e_1_2_6_24_1
  doi: 10.1029/2004RG000150
– ident: e_1_2_6_32_1
  doi: 10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2
– ident: e_1_2_6_54_1
  doi: 10.1007/s00382-016-3231-3
– ident: e_1_2_6_8_1
  doi: 10.1029/2008GL033641
– ident: e_1_2_6_25_1
  doi: 10.1002/2015RG000488
– ident: e_1_2_6_55_1
  doi: 10.1029/2001GL014063
– ident: e_1_2_6_16_1
  doi: 10.1007/s00382-017-3774-y
– ident: e_1_2_6_46_1
  doi: 10.1080/01621459.1968.10480934
– ident: e_1_2_6_40_1
  doi: 10.1029/2005JD006744
– ident: e_1_2_6_27_1
  doi: 10.1038/ngeo1008
– volume: 53
  start-page: 386
  year: 1950
  ident: e_1_2_6_52_1
  article-title: A rank‐invariant method of linear and polynomial regression analysis I
  publication-title: Nederl. Akad. Wetensch. Proc.
– ident: e_1_2_6_2_1
  doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
– start-page: 46
  year: 2019
  ident: e_1_2_6_33_1
  article-title: Toward a dynamical foundation for organized convection parameterization in GCMs
  publication-title: Geophysical Research Letters
– ident: e_1_2_6_51_1
  doi: 10.1038/nature14339
– ident: e_1_2_6_53_1
  doi: 10.1029/2010GL044092
– ident: e_1_2_6_29_1
  doi: 10.1002/2017JD027080
– ident: e_1_2_6_37_1
  doi: 10.1175/2009JCLI2777.1
– ident: e_1_2_6_13_1
  doi: 10.1073/pnas.1310344110
– ident: e_1_2_6_4_1
  doi: 10.1038/ngeo2961
– ident: e_1_2_6_12_1
  doi: 10.1029/1998GL900120
– ident: e_1_2_6_45_1
  doi: 10.1029/2018JD028286
– ident: e_1_2_6_10_1
  doi: 10.5194/essd-8-461-2016
– ident: e_1_2_6_22_1
  doi: 10.1029/2001GL013148
– ident: e_1_2_6_9_1
  doi: 10.1029/GL009i006p00605
– ident: e_1_2_6_50_1
  doi: 10.1126/science.1182488
– ident: e_1_2_6_5_1
– ident: e_1_2_6_3_1
  doi: 10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2
– ident: e_1_2_6_6_1
  doi: 10.1029/2011JD016992
– volume: 4
  start-page: 1
  issue: 1
  year: 2014
  ident: e_1_2_6_57_1
  article-title: Indo‐Pacific warm pool area expansion, Modoki activity, and tropical cold‐point tropopause temperature variations
  publication-title: Science Reports‐Uk
– ident: e_1_2_6_44_1
  doi: 10.5194/acp-11-8433-2011
– ident: e_1_2_6_28_1
  doi: 10.1029/JC084iC06p03155
– ident: e_1_2_6_42_1
  doi: 10.1175/JCLI-D-13-00628.1
– ident: e_1_2_6_17_1
  doi: 10.1002/qj.2174
– ident: e_1_2_6_18_1
  doi: 10.1029/2004JD005516
– ident: e_1_2_6_43_1
– ident: e_1_2_6_47_1
  doi: 10.1029/1999GL010868
– ident: e_1_2_6_23_1
  doi: 10.1029/95RG02097
– ident: e_1_2_6_48_1
  doi: 10.1029/2000GL011438
SSID ssj0003031
Score 2.386037
Snippet Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmospheric circulation
Climate
Climate variability
equatorial central Pacific
Exchanging
Global climate
Global climate variability
mesoscale convective system
Mesoscale convective systems
Mesoscale phenomena
Sea surface
Sea surface temperature
Sea surface temperature variability
Stratosphere
stratospheric water vapor
Surface temperature
Temperature
Temperature patterns
Temperature variability
Tropical circulation
Tropical climate
Tropical climates
Troposphere
Variability
Walker circulation
Water exchange
Water vapor
Water vapour
Title Footprint of Tropical Mesoscale Convective System Variability on Stratospheric Water Vapor
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL086320
https://www.proquest.com/docview/2375954615
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcEE-x7IJ8gFOU4Nh5-bhCbCvUckBtt-wlJI6jRVolVdMi7f56xo88FhW0cIksx04izxd7xp75BqF3CS2ILxLuFrEIXMVI52agObtSspIXBYCAqODk-Zdougw-r8P1aPR94LW03-WeuD0YV_I_UoU6kKuKkv0HyXYPhQoog3zhChKG671kfF7XO7Uxp0_zF9t6o0d8Lpu6gYJKSFf9NBOaZSZ3VmAaG2buG3VMoLlp60ZRC_wQzkWmGBNX2abeDnXWiaw3rTQtN9CVc63DgPqs9Naz98Jzpl7n5GP4Cb55zqyr6zao58OW072tXXtwY7gTAWancmuLhrMrD9yExpba2kyoPIA6YjLbtjOu4di0yAoPTuSEKh5U0E74ZAbYYZT0C1Z7SP_bOtZ5F-pzdcrTYe8H6IiCIUHH6Ohstbxcdqs1LOEmq6L9dhscAf0_DPvfVVt6W2Ro0WiVZPEEPba2BD4zwHiKRrJ6hh5OdK7mGyhp717RPEeXHVBwXeIWKLgDCu6Bgg1Q8AAouK7wHaBgDRSsgfICLc8_LT5OXZtUwxWK3NEVlIuc-4VgSSBzKjISF1wWoSyJUHyD0pfMD8IiJERkfpJkSSFEQSJJJQtkKdhLNK7qSr5CmOYRkWXOyqxUaQdoHuSSgL3KBPPzOBTHyGnHLBWWcV4lPrlOD0noGL3vWm8M08of2p22w5_af7FJKYtDHgagnsNLtUj--ox08nUWqbRtr-_50hP0qEf8KRrvtnv5BrTRXf7WAuoX3vOEKA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIIL4ikeA3KAE6pIk75ynBDbgG0HtI1pl6p1UgkJrWgdB_49dlvGOIDELQc3kZzE_uw6nxm7jKQRLkTaMSF4DjHSOQkiZ8dalWlj8BAIepzcHwTdkfcw8Sd1n1N6C1PxQywTbnQzSntNF5wS0jXbAJFkouvSnR5OrCTG7OsEbKIGW2-NR9PR0hijha6a5mnPiWQY1LXvOMPN6vc_vdI31FwFrKXHae-w7Roq8la1t7tszc722EanbMX7gaOyeBOKfTZt5_mCEnQLnmd8OM_fSPO8b4u8wIHlt1RaXho2XjGU8zGGyBVD9wfPZ7zkqM0Lohh4Af6M-HOOIgjND9iofTe87Tp1zwQHiLvPAakh1a4BFXkYNEMiQqOt8W0mgOjkrGuV6_nGFwISN4qSyAAYEVhplWczUIesMctn9ohxmQbCZqnKkoxY5WXqpVZgOKJAuWnowzG7_tJZDDWhOPW1eI3LH9tSx6saPmZXS-m3ikjjF7nml_rj-joVsVShr30P0RcuWm7Jn3PEnadeQF25Tv4lfcE2u8N-L-7dDx5P2ZakyJoq94Imayzm7_YM4cciPa-P2CfQA9DG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDbChexJ84f-agJymmSX_lONRt6hQRN8VLaV9SEGQd6zz43_te2815UPDWw2sKL8nL96XJ5zF2EkkjXIi0Y0LwHCLSOQkqZ8dalWljcBAIupx8dx_0Bt7Ni_9Sb7jRXZiKDzHfcKOZUcZrmuBjk9WwAWJk4sqlu31sV0lM2ZsEysNR3WwPB6-DeSzGAF3VzNOeE8kwqI--Ywvni-__XJS-leaiXi0XnM46W6uVIm9XXbvBluxoky13y0q8n_hUnt2EYou9dvJ8SvtzU55n_GmSj8nx_M4WeYEPll_QyfIyrvEKUM6HmCFXgO5Pno94iajNCyIMvAF_Rvk5QRNU5tts0Ll6uug5dckEBwjd54DUkGrXgIo8zJkhEaHR1vg2E0A0Oeta5Xq-8YWAxI2iJDIARgRWWuXZDNQOa4zykd1lXKaBsFmqsiQjqLxMvdQKzEYUKDcNfWixs5nPYqh54lTW4j0u_2tLHS96uMVO59bjiqPxi93BzP1xPZuKWKrQ176H4gs_WnbJn23E3cd-QEW59v5lfcxWHi47cf_6_nafrUrKq-ncXnDAGtPJhz1E8TFNj-oR9gWl4s_v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Footprint+of+Tropical+Mesoscale+Convective+System+Variability+on+Stratospheric+Water+Vapor&rft.jtitle=Geophysical+research+letters&rft.au=Dong%2C+W.+H.&rft.au=Lin%2C+Y.+L.&rft.au=Zhang%2C+M.+H.&rft.au=Huang%2C+X.+M.&rft.date=2020-03-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=5&rft_id=info:doi/10.1029%2F2019GL086320&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019GL086320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon