Decomposition of Geomagnetic Secular Acceleration Into Traveling Waves Using Complex Empirical Orthogonal Functions

Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave n...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 47; no. 17
Main Authors Chi‐Durán, Rodrigo, Avery, Margaret S., Knezek, Nicholas, Buffett, Bruce A.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.09.2020
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2020GL087940

Cover

Abstract Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core. Key Points Complex empirical orthogonal functions are computed from models of geomagnetic acceleration Eastward and westward traveling waves are detected in equatorial and high‐latitude regions Phase velocities and wavenumbers are compatible with waves in a stratified layer
AbstractList Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core. Key Points Complex empirical orthogonal functions are computed from models of geomagnetic acceleration Eastward and westward traveling waves are detected in equatorial and high‐latitude regions Phase velocities and wavenumbers are compatible with waves in a stratified layer
Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core.
Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical orthogonal functions (CEOFs). This methodology decomposes the signal into traveling waves, permitting estimates for the period, angular wave number, and phase velocity. We recover CEOFs from the CHAOS‐6 model, focusing on three geographic regions with strong secular acceleration. Two regions are confined to the equator, while the third is located under Alaska. We find evidence for both eastward and westward traveling waves with periods between 7 and 20 years. There is also evidence for weaker standing waves with complex spatial patterns. Two of the three regions have waves that are compatible with predictions for waves in a stratified fluid. Our results yield estimates for the structure of fluid stratification at the top of the core. Complex empirical orthogonal functions are computed from models of geomagnetic acceleration Eastward and westward traveling waves are detected in equatorial and high‐latitude regions Phase velocities and wavenumbers are compatible with waves in a stratified layer
Author Chi‐Durán, Rodrigo
Avery, Margaret S.
Knezek, Nicholas
Buffett, Bruce A.
Author_xml – sequence: 1
  givenname: Rodrigo
  orcidid: 0000-0002-5351-9442
  surname: Chi‐Durán
  fullname: Chi‐Durán, Rodrigo
  email: rodrigo.chi@berkeley.edu
  organization: University of California
– sequence: 2
  givenname: Margaret S.
  orcidid: 0000-0002-8504-7072
  surname: Avery
  fullname: Avery, Margaret S.
  organization: University of California
– sequence: 3
  givenname: Nicholas
  surname: Knezek
  fullname: Knezek, Nicholas
  organization: University of California
– sequence: 4
  givenname: Bruce A.
  orcidid: 0000-0001-5488-7602
  surname: Buffett
  fullname: Buffett, Bruce A.
  organization: University of California
BookMark eNqFkMFOAjEQhhuDiYDefIAmXkWn7bK7PRKElYSERCEeN2W2xZJli-2i8vYu4MF40NN8h2_-mfwd0qpcpQm5ZnDHgMt7DhyyKaSJjOCMtJmMol4KkLRIG0A2zJP4gnRCWAOAAMHaJDxodJutC7a2rqLO0Ey7jVpVurZInzXuSuXpAFGX2qujM6lqR-devevSViv60kCgi3DgYRNV6k862mytt6hKOvP1q1u5qsHxrsJDQLgk50aVQV99zy5ZjEfz4WNvOssmw8G0hyKKWG8JmLKCG6NNgZAgixBiLhBjFWNRJEbKIokKpmRSiL4QiY6NXPJlFKcGUsFEl9yccrfeve10qPO12_nmlZDz5oAE0WcH6_ZkoXcheG3yrbcb5fc5g_xQa_6z1kbnv3S09bGY2itb_rP0YUu9__NAnj1NY0j7THwBOTyMTA
CitedBy_id crossref_primary_10_1016_j_pepi_2025_107335
crossref_primary_10_1007_s10712_021_09662_4
crossref_primary_10_1007_s10712_021_09664_2
crossref_primary_10_1029_2021GL094692
crossref_primary_10_1029_2020GL090803
crossref_primary_10_1093_gji_ggac004
crossref_primary_10_1063_5_0235675
crossref_primary_10_1093_gji_ggac212
crossref_primary_10_1093_gji_ggad047
crossref_primary_10_1093_gji_ggab054
crossref_primary_10_1038_s43017_023_00425_w
crossref_primary_10_1186_s40623_021_01365_9
crossref_primary_10_1029_2022GL101288
Cites_doi 10.1016/j.pepi.2012.11.001
10.5636/jgg.45.1517
10.1126/science.1083324
10.1093/gji/ggz233
10.1002/2015GL064067
10.5047/eps.2010.07.003
10.1016/B978-0-444-53802-4.00140-8
10.1186/BF03351933
10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2
10.1002/2015GL064733
10.1016/B978-0-444-53802-4.00099-3
10.1029/2009GL042019
10.1175/1520-0426(1998)015<0764:CSVDAO>2.0.CO;2
10.1038/s41561-019-0355-1
10.1016/j.pepi.2013.12.006
10.1175/2007JTECHO562.1
10.1186/s40623-016-0486-1
10.1016/j.pepi.2018.01.005
10.1186/s40623-015-0274-3
10.1093/gji/ggu033
10.1111/j.1365-246X.2009.04386.x
10.1111/j.1365-246X.2006.02959.x
10.1093/gji/ggv552
10.1007/978-1-4020-4423-6_25
10.1109/PES.2008.4596270
10.1002/2015JB012399
10.1093/gji/ggu493
10.1186/BF03352159
10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2
10.1186/s40623‐020‐01252‐9
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2020GL087940
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2020GL087940
GRL60851
Genre article
GrantInformation_xml – fundername: MINEDUC | Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
  funderid: DOCTORADO BECAS CHILE/2015‐56150003
– fundername: National Science Foundation (NSF)
  funderid: EAR‐1915807; EAR‐1725798
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c3441-b0c81d2ffefdc07c14c0623cc6a6cdd7f99d74d1a97d35337e6f9b2b468f08313
ISSN 0094-8276
IngestDate Fri Jul 25 18:59:13 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Tue Jul 01 01:41:08 EDT 2025
Wed Jan 22 16:32:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3441-b0c81d2ffefdc07c14c0623cc6a6cdd7f99d74d1a97d35337e6f9b2b468f08313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5488-7602
0000-0002-5351-9442
0000-0002-8504-7072
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GL087940
PQID 2441903511
PQPubID 54723
PageCount 8
ParticipantIDs proquest_journals_2441903511
crossref_primary_10_1029_2020GL087940
crossref_citationtrail_10_1029_2020GL087940
wiley_primary_10_1029_2020GL087940_GRL60851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 September 2020
PublicationDateYYYYMMDD 2020-09-16
PublicationDate_xml – month: 09
  year: 2020
  text: 16 September 2020
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1993; 45
2010; 37
2015; 5
1983; 111
2015; 200
2019; 12
2006; 58
1984; 23
2015; 120
2008
1970; 10
2007
2009; 179
2016; 204
2015; 8
2014; 197
2010; 62
2014; 229
2015; 67
1998; 15
2020; 72
2020
2015; 42
2013; 215
2018; 277
2008; 25
2019; 218
1998; 50
2003; 300
2016; 68
2006; 166
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
Braginsky S. I. (e_1_2_9_4_1) 1970; 10
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 42
  start-page: 6622
  year: 2015
  end-page: 6629
  article-title: Slow magnetic Rossby waves in the Earth's core
  publication-title: Geophysical Research Letters
– volume: 200
  start-page: 1596
  issue: 3
  year: 2015
  end-page: 1626
  article-title: CM5, a pre‐swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC‐C and observatory data
  publication-title: Geophysical Journal International
– volume: 166
  start-page: 67
  issue: 1
  year: 2006
  end-page: 75
  article-title: CHAOS—A model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC‐C magnetic satellite data
  publication-title: Geophysical Journal International
– volume: 23
  start-page: 1660
  issue: 12
  year: 1984
  end-page: 1673
  article-title: Complex principal component analysis: Theory and examples
  publication-title: Journal of climate and Applied Meteorology
– volume: 5
  start-page: 137
  year: 2015
  end-page: 184
– volume: 8
  start-page: 183
  year: 2015
  end-page: 212
– volume: 15
  start-page: 764
  issue: 3
  year: 1998
  end-page: 774
  article-title: Complex singular value decomposition analysis of equatorial waves in the Pacific observed by TOPEX/Poseidon altimeter
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 72
  year: 2020
  article-title: The CHAOS‐7 geomagnetic field model and observed changes in the South Atlantic Anomaly
  publication-title: Earth Planets and Space
– volume: 10
  start-page: 1
  year: 1970
  article-title: Torsional magnetohydrodynamic vibrations in the Earth's core and variations in day length
  publication-title: Geomagnetism and Aeronomy
– start-page: 59
  year: 2007
  end-page: 60
– volume: 58
  start-page: 351
  issue: 4
  year: 2006
  end-page: 358
  article-title: Swarm: A constellation to study the earth's magnetic field
  publication-title: Earth, Planets and Space
– volume: 277
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 179
  start-page: 1477
  issue: 3
  year: 2009
  end-page: 1487
  article-title: CHAOS‐2—A geomagnetic field model derived from one decade of continuous satellite data
  publication-title: Geophysical Journal International
– volume: 50
  start-page: 641
  issue: 8
  year: 1998
  end-page: 649
  article-title: Magnetic Rossby waves in the stratified ocean of the core, and topographic core‐mantle coupling
  publication-title: Earth, Planets and Space
– volume: 120
  start-page: 8012
  year: 2015
  end-page: 8030
  article-title: Time‐correlated patterns from spherical harmonic expansions: Application to geomagnetism
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 218
  start-page: 1210
  issue: 2
  year: 2019
  end-page: 1225
  article-title: Equatorially trapped waves in Earth's core
  publication-title: Geophysical Journal International
– volume: 229
  start-page: 1
  year: 2014
  end-page: 15
  article-title: Hydromagnetic quasi‐geostrophic modes in rapidly rotating planetary cores
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 25
  start-page: 808
  issue: 5
  year: 2008
  end-page: 821
  article-title: Complex EOF analysis as a method to separate barotropic and baroclinic velocity structure in shallow water
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 300
  start-page: 2084
  issue: 5628
  year: 2003
  end-page: 2086
  article-title: Equatorially dominated magnetic field change at the surface of Earth's core
  publication-title: Science
– volume: 204
  start-page: 1789
  issue: 3
  year: 2016
  end-page: 1800
  article-title: Evidence for MAC waves at the top of Earth's core and implications for variations in length of day
  publication-title: Geophysical Journal International
– year: 2008
– year: 2020
– volume: 215
  start-page: 21
  year: 2013
  end-page: 28
  article-title: The stratified layer at the core–mantle boundary caused by barodiffusion of oxygen, sulphur and silicon
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 42
  start-page: 3321
  year: 2015
  end-page: 3329
  article-title: Fast equatorial waves propagating at the top of the Earth's core
  publication-title: Geophysical Research Letters
– volume: 197
  start-page: 815
  issue: 2
  year: 2014
  end-page: 827
  article-title: The CHAOS‐4 geomagnetic field model
  publication-title: Geophysical Journal International
– volume: 45
  start-page: 1517
  issue: 11‐12
  year: 1993
  end-page: 1538
  article-title: MAC‐oscillations of the hidden ocean of the core
  publication-title: Journal of Geomagnetism and Geoelectricity
– volume: 68
  start-page: 112
  issue: 1
  year: 2016
  article-title: Recent geomagnetic secular variation from swarm and ground observatories as estimated in the CHAOS‐6 geomagnetic field model
  publication-title: Earth, Planets and Space
– volume: 67
  start-page: 114
  issue: 1
  year: 2015
  article-title: DTU candidate field models for IGRF‐12 and the CHAOS‐5 geomagnetic field model
  publication-title: Earth, Planets and Space
– volume: 12
  start-page: 393
  issue: 5
  year: 2019
  end-page: 398
  article-title: Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth's core surface
  publication-title: Nature Geoscience
– volume: 111
  start-page: 756
  issue: 4
  year: 1983
  end-page: 773
  article-title: Interaction of the monsoon and Pacific trade wind system at interannual time scales part I: The equatorial zone
  publication-title: Monthly Weather Review
– volume: 62
  start-page: 1
  issue: 10
  year: 2010
  article-title: The CHAOS‐3 geomagnetic field model and candidates for the 11th generation IGRF
  publication-title: Earth, Planets and Space
– volume: 37
  year: 2010
  article-title: Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks
  publication-title: Geophysical Research Letters
– ident: e_1_2_9_19_1
  doi: 10.1016/j.pepi.2012.11.001
– ident: e_1_2_9_5_1
  doi: 10.5636/jgg.45.1517
– ident: e_1_2_9_14_1
  doi: 10.1126/science.1083324
– ident: e_1_2_9_20_1
– ident: e_1_2_9_8_1
  doi: 10.1093/gji/ggz233
– ident: e_1_2_9_10_1
  doi: 10.1002/2015GL064067
– ident: e_1_2_9_29_1
  doi: 10.5047/eps.2010.07.003
– ident: e_1_2_9_33_1
  doi: 10.1016/B978-0-444-53802-4.00140-8
– ident: e_1_2_9_18_1
  doi: 10.1186/BF03351933
– ident: e_1_2_9_21_1
  doi: 10.1175/1520-0450(1984)023<1660:CPCATA>2.0.CO;2
– ident: e_1_2_9_22_1
  doi: 10.1002/2015GL064733
– ident: e_1_2_9_23_1
  doi: 10.1016/B978-0-444-53802-4.00099-3
– ident: e_1_2_9_11_1
  doi: 10.1029/2009GL042019
– ident: e_1_2_9_32_1
  doi: 10.1175/1520-0426(1998)015<0764:CSVDAO>2.0.CO;2
– ident: e_1_2_9_2_1
  doi: 10.1038/s41561-019-0355-1
– ident: e_1_2_9_9_1
  doi: 10.1016/j.pepi.2013.12.006
– ident: e_1_2_9_12_1
  doi: 10.1175/2007JTECHO562.1
– ident: e_1_2_9_16_1
  doi: 10.1186/s40623-016-0486-1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.pepi.2018.01.005
– ident: e_1_2_9_17_1
  doi: 10.1186/s40623-015-0274-3
– ident: e_1_2_9_26_1
  doi: 10.1093/gji/ggu033
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1365-246X.2009.04386.x
– volume: 10
  start-page: 1
  year: 1970
  ident: e_1_2_9_4_1
  article-title: Torsional magnetohydrodynamic vibrations in the Earth's core and variations in day length
  publication-title: Geomagnetism and Aeronomy
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1365-246X.2006.02959.x
– ident: e_1_2_9_7_1
  doi: 10.1093/gji/ggv552
– ident: e_1_2_9_25_1
  doi: 10.1007/978-1-4020-4423-6_25
– ident: e_1_2_9_13_1
  doi: 10.1109/PES.2008.4596270
– ident: e_1_2_9_30_1
  doi: 10.1002/2015JB012399
– ident: e_1_2_9_31_1
  doi: 10.1093/gji/ggu493
– ident: e_1_2_9_6_1
  doi: 10.1186/BF03352159
– ident: e_1_2_9_3_1
  doi: 10.1175/1520-0493(1983)111<0756:IOTMAP>2.0.CO;2
– ident: e_1_2_9_15_1
  doi: 10.1186/s40623‐020‐01252‐9
SSID ssj0003031
Score 2.4325995
Snippet Satellite observations reveal short pulses in the second time derivative of the geomagnetic field. We seek to interpret these signals using complex empirical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acceleration
Angular velocity
Chaos
Decomposition
Empirical orthogonal functions
Equator
Equatorial regions
Geomagnetic field
Geomagnetism
Orthogonal functions
Phase velocity
Satellite observation
Short pulses
Standing waves
Stratification
Traveling waves
Wave number
Title Decomposition of Geomagnetic Secular Acceleration Into Traveling Waves Using Complex Empirical Orthogonal Functions
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020GL087940
https://www.proquest.com/docview/2441903511
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVkhcUHmJ0oL2AKfI4NiO13u0SJOUhoKghoqLZe-jRaR21CQS7X_hvzKzXj-qlgq4WNbKWls7n3ce-80MIS95BDa_kq4zDCM8ZhSBk0USN0M58EWgRBXMeX8YTpPg3fHwuNf71WEtrVf5a3F5Y17J_0gVxkCumCX7D5JtJoUBuAf5whUkDNe_kvFIISPc0q7Q7Juo8iw7KTAx0UTSkWIaCwGqxQp6v8BWL9hyyKShf82w6GzSHP7P1c_-3tnie1U35MP56rQ8MaHCMai_NrRnjVl426IWsy0adNqfm_yglkFfSvD_S6R8NLyK0bo6nx80wIxh6S9s6pDpu9tGZA8Kdal-WNCiI97G9ddaW5axQagNy9oQBvir2IIhbNXLdY7QNSIoMiCdyGO2bHa1WfMAxtyqa269m1f1O2vUshu1hOthkVX8ksnMjWBHclttWDMApvHn9ONonM72Dw_ukE2PMWQBbMZfkm9Jo-pB_1ctGe3H2cwKmP9Nd_arNk_ryHTdIWPPHG2R-9YRoXGFqgekp4qH5O7ENHq-gDtDDRbLR2R5BWW01LSDMmpRRrsoo4gy2qCMGpRRgzJqUUYblNEWZbRB2WOSjPeO3k4d26rDET4Y1E7uCnB8PBC7lsJlYhAIFwxrIcIsFFIyzblkgRxknEkfPAymQs1zLw_CSGOvO_8J2SjKQj0lVIKS8UOtwWzSAYiYR9wbZlyzPMdup-426deLmQpbxx7bqcxTw6fweNpd-m3yqnl6UdVv-cNzu7VcUvuHL1MwfcFexqN2eKmR1a1zpJNPsxBdmGe3T7ZD7rV_wS7ZWJ2v1XMwbVf5Cwuw35pXotg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEb2IT3ybg55kcR9pdnMsah_aVtBWi5dlNw8VdCu2gv57Z7Kx1oOCtxxms5BJZr5MZuYj5EAkgPm18r0qT_CZUTIvSxQaQxVEkmlZBnM6Xd7ss_NBdeB4TrEWpuwPMQm44cmw9hoPOAakXbcBbJIJ13a_0fYT2FFwZ59FYBNWyGztpn_XnxhjsNAlaZ5gXhLG3OW-wwzH09__9ErfUHMasFqPU18iiw4q0lqp22Uyo4sVMtewVLwfMLLJm3K0SkanGjPDXfoVHRoKQs_ZfYEFivS6pL-lNSnBxZQKp61iPKQ9pB7CcnR6C4MRtekDFC3Ek36nZ88vj7Z_CL18HT8M7xGy0zq4QbtT10i_ftY7aXqOTMGTEUAeL_clQNPQGG2U9GMZMOkD9JGSZ1wqFRshVMxUkIlYRYABY82NyMOc8cQgG1m0TirFsNAbhCowAxE3BhybYYFgIhFhNRMmznPko_Q3ydHXYqbSdRpHwoun1L54hyKdXvpNcjiRfik7bPwit_Oll9Sds1EK4AQQDT6Gwk-trv6cI21ctTmCzK1_Se-T-Wav007bre7FNllAGUwZCfgOqYxf3_Qu4JJxvuf23ifcEth7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4inGMwc4oYo-srQ5TsDGYzwEDCYuVZvHQGLdxIYE_x47DWMcQOKWg5tKsWN_SWx_hOyKBDC_Vr5X4wk-M0rmZYlCZ6iCSDIty8uci0t-0mZnnVrHXbhhLUzZH2J84YY7w_pr3OADZVyzAeyRCad2v9nyEzAoOLJPY6M8sPPp-n37sT32xeCgS848wbwkjLlLfYcZDia__xmUvpHmJF61AaexQOYdUqT1UrWLZEoXS2SmaZl4P2BkczflcJkMjzQmhrvsK9o3FIR6WbfA-kR6W7Lf0rqUEGFKfdPTYtSnd8g8hNXo9AEGQ2qzByg6iBf9To97g2fbPoRevY6e-l1E7LQBUdAa6gppN47vDk88x6XgyQgQj5f7EpBpaIw2SvqxDJj0AflIyTMulYqNECpmKshErCKAgLHmRuRhznhikIwsWiWVol_oNUIVeIGIGwNxzbBAMJGIsJYJE-c50lH6VbL_tZipdI3Gke_iJbUP3qFIJ5e-SvbG0oOywcYvcptfekndNhumgE0A0OBbKPzU6urPOdLmTYsjxlz_l_QOmb0-aqSt08vzDTKHIpgwEvBNUhm9vuktQCWjfNuZ3ieeidek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposition+of+Geomagnetic+Secular+Acceleration+Into+Traveling+Waves+Using+Complex+Empirical+Orthogonal+Functions&rft.jtitle=Geophysical+research+letters&rft.au=Rodrigo+Chi%E2%80%90Dur%C3%A1n&rft.au=Avery%2C+Margaret+S&rft.au=Knezek%2C+Nicholas&rft.au=Buffett%2C+Bruce+A&rft.date=2020-09-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=47&rft.issue=17&rft_id=info:doi/10.1029%2F2020GL087940&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon