Predictive Skill of Teleconnection Patterns in Twentieth Century Seasonal Hindcasts and Their Relationship to Extreme Winter Temperatures in Europe
European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets an...
Saved in:
Published in | Geophysical research letters Vol. 49; no. 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2020GL092360 |
Cover
Loading…
Abstract | European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill.
Plain Language Summary
Large‐scale atmospheric patterns that influence European winter weather showed slowly evolving fluctuations over the course of the twentieth century. This affects how well the patterns can be predicted by seasonal forecasting models. However, the impact of the large‐scale patterns on extreme winter temperatures mostly does not change over time, although forecasting models often struggle to correctly predict these impacts.
Key Points
The predictive skill of winter seasonal hindcasts for teleconnection patterns in Europe varied over the twentieth century
Seasonal hindcasts only partly reproduce the links between teleconnection patterns and winter temperature extremes
The teleconnection/surface temperature relationships do not significantly change despite fluctuations in predictive skill |
---|---|
AbstractList | European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill. European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill. Large‐scale atmospheric patterns that influence European winter weather showed slowly evolving fluctuations over the course of the twentieth century. This affects how well the patterns can be predicted by seasonal forecasting models. However, the impact of the large‐scale patterns on extreme winter temperatures mostly does not change over time, although forecasting models often struggle to correctly predict these impacts. The predictive skill of winter seasonal hindcasts for teleconnection patterns in Europe varied over the twentieth century Seasonal hindcasts only partly reproduce the links between teleconnection patterns and winter temperature extremes The teleconnection/surface temperature relationships do not significantly change despite fluctuations in predictive skill European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian patterns. We analyze the century‐long ERA‐20C reanalysis and ASF‐20C seasonal hindcast data sets and find that these patterns are subject to decadal variability and fluctuations in predictive skill. Using indices for determining periods of extreme cold or warm temperatures, we establish that the teleconnection patterns are, for some regions, significantly correlated or anti‐correlated to cold or heat waves. The seasonal hindcasts are however only partly able to capture these relationships. There do not seem to be significant changes to the observed links between large‐scale circulation patterns and extreme temperatures between periods of higher and lower predictive skill. Plain Language Summary Large‐scale atmospheric patterns that influence European winter weather showed slowly evolving fluctuations over the course of the twentieth century. This affects how well the patterns can be predicted by seasonal forecasting models. However, the impact of the large‐scale patterns on extreme winter temperatures mostly does not change over time, although forecasting models often struggle to correctly predict these impacts. Key Points The predictive skill of winter seasonal hindcasts for teleconnection patterns in Europe varied over the twentieth century Seasonal hindcasts only partly reproduce the links between teleconnection patterns and winter temperature extremes The teleconnection/surface temperature relationships do not significantly change despite fluctuations in predictive skill |
Author | Schuhen, Nina Lledó, Llorenç Cionni, Irene Brayshaw, David J. Sillmann, Jana Bloomfield, Hannah C. Schaller, Nathalie |
Author_xml | – sequence: 1 givenname: Nina orcidid: 0000-0002-5108-9047 surname: Schuhen fullname: Schuhen, Nina email: nina.schuhen@cicero.oslo.no organization: Center for International Climate and Environmental Research (CICERO) – sequence: 2 givenname: Nathalie orcidid: 0000-0003-0074-3421 surname: Schaller fullname: Schaller, Nathalie organization: Center for International Climate and Environmental Research (CICERO) – sequence: 3 givenname: Hannah C. orcidid: 0000-0002-5616-1503 surname: Bloomfield fullname: Bloomfield, Hannah C. organization: University of Bristol – sequence: 4 givenname: David J. orcidid: 0000-0002-3927-4362 surname: Brayshaw fullname: Brayshaw, David J. organization: National Centre for Atmospheric Science – sequence: 5 givenname: Llorenç orcidid: 0000-0002-8628-6876 surname: Lledó fullname: Lledó, Llorenç organization: Barcelona Supercomputing Center (BSC) – sequence: 6 givenname: Irene surname: Cionni fullname: Cionni, Irene organization: Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA) – sequence: 7 givenname: Jana orcidid: 0000-0002-0219-5345 surname: Sillmann fullname: Sillmann, Jana organization: Center for International Climate and Environmental Research (CICERO) |
BookMark | eNp9kMtKLDEQhoMoOF52PkDA7RlPJZ1Ody9lmDMeGFB0xGUTk2om2pO0SUad5_CFjZeFCEoWKYrv_4qqPbLtvENCjhicMODNXw4cZnNoeCFhi4xYI8S4Bqi2yQigyTWv5C7Zi_EOAAoo2Ii8XAQ0Vif7iPTq3vY99R1dYI_aO4e57x29UClhcJFaRxdP6JLFtKSTXKzDhl6hit6pnp5ZZ7SKKVLlDF0s0QZ6ib16c8SlHWjydPqcAq6Q3liXlXnQasCgsgff7dN18AMekJ1O9REPP_99cv1vupicjefns_-T0_lYF0LIsRKNrFmlJVedaHhtNGimKlmVpkRjhKh1lR8z8raUZWk4dNCxjsuK19gZLPbJ8Yd3CP5hjTG1d34d8iqxzVDOFAxYpvgHpYOPMWDXapvel0pB2b5l0L4dv_16_Bz68y00BLtSYfMT_jnjyfa4-ZVtZ5dzKQomi1eGDZfd |
CitedBy_id | crossref_primary_10_1371_journal_pone_0313871 crossref_primary_10_3390_cli11050098 crossref_primary_10_1088_1748_9326_ad0fbf crossref_primary_10_1088_1748_9326_acb6aa |
Cites_doi | 10.1088/1748-9326/aaf338 10.1088/1748-9326/ab87d2 10.5194/essd-13-2259-2021 10.1002/met.1858 10.1016/j.renene.2019.04.135 10.1175/BAMS-D-19-0019.1 10.1088/1748-9326/aa57ab 10.1002/qj.3974 10.1088/1748-9326/abab32 10.1175/JAMC-D-16-0204.1 10.1175/BAMS-D-20-0224.1 10.1038/nclimate3338 10.5194/nhess-18-91-2018 10.1002/qj.3446 10.1016/j.renene.2011.01.025 10.1002/met.2018 10.1002/qj.3863 10.1016/j.eneco.2008.02.003 10.1038/s41560-020-0561-5 10.1002/qj.2976 10.1016/S0169-2070(01)00123-6 10.1088/1748-9326/11/5/054016 10.31223/osf.io/kzwqx 10.1088/1748-9326/aaba55 10.1088/1748-9326/aad5c5 10.1002/qj.3265 10.1002/qj.828 10.1002/qj.2943 10.1002/asl.868 10.5194/gmd-12-1087-2019 10.1002/2014GL059637 10.1038/s41467-017-00275-3 10.1016/j.enpol.2013.06.037 10.1029/2018JD030083 10.1002/joc.1250 10.1016/B978-0-12-812372-0.00006-6 10.1002/2017GL073736 10.1088/1748-9326/ab38d3 10.1007/s10584-016-1671-8 10.1029/2010JC006685 10.1287/mnsc.22.10.1087 10.1088/1748-9326/10/12/124003 10.1007/s00382-018-4273-5 10.1002/2014GL062829 10.1002/qj.3158 10.1016/j.apenergy.2014.10.030 10.1029/2018GL077837 10.1002/qj.4177 10.1002/joc.5398 |
ContentType | Journal Article |
Copyright | 2022. The Authors. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. The Authors. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2020GL092360 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020GL092360 GRL64316 |
Genre | article |
GrantInformation_xml | – fundername: Horizon 2020 funderid: 776787 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3446-a496817c62af4928dc0c1a7675d5edd448c7c7c1d6b5655d20f0f1f26728efde3 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 08:44:54 EDT 2025 Tue Jul 01 01:41:31 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Wed Jan 22 16:23:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3446-a496817c62af4928dc0c1a7675d5edd448c7c7c1d6b5655d20f0f1f26728efde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8628-6876 0000-0002-5108-9047 0000-0003-0074-3421 0000-0002-0219-5345 0000-0002-5616-1503 0000-0002-3927-4362 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL092360 |
PQID | 2675653101 |
PQPubID | 54723 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2675653101 crossref_citationtrail_10_1029_2020GL092360 crossref_primary_10_1029_2020GL092360 wiley_primary_10_1029_2020GL092360_GRL64316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 June 2022 |
PublicationDateYYYYMMDD | 2022-06-16 |
PublicationDate_xml | – month: 06 year: 2022 text: 16 June 2022 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2011; 116 2017; 7 2017; 8 2021b; 13 1976; 22 2019; 52 2013; 62 2017; 44 2019; 12 2019; 14 2020; 15 2019; 124 2008; 30 2003; 19 2018; 45 2020; 5 2015; 137 2015; 42 2006; 26 2018; 38 2011; 137 2018; 144 2012 2011 2021; 147 2015; 10 2006 2020; 101 2021a; 24 2020; 146 2011; 36 2020; 147 2014; 41 2019; 145 2019; 143 2016; 11 2018; 19 2018; 18 2021 2017; 12 2017; 56 2019 2020; 27 2018 2015 2016; 137 2017; 143 2013 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 Palmer T. (e_1_2_7_36_1) 2006 Poli P. (e_1_2_7_37_1) 2015 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 Weisheimer A. (e_1_2_7_53_1) 2019 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Climate Prediction Center (e_1_2_7_13_1) 2012 Poli P. (e_1_2_7_38_1) 2013 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 |
References_xml | – year: 2011 – volume: 12 start-page: 1087 issue: 3 year: 2019 end-page: 1117 article-title: SEAS5: The new ECMWF seasonal forecast system publication-title: Geoscientific Model Development – volume: 41 start-page: 2514 issue: 7 year: 2014 end-page: 2519 article-title: Skillful long‐range prediction of European and North American winters publication-title: Geophysical Research Letters – volume: 145 start-page: 140 issue: 1 year: 2019 end-page: 159 article-title: How confident are predictability estimates of the winter North Atlantic Oscillation? publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 8 year: 2017 article-title: High risk of unprecedented UK rainfall in the current climate publication-title: Nature Communications – year: 2019 article-title: A simplified seasonal forecasting strategy, applied to wind and solar power in Europe publication-title: EarthArXiv – volume: 18 start-page: 91 year: 2018 end-page: 104 article-title: Towards a monitoring system of temperature extremes in Europe publication-title: Natural Hazards and Earth System Sciences – volume: 44 start-page: 5729 year: 2017 end-page: 5738 article-title: Variability in seasonal forecast skill of Northern Hemisphere winters over the twentieth century publication-title: Geophysical Research Letters – volume: 56 start-page: 1231 issue: 5 year: 2017 end-page: 1247 article-title: Seasonal climate prediction: A new source of information for the management of wind energy resources publication-title: Journal of Applied Meteorology and Climatology – volume: 13 start-page: 2259 year: 2021b end-page: 2274 article-title: Sub‐seasonal forecasts of demand and wind power and solar power generation for 28 European countries publication-title: Earth System Science Data – volume: 62 start-page: 1420 year: 2013 end-page: 1427 article-title: Implications of the North Atlantic Oscillation for a UK—Norway renewable power system publication-title: Energy Policy – volume: 143 start-page: 91 year: 2019 end-page: 100 article-title: Seasonal forecasts of wind power generation publication-title: Renewable Energy – volume: 19 start-page: 57 issue: 1 year: 2003 end-page: 70 article-title: Using weather ensemble predictions in electricity demand forecasting publication-title: International Journal of Forecasting – volume: 7 start-page: 557 issue: 8 year: 2017 end-page: 562 article-title: Balancing Europe’s wind‐power output through spatial deployment informed by weather regimes publication-title: Nature Climate Change – volume: 137 start-page: 89 year: 2016 end-page: 103 article-title: Barriers and enables to the use of seasonal climate forecasts amongst organizations in Europe publication-title: Climatic Change – volume: 143 start-page: 917 issue: 703 year: 2017 end-page: 926 article-title: Atmospheric seasonal forecasts of the twentieth century: Multi‐decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 101 start-page: E1413 issue: 8 year: 2020 end-page: E1426 article-title: Seasonal forecasts of the twentieth century publication-title: Bulletin of the American Meteorological Society – volume: 36 start-page: 2087 issue: 8 year: 2011 end-page: 2096 article-title: The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK publication-title: Renewable Energy – volume: 52 start-page: 2481 year: 2019 end-page: 2495 article-title: Predictability of the European heat and cold waves publication-title: Climate Dynamics – volume: 5 start-page: 108 year: 2020 end-page: 110 article-title: Better seasonal forecasts for the renewable energy industry publication-title: Nature Energy – year: 2019 – year: 2015 – volume: 147 start-page: 4269 issue: 741 year: 2021 end-page: 4282 article-title: A new approach to extended‐range multimodel forecasting: Sequential learning algorithms publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 15 year: 2020 article-title: Current likelihood and dynamics of hot summers in the UK publication-title: Environmental Research Letters – volume: 26 start-page: 233 year: 2006 end-page: 249 article-title: Two‐dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro‐Atlantic region publication-title: International Journal of Climatology – volume: 42 start-page: 1554 issue: 5 year: 2015 end-page: 1559 article-title: Impact of hindcast length on estimates of seasonal climate predictability publication-title: Geophysical Research Letters – volume: 11 issue: 5 year: 2016 article-title: When will unusual heat waves become normal in a warming Africa? publication-title: Environmental Research Letters – volume: 137 start-page: 435 year: 2015 end-page: 444 article-title: Seasonal climate forecasts for medium‐term electricity demand forecasting publication-title: Applied Energy – volume: 13 year: 2018 article-title: A critical assessment of the long‐term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis publication-title: Environmental Research Letters – volume: 143 start-page: 552 year: 2017 end-page: 562 article-title: Spatial variability in winter NAO‐wind speed relationships in Western Europe linked to concomitant states of the East Atlantic and Scandinavian patterns publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 116 year: 2011 article-title: Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange publication-title: Journal of Geophysical Research – volume: 19 issue: 12 year: 2018 article-title: Predictability of European winter 2016/2017 publication-title: Atmospheric Science Letters – volume: 27 issue: 1 year: 2020 article-title: Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types publication-title: Meteorological Applications – volume: 147 start-page: 1344 year: 2020 end-page: 1363 article-title: The representation of winter Northern Hemisphere atmospheric blocking in ECMWF seasonal prediction systems publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 144 start-page: 1012 issue: 713 year: 2018 end-page: 1027 article-title: Estimates of flow‐dependent predictability of wintertime Euro‐Atlantic weather regimes in medium‐range forecasts publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 146 start-page: 3623 issue: 733 year: 2020 end-page: 3637 article-title: Beyond skill scores: Exploring sub‐seasonal forecast value through a case study of French month‐ahead energy prediction publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 124 start-page: 1931 year: 2019 end-page: 1940 article-title: Inconsistent wind speed trends in current twentieth century reanalyses publication-title: Journal of Geophysical Research: Atmospheres – volume: 15 year: 2020 article-title: Seasonal prediction of Euro‐Atlantic teleconnections from multiple systems publication-title: Environmental Research Letters – volume: 143 start-page: 3025 issue: 709 year: 2017 end-page: 3036 article-title: Does the lower stratosphere provide predictability for month‐ahead wind electricity generation in Europe? publication-title: Quarterly Journal of the Royal Meteorological Society – start-page: 1 year: 2021 end-page: 57 article-title: Advances in the application and utility of subseasonal‐to‐seasonal predictions publication-title: Bulletin of the American Meteorological Society – year: 2012 – volume: 45 start-page: 6311 issue: 12 year: 2018 end-page: 6320 article-title: Dependence of present and future European temperature extremes on the location of atmospheric blocking publication-title: Geophysical Research Letters – volume: 24 issue: 4 year: 2021a article-title: Pattern‐based conditioning enhances sub‐seasonal prediction skill of European national energy variables publication-title: Meteorological Applications – volume: 22 start-page: 1087 issue: 10 year: 1976 end-page: 1096 article-title: Scoring rules for continuous probability distributions publication-title: Management Science – volume: 12 issue: 2 year: 2017 article-title: Skilful seasonal predictions for the European energy industry publication-title: Environmental Research Letters – volume: 38 start-page: e660 year: 2018 end-page: e677 article-title: North Atlantic circulation indices: Links with summer and winter UK temperature and precipitation and implications for seasonal forecasting publication-title: International Journal of Climatology – year: 2006 – volume: 10 issue: 12 year: 2015 article-title: Top ten European heat waves since 1950 and their occurrence in the coming decades publication-title: Environmental Research Letters – volume: 14 issue: 9 year: 2019 article-title: The influence of weather regimes on European renewable energy production and demand publication-title: Environmental Research Letters – volume: 30 start-page: 2705 issue: 5 year: 2008 end-page: 2721 article-title: The nonlinear link between electricity consumption and temperature in Europe: A threshold panel approach publication-title: Energy Economics – volume: 14 issue: 2 year: 2019 article-title: Skilful seasonal prediction of winter gas demand publication-title: Environmental Research Letters – start-page: 155 year: 2018 end-page: 186 – volume: 137 start-page: 553 issue: 656 year: 2011 end-page: 597 article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2013 – volume: 13 issue: 5 year: 2018 article-title: Influence of blocking on Northern European and Western Russian heat waves in large climate model ensembles publication-title: Environmental Research Letters – ident: e_1_2_7_20_1 – ident: e_1_2_7_48_1 doi: 10.1088/1748-9326/aaf338 – ident: e_1_2_7_30_1 doi: 10.1088/1748-9326/ab87d2 – ident: e_1_2_7_7_1 doi: 10.5194/essd-13-2259-2021 – ident: e_1_2_7_5_1 doi: 10.1002/met.1858 – ident: e_1_2_7_31_1 doi: 10.1016/j.renene.2019.04.135 – ident: e_1_2_7_51_1 doi: 10.1175/BAMS-D-19-0019.1 – ident: e_1_2_7_12_1 doi: 10.1088/1748-9326/aa57ab – ident: e_1_2_7_14_1 doi: 10.1002/qj.3974 – ident: e_1_2_7_27_1 doi: 10.1088/1748-9326/abab32 – ident: e_1_2_7_49_1 doi: 10.1175/JAMC-D-16-0204.1 – ident: e_1_2_7_55_1 doi: 10.1175/BAMS-D-20-0224.1 – volume-title: Northern Hemisphere teleconnection patterns year: 2012 ident: e_1_2_7_13_1 – ident: e_1_2_7_23_1 doi: 10.1038/nclimate3338 – ident: e_1_2_7_28_1 doi: 10.5194/nhess-18-91-2018 – ident: e_1_2_7_52_1 doi: 10.1002/qj.3446 – ident: e_1_2_7_9_1 doi: 10.1016/j.renene.2011.01.025 – ident: e_1_2_7_6_1 doi: 10.1002/met.2018 – ident: e_1_2_7_17_1 doi: 10.1002/qj.3863 – ident: e_1_2_7_3_1 doi: 10.1016/j.eneco.2008.02.003 – ident: e_1_2_7_19_1 – ident: e_1_2_7_35_1 doi: 10.1038/s41560-020-0561-5 – volume-title: ERA‐20C deterministic (ECMWF ERA Report Series: No. 20) year: 2015 ident: e_1_2_7_37_1 – ident: e_1_2_7_54_1 doi: 10.1002/qj.2976 – ident: e_1_2_7_45_1 doi: 10.1016/S0169-2070(01)00123-6 – ident: e_1_2_7_39_1 doi: 10.1088/1748-9326/11/5/054016 – ident: e_1_2_7_4_1 doi: 10.31223/osf.io/kzwqx – ident: e_1_2_7_42_1 doi: 10.1088/1748-9326/aaba55 – ident: e_1_2_7_8_1 doi: 10.1088/1748-9326/aad5c5 – ident: e_1_2_7_33_1 doi: 10.1002/qj.3265 – ident: e_1_2_7_15_1 doi: 10.1002/qj.828 – ident: e_1_2_7_57_1 doi: 10.1002/qj.2943 – ident: e_1_2_7_18_1 doi: 10.1002/asl.868 – ident: e_1_2_7_25_1 doi: 10.5194/gmd-12-1087-2019 – ident: e_1_2_7_41_1 doi: 10.1002/2014GL059637 – ident: e_1_2_7_46_1 doi: 10.1038/s41467-017-00275-3 – ident: e_1_2_7_21_1 doi: 10.1016/j.enpol.2013.06.037 – ident: e_1_2_7_56_1 doi: 10.1029/2018JD030083 – ident: e_1_2_7_43_1 doi: 10.1002/joc.1250 – ident: e_1_2_7_47_1 doi: 10.1016/B978-0-12-812372-0.00006-6 – ident: e_1_2_7_34_1 doi: 10.1002/2017GL073736 – ident: e_1_2_7_50_1 doi: 10.1088/1748-9326/ab38d3 – ident: e_1_2_7_11_1 doi: 10.1007/s10584-016-1671-8 – volume-title: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th‐century assimilating surface observations only (ERA‐20C) (ECMWF ERA Report Series: No. 14) year: 2013 ident: e_1_2_7_38_1 – ident: e_1_2_7_26_1 doi: 10.1029/2010JC006685 – ident: e_1_2_7_32_1 doi: 10.1287/mnsc.22.10.1087 – ident: e_1_2_7_40_1 doi: 10.1088/1748-9326/10/12/124003 – ident: e_1_2_7_29_1 doi: 10.1007/s00382-018-4273-5 – ident: e_1_2_7_44_1 doi: 10.1002/2014GL062829 – ident: e_1_2_7_2_1 doi: 10.1002/qj.3158 – volume-title: Ensemble prediction: A pedagogical perspective (ECMWF Newsletter No. 106—Winter 2005/2006) year: 2006 ident: e_1_2_7_36_1 – volume-title: Initialized seasonal forecast of the 20th century (accessed August 2019) year: 2019 ident: e_1_2_7_53_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.apenergy.2014.10.030 – ident: e_1_2_7_10_1 doi: 10.1029/2018GL077837 – ident: e_1_2_7_22_1 doi: 10.1002/qj.4177 – ident: e_1_2_7_24_1 doi: 10.1002/joc.5398 |
SSID | ssj0003031 |
Score | 2.4236479 |
Snippet | European winter weather is dominated by several low‐frequency teleconnection patterns, the main ones being the North Atlantic Oscillation, East Atlantic, East... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 20th century Atmospheric forcing Atmospheric models Circulation patterns Cold waves energy forecasting Extreme cold Extreme low temperatures Fluctuations Forecasting Heat waves Heatwaves Mathematical models North Atlantic Oscillation Ocean-atmosphere system Seasonal forecasting Teleconnection patterns Teleconnections Temperature extremes Weather Winter Winter temperatures Winter weather |
Title | Predictive Skill of Teleconnection Patterns in Twentieth Century Seasonal Hindcasts and Their Relationship to Extreme Winter Temperatures in Europe |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL092360 https://www.proquest.com/docview/2675653101 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF5KQqGX0LQpSZuGObSnIrpar1faozGJTUmLaew05CJW-yAmRg6WStLf0T_cmZXiOIcGgi467Autduab2ZlvGPvkuM3KtOcT0_M6kZKXeKR0llitjM-dQRVKicLff6jxTH676F90DjfKhWn5IdYONzoZUV7TATdl3ZENEEcmWu18dMoRoCg02bcpu5a484WcrCUxiue2Yp6WSS4y1QW-Y_-vm70fq6QHnLmJVqO6OXnNdjqcCIN2Y3fZC1-9YS9HsQ7vH3yLkZu2fsv-TlZ010JSC86u54sFLANMqboNhbDErAWYRBLNqoZ5BdNbig_yzRUMW30DZ95EPA5jtM-tqZsaTOVgSlcIsA6Wu5rfQLOE47uGPIrwi3gmVjgRwu6WljmO3jr399js5Hg6HCddpYXE9tAeTIzUKk8zq4QJUovcWW5TQzwvru-dQxPOZvikTpUIAPtO8MBDGoTKRO6D8713bKtaVn6fgeZB5gZBpPBClqYkenftrA_GZjwL_QP25f5jF7ajIadqGIsiXocLXWxuzQH7vG5909Jv_Kfd4f2-Fd0hrAtcHq4W8WuKk8a9fHKMYvTzVBEzwPtntf7AXglKiaB6RuqQbTWr3_4jApWmPIp_4xHbHpzPLmf_ACKi4fo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYJLxVMUCswBTijC8Xrt-IiqdhfYViuait4ixw91xSpbbVLR_g7-MDNOuiwHkFAuOfilTGb8zXj8DWNvPXe6zkchs6NgMil5jSpldOaMsqHwFrdQuih8fKKmZ_Lz-fh8qHNKd2F6fohNwI00I9lrUnAKSA9sA0SSiW47n8w4IhSFPvtdqYQmzRRyvjHFaJ_7knlGZoXQash8x_4ftnv_uSf9BprbcDXtN0cP2e4AFOFjL9lH7E5oHrN7k1SI9wbfUuqma5-wn_M1HbaQ2YLT74vlElYRSipvQzks6doCzBOLZtPCooHyByUIhe4CDvoNB06DTYAcpuigO9t2LdjGQ0lnCLDJlrtYXEK3gsPrjkKK8I2IJtY4EeLunpc5jd5H95-ys6PD8mCaDaUWMjdChzCz0qgi104JG6URhXfc5ZaIXvw4eI8-nNP45F7ViADHXvDIYx6F0qII0YfRM7bTrJrwnIHhURYWUaQIQta2Jn53412I1mmu43iPvb_92JUbeMipHMaySufhwlTbotlj7zatL3v-jb-027-VWzVoYVvh8nC1CGBznDTJ8p9jVJOvM0XUAC_-q_Ubdn9aHs-q2aeTLy_ZA0H3I6i4kdpnO936KrxC1NLVr9Of-QtB1eOo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQpiFepjFAjH1wD_CEIhw3deLHaawto0wVa2HiJXL8oVVUadVk2vZ37B_mzslKeWASykseHNuKfXe_s-9-x9g7y01axB0X6Y5TUZLwAkVKpZFRUrvMajShlCj89VwOJsnZZfeyPXCjXJiGH2J14EaSEfQ1CfjC-pZsgDgy0Wvn_SFHgCLRZd8kojzc1ZvH3yc_JytdjAq6qZmnkigTqWxD37GHj-vf_22U_iDNdbwaDE5vh223SBGOm6V9zp64cpdt9UMl3jt8C7GbpnrB7kdLum0hvQUXv6azGcw9jKm-DQWxhLwFGAUazbKCaQnjG4oQcvUVnDQWBy6cDogcBuihG13VFejSwpguEWAVLnc1XUA9h9Pbms4U4QcxTSxxIATeDTFz6L053n_JJr3T8ckgamstRKaDHmGkEyWzODVSaJ8okVnDTayJ6cV2nbXoxJkUn9jKAiFg1wruuY-9kKnInLeu84ptlPPSvWaguE8yjTBSOJEUuiCCd2WN89qkPPXdPfbh4WfnpiUip3oYszxciAuVry_NHnu_ar1oCDj-0e7gYd3yVgyrHKeHs0UEG-OgYS0f7SPvfxtK4gZ481-t37Kno0-9fPj5_Ms-eyYoP4KKG8kDtlEvr90hopa6OGq35m9VlOSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Skill+of+Teleconnection+Patterns+in+Twentieth+Century+Seasonal+Hindcasts+and+Their+Relationship+to+Extreme+Winter+Temperatures+in+Europe&rft.jtitle=Geophysical+research+letters&rft.au=Schuhen%2C+Nina&rft.au=Schaller%2C+Nathalie&rft.au=Bloomfield%2C+Hannah+C.&rft.au=Brayshaw%2C+David+J.&rft.date=2022-06-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020GL092360&rft.externalDBID=10.1029%252F2020GL092360&rft.externalDocID=GRL64316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |