Decomposition of Geomagnetic Secular Acceleration Into Traveling Waves Using Complex Empirical Orthogonal Functions
Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave n...
Saved in:
Published in | Geophysical research letters Vol. 47; no. 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2020GL087940 |
Cover
Abstract | Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core.
Key Points
Complex empirical orthogonal functions are computed from models of geomagnetic acceleration
Eastward and westward traveling waves are detected in equatorial and high‐latitude regions
Phase velocities and wavenumbers are compatible with waves in a stratified layer |
---|---|
AbstractList | Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core.
Key Points
Complex empirical orthogonal functions are computed from models of geomagnetic acceleration
Eastward and westward traveling waves are detected in equatorial and high‐latitude regions
Phase velocities and wavenumbers are compatible with waves in a stratified layer Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core. Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core. Complex empirical orthogonal functions are computed from models of geomagnetic acceleration Eastward and westward traveling waves are detected in equatorial and high‐latitude regions Phase velocities and wavenumbers are compatible with waves in a stratified layer |
Author | Chi‐Durán, Rodrigo Avery, Margaret S. Knezek, Nicholas Buffett, Bruce A. |
Author_xml | – sequence: 1 givenname: Rodrigo orcidid: 0000-0002-5351-9442 surname: Chi‐Durán fullname: Chi‐Durán, Rodrigo email: rodrigo.chi@berkeley.edu organization: University of California – sequence: 2 givenname: Margaret S. orcidid: 0000-0002-8504-7072 surname: Avery fullname: Avery, Margaret S. organization: University of California – sequence: 3 givenname: Nicholas surname: Knezek fullname: Knezek, Nicholas organization: University of California – sequence: 4 givenname: Bruce A. orcidid: 0000-0001-5488-7602 surname: Buffett fullname: Buffett, Bruce A. organization: University of California |
BookMark | eNqFkMFOAjEQhhuDiYDefIAmXkWn7bK7PRKElYSERCEeN2W2xZJli-2i8vYu4MF40NN8h2_-mfwd0qpcpQm5ZnDHgMt7DhyyKaSJjOCMtJmMol4KkLRIG0A2zJP4gnRCWAOAAMHaJDxodJutC7a2rqLO0Ey7jVpVurZInzXuSuXpAFGX2qujM6lqR-devevSViv60kCgi3DgYRNV6k862mytt6hKOvP1q1u5qsHxrsJDQLgk50aVQV99zy5ZjEfz4WNvOssmw8G0hyKKWG8JmLKCG6NNgZAgixBiLhBjFWNRJEbKIokKpmRSiL4QiY6NXPJlFKcGUsFEl9yccrfeve10qPO12_nmlZDz5oAE0WcH6_ZkoXcheG3yrbcb5fc5g_xQa_6z1kbnv3S09bGY2itb_rP0YUu9__NAnj1NY0j7THwBOTyMTA |
CitedBy_id | crossref_primary_10_1016_j_pepi_2025_107335 crossref_primary_10_1007_s10712_021_09662_4 crossref_primary_10_1007_s10712_021_09664_2 crossref_primary_10_1029_2021GL094692 crossref_primary_10_1029_2020GL090803 crossref_primary_10_1093_gji_ggac004 crossref_primary_10_1063_5_0235675 crossref_primary_10_1093_gji_ggac212 crossref_primary_10_1093_gji_ggad047 crossref_primary_10_1093_gji_ggab054 crossref_primary_10_1038_s43017_023_00425_w crossref_primary_10_1186_s40623_021_01365_9 crossref_primary_10_1029_2022GL101288 |
Cites_doi | 10.1016/j.pepi.2012.11.001 10.5636/jgg.45.1517 10.1126/science.1083324 10.1093/gji/ggz233 10.1002/2015GL064067 10.5047/eps.2010.07.003 10.1016/B978-0-444-53802-4.00140-8 10.1186/BF03351933 10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2 10.1002/2015GL064733 10.1016/B978-0-444-53802-4.00099-3 10.1029/2009GL042019 10.1175/1520-0426(1998)015<0764:CSVDAO>2.0.CO;2 10.1038/s41561-019-0355-1 10.1016/j.pepi.2013.12.006 10.1175/2007JTECHO562.1 10.1186/s40623-016-0486-1 10.1016/j.pepi.2018.01.005 10.1186/s40623-015-0274-3 10.1093/gji/ggu033 10.1111/j.1365-246X.2009.04386.x 10.1111/j.1365-246X.2006.02959.x 10.1093/gji/ggv552 10.1007/978-1-4020-4423-6_25 10.1109/PES.2008.4596270 10.1002/2015JB012399 10.1093/gji/ggu493 10.1186/BF03352159 10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2 10.1186/s40623‐020‐01252‐9 |
ContentType | Journal Article |
Copyright | 2020. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1029/2020GL087940 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020GL087940 GRL60851 |
Genre | article |
GrantInformation_xml | – fundername: MINEDUC | Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) funderid: DOCTORADO BECAS CHILE/2015‐56150003 – fundername: National Science Foundation (NSF) funderid: EAR‐1915807; EAR‐1725798 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c3441-b0c81d2ffefdc07c14c0623cc6a6cdd7f99d74d1a97d35337e6f9b2b468f08313 |
ISSN | 0094-8276 |
IngestDate | Fri Jul 25 18:59:13 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 01:41:08 EDT 2025 Wed Jan 22 16:32:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3441-b0c81d2ffefdc07c14c0623cc6a6cdd7f99d74d1a97d35337e6f9b2b468f08313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5488-7602 0000-0002-5351-9442 0000-0002-8504-7072 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GL087940 |
PQID | 2441903511 |
PQPubID | 54723 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2441903511 crossref_primary_10_1029_2020GL087940 crossref_citationtrail_10_1029_2020GL087940 wiley_primary_10_1029_2020GL087940_GRL60851 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 September 2020 |
PublicationDateYYYYMMDD | 2020-09-16 |
PublicationDate_xml | – month: 09 year: 2020 text: 16 September 2020 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1993; 45 2010; 37 2015; 5 1983; 111 2015; 200 2019; 12 2006; 58 1984; 23 2015; 120 2008 1970; 10 2007 2009; 179 2016; 204 2015; 8 2014; 197 2010; 62 2014; 229 2015; 67 1998; 15 2020; 72 2020 2015; 42 2013; 215 2018; 277 2008; 25 2019; 218 1998; 50 2003; 300 2016; 68 2006; 166 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 Braginsky S. I. (e_1_2_9_4_1) 1970; 10 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 42 start-page: 6622 year: 2015 end-page: 6629 article-title: Slow magnetic Rossby waves in the Earth's core publication-title: Geophysical Research Letters – volume: 200 start-page: 1596 issue: 3 year: 2015 end-page: 1626 article-title: CM5, a pre‐swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC‐C and observatory data publication-title: Geophysical Journal International – volume: 166 start-page: 67 issue: 1 year: 2006 end-page: 75 article-title: CHAOS—A model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC‐C magnetic satellite data publication-title: Geophysical Journal International – volume: 23 start-page: 1660 issue: 12 year: 1984 end-page: 1673 article-title: Complex principal component analysis: Theory and examples publication-title: Journal of climate and Applied Meteorology – volume: 5 start-page: 137 year: 2015 end-page: 184 – volume: 8 start-page: 183 year: 2015 end-page: 212 – volume: 15 start-page: 764 issue: 3 year: 1998 end-page: 774 article-title: Complex singular value decomposition analysis of equatorial waves in the Pacific observed by TOPEX/Poseidon altimeter publication-title: Journal of Atmospheric and Oceanic Technology – volume: 72 year: 2020 article-title: The CHAOS‐7 geomagnetic field model and observed changes in the South Atlantic Anomaly publication-title: Earth Planets and Space – volume: 10 start-page: 1 year: 1970 article-title: Torsional magnetohydrodynamic vibrations in the Earth's core and variations in day length publication-title: Geomagnetism and Aeronomy – start-page: 59 year: 2007 end-page: 60 – volume: 58 start-page: 351 issue: 4 year: 2006 end-page: 358 article-title: Swarm: A constellation to study the earth's magnetic field publication-title: Earth, Planets and Space – volume: 277 start-page: 1 year: 2018 end-page: 9 article-title: Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core publication-title: Physics of the Earth and Planetary Interiors – volume: 179 start-page: 1477 issue: 3 year: 2009 end-page: 1487 article-title: CHAOS‐2—A geomagnetic field model derived from one decade of continuous satellite data publication-title: Geophysical Journal International – volume: 50 start-page: 641 issue: 8 year: 1998 end-page: 649 article-title: Magnetic Rossby waves in the stratified ocean of the core, and topographic core‐mantle coupling publication-title: Earth, Planets and Space – volume: 120 start-page: 8012 year: 2015 end-page: 8030 article-title: Time‐correlated patterns from spherical harmonic expansions: Application to geomagnetism publication-title: Journal of Geophysical Research: Solid Earth – volume: 218 start-page: 1210 issue: 2 year: 2019 end-page: 1225 article-title: Equatorially trapped waves in Earth's core publication-title: Geophysical Journal International – volume: 229 start-page: 1 year: 2014 end-page: 15 article-title: Hydromagnetic quasi‐geostrophic modes in rapidly rotating planetary cores publication-title: Physics of the Earth and Planetary Interiors – volume: 25 start-page: 808 issue: 5 year: 2008 end-page: 821 article-title: Complex EOF analysis as a method to separate barotropic and baroclinic velocity structure in shallow water publication-title: Journal of Atmospheric and Oceanic Technology – volume: 300 start-page: 2084 issue: 5628 year: 2003 end-page: 2086 article-title: Equatorially dominated magnetic field change at the surface of Earth's core publication-title: Science – volume: 204 start-page: 1789 issue: 3 year: 2016 end-page: 1800 article-title: Evidence for MAC waves at the top of Earth's core and implications for variations in length of day publication-title: Geophysical Journal International – year: 2008 – year: 2020 – volume: 215 start-page: 21 year: 2013 end-page: 28 article-title: The stratified layer at the core–mantle boundary caused by barodiffusion of oxygen, sulphur and silicon publication-title: Physics of the Earth and Planetary Interiors – volume: 42 start-page: 3321 year: 2015 end-page: 3329 article-title: Fast equatorial waves propagating at the top of the Earth's core publication-title: Geophysical Research Letters – volume: 197 start-page: 815 issue: 2 year: 2014 end-page: 827 article-title: The CHAOS‐4 geomagnetic field model publication-title: Geophysical Journal International – volume: 45 start-page: 1517 issue: 11‐12 year: 1993 end-page: 1538 article-title: MAC‐oscillations of the hidden ocean of the core publication-title: Journal of Geomagnetism and Geoelectricity – volume: 68 start-page: 112 issue: 1 year: 2016 article-title: Recent geomagnetic secular variation from swarm and ground observatories as estimated in the CHAOS‐6 geomagnetic field model publication-title: Earth, Planets and Space – volume: 67 start-page: 114 issue: 1 year: 2015 article-title: DTU candidate field models for IGRF‐12 and the CHAOS‐5 geomagnetic field model publication-title: Earth, Planets and Space – volume: 12 start-page: 393 issue: 5 year: 2019 end-page: 398 article-title: Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth's core surface publication-title: Nature Geoscience – volume: 111 start-page: 756 issue: 4 year: 1983 end-page: 773 article-title: Interaction of the monsoon and Pacific trade wind system at interannual time scales part I: The equatorial zone publication-title: Monthly Weather Review – volume: 62 start-page: 1 issue: 10 year: 2010 article-title: The CHAOS‐3 geomagnetic field model and candidates for the 11th generation IGRF publication-title: Earth, Planets and Space – volume: 37 year: 2010 article-title: Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks publication-title: Geophysical Research Letters – ident: e_1_2_9_19_1 doi: 10.1016/j.pepi.2012.11.001 – ident: e_1_2_9_5_1 doi: 10.5636/jgg.45.1517 – ident: e_1_2_9_14_1 doi: 10.1126/science.1083324 – ident: e_1_2_9_20_1 – ident: e_1_2_9_8_1 doi: 10.1093/gji/ggz233 – ident: e_1_2_9_10_1 doi: 10.1002/2015GL064067 – ident: e_1_2_9_29_1 doi: 10.5047/eps.2010.07.003 – ident: e_1_2_9_33_1 doi: 10.1016/B978-0-444-53802-4.00140-8 – ident: e_1_2_9_18_1 doi: 10.1186/BF03351933 – ident: e_1_2_9_21_1 doi: 10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2 – ident: e_1_2_9_22_1 doi: 10.1002/2015GL064733 – ident: e_1_2_9_23_1 doi: 10.1016/B978-0-444-53802-4.00099-3 – ident: e_1_2_9_11_1 doi: 10.1029/2009GL042019 – ident: e_1_2_9_32_1 doi: 10.1175/1520-0426(1998)015<0764:CSVDAO>2.0.CO;2 – ident: e_1_2_9_2_1 doi: 10.1038/s41561-019-0355-1 – ident: e_1_2_9_9_1 doi: 10.1016/j.pepi.2013.12.006 – ident: e_1_2_9_12_1 doi: 10.1175/2007JTECHO562.1 – ident: e_1_2_9_16_1 doi: 10.1186/s40623-016-0486-1 – ident: e_1_2_9_24_1 doi: 10.1016/j.pepi.2018.01.005 – ident: e_1_2_9_17_1 doi: 10.1186/s40623-015-0274-3 – ident: e_1_2_9_26_1 doi: 10.1093/gji/ggu033 – ident: e_1_2_9_28_1 doi: 10.1111/j.1365-246X.2009.04386.x – volume: 10 start-page: 1 year: 1970 ident: e_1_2_9_4_1 article-title: Torsional magnetohydrodynamic vibrations in the Earth's core and variations in day length publication-title: Geomagnetism and Aeronomy – ident: e_1_2_9_27_1 doi: 10.1111/j.1365-246X.2006.02959.x – ident: e_1_2_9_7_1 doi: 10.1093/gji/ggv552 – ident: e_1_2_9_25_1 doi: 10.1007/978-1-4020-4423-6_25 – ident: e_1_2_9_13_1 doi: 10.1109/PES.2008.4596270 – ident: e_1_2_9_30_1 doi: 10.1002/2015JB012399 – ident: e_1_2_9_31_1 doi: 10.1093/gji/ggu493 – ident: e_1_2_9_6_1 doi: 10.1186/BF03352159 – ident: e_1_2_9_3_1 doi: 10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2 – ident: e_1_2_9_15_1 doi: 10.1186/s40623‐020‐01252‐9 |
SSID | ssj0003031 |
Score | 2.4325995 |
Snippet | Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acceleration Angular velocity Chaos Decomposition Empirical orthogonal functions Equator Equatorial regions Geomagnetic field Geomagnetism Orthogonal functions Phase velocity Satellite observation Short pulses Standing waves Stratification Traveling waves Wave number |
Title | Decomposition of Geomagnetic Secular Acceleration Into Traveling Waves Using Complex Empirical Orthogonal Functions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL087940 https://www.proquest.com/docview/2441903511 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcUHmJ0oL2AKfI4NiO13u0SJOUhoKghoqLZe-jRaR21CQS7X_hvzKzXj-qlgq4WNbKWls7n3ce-80MIS95BDa_kq4zDCM8ZhSBk0USN0M58EWgRBXMeX8YTpPg3fHwuNf71WEtrVf5a3F5Y17J_0gVxkCumCX7D5JtJoUBuAf5whUkDNe_kvFIISPc0q7Q7Juo8iw7KTAx0UTSkWIaCwGqxQp6v8BWL9hyyKShf82w6GzSHP7P1c_-3tnie1U35MP56rQ8MaHCMai_NrRnjVl426IWsy0adNqfm_yglkFfSvD_S6R8NLyK0bo6nx80wIxh6S9s6pDpu9tGZA8Kdal-WNCiI97G9ddaW5axQagNy9oQBvir2IIhbNXLdY7QNSIoMiCdyGO2bHa1WfMAxtyqa269m1f1O2vUshu1hOthkVX8ksnMjWBHclttWDMApvHn9ONonM72Dw_ukE2PMWQBbMZfkm9Jo-pB_1ctGe3H2cwKmP9Nd_arNk_ryHTdIWPPHG2R-9YRoXGFqgekp4qH5O7ENHq-gDtDDRbLR2R5BWW01LSDMmpRRrsoo4gy2qCMGpRRgzJqUUYblNEWZbRB2WOSjPeO3k4d26rDET4Y1E7uCnB8PBC7lsJlYhAIFwxrIcIsFFIyzblkgRxknEkfPAymQs1zLw_CSGOvO_8J2SjKQj0lVIKS8UOtwWzSAYiYR9wbZlyzPMdup-426deLmQpbxx7bqcxTw6fweNpd-m3yqnl6UdVv-cNzu7VcUvuHL1MwfcFexqN2eKmR1a1zpJNPsxBdmGe3T7ZD7rV_wS7ZWJ2v1XMwbVf5Cwuw35pXotg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEb2IT3ybg55kcR9pdnMsah_aVtBWi5dlNw8VdCu2gv57Z7Kx1oOCtxxms5BJZr5MZuYj5EAkgPm18r0qT_CZUTIvSxQaQxVEkmlZBnM6Xd7ss_NBdeB4TrEWpuwPMQm44cmw9hoPOAakXbcBbJIJ13a_0fYT2FFwZ59FYBNWyGztpn_XnxhjsNAlaZ5gXhLG3OW-wwzH09__9ErfUHMasFqPU18iiw4q0lqp22Uyo4sVMtewVLwfMLLJm3K0SkanGjPDXfoVHRoKQs_ZfYEFivS6pL-lNSnBxZQKp61iPKQ9pB7CcnR6C4MRtekDFC3Ek36nZ88vj7Z_CL18HT8M7xGy0zq4QbtT10i_ftY7aXqOTMGTEUAeL_clQNPQGG2U9GMZMOkD9JGSZ1wqFRshVMxUkIlYRYABY82NyMOc8cQgG1m0TirFsNAbhCowAxE3BhybYYFgIhFhNRMmznPko_Q3ydHXYqbSdRpHwoun1L54hyKdXvpNcjiRfik7bPwit_Oll9Sds1EK4AQQDT6Gwk-trv6cI21ctTmCzK1_Se-T-Wav007bre7FNllAGUwZCfgOqYxf3_Qu4JJxvuf23ifcEth7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4inGMwc4oYo-srQ5TsDGYzwEDCYuVZvHQGLdxIYE_x47DWMcQOKWg5tKsWN_SWx_hOyKBDC_Vr5X4wk-M0rmZYlCZ6iCSDIty8uci0t-0mZnnVrHXbhhLUzZH2J84YY7w_pr3OADZVyzAeyRCad2v9nyEzAoOLJPY6M8sPPp-n37sT32xeCgS848wbwkjLlLfYcZDia__xmUvpHmJF61AaexQOYdUqT1UrWLZEoXS2SmaZl4P2BkczflcJkMjzQmhrvsK9o3FIR6WbfA-kR6W7Lf0rqUEGFKfdPTYtSnd8g8hNXo9AEGQ2qzByg6iBf9To97g2fbPoRevY6e-l1E7LQBUdAa6gppN47vDk88x6XgyQgQj5f7EpBpaIw2SvqxDJj0AflIyTMulYqNECpmKshErCKAgLHmRuRhznhikIwsWiWVol_oNUIVeIGIGwNxzbBAMJGIsJYJE-c50lH6VbL_tZipdI3Gke_iJbUP3qFIJ5e-SvbG0oOywcYvcptfekndNhumgE0A0OBbKPzU6urPOdLmTYsjxlz_l_QOmb0-aqSt08vzDTKHIpgwEvBNUhm9vuktQCWjfNuZ3ieeidek |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+of+Geomagnetic+Secular+Acceleration+Into+Traveling+Waves+Using+Complex+Empirical+Orthogonal+Functions&rft.jtitle=Geophysical+research+letters&rft.au=Rodrigo+Chi%E2%80%90Dur%C3%A1n&rft.au=Avery%2C+Margaret+S&rft.au=Knezek%2C+Nicholas&rft.au=Buffett%2C+Bruce+A&rft.date=2020-09-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=17&rft_id=info:doi/10.1029%2F2020GL087940&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |