Predictive Skill of Teleconnection Patterns in Twentieth Century Seasonal Hindcasts and Their Relationship to Extreme Winter Temperatures in Europe

European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets an...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 49; no. 11
Main Authors Schuhen, Nina, Schaller, Nathalie, Bloomfield, Hannah C., Brayshaw, David J., Lledó, Llorenç, Cionni, Irene, Sillmann, Jana
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.06.2022
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2020GL092360

Cover

Loading…
Abstract European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill. Plain Language Summary Large‐scale atmospheric patterns that influence European winter weather showed slowly evolving fluctuations over the course of the twentieth century. This affects how well the patterns can be predicted by seasonal forecasting models. However, the impact of the large‐scale patterns on extreme winter temperatures mostly does not change over time, although forecasting models often struggle to correctly predict these impacts. Key Points The predictive skill of winter seasonal hindcasts for teleconnection patterns in Europe varied over the twentieth century Seasonal hindcasts only partly reproduce the links between teleconnection patterns and winter temperature extremes The teleconnection/surface temperature relationships do not significantly change despite fluctuations in predictive skill
AbstractList European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill.
European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill. Large‐scale atmospheric patterns that influence European winter weather showed slowly evolving fluctuations over the course of the twentieth century. This affects how well the patterns can be predicted by seasonal forecasting models. However, the impact of the large‐scale patterns on extreme winter temperatures mostly does not change over time, although forecasting models often struggle to correctly predict these impacts. The predictive skill of winter seasonal hindcasts for teleconnection patterns in Europe varied over the twentieth century Seasonal hindcasts only partly reproduce the links between teleconnection patterns and winter temperature extremes The teleconnection/surface temperature relationships do not significantly change despite fluctuations in predictive skill
European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill. Plain Language Summary Large‐scale atmospheric patterns that influence European winter weather showed slowly evolving fluctuations over the course of the twentieth century. This affects how well the patterns can be predicted by seasonal forecasting models. However, the impact of the large‐scale patterns on extreme winter temperatures mostly does not change over time, although forecasting models often struggle to correctly predict these impacts. Key Points The predictive skill of winter seasonal hindcasts for teleconnection patterns in Europe varied over the twentieth century Seasonal hindcasts only partly reproduce the links between teleconnection patterns and winter temperature extremes The teleconnection/surface temperature relationships do not significantly change despite fluctuations in predictive skill
Author Schuhen, Nina
Lledó, Llorenç
Cionni, Irene
Brayshaw, David J.
Sillmann, Jana
Bloomfield, Hannah C.
Schaller, Nathalie
Author_xml – sequence: 1
  givenname: Nina
  orcidid: 0000-0002-5108-9047
  surname: Schuhen
  fullname: Schuhen, Nina
  email: nina.schuhen@cicero.oslo.no
  organization: Center for International Climate and Environmental Research (CICERO)
– sequence: 2
  givenname: Nathalie
  orcidid: 0000-0003-0074-3421
  surname: Schaller
  fullname: Schaller, Nathalie
  organization: Center for International Climate and Environmental Research (CICERO)
– sequence: 3
  givenname: Hannah C.
  orcidid: 0000-0002-5616-1503
  surname: Bloomfield
  fullname: Bloomfield, Hannah C.
  organization: University of Bristol
– sequence: 4
  givenname: David J.
  orcidid: 0000-0002-3927-4362
  surname: Brayshaw
  fullname: Brayshaw, David J.
  organization: National Centre for Atmospheric Science
– sequence: 5
  givenname: Llorenç
  orcidid: 0000-0002-8628-6876
  surname: Lledó
  fullname: Lledó, Llorenç
  organization: Barcelona Supercomputing Center (BSC)
– sequence: 6
  givenname: Irene
  surname: Cionni
  fullname: Cionni, Irene
  organization: Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA)
– sequence: 7
  givenname: Jana
  orcidid: 0000-0002-0219-5345
  surname: Sillmann
  fullname: Sillmann, Jana
  organization: Center for International Climate and Environmental Research (CICERO)
BookMark eNp9kMtKLDEQhoMoOF52PkDA7RlPJZ1Ody9lmDMeGFB0xGUTk2om2pO0SUad5_CFjZeFCEoWKYrv_4qqPbLtvENCjhicMODNXw4cZnNoeCFhi4xYI8S4Bqi2yQigyTWv5C7Zi_EOAAoo2Ii8XAQ0Vif7iPTq3vY99R1dYI_aO4e57x29UClhcJFaRxdP6JLFtKSTXKzDhl6hit6pnp5ZZ7SKKVLlDF0s0QZ6ib16c8SlHWjydPqcAq6Q3liXlXnQasCgsgff7dN18AMekJ1O9REPP_99cv1vupicjefns_-T0_lYF0LIsRKNrFmlJVedaHhtNGimKlmVpkRjhKh1lR8z8raUZWk4dNCxjsuK19gZLPbJ8Yd3CP5hjTG1d34d8iqxzVDOFAxYpvgHpYOPMWDXapvel0pB2b5l0L4dv_16_Bz68y00BLtSYfMT_jnjyfa4-ZVtZ5dzKQomi1eGDZfd
CitedBy_id crossref_primary_10_1371_journal_pone_0313871
crossref_primary_10_3390_cli11050098
crossref_primary_10_1088_1748_9326_ad0fbf
crossref_primary_10_1088_1748_9326_acb6aa
Cites_doi 10.1088/1748-9326/aaf338
10.1088/1748-9326/ab87d2
10.5194/essd-13-2259-2021
10.1002/met.1858
10.1016/j.renene.2019.04.135
10.1175/BAMS-D-19-0019.1
10.1088/1748-9326/aa57ab
10.1002/qj.3974
10.1088/1748-9326/abab32
10.1175/JAMC-D-16-0204.1
10.1175/BAMS-D-20-0224.1
10.1038/nclimate3338
10.5194/nhess-18-91-2018
10.1002/qj.3446
10.1016/j.renene.2011.01.025
10.1002/met.2018
10.1002/qj.3863
10.1016/j.eneco.2008.02.003
10.1038/s41560-020-0561-5
10.1002/qj.2976
10.1016/S0169-2070(01)00123-6
10.1088/1748-9326/11/5/054016
10.31223/osf.io/kzwqx
10.1088/1748-9326/aaba55
10.1088/1748-9326/aad5c5
10.1002/qj.3265
10.1002/qj.828
10.1002/qj.2943
10.1002/asl.868
10.5194/gmd-12-1087-2019
10.1002/2014GL059637
10.1038/s41467-017-00275-3
10.1016/j.enpol.2013.06.037
10.1029/2018JD030083
10.1002/joc.1250
10.1016/B978-0-12-812372-0.00006-6
10.1002/2017GL073736
10.1088/1748-9326/ab38d3
10.1007/s10584-016-1671-8
10.1029/2010JC006685
10.1287/mnsc.22.10.1087
10.1088/1748-9326/10/12/124003
10.1007/s00382-018-4273-5
10.1002/2014GL062829
10.1002/qj.3158
10.1016/j.apenergy.2014.10.030
10.1029/2018GL077837
10.1002/qj.4177
10.1002/joc.5398
ContentType Journal Article
Copyright 2022. The Authors.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. The Authors.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2020GL092360
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2020GL092360
GRL64316
Genre article
GrantInformation_xml – fundername: Horizon 2020
  funderid: 776787
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3446-a496817c62af4928dc0c1a7675d5edd448c7c7c1d6b5655d20f0f1f26728efde3
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Fri Jul 25 08:44:54 EDT 2025
Tue Jul 01 01:41:31 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
Wed Jan 22 16:23:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3446-a496817c62af4928dc0c1a7675d5edd448c7c7c1d6b5655d20f0f1f26728efde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8628-6876
0000-0002-5108-9047
0000-0003-0074-3421
0000-0002-0219-5345
0000-0002-5616-1503
0000-0002-3927-4362
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL092360
PQID 2675653101
PQPubID 54723
PageCount 12
ParticipantIDs proquest_journals_2675653101
crossref_citationtrail_10_1029_2020GL092360
crossref_primary_10_1029_2020GL092360
wiley_primary_10_1029_2020GL092360_GRL64316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 June 2022
PublicationDateYYYYMMDD 2022-06-16
PublicationDate_xml – month: 06
  year: 2022
  text: 16 June 2022
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2011; 116
2017; 7
2017; 8
2021b; 13
1976; 22
2019; 52
2013; 62
2017; 44
2019; 12
2019; 14
2020; 15
2019; 124
2008; 30
2003; 19
2018; 45
2020; 5
2015; 137
2015; 42
2006; 26
2018; 38
2011; 137
2018; 144
2012
2011
2021; 147
2015; 10
2006
2020; 101
2021a; 24
2020; 146
2011; 36
2020; 147
2014; 41
2019; 145
2019; 143
2016; 11
2018; 19
2018; 18
2021
2017; 12
2017; 56
2019
2020; 27
2018
2015
2016; 137
2017; 143
2013
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
Palmer T. (e_1_2_7_36_1) 2006
Poli P. (e_1_2_7_37_1) 2015
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
Weisheimer A. (e_1_2_7_53_1) 2019
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Climate Prediction Center (e_1_2_7_13_1) 2012
Poli P. (e_1_2_7_38_1) 2013
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
References_xml – year: 2011
– volume: 12
  start-page: 1087
  issue: 3
  year: 2019
  end-page: 1117
  article-title: SEAS5: The new ECMWF seasonal forecast system
  publication-title: Geoscientific Model Development
– volume: 41
  start-page: 2514
  issue: 7
  year: 2014
  end-page: 2519
  article-title: Skillful long‐range prediction of European and North American winters
  publication-title: Geophysical Research Letters
– volume: 145
  start-page: 140
  issue: 1
  year: 2019
  end-page: 159
  article-title: How confident are predictability estimates of the winter North Atlantic Oscillation?
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 8
  year: 2017
  article-title: High risk of unprecedented UK rainfall in the current climate
  publication-title: Nature Communications
– year: 2019
  article-title: A simplified seasonal forecasting strategy, applied to wind and solar power in Europe
  publication-title: EarthArXiv
– volume: 18
  start-page: 91
  year: 2018
  end-page: 104
  article-title: Towards a monitoring system of temperature extremes in Europe
  publication-title: Natural Hazards and Earth System Sciences
– volume: 44
  start-page: 5729
  year: 2017
  end-page: 5738
  article-title: Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century
  publication-title: Geophysical Research Letters
– volume: 56
  start-page: 1231
  issue: 5
  year: 2017
  end-page: 1247
  article-title: Seasonal climate prediction: A new source of information for the management of wind energy resources
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 13
  start-page: 2259
  year: 2021b
  end-page: 2274
  article-title: Sub‐seasonal forecasts of demand and wind power and solar power generation for 28 European countries
  publication-title: Earth System Science Data
– volume: 62
  start-page: 1420
  year: 2013
  end-page: 1427
  article-title: Implications of the North Atlantic Oscillation for a UK—Norway renewable power system
  publication-title: Energy Policy
– volume: 143
  start-page: 91
  year: 2019
  end-page: 100
  article-title: Seasonal forecasts of wind power generation
  publication-title: Renewable Energy
– volume: 19
  start-page: 57
  issue: 1
  year: 2003
  end-page: 70
  article-title: Using weather ensemble predictions in electricity demand forecasting
  publication-title: International Journal of Forecasting
– volume: 7
  start-page: 557
  issue: 8
  year: 2017
  end-page: 562
  article-title: Balancing Europe’s wind‐power output through spatial deployment informed by weather regimes
  publication-title: Nature Climate Change
– volume: 137
  start-page: 89
  year: 2016
  end-page: 103
  article-title: Barriers and enables to the use of seasonal climate forecasts amongst organizations in Europe
  publication-title: Climatic Change
– volume: 143
  start-page: 917
  issue: 703
  year: 2017
  end-page: 926
  article-title: Atmospheric seasonal forecasts of the twentieth century: Multi‐decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 101
  start-page: E1413
  issue: 8
  year: 2020
  end-page: E1426
  article-title: Seasonal forecasts of the twentieth century
  publication-title: Bulletin of the American Meteorological Society
– volume: 36
  start-page: 2087
  issue: 8
  year: 2011
  end-page: 2096
  article-title: The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK
  publication-title: Renewable Energy
– volume: 52
  start-page: 2481
  year: 2019
  end-page: 2495
  article-title: Predictability of the European heat and cold waves
  publication-title: Climate Dynamics
– volume: 5
  start-page: 108
  year: 2020
  end-page: 110
  article-title: Better seasonal forecasts for the renewable energy industry
  publication-title: Nature Energy
– year: 2019
– year: 2015
– volume: 147
  start-page: 4269
  issue: 741
  year: 2021
  end-page: 4282
  article-title: A new approach to extended‐range multimodel forecasting: Sequential learning algorithms
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 15
  year: 2020
  article-title: Current likelihood and dynamics of hot summers in the UK
  publication-title: Environmental Research Letters
– volume: 26
  start-page: 233
  year: 2006
  end-page: 249
  article-title: Two‐dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro‐Atlantic region
  publication-title: International Journal of Climatology
– volume: 42
  start-page: 1554
  issue: 5
  year: 2015
  end-page: 1559
  article-title: Impact of hindcast length on estimates of seasonal climate predictability
  publication-title: Geophysical Research Letters
– volume: 11
  issue: 5
  year: 2016
  article-title: When will unusual heat waves become normal in a warming Africa?
  publication-title: Environmental Research Letters
– volume: 137
  start-page: 435
  year: 2015
  end-page: 444
  article-title: Seasonal climate forecasts for medium‐term electricity demand forecasting
  publication-title: Applied Energy
– volume: 13
  year: 2018
  article-title: A critical assessment of the long‐term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis
  publication-title: Environmental Research Letters
– volume: 143
  start-page: 552
  year: 2017
  end-page: 562
  article-title: Spatial variability in winter NAO‐wind speed relationships in Western Europe linked to concomitant states of the East Atlantic and Scandinavian patterns
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 116
  year: 2011
  article-title: Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange
  publication-title: Journal of Geophysical Research
– volume: 19
  issue: 12
  year: 2018
  article-title: Predictability of European winter 2016/2017
  publication-title: Atmospheric Science Letters
– volume: 27
  issue: 1
  year: 2020
  article-title: Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types
  publication-title: Meteorological Applications
– volume: 147
  start-page: 1344
  year: 2020
  end-page: 1363
  article-title: The representation of winter Northern Hemisphere atmospheric blocking in ECMWF seasonal prediction systems
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 144
  start-page: 1012
  issue: 713
  year: 2018
  end-page: 1027
  article-title: Estimates of flow‐dependent predictability of wintertime Euro‐Atlantic weather regimes in medium‐range forecasts
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 146
  start-page: 3623
  issue: 733
  year: 2020
  end-page: 3637
  article-title: Beyond skill scores: Exploring sub‐seasonal forecast value through a case study of French month‐ahead energy prediction
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 124
  start-page: 1931
  year: 2019
  end-page: 1940
  article-title: Inconsistent wind speed trends in current twentieth century reanalyses
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 15
  year: 2020
  article-title: Seasonal prediction of Euro‐Atlantic teleconnections from multiple systems
  publication-title: Environmental Research Letters
– volume: 143
  start-page: 3025
  issue: 709
  year: 2017
  end-page: 3036
  article-title: Does the lower stratosphere provide predictability for month‐ahead wind electricity generation in Europe?
  publication-title: Quarterly Journal of the Royal Meteorological Society
– start-page: 1
  year: 2021
  end-page: 57
  article-title: Advances in the application and utility of subseasonal‐to‐seasonal predictions
  publication-title: Bulletin of the American Meteorological Society
– year: 2012
– volume: 45
  start-page: 6311
  issue: 12
  year: 2018
  end-page: 6320
  article-title: Dependence of present and future European temperature extremes on the location of atmospheric blocking
  publication-title: Geophysical Research Letters
– volume: 24
  issue: 4
  year: 2021a
  article-title: Pattern‐based conditioning enhances sub‐seasonal prediction skill of European national energy variables
  publication-title: Meteorological Applications
– volume: 22
  start-page: 1087
  issue: 10
  year: 1976
  end-page: 1096
  article-title: Scoring rules for continuous probability distributions
  publication-title: Management Science
– volume: 12
  issue: 2
  year: 2017
  article-title: Skilful seasonal predictions for the European energy industry
  publication-title: Environmental Research Letters
– volume: 38
  start-page: e660
  year: 2018
  end-page: e677
  article-title: North Atlantic circulation indices: Links with summer and winter UK temperature and precipitation and implications for seasonal forecasting
  publication-title: International Journal of Climatology
– year: 2006
– volume: 10
  issue: 12
  year: 2015
  article-title: Top ten European heat waves since 1950 and their occurrence in the coming decades
  publication-title: Environmental Research Letters
– volume: 14
  issue: 9
  year: 2019
  article-title: The influence of weather regimes on European renewable energy production and demand
  publication-title: Environmental Research Letters
– volume: 30
  start-page: 2705
  issue: 5
  year: 2008
  end-page: 2721
  article-title: The nonlinear link between electricity consumption and temperature in Europe: A threshold panel approach
  publication-title: Energy Economics
– volume: 14
  issue: 2
  year: 2019
  article-title: Skilful seasonal prediction of winter gas demand
  publication-title: Environmental Research Letters
– start-page: 155
  year: 2018
  end-page: 186
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2013
– volume: 13
  issue: 5
  year: 2018
  article-title: Influence of blocking on Northern European and Western Russian heat waves in large climate model ensembles
  publication-title: Environmental Research Letters
– ident: e_1_2_7_20_1
– ident: e_1_2_7_48_1
  doi: 10.1088/1748-9326/aaf338
– ident: e_1_2_7_30_1
  doi: 10.1088/1748-9326/ab87d2
– ident: e_1_2_7_7_1
  doi: 10.5194/essd-13-2259-2021
– ident: e_1_2_7_5_1
  doi: 10.1002/met.1858
– ident: e_1_2_7_31_1
  doi: 10.1016/j.renene.2019.04.135
– ident: e_1_2_7_51_1
  doi: 10.1175/BAMS-D-19-0019.1
– ident: e_1_2_7_12_1
  doi: 10.1088/1748-9326/aa57ab
– ident: e_1_2_7_14_1
  doi: 10.1002/qj.3974
– ident: e_1_2_7_27_1
  doi: 10.1088/1748-9326/abab32
– ident: e_1_2_7_49_1
  doi: 10.1175/JAMC-D-16-0204.1
– ident: e_1_2_7_55_1
  doi: 10.1175/BAMS-D-20-0224.1
– volume-title: Northern Hemisphere teleconnection patterns
  year: 2012
  ident: e_1_2_7_13_1
– ident: e_1_2_7_23_1
  doi: 10.1038/nclimate3338
– ident: e_1_2_7_28_1
  doi: 10.5194/nhess-18-91-2018
– ident: e_1_2_7_52_1
  doi: 10.1002/qj.3446
– ident: e_1_2_7_9_1
  doi: 10.1016/j.renene.2011.01.025
– ident: e_1_2_7_6_1
  doi: 10.1002/met.2018
– ident: e_1_2_7_17_1
  doi: 10.1002/qj.3863
– ident: e_1_2_7_3_1
  doi: 10.1016/j.eneco.2008.02.003
– ident: e_1_2_7_19_1
– ident: e_1_2_7_35_1
  doi: 10.1038/s41560-020-0561-5
– volume-title: ERA‐20C deterministic (ECMWF ERA Report Series: No. 20)
  year: 2015
  ident: e_1_2_7_37_1
– ident: e_1_2_7_54_1
  doi: 10.1002/qj.2976
– ident: e_1_2_7_45_1
  doi: 10.1016/S0169-2070(01)00123-6
– ident: e_1_2_7_39_1
  doi: 10.1088/1748-9326/11/5/054016
– ident: e_1_2_7_4_1
  doi: 10.31223/osf.io/kzwqx
– ident: e_1_2_7_42_1
  doi: 10.1088/1748-9326/aaba55
– ident: e_1_2_7_8_1
  doi: 10.1088/1748-9326/aad5c5
– ident: e_1_2_7_33_1
  doi: 10.1002/qj.3265
– ident: e_1_2_7_15_1
  doi: 10.1002/qj.828
– ident: e_1_2_7_57_1
  doi: 10.1002/qj.2943
– ident: e_1_2_7_18_1
  doi: 10.1002/asl.868
– ident: e_1_2_7_25_1
  doi: 10.5194/gmd-12-1087-2019
– ident: e_1_2_7_41_1
  doi: 10.1002/2014GL059637
– ident: e_1_2_7_46_1
  doi: 10.1038/s41467-017-00275-3
– ident: e_1_2_7_21_1
  doi: 10.1016/j.enpol.2013.06.037
– ident: e_1_2_7_56_1
  doi: 10.1029/2018JD030083
– ident: e_1_2_7_43_1
  doi: 10.1002/joc.1250
– ident: e_1_2_7_47_1
  doi: 10.1016/B978-0-12-812372-0.00006-6
– ident: e_1_2_7_34_1
  doi: 10.1002/2017GL073736
– ident: e_1_2_7_50_1
  doi: 10.1088/1748-9326/ab38d3
– ident: e_1_2_7_11_1
  doi: 10.1007/s10584-016-1671-8
– volume-title: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th‐century assimilating surface observations only (ERA‐20C) (ECMWF ERA Report Series: No. 14)
  year: 2013
  ident: e_1_2_7_38_1
– ident: e_1_2_7_26_1
  doi: 10.1029/2010JC006685
– ident: e_1_2_7_32_1
  doi: 10.1287/mnsc.22.10.1087
– ident: e_1_2_7_40_1
  doi: 10.1088/1748-9326/10/12/124003
– ident: e_1_2_7_29_1
  doi: 10.1007/s00382-018-4273-5
– ident: e_1_2_7_44_1
  doi: 10.1002/2014GL062829
– ident: e_1_2_7_2_1
  doi: 10.1002/qj.3158
– volume-title: Ensemble prediction: A pedagogical perspective (ECMWF Newsletter No. 106—Winter 2005/2006)
  year: 2006
  ident: e_1_2_7_36_1
– volume-title: Initialized seasonal forecast of the 20th century (accessed August 2019)
  year: 2019
  ident: e_1_2_7_53_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.apenergy.2014.10.030
– ident: e_1_2_7_10_1
  doi: 10.1029/2018GL077837
– ident: e_1_2_7_22_1
  doi: 10.1002/qj.4177
– ident: e_1_2_7_24_1
  doi: 10.1002/joc.5398
SSID ssj0003031
Score 2.4236479
Snippet European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 20th century
Atmospheric forcing
Atmospheric models
Circulation patterns
Cold waves
energy forecasting
Extreme cold
Extreme low temperatures
Fluctuations
Forecasting
Heat waves
Heatwaves
Mathematical models
North Atlantic Oscillation
Ocean-atmosphere system
Seasonal forecasting
Teleconnection patterns
Teleconnections
Temperature extremes
Weather
Winter
Winter temperatures
Winter weather
Title Predictive Skill of Teleconnection Patterns in Twentieth Century Seasonal Hindcasts and Their Relationship to Extreme Winter Temperatures in Europe
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL092360
https://www.proquest.com/docview/2675653101
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5KQqGX0LQpSZuGObSnIrpar1faozGJTUmLaew05CJW-yAmRg6WStLf0T_cmZXiOIcGgi467Autduab2ZlvGPvkuM3KtOcT0_M6kZKXeKR0llitjM-dQRVKicLff6jxTH676F90DjfKhWn5IdYONzoZUV7TATdl3ZENEEcmWu18dMoRoCg02bcpu5a484WcrCUxiue2Yp6WSS4y1QW-Y_-vm70fq6QHnLmJVqO6OXnNdjqcCIN2Y3fZC1-9YS9HsQ7vH3yLkZu2fsv-TlZ010JSC86u54sFLANMqboNhbDErAWYRBLNqoZ5BdNbig_yzRUMW30DZ95EPA5jtM-tqZsaTOVgSlcIsA6Wu5rfQLOE47uGPIrwi3gmVjgRwu6WljmO3jr399js5Hg6HCddpYXE9tAeTIzUKk8zq4QJUovcWW5TQzwvru-dQxPOZvikTpUIAPtO8MBDGoTKRO6D8713bKtaVn6fgeZB5gZBpPBClqYkenftrA_GZjwL_QP25f5jF7ajIadqGIsiXocLXWxuzQH7vG5909Jv_Kfd4f2-Fd0hrAtcHq4W8WuKk8a9fHKMYvTzVBEzwPtntf7AXglKiaB6RuqQbTWr3_4jApWmPIp_4xHbHpzPLmf_ACKi4fo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYJLxVMUCswBTijC8Xrt-IiqdhfYViuait4ixw91xSpbbVLR_g7-MDNOuiwHkFAuOfilTGb8zXj8DWNvPXe6zkchs6NgMil5jSpldOaMsqHwFrdQuih8fKKmZ_Lz-fh8qHNKd2F6fohNwI00I9lrUnAKSA9sA0SSiW47n8w4IhSFPvtdqYQmzRRyvjHFaJ_7knlGZoXQash8x_4ftnv_uSf9BprbcDXtN0cP2e4AFOFjL9lH7E5oHrN7k1SI9wbfUuqma5-wn_M1HbaQ2YLT74vlElYRSipvQzks6doCzBOLZtPCooHyByUIhe4CDvoNB06DTYAcpuigO9t2LdjGQ0lnCLDJlrtYXEK3gsPrjkKK8I2IJtY4EeLunpc5jd5H95-ys6PD8mCaDaUWMjdChzCz0qgi104JG6URhXfc5ZaIXvw4eI8-nNP45F7ViADHXvDIYx6F0qII0YfRM7bTrJrwnIHhURYWUaQIQta2Jn53412I1mmu43iPvb_92JUbeMipHMaySufhwlTbotlj7zatL3v-jb-027-VWzVoYVvh8nC1CGBznDTJ8p9jVJOvM0XUAC_-q_Ubdn9aHs-q2aeTLy_ZA0H3I6i4kdpnO936KrxC1NLVr9Of-QtB1eOo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQpiFepjFAjH1wD_CEIhw3deLHaawto0wVa2HiJXL8oVVUadVk2vZ37B_mzslKeWASykseHNuKfXe_s-9-x9g7y01axB0X6Y5TUZLwAkVKpZFRUrvMajShlCj89VwOJsnZZfeyPXCjXJiGH2J14EaSEfQ1CfjC-pZsgDgy0Wvn_SFHgCLRZd8kojzc1ZvH3yc_JytdjAq6qZmnkigTqWxD37GHj-vf_22U_iDNdbwaDE5vh223SBGOm6V9zp64cpdt9UMl3jt8C7GbpnrB7kdLum0hvQUXv6azGcw9jKm-DQWxhLwFGAUazbKCaQnjG4oQcvUVnDQWBy6cDogcBuihG13VFejSwpguEWAVLnc1XUA9h9Pbms4U4QcxTSxxIATeDTFz6L053n_JJr3T8ckgamstRKaDHmGkEyWzODVSaJ8okVnDTayJ6cV2nbXoxJkUn9jKAiFg1wruuY-9kKnInLeu84ptlPPSvWaguE8yjTBSOJEUuiCCd2WN89qkPPXdPfbh4WfnpiUip3oYszxciAuVry_NHnu_ar1oCDj-0e7gYd3yVgyrHKeHs0UEG-OgYS0f7SPvfxtK4gZ481-t37Kno0-9fPj5_Ms-eyYoP4KKG8kDtlEvr90hopa6OGq35m9VlOSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Skill+of+Teleconnection+Patterns+in+Twentieth+Century+Seasonal+Hindcasts+and+Their+Relationship+to+Extreme+Winter+Temperatures+in+Europe&rft.jtitle=Geophysical+research+letters&rft.au=Schuhen%2C+Nina&rft.au=Schaller%2C+Nathalie&rft.au=Bloomfield%2C+Hannah+C.&rft.au=Brayshaw%2C+David+J.&rft.date=2022-06-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020GL092360&rft.externalDBID=10.1029%252F2020GL092360&rft.externalDocID=GRL64316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon