Specialized Pre-Training of Neural Networks on Synthetic Data for Improving Paraphrase Generation

Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the “pre-training → fine-tuning” approach has become the standard. However, popular general pre-training methods typically require extensive datasets and great computat...

Full description

Saved in:
Bibliographic Details
Published inCybernetics and systems analysis Vol. 60; no. 2; pp. 167 - 174
Main Authors Skurzhanskyi, O. H., Marchenko, O. O., Anisimov, A. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1060-0396
1573-8337
DOI10.1007/s10559-024-00658-7

Cover

Abstract Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the “pre-training → fine-tuning” approach has become the standard. However, popular general pre-training methods typically require extensive datasets and great computational resources, and the available pre-trained models are limited by fixed architecture and size. The authors have proposed a simple and efficient approach to pre-training specifically for paraphrase generation, which noticeably improves the quality of paraphrase generation and ensures substantial enhancement of general-purpose models. They have used existing public data and new data generated by large language models. The authors have investigated how this pre-training procedure impacts neural networks of various architectures and demonstrated its efficiency across all architectures.
AbstractList Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the "pre-training [right arrow] fine-tuning" approach has become the standard. However, popular general pre-training methods typically require extensive datasets and great computational resources, and the available pre-trained models are limited by fixed architecture and size. The authors have proposed a simple and efficient approach to pre-training specifically for paraphrase generation, which noticeably improves the quality of paraphrase generation and ensures substantial enhancement of general-purpose models. They have used existing public data and new data generated by large language models. The authors have investigated how this pre-training procedure impacts neural networks of various architectures and demonstrated its efficiency across all architectures.
Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the “pre-training → fine-tuning” approach has become the standard. However, popular general pre-training methods typically require extensive datasets and great computational resources, and the available pre-trained models are limited by fixed architecture and size. The authors have proposed a simple and efficient approach to pre-training specifically for paraphrase generation, which noticeably improves the quality of paraphrase generation and ensures substantial enhancement of general-purpose models. They have used existing public data and new data generated by large language models. The authors have investigated how this pre-training procedure impacts neural networks of various architectures and demonstrated its efficiency across all architectures.
Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the "pre-training [right arrow] fine-tuning" approach has become the standard. However, popular general pre-training methods typically require extensive datasets and great computational resources, and the available pre-trained models are limited by fixed architecture and size. The authors have proposed a simple and efficient approach to pre-training specifically for paraphrase generation, which noticeably improves the quality of paraphrase generation and ensures substantial enhancement of general-purpose models. They have used existing public data and new data generated by large language models. The authors have investigated how this pre-training procedure impacts neural networks of various architectures and demonstrated its efficiency across all architectures. Keywords: artificial intelligence, machine learning, neural networks, paraphrase generation, pre-training, fine tuning.
Audience Academic
Author Anisimov, A. V.
Skurzhanskyi, O. H.
Marchenko, O. O.
Author_xml – sequence: 1
  givenname: O. H.
  surname: Skurzhanskyi
  fullname: Skurzhanskyi, O. H.
  email: oleksandr.skurzhanskyi@gmail.com
  organization: Taras Shevchenko National University of Kyiv
– sequence: 2
  givenname: O. O.
  surname: Marchenko
  fullname: Marchenko, O. O.
  organization: Taras Shevchenko National University of Kyiv
– sequence: 3
  givenname: A. V.
  surname: Anisimov
  fullname: Anisimov, A. V.
  organization: Taras Shevchenko National University of Kyiv
BookMark eNp9kUFvFCEUx4mpiW31C3gi8eSB-hhmBjg2VesmjTbd9kzeMrCl7sIKrG399FLHxPRiODwgv9_jhf8ROYgpOkLecjjhAPJD4TAMmkHXM4BxUEy-IId8kIIpIeRB28MIDIQeX5GjUu4AQIBUhwSXO2cDbsIvN9HL7Nh1xhBDXNPk6Ve3z7hppd6n_L3QFOnyMdZbV4OlH7Ei9SnTxXaX088n5RIz7m4zFkfPXXQZa0jxNXnpcVPcm7_1mNx8_nR99oVdfDtfnJ1eMCt6UZkfuOeTbocRUPd2pUbtJz8pb3mvxGplB2lRcBDoHYydx077UU8Dl0NvFYpj8m7u26b5sXelmru0z7E9aQSIHjrdK2jUyUytceNMiD7VjLatyW2DbZ_qQ7s_lbrr5AhKN-H9M6Ex1T3UNe5LMYvl1XO2m1mbUynZebPLYYv50XAwTzmZOSfTcjJ_cjKySWKWSoPj2uV_c__H-g33sZcb
Cites_doi 10.1016/j.aiopen.2021.08.002
10.3115/1073083.1073135
10.48550/arXiv.1610.03098
10.48550/arXiv.1702.03814
10.1609/aaai.v33i01.33016834
10.48550/arXiv.1711.05732
10.18653/v1/W18-64019
10.18653/v1/2021.eacl-main.180
10.18653/v1/2021.acl-long.335
10.18653/v1/2020.emnlp-main.55
10.18653/v1/2020.acl-main.22
10.1162/neco.1997.9.8.1735
10.48550/arXiv.1706.03762
10.48550/arXiv.1903.00138
10.3115/1626355.1626389
10.3115/v1/P15-2070
10.48550/arXiv.2203.02155
10.48550/arXiv.2005.12592
10.48550/arXiv.2006.10369
10.48550/arXiv.2011.14244
10.18653/v1/2021.acl-long.112
10.48550/arXiv.2001.01941
10.18653/v1/2020.acl-main.703
10.48550/arXiv.1405.0312
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ISR
JQ2
DOI 10.1007/s10559-024-00658-7
DatabaseName CrossRef
Gale In Context: Science (UHCL Subscription)
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-8337
EndPage 174
ExternalDocumentID A792276089
10_1007_s10559_024_00658_7
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
MK~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ICD
PHGZM
PHGZT
AEIIB
ABRTQ
JQ2
ID FETCH-LOGICAL-c343t-f51f1d9c3460a94cb869fdfd8fc1483bbc57ca3103afe062fa29f69d51754c8a3
IEDL.DBID AGYKE
ISSN 1060-0396
IngestDate Sat Sep 13 16:30:46 EDT 2025
Tue Jun 10 21:02:46 EDT 2025
Fri Jun 27 05:15:28 EDT 2025
Tue Jul 01 00:42:02 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fine tuning
paraphrase generation
machine learning
pre-training
artificial intelligence
neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-f51f1d9c3460a94cb869fdfd8fc1483bbc57ca3103afe062fa29f69d51754c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3034029480
PQPubID 48839
PageCount 8
ParticipantIDs proquest_journals_3034029480
gale_infotracacademiconefile_A792276089
gale_incontextgauss_ISR_A792276089
crossref_primary_10_1007_s10559_024_00658_7
springer_journals_10_1007_s10559_024_00658_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cybernetics and systems analysis
PublicationTitleAbbrev Cybern Syst Anal
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References CR19
CR18
CR17
CR16
CR15
CR14
CR13
Han, Zhang, Ding (CR1) 2021; 2
CR12
CR11
CR10
CR2
CR4
CR3
CR6
CR5
CR8
CR7
CR9
CR27
CR26
CR25
CR24
CR23
CR22
CR21
CR20
658_CR7
658_CR20
658_CR8
658_CR5
658_CR6
658_CR24
658_CR23
658_CR9
658_CR22
658_CR21
658_CR27
658_CR26
658_CR25
658_CR13
658_CR12
658_CR11
658_CR10
658_CR17
658_CR16
658_CR15
658_CR14
658_CR19
658_CR18
658_CR3
X Han (658_CR1) 2021; 2
658_CR4
658_CR2
References_xml – ident: CR22
– ident: CR18
– volume: 2
  start-page: 225
  year: 2021
  end-page: 250
  ident: CR1
  article-title: Pre-trained models: Past, present and future
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.08.002
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– ident: CR10
– ident: CR6
– ident: CR8
– ident: CR25
– ident: CR27
– ident: CR23
– ident: CR21
– ident: CR19
– ident: CR3
– ident: CR15
– ident: CR17
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR5
– ident: CR7
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 658_CR9
  doi: 10.3115/1073083.1073135
– ident: 658_CR10
– ident: 658_CR18
  doi: 10.48550/arXiv.1610.03098
– ident: 658_CR12
– ident: 658_CR14
– volume: 2
  start-page: 225
  year: 2021
  ident: 658_CR1
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.08.002
– ident: 658_CR8
  doi: 10.48550/arXiv.1702.03814
– ident: 658_CR19
  doi: 10.1609/aaai.v33i01.33016834
– ident: 658_CR5
  doi: 10.48550/arXiv.1711.05732
– ident: 658_CR13
  doi: 10.18653/v1/W18-64019
– ident: 658_CR17
  doi: 10.18653/v1/2021.eacl-main.180
– ident: 658_CR22
  doi: 10.18653/v1/2021.acl-long.335
– ident: 658_CR24
  doi: 10.18653/v1/2020.emnlp-main.55
– ident: 658_CR25
  doi: 10.18653/v1/2020.acl-main.22
– ident: 658_CR15
  doi: 10.1162/neco.1997.9.8.1735
– ident: 658_CR16
  doi: 10.48550/arXiv.1706.03762
– ident: 658_CR2
  doi: 10.48550/arXiv.1903.00138
– ident: 658_CR11
  doi: 10.3115/1626355.1626389
– ident: 658_CR20
  doi: 10.3115/v1/P15-2070
– ident: 658_CR6
  doi: 10.48550/arXiv.2203.02155
– ident: 658_CR3
  doi: 10.48550/arXiv.2005.12592
– ident: 658_CR4
  doi: 10.48550/arXiv.2006.10369
– ident: 658_CR27
  doi: 10.48550/arXiv.2011.14244
– ident: 658_CR26
  doi: 10.18653/v1/2021.acl-long.112
– ident: 658_CR23
  doi: 10.48550/arXiv.2001.01941
– ident: 658_CR21
  doi: 10.18653/v1/2020.acl-main.703
– ident: 658_CR7
  doi: 10.48550/arXiv.1405.0312
SSID ssj0003078
Score 2.2785783
Snippet Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the “pre-training →...
Paraphrase generation is a fundamental problem in natural language processing. Due to the significant success of transfer learning, the "pre-training [right...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 167
SubjectTerms Artificial Intelligence
Computational linguistics
Control
Cybernetics
Language processing
Large language models
Machine learning
Mathematics
Mathematics and Statistics
Natural language interfaces
Natural language processing
Neural networks
Processor Architectures
Software Engineering/Programming and Operating Systems
Synthetic data
Systems Theory
Title Specialized Pre-Training of Neural Networks on Synthetic Data for Improving Paraphrase Generation
URI https://link.springer.com/article/10.1007/s10559-024-00658-7
https://www.proquest.com/docview/3034029480
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QUOQAuIhbKyEBIgcJWH49jHLXQpoK4q2pXKyXL8QAgpizbZA_31jBNnSwsceoziTBzP2PM5nvkG4IXx3mcul7R0wlKWGkZlZTk1uWYFwlNd2pA7fDznRwv26bw4j0lhzRDtPhxJdiv1H8luiH4p-hTa-U1absF2kQopRrA9_fD18-FmBUa77VPgeEKTXPKYLPNvKVcc0vVl-a_z0c7tzO7BYuhwH23yY3_dVvvm4hqX402_6D7cjTiUTHvD2YFbrt6FO8cbEtdmF3bivG_Iq0hO_foB6Fiw_vuFs-Rk5ehZrDFBlp4Epg8UOu9DyxuyrMnprxpFokDyXreaIEQmm_8Y5EQHuuwVOlLSvyFYyUNYzA7P3h3RWKYBFcrylvoi9amVeMETLZmpBJfeeiu8wb1WXlWmKI0O9cy0dwnPvM6k59IWiFyYETp_BKN6WbvHQMo004kVrBJeM3xYcmuES6ssd6lLUzmGN4Ou1M-ejUNd8i6H0VQ4mqobTVWO4XlQpwo0F3WIo_mm102jPp5-UdNSZlnJE4EiX8ZGftmutNExLQE7FJixrrTcG8xCxYneKEQAuAOXTCRjeDto-fL2_zv35GbNn8LtrDOUEP22B6N2tXbPEA611QStf3ZwMJ_EWTCBrUU2_Q1mMwIJ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAcgBYQ2xawEBIgcJWH48THFbRsaXdV0V2pnCzHD4SQstUme6C_vuPE2dIChx6jOBPHM_Z8jme-AXijnXOJTQXNbWEoizWjojSc6lSxDOGpyo3PHZ5M-XjOvp5lZyEprO6j3fsjyXal_iPZDdEvRZ9CW79J87uwwXAPHg1gY_Tl-9H-egVGu-1S4HhEo1TwkCzzbynXHNLNZfmv89HW7Rw8gnnf4S7a5Nfeqin39MUNLsfbftFjeBhwKBl1hrMJd2y1BQ8maxLXegs2w7yvybtATv3-CahQsP7nhTXkZGnpLNSYIAtHPNMHCp12oeU1WVTk9HeFIlEg-awaRRAik_V_DHKiPF32Eh0p6d7greQpzA_2Z5_GNJRpQIWytKEui11sBF7wSAmmy4ILZ5wpnMa9VlqWOsu18vXMlLMRT5xKhOPCZIhcmC5U-gwG1aKyz4HkcaIiU7CycIrhw4IbXdi4TFIb2zgWQ_jQ60qed2wc8op32Y-mxNGU7WjKfAivvTqlp7mofBzND7Wqa3l4-k2OcpEkOY8KFPk2NHKLZqm0CmkJ2CHPjHWt5W5vFjJM9FoiAsAduGBFNISPvZavbv-_c9u3a_4K7o1nk2N5fDg92oH7SWs0PhJuFwbNcmVfIDRqypdhJlwCTyACgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyE4IFpAbCnUqiqVCqyNHcexjyvaVVvoakW7Um-W4wfikq026aH8esaJd_sADhyjOBPL39gztme-QWjfhhCYzxUpvXSEU8uJqpwgNje8APfUlC7mDp9PxMmMn10VV_ey-Lto9-WVZJ_TEFma6nZ47cLwXuIbeMIE7AvpbCgpn6ANWI5p1PQZG63WYtDgPhlOZCTLlUhpM3-X8cA0PV6g_7gp7QzQ-CV6kTxHPOqh3kRrvt5Cz89XtKvNFtpMM7XBHxOd9OErZFKJ-Z-_vMPThSeXqSoEngccuTlA6KQPBm_wvMYXtzWIBIH4yLQGg1OLVycPeGoiwfUCTB_u_xBxfY1m4-PLLyckFVYACHjeklDQQJ2CB5EZxW0lhQouOBks7I7yqrJFaU2sQGaCzwQLhqkglCvA1-BWmvwNWq_ntX-LcEmZyZzklQyGw8dKOCs9rVjuqadUDdCn5Zjq654_Q98xJUcENCCgOwR0OUB7cdh1JKaoY-TLD3PTNPr04rselYqxUmQSRB6kRmHeLow1KZEAOhS5rB603FnCp9PUbDTYbNgzKy6zAfq8hPTu9b87t_1_zXfR0-nRWH87nXx9h56xTs9i6NoOWm8XN_49-DJt9aFT19_5dOmy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specialized+Pre-Training+of+Neural+Networks+on+Synthetic+Data+for+Improving+Paraphrase+Generation&rft.jtitle=Cybernetics+and+systems+analysis&rft.au=Skurzhanskyi%2C+O.+H.&rft.au=Marchenko%2C+O.+O.&rft.au=Anisimov%2C+A.+V.&rft.date=2024-03-01&rft.pub=Springer+US&rft.issn=1060-0396&rft.eissn=1573-8337&rft.volume=60&rft.issue=2&rft.spage=167&rft.epage=174&rft_id=info:doi/10.1007%2Fs10559-024-00658-7&rft.externalDocID=10_1007_s10559_024_00658_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1060-0396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1060-0396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1060-0396&client=summon