Footprint of Tropical Mesoscale Convective System Variability on Stratospheric Water Vapor
Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during...
Saved in:
Published in | Geophysical research letters Vol. 47; no. 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor.
Plain Language Summary
Mesoscale convective systems are essential ingredients of the tropical circulation and significantly regulate troposphere‐stratosphere exchange of atmospheric constituents. But little attention has been paid to their variations on a global scale, and their role in troposphere‐stratosphere water exchange is still a subject of ongoing debate. In this study, we show that there are prominent active and inactive phases of tropical mesoscale convective systems during 1985–2008. Specifically, their occurrence frequency during 1995–2002 is significantly lower than those before and after this period by over 10%. These stepwise transitions are closely related to the underlying sea surface temperature pattern in tropical central Pacific as well as the associated changes in Walker circulation. We further demonstrate that changes in these convective systems could strongly influence the stratospheric water vapor, which have significant implications for global climate variability.
Key Points
Distinct temporal variations of mesoscale convective systems over the whole tropics are detected for the first time
Active tropical mesoscale convective system occurrences result in an overall drier stratosphere via modulation of the tropopause temperature, and vice versa
Changes in these convective systems are closely related to the sea surface temperature patterns in the tropical central Pacific and shifts in Walker circulation |
---|---|
AbstractList | Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor.
Plain Language Summary
Mesoscale convective systems are essential ingredients of the tropical circulation and significantly regulate troposphere‐stratosphere exchange of atmospheric constituents. But little attention has been paid to their variations on a global scale, and their role in troposphere‐stratosphere water exchange is still a subject of ongoing debate. In this study, we show that there are prominent active and inactive phases of tropical mesoscale convective systems during 1985–2008. Specifically, their occurrence frequency during 1995–2002 is significantly lower than those before and after this period by over 10%. These stepwise transitions are closely related to the underlying sea surface temperature pattern in tropical central Pacific as well as the associated changes in Walker circulation. We further demonstrate that changes in these convective systems could strongly influence the stratospheric water vapor, which have significant implications for global climate variability.
Key Points
Distinct temporal variations of mesoscale convective systems over the whole tropics are detected for the first time
Active tropical mesoscale convective system occurrences result in an overall drier stratosphere via modulation of the tropopause temperature, and vice versa
Changes in these convective systems are closely related to the sea surface temperature patterns in the tropical central Pacific and shifts in Walker circulation Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor. Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain elusive, and the way they impact the tropical stratospheric moisture remains under debate. Based on a comprehensive global MCS data set during 1985–2008, we detect distinct transitions in tropical MCS activities, with the occurrence frequency of MCS during 1995–2002 being significantly lower than those before and after this period by over 10%. The stepwise transition of tropical MCSs has a significant impact on stratospheric water vapor: Active MCS occurrences result in an overall drier stratosphere, and vice versa. We demonstrate that these changes are closely related to the sea surface temperature pattern in the tropical central Pacific and the associated Walker circulation shift on convective systems. Our results suggest that the sea surface temperature variability in tropical central Pacific may exert an important forcing on the stratospheric water vapor. Mesoscale convective systems are essential ingredients of the tropical circulation and significantly regulate troposphere‐stratosphere exchange of atmospheric constituents. But little attention has been paid to their variations on a global scale, and their role in troposphere‐stratosphere water exchange is still a subject of ongoing debate. In this study, we show that there are prominent active and inactive phases of tropical mesoscale convective systems during 1985–2008. Specifically, their occurrence frequency during 1995–2002 is significantly lower than those before and after this period by over 10%. These stepwise transitions are closely related to the underlying sea surface temperature pattern in tropical central Pacific as well as the associated changes in Walker circulation. We further demonstrate that changes in these convective systems could strongly influence the stratospheric water vapor, which have significant implications for global climate variability. Distinct temporal variations of mesoscale convective systems over the whole tropics are detected for the first time Active tropical mesoscale convective system occurrences result in an overall drier stratosphere via modulation of the tropopause temperature, and vice versa Changes in these convective systems are closely related to the sea surface temperature patterns in the tropical central Pacific and shifts in Walker circulation |
Author | Lin, Y. L. Huang, X. M. Dong, W. H. Zhang, M. H. |
Author_xml | – sequence: 1 givenname: W. H. orcidid: 0000-0002-5662-5435 surname: Dong fullname: Dong, W. H. organization: Now at NOAA/Geophysical Fluid Dynamics Laboratory – sequence: 2 givenname: Y. L. orcidid: 0000-0002-0865-0580 surname: Lin fullname: Lin, Y. L. email: yanluan@tsinghua.edu.cn organization: Tsinghua University – sequence: 3 givenname: M. H. orcidid: 0000-0002-1927-5405 surname: Zhang fullname: Zhang, M. H. organization: Stony Brook University – sequence: 4 givenname: X. M. orcidid: 0000-0002-4158-1089 surname: Huang fullname: Huang, X. M. organization: Tsinghua University |
BookMark | eNp9kE9LAzEQxYNUsK3e_AABr1Ynyf49SrFVWBFsVfCypNlZTNlu1iSt7Lc30h5E0NM8ht-bN7wRGbSmRULOGVwx4Pk1B5bPC8gSweGIDFkeRZMMIB2QIUAeNE-TEzJybg0AAgQbkreZMb6zuvXU1HRpTaeVbOgDOuOCQDo17Q6V1zuki9553NAXabVc6Ub7npqWLryV3rjuHa1W9FV6tAHpjD0lx7VsHJ4d5pg8z26X07tJ8Ti_n94UEyWiKJ0onqtVziolsghXXElIqxyrGGtQwIAhQ8GiuIoBlGRZJrNKqQoS5CgirJUYk4v93c6ajy06X67N1rYhsuQijfM4SlgcKL6nlDXOWaxLpb302rThf92UDMrvDsufHQbT5S9TqGojbf8Xfsj41A32_7Ll_KlIwjIVXwbxg5A |
CitedBy_id | crossref_primary_10_3390_atmos16030245 crossref_primary_10_1007_s11227_025_07065_5 crossref_primary_10_1038_s41612_020_00138_7 crossref_primary_10_1029_2020GL090539 |
Cites_doi | 10.1002/qj.49707532603 10.1007/s00382-012-1427-8 10.1007/s00382-018-4071-0 10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2 10.1002/joc.2407 10.1175/JAS-D-11-0293.1 10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2 10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2 10.1175/1520-0442(2000)013<3314:ACOTMC>2.0.CO;2 10.1175/JAS-D-16-0166.1 10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2 10.1002/qj.828 10.1029/2006GL027899 10.1029/95JD03422 10.1029/1999GL011197 10.1002/2014JD021712 10.1029/2002JD002670 10.1029/2018JD029522 10.1038/ngeo1733 10.1029/2004RG000150 10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2 10.1007/s00382-016-3231-3 10.1029/2008GL033641 10.1002/2015RG000488 10.1029/2001GL014063 10.1007/s00382-017-3774-y 10.1080/01621459.1968.10480934 10.1029/2005JD006744 10.1038/ngeo1008 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 10.1038/nature14339 10.1029/2010GL044092 10.1002/2017JD027080 10.1175/2009JCLI2777.1 10.1073/pnas.1310344110 10.1038/ngeo2961 10.1029/1998GL900120 10.1029/2018JD028286 10.5194/essd-8-461-2016 10.1029/2001GL013148 10.1029/GL009i006p00605 10.1126/science.1182488 10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2 10.1029/2011JD016992 10.5194/acp-11-8433-2011 10.1029/JC084iC06p03155 10.1175/JCLI-D-13-00628.1 10.1002/qj.2174 10.1029/2004JD005516 10.1029/1999GL010868 10.1029/95RG02097 10.1029/2000GL011438 |
ContentType | Journal Article |
Copyright | 2020. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2019GL086320 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2019GL086320 GRL60297 |
Genre | article |
GrantInformation_xml | – fundername: The National Key Research Project of China funderid: 2018YFC1507001 – fundername: Tsinghua University Initiative Scientific Research Program funderid: 2019Z07L01001 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3447-c29cb91dc384eb2ca07d9ed5ef0c0101e1e3145d500ca188a8dccd06e2e34efc3 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 09:01:41 EDT 2025 Tue Jul 01 01:41:04 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Wed Jan 22 16:34:05 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3447-c29cb91dc384eb2ca07d9ed5ef0c0101e1e3145d500ca188a8dccd06e2e34efc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1927-5405 0000-0002-5662-5435 0000-0002-0865-0580 0000-0002-4158-1089 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL086320 |
PQID | 2375954615 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2375954615 crossref_citationtrail_10_1029_2019GL086320 crossref_primary_10_1029_2019GL086320 wiley_primary_10_1029_2019GL086320_GRL60297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 March 2020 |
PublicationDateYYYYMMDD | 2020-03-16 |
PublicationDate_xml | – month: 03 year: 2020 text: 16 March 2020 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2004; 61 2017; 48 2018; 123 1995; 33 2014; 27 2019; 124 2011; 11 2008; 35 2007; 34 1996; 101 2013; 6 1993; 121 1968; 63 2017; 74 2014; 4 2000; 17 1986; 43 2000; 13 1982; 9 2003; 4 1981; 38 2013; 110 2012; 69 2010; 3 2011; 137 2014; 119 2009; 22 2004; 42 2010; 37 2000; 27 1949; 75 2005; 110 2010; 327 2011 2015; 53 2013; 41 2001; 28 1996; 124 2012; 32 2006; 111 1998; 25 2003; 108 2002; 29 1950; 53 2017; 10 2013; 139 2019 2015; 519 2016 2018; 51 2018; 50 2012; 117 2016; 8 1979; 84 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_54_1 Theil H. (e_1_2_6_52_1) 1950; 53 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Xie F. (e_1_2_6_57_1) 2014; 4 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Moncrieff M. W. (e_1_2_6_33_1) 2019 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – year: 2011 – volume: 84 start-page: 3155 issue: Nc6 year: 1979 end-page: 3158 article-title: Thunderstorms as possible micrometeorological sink for stratospheric water publication-title: Journal of Geophysical Research: Oceans – volume: 35 issue: 10 year: 2008 article-title: Unprecedented evidence for deep convection hydrating the tropical stratosphere publication-title: Geophysical Research Letters – volume: 27 start-page: 4952 issue: 13 year: 2014 end-page: 4958 article-title: Robust observational quantification of the contribution of mesoscale convective systems to rainfall in the tropics publication-title: Journal of Climate – volume: 69 start-page: 2488 issue: 8 year: 2012 end-page: 2504 article-title: An object‐based approach to assessing the organization of tropical convection publication-title: Journal of the Atmospheric Sciences – volume: 4 start-page: 1 issue: 1 year: 2014 end-page: 9 article-title: Indo‐Pacific warm pool area expansion, Modoki activity, and tropical cold‐point tropopause temperature variations publication-title: Science Reports‐Uk – volume: 43 start-page: 1945 issue: 18 year: 1986 end-page: 1960 article-title: Thunderstorm cloud top dynamics as inferred from satellite‐observations and a cloud top parcel model publication-title: Journal of the Atmospheric Sciences – volume: 124 start-page: 6307 issue: 12 year: 2019 end-page: 6326 article-title: Improvements in the GISTEMP uncertainty model publication-title: Journal of Geophysical Research: Atmospheres – volume: 124 start-page: 2417 issue: 11 year: 1996 end-page: 2437 article-title: Mesoscale convective systems defined by their 85‐GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents publication-title: Monthly Weather Review – volume: 137 start-page: 553 issue: 656 year: 2011 end-page: 597 article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Q J Roy Meteor Soc – volume: 9 start-page: 605 issue: 6 year: 1982 end-page: 608 article-title: A dehydration mechanism for the stratosphere publication-title: Geophysical Research Letters – volume: 121 start-page: 1398 issue: 5 year: 1993 end-page: 1415 article-title: Cloud clusters and superclusters over the oceanic warm pool publication-title: Monthly Weather Review – volume: 8 start-page: 461 issue: 2 year: 2016 end-page: 490 article-title: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long‐term database for climate studies publication-title: Earth System Science Data – volume: 33 start-page: 403 issue: 4 year: 1995 end-page: 439 article-title: Stratosphere‐Troposphere Exchange publication-title: Reviews of Geophysics – volume: 111 issue: D12 year: 2006 article-title: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation publication-title: Journal of Geophysical Research: Atmospheres – volume: 110 issue: D8 year: 2005 article-title: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics publication-title: Journal of Geophysical Research: Atmospheres – volume: 38 start-page: 2789 issue: 12 year: 1981 end-page: 2796 article-title: A stratospheric fountain publication-title: Journal of the Atmospheric Sciences – volume: 17 start-page: 1296 issue: 10 year: 2000 end-page: 1312 article-title: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery publication-title: Journal of Atmospheric and Oceanic Technology – volume: 101 start-page: 3989 issue: D2 year: 1996 end-page: 4006 article-title: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor publication-title: Journal of Geophysical Research: Atmospheres – volume: 28 start-page: 1551 year: 2001 end-page: 1554 article-title: Climate and ozone response to increased stratospheric water vapor publication-title: Geophysical Research Letters – volume: 29 issue: 8 year: 2002 article-title: A global view of bio‐physical coupling from SeaWiFS and TOPEX satellite data, 1997‐2001 publication-title: Geophysical Research Letters – volume: 4 start-page: 1147 issue: 6 year: 2003 end-page: 1167 article-title: The version‐2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979‐present) publication-title: Journal of Hydrometeorology – volume: 123 start-page: 4583 year: 2018 end-page: 4593 article-title: Convective hydration of the upper troposphere and lower stratosphere publication-title: Journal of Geophysical Research: Atmospheres – volume: 6 start-page: 169 issue: 3 year: 2013 end-page: 176 article-title: Physical processes in the tropical tropopause layer and their roles in a changing climate publication-title: Nature Geoscience – volume: 117 year: 2012 article-title: Seasonal differences of vertical‐transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large‐scale vertical ascent, and horizontal circulationes publication-title: Journal of Geophysical Research: Atmospheres – volume: 25 start-page: 4165 issue: 22 year: 1998 end-page: 4168 article-title: A reexamination of the “stratospheric fountain” hypothesis publication-title: Geophysical Research Letters – volume: 123 start-page: 590 issue: 1 year: 2018 end-page: 606 article-title: Convectively driven tropopause‐level cooling and its influences on stratospheric moisture publication-title: Journal of Geophysical Research: Atmospheres – volume: 32 start-page: 1921 issue: 12 year: 2012 end-page: 1934 article-title: Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation publication-title: International Journal of Climatology – volume: 27 start-page: 677 issue: 5 year: 2000 end-page: 680 article-title: A stratospheric “drain” over the maritime continent publication-title: Geophysical Research Letters – volume: 53 start-page: 386 year: 1950 end-page: 392 article-title: A rank‐invariant method of linear and polynomial regression analysis I publication-title: Nederl. Akad. Wetensch. Proc. – volume: 119 start-page: 12,588 year: 2014 end-page: 12,598 article-title: Variations of stratospheric water vapor over the past three decades publication-title: Journal of Geophysical Research: Atmospheres – volume: 22 start-page: 5797 issue: 22 year: 2009 end-page: 5808 article-title: Objective classification of tropical mesoscale convective systems publication-title: Journal of Climate – volume: 27 start-page: 2513 issue: 16 year: 2000 end-page: 2516 article-title: On the control of stratospheric humidity publication-title: Geophysical Research Letters – volume: 34 issue: 4 year: 2007 article-title: Observations of deep convective influence on stratospheric water vapor and its isotopic composition publication-title: Geophysical Research Letters – volume: 37 year: 2010 article-title: Decadal changes in tropical convection suggest effects on stratospheric water vapor publication-title: Geophysical Research Letters – volume: 11 start-page: 8433 year: 2011 end-page: 8446 article-title: Dehydration of the stratosphere publication-title: Atmospheric Chemistry and Physics – volume: 61 start-page: 2133 issue: 17 year: 2004 end-page: 2148 article-title: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures publication-title: Journal of the Atmospheric Sciences – volume: 108 issue: D14 year: 2003 article-title: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century publication-title: Journal of Geophysical Research: Atmospheres – volume: 75 start-page: 351 year: 1949 end-page: 363 article-title: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratopshere publication-title: Q J Roy Meteor Soc – volume: 48 start-page: 2671 issue: 7‐8 year: 2017 end-page: 2683 article-title: The linkage between stratospheric water vapor and surface temperature in an observation‐constrained coupled general circulation model publication-title: Climate Dynamics – year: 2016 – volume: 53 start-page: 994 issue: 3 year: 2015 end-page: 1021 article-title: The variable nature of convection in the tropics and subtropics: A legacy of 16years of the Tropical Rainfall Measuring Mission satellite publication-title: Reviews of Geophysics – volume: 327 start-page: 1219 issue: 5970 year: 2010 end-page: 1223 article-title: Contributions of stratospheric water vapor to decadal changes in the rate of global warming publication-title: Science – volume: 74 start-page: 1363 year: 2017 end-page: 1380 article-title: Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models publication-title: Journal of the Atmospheric Sciences – volume: 42 issue: 4 year: 2004 article-title: Mesoscale convective systems publication-title: Reviews of Geophysics – volume: 63 start-page: 1379 issue: 324 year: 1968 end-page: 1389 article-title: Estimates of the regression coefficient based on Kendall's tau publication-title: Journal of the American Statistical Association – volume: 41 start-page: 327 issue: 2 year: 2013 end-page: 340 article-title: A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s publication-title: Climate Dynamics – volume: 3 start-page: 842 issue: 12 year: 2010 end-page: 845 article-title: Changes in the sea surface temperature threshold for tropical convection publication-title: Nature Geoscience – volume: 50 start-page: 2813 issue: 7‐8 year: 2018 end-page: 2827 article-title: A warming tropical central Pacific dries the lower stratosphere publication-title: Climate Dynamics – volume: 519 start-page: 451 issue: 7544 year: 2015 article-title: Increases in tropical rainfall driven by changes in frequency of organized deep convection publication-title: Nature – volume: 139 start-page: 941 issue: 673 year: 2013 end-page: 953 article-title: Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: method and sampling considerations publication-title: Quarterly Journal of the Royal Meteorological Society – start-page: 46 year: 2019 article-title: Toward a dynamical foundation for organized convection parameterization in GCMs publication-title: Geophysical Research Letters – volume: 110 start-page: 18,087 issue: 45 year: 2013 end-page: 18,091 article-title: Stratospheric water vapor feedback publication-title: Proceedings of the National Academy of Sciences USA – volume: 13 start-page: 3314 issue: 18 year: 2000 end-page: 3326 article-title: A comparison of tropical mesoscale convective systems in El Nino and La Nina publication-title: Journal of Climate – volume: 10 start-page: 405 year: 2017 end-page: 410 article-title: Large anomalies in lower stratospheric water vapour and ice during the 2015‐2016 El Nino publication-title: Nature Geoscience – volume: 28 start-page: 2799 issue: 14 year: 2001 end-page: 2802 article-title: Horizontal transport and the dehydration of the stratosphere publication-title: Geophysical Research Letters – volume: 51 start-page: 3145 issue: 7‐8 year: 2018 end-page: 3159 article-title: A long‐term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm publication-title: Climate Dynamics – ident: e_1_2_6_7_1 doi: 10.1002/qj.49707532603 – ident: e_1_2_6_56_1 doi: 10.1007/s00382-012-1427-8 – ident: e_1_2_6_26_1 doi: 10.1007/s00382-018-4071-0 – ident: e_1_2_6_36_1 doi: 10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2 – ident: e_1_2_6_19_1 doi: 10.1002/joc.2407 – ident: e_1_2_6_15_1 doi: 10.1175/JAS-D-11-0293.1 – ident: e_1_2_6_21_1 doi: 10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2 – ident: e_1_2_6_31_1 doi: 10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2 – ident: e_1_2_6_58_1 doi: 10.1175/1520-0442(2000)013<3314:ACOTMC>2.0.CO;2 – ident: e_1_2_6_34_1 doi: 10.1175/JAS-D-16-0166.1 – ident: e_1_2_6_39_1 doi: 10.1175/1520-0469(2004)061<2133:ICOSWV>2.0.CO;2 – ident: e_1_2_6_11_1 doi: 10.1002/qj.828 – ident: e_1_2_6_20_1 doi: 10.1029/2006GL027899 – ident: e_1_2_6_35_1 doi: 10.1029/95JD03422 – ident: e_1_2_6_49_1 doi: 10.1029/1999GL011197 – ident: e_1_2_6_14_1 doi: 10.1002/2014JD021712 – ident: e_1_2_6_41_1 doi: 10.1029/2002JD002670 – ident: e_1_2_6_30_1 doi: 10.1029/2018JD029522 – ident: e_1_2_6_38_1 doi: 10.1038/ngeo1733 – ident: e_1_2_6_24_1 doi: 10.1029/2004RG000150 – ident: e_1_2_6_32_1 doi: 10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2 – ident: e_1_2_6_54_1 doi: 10.1007/s00382-016-3231-3 – ident: e_1_2_6_8_1 doi: 10.1029/2008GL033641 – ident: e_1_2_6_25_1 doi: 10.1002/2015RG000488 – ident: e_1_2_6_55_1 doi: 10.1029/2001GL014063 – ident: e_1_2_6_16_1 doi: 10.1007/s00382-017-3774-y – ident: e_1_2_6_46_1 doi: 10.1080/01621459.1968.10480934 – ident: e_1_2_6_40_1 doi: 10.1029/2005JD006744 – ident: e_1_2_6_27_1 doi: 10.1038/ngeo1008 – volume: 53 start-page: 386 year: 1950 ident: e_1_2_6_52_1 article-title: A rank‐invariant method of linear and polynomial regression analysis I publication-title: Nederl. Akad. Wetensch. Proc. – ident: e_1_2_6_2_1 doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 – start-page: 46 year: 2019 ident: e_1_2_6_33_1 article-title: Toward a dynamical foundation for organized convection parameterization in GCMs publication-title: Geophysical Research Letters – ident: e_1_2_6_51_1 doi: 10.1038/nature14339 – ident: e_1_2_6_53_1 doi: 10.1029/2010GL044092 – ident: e_1_2_6_29_1 doi: 10.1002/2017JD027080 – ident: e_1_2_6_37_1 doi: 10.1175/2009JCLI2777.1 – ident: e_1_2_6_13_1 doi: 10.1073/pnas.1310344110 – ident: e_1_2_6_4_1 doi: 10.1038/ngeo2961 – ident: e_1_2_6_12_1 doi: 10.1029/1998GL900120 – ident: e_1_2_6_45_1 doi: 10.1029/2018JD028286 – ident: e_1_2_6_10_1 doi: 10.5194/essd-8-461-2016 – ident: e_1_2_6_22_1 doi: 10.1029/2001GL013148 – ident: e_1_2_6_9_1 doi: 10.1029/GL009i006p00605 – ident: e_1_2_6_50_1 doi: 10.1126/science.1182488 – ident: e_1_2_6_5_1 – ident: e_1_2_6_3_1 doi: 10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2 – ident: e_1_2_6_6_1 doi: 10.1029/2011JD016992 – volume: 4 start-page: 1 issue: 1 year: 2014 ident: e_1_2_6_57_1 article-title: Indo‐Pacific warm pool area expansion, Modoki activity, and tropical cold‐point tropopause temperature variations publication-title: Science Reports‐Uk – ident: e_1_2_6_44_1 doi: 10.5194/acp-11-8433-2011 – ident: e_1_2_6_28_1 doi: 10.1029/JC084iC06p03155 – ident: e_1_2_6_42_1 doi: 10.1175/JCLI-D-13-00628.1 – ident: e_1_2_6_17_1 doi: 10.1002/qj.2174 – ident: e_1_2_6_18_1 doi: 10.1029/2004JD005516 – ident: e_1_2_6_43_1 – ident: e_1_2_6_47_1 doi: 10.1029/1999GL010868 – ident: e_1_2_6_23_1 doi: 10.1029/95RG02097 – ident: e_1_2_6_48_1 doi: 10.1029/2000GL011438 |
SSID | ssj0003031 |
Score | 2.386037 |
Snippet | Mesoscale convective systems (MCSs) play a dominant role in tropical climate. However, the variabilities of their occurrences on a tropical‐wide scale remain... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Atmospheric circulation Climate Climate variability equatorial central Pacific Exchanging Global climate Global climate variability mesoscale convective system Mesoscale convective systems Mesoscale phenomena Sea surface Sea surface temperature Sea surface temperature variability Stratosphere stratospheric water vapor Surface temperature Temperature Temperature patterns Temperature variability Tropical circulation Tropical climate Tropical climates Troposphere Variability Walker circulation Water exchange Water vapor Water vapour |
Title | Footprint of Tropical Mesoscale Convective System Variability on Stratospheric Water Vapor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL086320 https://www.proquest.com/docview/2375954615 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKV0hcEE-x7IJ8gFOU4Nh5-bhCbCvUckBtt-wlJI6jRVolVdMi7f56xo88FhW0cIksx04izxd7xp75BqF3CS2ILxLuFrEIXMVI52agObtSspIXBYCAqODk-Zdougw-r8P1aPR94LW03-WeuD0YV_I_UoU6kKuKkv0HyXYPhQoog3zhChKG671kfF7XO7Uxp0_zF9t6o0d8Lpu6gYJKSFf9NBOaZSZ3VmAaG2buG3VMoLlp60ZRC_wQzkWmGBNX2abeDnXWiaw3rTQtN9CVc63DgPqs9Naz98Jzpl7n5GP4Cb55zqyr6zao58OW072tXXtwY7gTAWancmuLhrMrD9yExpba2kyoPIA6YjLbtjOu4di0yAoPTuSEKh5U0E74ZAbYYZT0C1Z7SP_bOtZ5F-pzdcrTYe8H6IiCIUHH6Ohstbxcdqs1LOEmq6L9dhscAf0_DPvfVVt6W2Ro0WiVZPEEPba2BD4zwHiKRrJ6hh5OdK7mGyhp717RPEeXHVBwXeIWKLgDCu6Bgg1Q8AAouK7wHaBgDRSsgfICLc8_LT5OXZtUwxWK3NEVlIuc-4VgSSBzKjISF1wWoSyJUHyD0pfMD8IiJERkfpJkSSFEQSJJJQtkKdhLNK7qSr5CmOYRkWXOyqxUaQdoHuSSgL3KBPPzOBTHyGnHLBWWcV4lPrlOD0noGL3vWm8M08of2p22w5_af7FJKYtDHgagnsNLtUj--ox08nUWqbRtr-_50hP0qEf8KRrvtnv5BrTRXf7WAuoX3vOEKA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIIL4ikeA3KAE6pIk75ynBDbgG0HtI1pl6p1UgkJrWgdB_49dlvGOIDELQc3kZzE_uw6nxm7jKQRLkTaMSF4DjHSOQkiZ8dalWlj8BAIepzcHwTdkfcw8Sd1n1N6C1PxQywTbnQzSntNF5wS0jXbAJFkouvSnR5OrCTG7OsEbKIGW2-NR9PR0hijha6a5mnPiWQY1LXvOMPN6vc_vdI31FwFrKXHae-w7Roq8la1t7tszc722EanbMX7gaOyeBOKfTZt5_mCEnQLnmd8OM_fSPO8b4u8wIHlt1RaXho2XjGU8zGGyBVD9wfPZ7zkqM0Lohh4Af6M-HOOIgjND9iofTe87Tp1zwQHiLvPAakh1a4BFXkYNEMiQqOt8W0mgOjkrGuV6_nGFwISN4qSyAAYEVhplWczUIesMctn9ohxmQbCZqnKkoxY5WXqpVZgOKJAuWnowzG7_tJZDDWhOPW1eI3LH9tSx6saPmZXS-m3ikjjF7nml_rj-joVsVShr30P0RcuWm7Jn3PEnadeQF25Tv4lfcE2u8N-L-7dDx5P2ZakyJoq94Imayzm7_YM4cciPa-P2CfQA9DG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDbChexJ84f-agJymmSX_lONRt6hQRN8VLaV9SEGQd6zz43_te2815UPDWw2sKL8nL96XJ5zF2EkkjXIi0Y0LwHCLSOQkqZ8dalWljcBAIupx8dx_0Bt7Ni_9Sb7jRXZiKDzHfcKOZUcZrmuBjk9WwAWJk4sqlu31sV0lM2ZsEysNR3WwPB6-DeSzGAF3VzNOeE8kwqI--Ywvni-__XJS-leaiXi0XnM46W6uVIm9XXbvBluxoky13y0q8n_hUnt2EYou9dvJ8SvtzU55n_GmSj8nx_M4WeYEPll_QyfIyrvEKUM6HmCFXgO5Pno94iajNCyIMvAF_Rvk5QRNU5tts0Ll6uug5dckEBwjd54DUkGrXgIo8zJkhEaHR1vg2E0A0Oeta5Xq-8YWAxI2iJDIARgRWWuXZDNQOa4zykd1lXKaBsFmqsiQjqLxMvdQKzEYUKDcNfWixs5nPYqh54lTW4j0u_2tLHS96uMVO59bjiqPxi93BzP1xPZuKWKrQ176H4gs_WnbJn23E3cd-QEW59v5lfcxWHi47cf_6_nafrUrKq-ncXnDAGtPJhz1E8TFNj-oR9gWl4s_v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Footprint+of+Tropical+Mesoscale+Convective+System+Variability+on+Stratospheric+Water+Vapor&rft.jtitle=Geophysical+research+letters&rft.au=Dong%2C+W.+H.&rft.au=Lin%2C+Y.+L.&rft.au=Zhang%2C+M.+H.&rft.au=Huang%2C+X.+M.&rft.date=2020-03-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=5&rft_id=info:doi/10.1029%2F2019GL086320&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019GL086320 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |