An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water

[Display omitted] •Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by more than 80%.•Effect of NF membrane type, water recovery and operating pressure were evaluated.•Optimum operating conditions for coagulation-U...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 211; pp. 310 - 321
Main Authors Chang, Haiqing, Liu, Baicang, Yang, Boxuan, Yang, Xin, Guo, Can, He, Qiping, Liang, Songmiao, Chen, Sheng, Yang, Ping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 18.03.2019
Subjects
Online AccessGet full text
ISSN1383-5866
1873-3794
DOI10.1016/j.seppur.2018.09.081

Cover

Loading…
Abstract [Display omitted] •Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by more than 80%.•Effect of NF membrane type, water recovery and operating pressure were evaluated.•Optimum operating conditions for coagulation-UF-NF process were determined.•The integrated process removed 73% of Ca2+ and more than 80% of Mg2+, Ba2+ and Sr2+. The internal reuse of flowback and produced water (FPW) for another hydraulic fracking is currently the most dominant and economical option but is subject to certain restrictions, including the declined performance of hydraulic fracturing due to residual divalent metal ions. In this study, we investigated the performance of coagulation-ultrafiltration (UF)-nanofiltration (NF) in treating Weiyuan shale gas FPW. Different coagulants (aluminum, iron), dosages (0–1200 mg/L), types of NF membranes (VNF1, NF90, NF270), water recoveries (50–85%) and working pressures (100–400 psi) have been systematically studied and analyzed. The results indicated that (1) aluminum and iron coagulation at optimal dosage decreased UF membrane fouling resistance by 64% and 84%, respectively; coagulation followed by UF was suitable as NF pretreatment; (2) Membrane type significantly influenced permeate flux and contaminant rejection of NF membranes; An decrease in operating pressure (100–200 psi) resulted in a slight fouling suggesting the presence of a limiting flux; (3) Coagulation (iron, 900 mg/L)-UF-NF (200 psi) process removed 99.9% of turbidity, 94.2% of COD and most divalent ions (72.8% of Ca2+, 86.3% of Mg2+, 82.8% of Ba2+, 80.1% of Sr2+ and 91.7% of SO42−). The integrated coagulation-UF-NF process was an effective technology for internal reuse of FPW in shale plays.
AbstractList [Display omitted] •Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by more than 80%.•Effect of NF membrane type, water recovery and operating pressure were evaluated.•Optimum operating conditions for coagulation-UF-NF process were determined.•The integrated process removed 73% of Ca2+ and more than 80% of Mg2+, Ba2+ and Sr2+. The internal reuse of flowback and produced water (FPW) for another hydraulic fracking is currently the most dominant and economical option but is subject to certain restrictions, including the declined performance of hydraulic fracturing due to residual divalent metal ions. In this study, we investigated the performance of coagulation-ultrafiltration (UF)-nanofiltration (NF) in treating Weiyuan shale gas FPW. Different coagulants (aluminum, iron), dosages (0–1200 mg/L), types of NF membranes (VNF1, NF90, NF270), water recoveries (50–85%) and working pressures (100–400 psi) have been systematically studied and analyzed. The results indicated that (1) aluminum and iron coagulation at optimal dosage decreased UF membrane fouling resistance by 64% and 84%, respectively; coagulation followed by UF was suitable as NF pretreatment; (2) Membrane type significantly influenced permeate flux and contaminant rejection of NF membranes; An decrease in operating pressure (100–200 psi) resulted in a slight fouling suggesting the presence of a limiting flux; (3) Coagulation (iron, 900 mg/L)-UF-NF (200 psi) process removed 99.9% of turbidity, 94.2% of COD and most divalent ions (72.8% of Ca2+, 86.3% of Mg2+, 82.8% of Ba2+, 80.1% of Sr2+ and 91.7% of SO42−). The integrated coagulation-UF-NF process was an effective technology for internal reuse of FPW in shale plays.
Author Yang, Ping
Yang, Xin
Chen, Sheng
Guo, Can
Chang, Haiqing
Yang, Boxuan
He, Qiping
Liu, Baicang
Liang, Songmiao
Author_xml – sequence: 1
  givenname: Haiqing
  surname: Chang
  fullname: Chang, Haiqing
  organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China
– sequence: 2
  givenname: Baicang
  orcidid: 0000-0003-3219-1924
  surname: Liu
  fullname: Liu, Baicang
  email: bcliu@scu.edu.cn
  organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China
– sequence: 3
  givenname: Boxuan
  surname: Yang
  fullname: Yang, Boxuan
  organization: College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
– sequence: 4
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
– sequence: 5
  givenname: Can
  surname: Guo
  fullname: Guo, Can
  organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China
– sequence: 6
  givenname: Qiping
  surname: He
  fullname: He, Qiping
  organization: Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu 610081, PR China
– sequence: 7
  givenname: Songmiao
  orcidid: 0000-0002-7790-3684
  surname: Liang
  fullname: Liang, Songmiao
  organization: Vontron Technology Co., Ltd., Guiyang 550018, PR China
– sequence: 8
  givenname: Sheng
  orcidid: 0000-0002-9428-3675
  surname: Chen
  fullname: Chen, Sheng
  organization: College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, PR China
– sequence: 9
  givenname: Ping
  surname: Yang
  fullname: Yang, Ping
  organization: College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
BookMark eNqFkM9KAzEQxoNUsK2-gYe8wK7JJptNPQil-A8EL3oOaXZSU9ekJLsWwYc3bQXBg14yGWZ-3_B9EzTywQNC55SUlFBxsS4TbDZDLCtCZUlmJZH0CI2pbFjBmhkf5T-TrKilECdoktKaENpQWY3R59xj53tYRd1Di03Qq6HTvQu-GLo-aut277732oefFm9iMJAStiHuFaLXHY4wJMDB4vSiO8Arnedd2C61ecXatzuoHUw-tM3n4ik6trpLcPZdp-j55vppcVc8PN7eL-YPhWGc9QWYhjLbSAGtkbxuZ4I3bV1ZAMJqbRiRraWCVHS5tKbmoiIN5w0XIHReJ4JNET_omhhSimDVJro3HT8UJWqXoFqrQ4Jql6AiM5UTzNjlL8y4fm8-Z-C6_-CrAwzZ2LuDqJJx4LN3F8H0qg3ub4EvZrCVWQ
CitedBy_id crossref_primary_10_1021_acsestengg_3c00138
crossref_primary_10_1016_j_seppur_2024_126927
crossref_primary_10_1016_j_seppur_2021_119310
crossref_primary_10_1016_j_desal_2019_01_001
crossref_primary_10_1016_j_jece_2019_102878
crossref_primary_10_3390_ma18051020
crossref_primary_10_1089_ees_2019_0102
crossref_primary_10_1002_jctb_6538
crossref_primary_10_1016_j_jenvman_2019_05_043
crossref_primary_10_1016_j_jece_2024_115278
crossref_primary_10_5004_dwt_2023_30075
crossref_primary_10_1016_j_watres_2024_122332
crossref_primary_10_1016_j_polymer_2023_125720
crossref_primary_10_1016_j_jwpe_2022_103479
crossref_primary_10_1016_j_memsci_2021_120198
crossref_primary_10_1016_j_jwpe_2022_103197
crossref_primary_10_1016_j_jclepro_2020_122341
crossref_primary_10_1016_j_scitotenv_2020_140766
crossref_primary_10_1016_j_seppur_2024_128652
crossref_primary_10_1016_j_desal_2023_116944
crossref_primary_10_1016_j_jwpe_2021_102478
crossref_primary_10_1080_10916466_2022_2096633
crossref_primary_10_1016_j_seppur_2022_120819
crossref_primary_10_1007_s11783_019_1147_y
crossref_primary_10_1016_j_cej_2019_123743
crossref_primary_10_1016_j_envres_2020_110228
crossref_primary_10_1016_j_memsci_2021_119930
crossref_primary_10_1016_j_seppur_2024_126758
crossref_primary_10_1016_j_eng_2021_01_013
crossref_primary_10_1016_j_seppur_2023_125616
crossref_primary_10_1016_j_memsci_2021_120129
crossref_primary_10_1016_j_chemosphere_2024_142259
crossref_primary_10_1016_j_scitotenv_2023_168135
crossref_primary_10_1021_acssuschemeng_0c04971
crossref_primary_10_1080_09593330_2023_2238130
crossref_primary_10_1016_j_partic_2024_06_005
crossref_primary_10_1016_j_jwpe_2025_107166
crossref_primary_10_1080_01496395_2022_2131578
crossref_primary_10_1021_acs_est_0c03243
crossref_primary_10_1089_ees_2019_0487
crossref_primary_10_1016_j_seppur_2024_128124
crossref_primary_10_1016_j_chemosphere_2024_141834
crossref_primary_10_2139_ssrn_4144355
crossref_primary_10_1016_j_jclepro_2024_141914
crossref_primary_10_1016_j_jwpe_2019_02_001
crossref_primary_10_1016_j_desal_2023_116852
crossref_primary_10_1016_j_seppur_2019_116294
crossref_primary_10_1016_j_fuel_2020_117621
crossref_primary_10_1021_acsestwater_2c00625
crossref_primary_10_1016_j_chemosphere_2020_127968
crossref_primary_10_1016_j_jwpe_2019_101117
crossref_primary_10_1016_j_seppur_2020_116935
crossref_primary_10_1016_j_scitotenv_2023_163478
crossref_primary_10_1002_cmtd_202400046
crossref_primary_10_1016_j_envint_2019_05_063
crossref_primary_10_1016_j_jwpe_2020_101547
crossref_primary_10_1016_j_scitotenv_2020_140030
crossref_primary_10_2139_ssrn_3972690
crossref_primary_10_1016_j_watres_2020_116753
crossref_primary_10_1016_j_resconrec_2021_106011
crossref_primary_10_1039_D4EW00373J
crossref_primary_10_1016_j_jhazmat_2021_127124
crossref_primary_10_1016_j_envres_2024_119888
crossref_primary_10_1016_j_jwpe_2023_103541
crossref_primary_10_1016_j_desal_2021_115545
crossref_primary_10_1016_j_ceja_2020_100011
crossref_primary_10_1016_j_envres_2020_109833
crossref_primary_10_1016_j_scitotenv_2023_162376
crossref_primary_10_1016_j_seppur_2024_131110
crossref_primary_10_2139_ssrn_4113836
crossref_primary_10_1016_j_memsci_2020_118738
crossref_primary_10_1021_acsestengg_0c00170
crossref_primary_10_1016_j_cej_2023_145576
crossref_primary_10_1016_j_scitotenv_2022_153887
crossref_primary_10_1016_j_biortech_2021_126191
crossref_primary_10_1016_j_psep_2020_12_030
crossref_primary_10_1016_j_cej_2021_128699
crossref_primary_10_1016_j_jwpe_2024_105173
crossref_primary_10_1016_j_seppur_2020_117047
crossref_primary_10_1016_j_seppur_2025_132046
crossref_primary_10_1016_j_rineng_2023_100938
crossref_primary_10_1016_j_seppur_2020_116599
crossref_primary_10_1016_j_memsci_2022_121100
crossref_primary_10_1021_acsami_0c11136
crossref_primary_10_1016_j_chemosphere_2022_137415
crossref_primary_10_1016_j_seppur_2024_129023
crossref_primary_10_1016_j_scitotenv_2022_156664
crossref_primary_10_1021_acsestwater_2c00453
crossref_primary_10_3390_membranes12121276
crossref_primary_10_1016_j_desal_2021_115377
crossref_primary_10_1007_s10098_019_01789_8
crossref_primary_10_1016_j_memsci_2020_118469
crossref_primary_10_1016_j_clce_2022_100032
crossref_primary_10_1039_D3EW00292F
crossref_primary_10_1016_j_envres_2022_113486
crossref_primary_10_1016_j_memsci_2024_122625
crossref_primary_10_3390_w12030770
crossref_primary_10_1016_j_psep_2022_07_057
crossref_primary_10_1016_j_memsci_2019_117187
crossref_primary_10_1016_j_psep_2023_11_002
crossref_primary_10_1016_j_memsci_2020_118638
crossref_primary_10_1016_j_seppur_2022_120920
crossref_primary_10_3390_membranes10050089
crossref_primary_10_1016_j_scitotenv_2019_06_365
crossref_primary_10_1080_10916466_2022_2025833
crossref_primary_10_1016_j_envpol_2023_122717
crossref_primary_10_1016_j_jes_2022_02_002
crossref_primary_10_1016_j_memsci_2020_118526
crossref_primary_10_1016_j_jenvman_2024_121192
Cites_doi 10.1016/j.scitotenv.2018.02.219
10.1039/C8EW00036K
10.1016/j.memsci.2006.12.017
10.1016/j.desal.2018.05.004
10.1016/j.memsci.2008.10.043
10.1126/science.1235009
10.1016/S0376-7388(97)00060-4
10.1016/j.seppur.2017.12.017
10.1016/j.memsci.2013.03.029
10.1016/j.memsci.2012.12.030
10.1021/es4013855
10.1016/j.watres.2011.08.014
10.1016/j.seppur.2016.05.016
10.1021/acs.estlett.5b00211
10.1016/j.desal.2014.10.043
10.1016/j.fuel.2016.05.051
10.1016/j.watres.2004.08.006
10.1016/j.desal.2013.09.021
10.1016/j.apenergy.2014.03.039
10.1016/S0011-9164(97)00090-8
10.1016/j.memsci.2014.03.055
10.2166/wst.2017.237
10.1016/j.jhazmat.2006.11.050
10.1021/es304638h
10.1016/j.watres.2017.09.057
10.1021/es403852h
10.2118/167775-MS
10.1016/j.desal.2009.12.020
10.1016/j.memsci.2015.07.001
10.1021/es051423+
10.1016/S0001-8686(02)00067-2
10.1016/j.scitotenv.2017.09.031
10.1016/j.desal.2006.02.009
10.1016/j.memsci.2005.12.001
10.1021/es063105w
10.1016/j.memsci.2012.02.007
10.1016/j.memsci.2017.08.028
10.1016/S0011-9164(98)00104-0
10.1021/es401966e
10.1016/j.memsci.2008.05.039
10.1016/j.memsci.2005.02.025
10.1080/19443994.2015.1038588
10.1021/es9907461
10.1021/acs.iecr.6b04016
10.1016/j.desal.2011.04.010
10.1016/j.seppur.2016.07.008
10.1126/science.328.5986.1624
10.1080/19443994.2012.714578
10.1021/acs.estlett.6b00263
10.1016/j.memsci.2016.10.005
10.1016/j.chemosphere.2017.04.108
10.2113/gselements.7.3.181
10.1016/j.desal.2016.10.006
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2018.09.081
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
EndPage 321
ExternalDocumentID 10_1016_j_seppur_2018_09_081
S1383586618319026
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c343t-ec713f786edc845d9647d52fee035ac308df16021bbfc54620744746e6a845063
IEDL.DBID .~1
ISSN 1383-5866
IngestDate Tue Jul 01 00:32:18 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Fri Feb 23 02:23:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanofiltration
Coagulation-ultrafiltration
Internal reuse
Flowback and produced water
Weiyuan shale gas
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-ec713f786edc845d9647d52fee035ac308df16021bbfc54620744746e6a845063
ORCID 0000-0003-3219-1924
0000-0002-7790-3684
0000-0002-9428-3675
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_seppur_2018_09_081
crossref_citationtrail_10_1016_j_seppur_2018_09_081
elsevier_sciencedirect_doi_10_1016_j_seppur_2018_09_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-18
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-18
  day: 18
PublicationDecade 2010
PublicationTitle Separation and purification technology
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shaffer, Chavez, Ben-Sasson, Castrillón, Yip, Elimelech (b0040) 2013; 47
Song, Su, Gao, Gao (b0250) 2013; 330
Chorghe, Sari, Chellam (b0135) 2017; 126
Kerr (b0015) 2010; 328
J. Zhou, M. Baltazar, H. Sun, Q. Qu, Water-based environmentally preferred friction reducer in ultrahigh-TDS produced water for slickwater fracturing in shale reservoirs, in: SPE/EAGE European Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Vienna, Austria, 2014.
Clark, Horner, Harto (b0050) 2013; 47
Luo, Wan (b0255) 2013; 438
Tang, Kwon, Leckie (b0285) 2009; 326
Chang, Huang, Ries, Masanet (b0120) 2014; 125
Kondash, Warner, Lahav, Vengosh (b0195) 2014; 48
U.S. Energy Information Administration, Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, in: U.S. Department of Energy, Washington, DC, 2013.
Lee, Lee, Jo, Park, Lee, Kwak (b0180) 2000; 34
Dischinger, Rosenblum, Noble, Gin, Linden (b0085) 2017; 543
Lin, Chiang, Chang (b0225) 2007; 146
Hong, Elimelech (b0155) 1997; 132
Vidic, Brantley, Vandenbossche, Yoxtheimer, Abad (b0010) 2013; 340
Duan, Gregory (b0175) 2003; 100–102
Tang, Leckie (b0280) 2007; 41
Koter (b0140) 2006; 198
Ohno, Matsui, Itoh, Oguchi, Kondo, Konno, Matsushita, Magara (b0265) 2010; 254
Choi, Dempsey (b0160) 2004; 38
Hu, Liu, Qu, Wang, Ru (b0185) 2006; 40
Llenas, Ribera, Martínez-Lladó, Rovira, de Pablo (b0240) 2013; 51
Barbot, Vidic, Gregory, Vidic (b0030) 2013; 47
IEA, Golden rules for a golden age of gas: world energy outlook – special report on unconventional gas, in: World Energy Outlook 2012, International Energy Agency, Paris, France, 2012.
Kong, Sun, Chen, Han, Guo, Tong-Zhang, Lin (b0095) 2018; 195
Riley, Ahoor, Regnery, Cath (b0105) 2018; 613–614
Kondash, Vengosh (b0025) 2015; 2
Subhi, Verliefde, Chen, Le-Clech (b0210) 2012; 403–404
Kelewou, Lhassani, Merzouki, Drogui, Sellamuthu (b0260) 2011; 277
Kang, Cao (b0200) 2014; 463
Gregory, Vidic, Dzombak (b0060) 2011; 7
Rosberg (b0100) 1997; 110
Sari, Chellam (b0230) 2017; 523
Tang, Kwon, Leckie (b0215) 2007; 290
Park, Kwon, Kim, Cho (b0205) 2005; 258
Reig, Luo, Proctor (b0020) 2014
Riley, Ahoor, Oetjen, Cath (b0080) 2018; 442
Edzwald, Haarhoff (b0170) 2011; 45
Wang (b0190) 2012
Schäfer, Fane, Waite (b0275) 1998; 118
Chang, Liu, He, Li, Crittenden, Liu (b0130) 2017; 76
Zhao, Minier-Matar, Chou, Wang, Fane, Adham (b0165) 2017; 402
Estrada, Bhamidimarri (b0035) 2016; 182
Guo, Deng, Tao, Yao, Wang, Lin, Zhang, Zhu, Tang (b0145) 2016; 3
Xu, Drewes, Kim, Bellona, Amy (b0220) 2006; 279
Carrero-Parreño, Onishi, Salcedo-Díaz, Ruiz-Femenia, Fraga, Caballero, Reyes-Labarta (b0290) 2017; 56
Riley, Oliveira, Regnery, Cath (b0090) 2016; 171
Mohammad, Teow, Ang, Chung, Oatley-Radcliffe, Hilal (b0070) 2015; 356
Michel, Reczek, Granops, Rudnicki, Piech (b0075) 2016; 57
Guo, Chang, Liu, He, Xiong, Kumar, Zydney (b0125) 2018; 4
Racar, Dolar, Spehar, Kras, Kosutic (b0270) 2017; 181
Jiang, Rentschler, Perrone, Liu (b0045) 2013; 431
Chang, Qu, Liu, Yu, Li, Shao, Li, Liang (b0150) 2015; 493
H.R. Acharya, C. Henderson, H. Matis, H. Kommepalli, B. Moore, H. Wang, Cost effective recovery of low-TDS Frac Flowback water for re-use: final report, in: U.S. Department of Energy, Washington, DC, 2011.
Zou, Ni, Li, Kondash, Coyte, Lauer, Cui, Liao, Vengosh (b0115) 2018; 630
Mondal, Wickramasinghe (b0245) 2008; 322
Dolar, Košutić, Strmecky (b0235) 2016; 168
10.1016/j.seppur.2018.09.081_b0055
Kong (10.1016/j.seppur.2018.09.081_b0095) 2018; 195
Kondash (10.1016/j.seppur.2018.09.081_b0195) 2014; 48
Tang (10.1016/j.seppur.2018.09.081_b0215) 2007; 290
Kang (10.1016/j.seppur.2018.09.081_b0200) 2014; 463
Duan (10.1016/j.seppur.2018.09.081_b0175) 2003; 100–102
Michel (10.1016/j.seppur.2018.09.081_b0075) 2016; 57
Zou (10.1016/j.seppur.2018.09.081_b0115) 2018; 630
Song (10.1016/j.seppur.2018.09.081_b0250) 2013; 330
Riley (10.1016/j.seppur.2018.09.081_b0080) 2018; 442
Riley (10.1016/j.seppur.2018.09.081_b0105) 2018; 613–614
Hong (10.1016/j.seppur.2018.09.081_b0155) 1997; 132
Luo (10.1016/j.seppur.2018.09.081_b0255) 2013; 438
Lee (10.1016/j.seppur.2018.09.081_b0180) 2000; 34
Chorghe (10.1016/j.seppur.2018.09.081_b0135) 2017; 126
10.1016/j.seppur.2018.09.081_b0065
Edzwald (10.1016/j.seppur.2018.09.081_b0170) 2011; 45
Tang (10.1016/j.seppur.2018.09.081_b0280) 2007; 41
Hu (10.1016/j.seppur.2018.09.081_b0185) 2006; 40
Estrada (10.1016/j.seppur.2018.09.081_b0035) 2016; 182
Koter (10.1016/j.seppur.2018.09.081_b0140) 2006; 198
Lin (10.1016/j.seppur.2018.09.081_b0225) 2007; 146
Shaffer (10.1016/j.seppur.2018.09.081_b0040) 2013; 47
Mondal (10.1016/j.seppur.2018.09.081_b0245) 2008; 322
Zhao (10.1016/j.seppur.2018.09.081_b0165) 2017; 402
Reig (10.1016/j.seppur.2018.09.081_b0020) 2014
Chang (10.1016/j.seppur.2018.09.081_b0130) 2017; 76
Kerr (10.1016/j.seppur.2018.09.081_b0015) 2010; 328
10.1016/j.seppur.2018.09.081_b0110
Subhi (10.1016/j.seppur.2018.09.081_b0210) 2012; 403–404
Ohno (10.1016/j.seppur.2018.09.081_b0265) 2010; 254
Chang (10.1016/j.seppur.2018.09.081_b0150) 2015; 493
Schäfer (10.1016/j.seppur.2018.09.081_b0275) 1998; 118
Jiang (10.1016/j.seppur.2018.09.081_b0045) 2013; 431
Riley (10.1016/j.seppur.2018.09.081_b0090) 2016; 171
Tang (10.1016/j.seppur.2018.09.081_b0285) 2009; 326
Chang (10.1016/j.seppur.2018.09.081_b0120) 2014; 125
Wang (10.1016/j.seppur.2018.09.081_b0190) 2012
Kondash (10.1016/j.seppur.2018.09.081_b0025) 2015; 2
Llenas (10.1016/j.seppur.2018.09.081_b0240) 2013; 51
Rosberg (10.1016/j.seppur.2018.09.081_b0100) 1997; 110
Guo (10.1016/j.seppur.2018.09.081_b0145) 2016; 3
Vidic (10.1016/j.seppur.2018.09.081_b0010) 2013; 340
Carrero-Parreño (10.1016/j.seppur.2018.09.081_b0290) 2017; 56
Gregory (10.1016/j.seppur.2018.09.081_b0060) 2011; 7
Barbot (10.1016/j.seppur.2018.09.081_b0030) 2013; 47
10.1016/j.seppur.2018.09.081_b0005
Dischinger (10.1016/j.seppur.2018.09.081_b0085) 2017; 543
Dolar (10.1016/j.seppur.2018.09.081_b0235) 2016; 168
Guo (10.1016/j.seppur.2018.09.081_b0125) 2018; 4
Racar (10.1016/j.seppur.2018.09.081_b0270) 2017; 181
Kelewou (10.1016/j.seppur.2018.09.081_b0260) 2011; 277
Choi (10.1016/j.seppur.2018.09.081_b0160) 2004; 38
Park (10.1016/j.seppur.2018.09.081_b0205) 2005; 258
Xu (10.1016/j.seppur.2018.09.081_b0220) 2006; 279
Mohammad (10.1016/j.seppur.2018.09.081_b0070) 2015; 356
Sari (10.1016/j.seppur.2018.09.081_b0230) 2017; 523
Clark (10.1016/j.seppur.2018.09.081_b0050) 2013; 47
References_xml – volume: 47
  start-page: 9569
  year: 2013
  end-page: 9583
  ident: b0040
  article-title: Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions
  publication-title: Environ. Sci. Technol.
– reference: J. Zhou, M. Baltazar, H. Sun, Q. Qu, Water-based environmentally preferred friction reducer in ultrahigh-TDS produced water for slickwater fracturing in shale reservoirs, in: SPE/EAGE European Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Vienna, Austria, 2014.
– volume: 47
  start-page: 2562
  year: 2013
  end-page: 2569
  ident: b0030
  article-title: Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing
  publication-title: Environ. Sci. Technol.
– volume: 118
  start-page: 109
  year: 1998
  end-page: 122
  ident: b0275
  article-title: Nanofiltration of natural organic matter Removal, fouling and the influence of multivalent ions
  publication-title: Desalination
– volume: 403–404
  start-page: 32
  year: 2012
  end-page: 40
  ident: b0210
  article-title: Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis
  publication-title: J. Membr. Sci.
– volume: 356
  start-page: 226
  year: 2015
  end-page: 254
  ident: b0070
  article-title: Nanofiltration membranes review: recent advances and future prospects
  publication-title: Desalination
– volume: 3
  start-page: 332
  year: 2016
  end-page: 338
  ident: b0145
  article-title: Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds?
  publication-title: Environ. Sci. Technol. Lett.
– volume: 277
  start-page: 106
  year: 2011
  end-page: 112
  ident: b0260
  article-title: Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling
  publication-title: Desalination
– volume: 38
  start-page: 4271
  year: 2004
  end-page: 4281
  ident: b0160
  article-title: In-line coagulation with low-pressure membrane filtration
  publication-title: Water Res.
– volume: 126
  start-page: 481
  year: 2017
  end-page: 487
  ident: b0135
  article-title: Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations
  publication-title: Water Res.
– volume: 463
  start-page: 145
  year: 2014
  end-page: 165
  ident: b0200
  article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review
  publication-title: J. Membr. Sci.
– volume: 168
  start-page: 39
  year: 2016
  end-page: 46
  ident: b0235
  article-title: Hybrid processes for treatment of landfill leachate: coagulation/UF/NF-RO and adsorption/UF/NF-RO
  publication-title: Sep. Purif. Technol.
– volume: 146
  start-page: 20
  year: 2007
  end-page: 29
  ident: b0225
  article-title: Removal of small trihalomethane precursors from aqueous solution by nanofiltration
  publication-title: J. Hazard. Mater.
– volume: 523
  start-page: 68
  year: 2017
  end-page: 76
  ident: b0230
  article-title: Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water
  publication-title: J. Membr. Sci.
– volume: 2
  start-page: 276
  year: 2015
  end-page: 280
  ident: b0025
  article-title: Water footprint of hydraulic fracturing
  publication-title: Environ. Sci. Technol. Lett.
– volume: 181
  start-page: 485
  year: 2017
  end-page: 491
  ident: b0270
  article-title: Optimization of coagulation with ferric chloride as a pretreatment for fouling reduction during nanofiltration of rendering plant secondary effluent
  publication-title: Chemosphere
– volume: 45
  start-page: 5428
  year: 2011
  end-page: 5440
  ident: b0170
  article-title: Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation
  publication-title: Water Res.
– volume: 330
  start-page: 61
  year: 2013
  end-page: 69
  ident: b0250
  article-title: Investigation on high NF permeate recovery and scaling potential prediction in NF–SWRO integrated membrane operation
  publication-title: Desalination
– volume: 431
  start-page: 55
  year: 2013
  end-page: 61
  ident: b0045
  article-title: Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production
  publication-title: J. Membr. Sci.
– volume: 125
  start-page: 147
  year: 2014
  end-page: 157
  ident: b0120
  article-title: Shale-to-well energy use and air pollutant emissions of shale gas production in China
  publication-title: Appl. Energy
– volume: 340
  start-page: 1235009
  year: 2013
  ident: b0010
  article-title: Impact of shale gas development on regional water quality
  publication-title: Science
– volume: 7
  start-page: 181
  year: 2011
  end-page: 186
  ident: b0060
  article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing
  publication-title: Elements
– volume: 76
  start-page: 575
  year: 2017
  end-page: 583
  ident: b0130
  article-title: Removal of calcium and magnesium ions from shale gas flowback water by chemical activated zeolite
  publication-title: Water Sci. Technol.
– volume: 40
  start-page: 325
  year: 2006
  end-page: 331
  ident: b0185
  article-title: Coagulation behavior of aluminum salts in eutrophic water: significance of Al
  publication-title: Environ. Sci. Technol.
– volume: 195
  start-page: 216
  year: 2018
  end-page: 223
  ident: b0095
  article-title: Desalination and fouling of NF/low pressure RO membrane for shale gas fracturing flowback water treatment
  publication-title: Sep. Purif. Technol.
– volume: 493
  start-page: 723
  year: 2015
  end-page: 733
  ident: b0150
  article-title: Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: effects of membrane properties and backwash water composition
  publication-title: J. Membr. Sci.
– volume: 322
  start-page: 162
  year: 2008
  end-page: 170
  ident: b0245
  article-title: Produced water treatment by nanofiltration and reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 171
  start-page: 297
  year: 2016
  end-page: 311
  ident: b0090
  article-title: Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water
  publication-title: Sep. Purif. Technol.
– volume: 41
  start-page: 4767
  year: 2007
  end-page: 4773
  ident: b0280
  article-title: Membrane independent limiting flux for RO and NF membranes fouled by humic acid
  publication-title: Environ. Sci. Technol.
– volume: 613–614
  start-page: 208
  year: 2018
  end-page: 217
  ident: b0105
  article-title: Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach
  publication-title: Sci. Total Environ.
– volume: 279
  start-page: 165
  year: 2006
  end-page: 175
  ident: b0220
  article-title: Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications
  publication-title: J. Membr. Sci.
– volume: 51
  start-page: 930
  year: 2013
  end-page: 935
  ident: b0240
  article-title: Selection of nanofiltration membranes as pretreatment for scaling prevention in SWRO using real seawater
  publication-title: Desalination Water Treat.
– volume: 110
  start-page: 107
  year: 1997
  end-page: 113
  ident: b0100
  article-title: Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration—a new approach to reduce costs
  publication-title: Desalination
– volume: 47
  start-page: 11829
  year: 2013
  end-page: 11836
  ident: b0050
  article-title: Life cycle water consumption for shale gas and conventional natural gas
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 4386
  year: 2017
  end-page: 4398
  ident: b0290
  article-title: Optimal pretreatment system of flowback water from shale gas production
  publication-title: Ind. Eng. Chem. Res.
– volume: 34
  start-page: 3780
  year: 2000
  end-page: 3788
  ident: b0180
  article-title: Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 942
  year: 2018
  end-page: 955
  ident: b0125
  article-title: An ultrafiltration- reverse osmosis combined process for external reuse of Weiyuan shale gas flowback and produced water
  publication-title: Environ. Sci.-Water Res.
– volume: 442
  start-page: 51
  year: 2018
  end-page: 61
  ident: b0080
  article-title: Closed circuit desalination of O&G produced water: an evaluation of NF/RO performance and integrity
  publication-title: Desalination
– reference: H.R. Acharya, C. Henderson, H. Matis, H. Kommepalli, B. Moore, H. Wang, Cost effective recovery of low-TDS Frac Flowback water for re-use: final report, in: U.S. Department of Energy, Washington, DC, 2011.
– volume: 254
  start-page: 17
  year: 2010
  end-page: 22
  ident: b0265
  article-title: NF membrane fouling by aluminum and iron coagulant residuals after coagulation–MF pretreatment
  publication-title: Desalination
– volume: 182
  start-page: 292
  year: 2016
  end-page: 303
  ident: b0035
  article-title: A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing
  publication-title: Fuel
– volume: 198
  start-page: 335
  year: 2006
  end-page: 345
  ident: b0140
  article-title: Determination of the parameters of the Spiegler–Kedem–Katchalsky model for nanofiltration of single electrolyte solutions
  publication-title: Desalination
– year: 2014
  ident: b0020
  article-title: Global Shale Gas Development: Water Availability and Business Risks
– volume: 132
  start-page: 159
  year: 1997
  end-page: 181
  ident: b0155
  article-title: Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 630
  start-page: 349
  year: 2018
  end-page: 356
  ident: b0115
  article-title: The water footprint of hydraulic fracturing in Sichuan Basin, China
  publication-title: Sci. Total Environ.
– volume: 326
  start-page: 526
  year: 2009
  end-page: 532
  ident: b0285
  article-title: The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement
  publication-title: J. Membr. Sci.
– volume: 328
  start-page: 1624
  year: 2010
  end-page: 1626
  ident: b0015
  article-title: Natural gas from shale bursts onto the scene
  publication-title: Science
– volume: 57
  start-page: 10222
  year: 2016
  end-page: 10231
  ident: b0075
  article-title: Pretreatment and desalination of flowback water from the hydraulic fracturing
  publication-title: Desalination Water Treat.
– volume: 100–102
  start-page: 475
  year: 2003
  end-page: 502
  ident: b0175
  article-title: Coagulation by hydrolysing metal salts
  publication-title: Adv. Colloid Interface Sci.
– volume: 543
  start-page: 319
  year: 2017
  end-page: 327
  ident: b0085
  article-title: Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: selectivity and implications for treatment
  publication-title: J. Membr. Sci.
– reference: U.S. Energy Information Administration, Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, in: U.S. Department of Energy, Washington, DC, 2013.
– volume: 438
  start-page: 18
  year: 2013
  end-page: 28
  ident: b0255
  article-title: Effects of pH and salt on nanofiltration—a critical review
  publication-title: J. Membr. Sci.
– year: 2012
  ident: b0190
  article-title: Use of Acid Mine Drainage in Recycling of Marcellus Shale Flowback Water: Solids Removal and Potential Fouling of Polymeric Microfiltration Membranes
– volume: 290
  start-page: 86
  year: 2007
  end-page: 94
  ident: b0215
  article-title: Fouling of reverse osmosis and nanofiltration membranes by humic acid—effects of solution composition and hydrodynamic conditions
  publication-title: J. Membr. Sci.
– volume: 258
  start-page: 43
  year: 2005
  end-page: 54
  ident: b0205
  article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters
  publication-title: J. Membr. Sci.
– reference: IEA, Golden rules for a golden age of gas: world energy outlook – special report on unconventional gas, in: World Energy Outlook 2012, International Energy Agency, Paris, France, 2012.
– volume: 402
  start-page: 143
  year: 2017
  end-page: 151
  ident: b0165
  article-title: Gas field produced/process water treatment using forward osmosis hollow fiber membrane: membrane fouling and chemical cleaning
  publication-title: Desalination
– volume: 48
  start-page: 1334
  year: 2014
  end-page: 1342
  ident: b0195
  article-title: Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage
  publication-title: Environ. Sci. Technol.
– volume: 630
  start-page: 349
  year: 2018
  ident: 10.1016/j.seppur.2018.09.081_b0115
  article-title: The water footprint of hydraulic fracturing in Sichuan Basin, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.219
– volume: 4
  start-page: 942
  year: 2018
  ident: 10.1016/j.seppur.2018.09.081_b0125
  article-title: An ultrafiltration- reverse osmosis combined process for external reuse of Weiyuan shale gas flowback and produced water
  publication-title: Environ. Sci.-Water Res.
  doi: 10.1039/C8EW00036K
– volume: 290
  start-page: 86
  year: 2007
  ident: 10.1016/j.seppur.2018.09.081_b0215
  article-title: Fouling of reverse osmosis and nanofiltration membranes by humic acid—effects of solution composition and hydrodynamic conditions
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.12.017
– volume: 442
  start-page: 51
  year: 2018
  ident: 10.1016/j.seppur.2018.09.081_b0080
  article-title: Closed circuit desalination of O&G produced water: an evaluation of NF/RO performance and integrity
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.05.004
– volume: 326
  start-page: 526
  year: 2009
  ident: 10.1016/j.seppur.2018.09.081_b0285
  article-title: The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.10.043
– volume: 340
  start-page: 1235009
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0010
  article-title: Impact of shale gas development on regional water quality
  publication-title: Science
  doi: 10.1126/science.1235009
– volume: 132
  start-page: 159
  year: 1997
  ident: 10.1016/j.seppur.2018.09.081_b0155
  article-title: Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00060-4
– volume: 195
  start-page: 216
  year: 2018
  ident: 10.1016/j.seppur.2018.09.081_b0095
  article-title: Desalination and fouling of NF/low pressure RO membrane for shale gas fracturing flowback water treatment
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.12.017
– volume: 438
  start-page: 18
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0255
  article-title: Effects of pH and salt on nanofiltration—a critical review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.03.029
– year: 2012
  ident: 10.1016/j.seppur.2018.09.081_b0190
– volume: 431
  start-page: 55
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0045
  article-title: Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.12.030
– volume: 47
  start-page: 11829
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0050
  article-title: Life cycle water consumption for shale gas and conventional natural gas
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4013855
– volume: 45
  start-page: 5428
  year: 2011
  ident: 10.1016/j.seppur.2018.09.081_b0170
  article-title: Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.08.014
– volume: 168
  start-page: 39
  year: 2016
  ident: 10.1016/j.seppur.2018.09.081_b0235
  article-title: Hybrid processes for treatment of landfill leachate: coagulation/UF/NF-RO and adsorption/UF/NF-RO
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.05.016
– volume: 2
  start-page: 276
  year: 2015
  ident: 10.1016/j.seppur.2018.09.081_b0025
  article-title: Water footprint of hydraulic fracturing
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.5b00211
– year: 2014
  ident: 10.1016/j.seppur.2018.09.081_b0020
– volume: 356
  start-page: 226
  year: 2015
  ident: 10.1016/j.seppur.2018.09.081_b0070
  article-title: Nanofiltration membranes review: recent advances and future prospects
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.10.043
– ident: 10.1016/j.seppur.2018.09.081_b0005
– volume: 182
  start-page: 292
  year: 2016
  ident: 10.1016/j.seppur.2018.09.081_b0035
  article-title: A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.051
– volume: 38
  start-page: 4271
  year: 2004
  ident: 10.1016/j.seppur.2018.09.081_b0160
  article-title: In-line coagulation with low-pressure membrane filtration
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.08.006
– volume: 330
  start-page: 61
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0250
  article-title: Investigation on high NF permeate recovery and scaling potential prediction in NF–SWRO integrated membrane operation
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.09.021
– ident: 10.1016/j.seppur.2018.09.081_b0110
– volume: 125
  start-page: 147
  year: 2014
  ident: 10.1016/j.seppur.2018.09.081_b0120
  article-title: Shale-to-well energy use and air pollutant emissions of shale gas production in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.039
– volume: 110
  start-page: 107
  year: 1997
  ident: 10.1016/j.seppur.2018.09.081_b0100
  article-title: Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration—a new approach to reduce costs
  publication-title: Desalination
  doi: 10.1016/S0011-9164(97)00090-8
– volume: 463
  start-page: 145
  year: 2014
  ident: 10.1016/j.seppur.2018.09.081_b0200
  article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.03.055
– volume: 76
  start-page: 575
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0130
  article-title: Removal of calcium and magnesium ions from shale gas flowback water by chemical activated zeolite
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.237
– volume: 146
  start-page: 20
  year: 2007
  ident: 10.1016/j.seppur.2018.09.081_b0225
  article-title: Removal of small trihalomethane precursors from aqueous solution by nanofiltration
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.11.050
– volume: 47
  start-page: 2562
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0030
  article-title: Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304638h
– volume: 126
  start-page: 481
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0135
  article-title: Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.057
– volume: 48
  start-page: 1334
  year: 2014
  ident: 10.1016/j.seppur.2018.09.081_b0195
  article-title: Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403852h
– ident: 10.1016/j.seppur.2018.09.081_b0065
  doi: 10.2118/167775-MS
– volume: 254
  start-page: 17
  year: 2010
  ident: 10.1016/j.seppur.2018.09.081_b0265
  article-title: NF membrane fouling by aluminum and iron coagulant residuals after coagulation–MF pretreatment
  publication-title: Desalination
  doi: 10.1016/j.desal.2009.12.020
– volume: 493
  start-page: 723
  year: 2015
  ident: 10.1016/j.seppur.2018.09.081_b0150
  article-title: Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: effects of membrane properties and backwash water composition
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.07.001
– volume: 40
  start-page: 325
  year: 2006
  ident: 10.1016/j.seppur.2018.09.081_b0185
  article-title: Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051423+
– volume: 100–102
  start-page: 475
  year: 2003
  ident: 10.1016/j.seppur.2018.09.081_b0175
  article-title: Coagulation by hydrolysing metal salts
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(02)00067-2
– volume: 613–614
  start-page: 208
  year: 2018
  ident: 10.1016/j.seppur.2018.09.081_b0105
  article-title: Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.031
– volume: 198
  start-page: 335
  year: 2006
  ident: 10.1016/j.seppur.2018.09.081_b0140
  article-title: Determination of the parameters of the Spiegler–Kedem–Katchalsky model for nanofiltration of single electrolyte solutions
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.02.009
– volume: 279
  start-page: 165
  year: 2006
  ident: 10.1016/j.seppur.2018.09.081_b0220
  article-title: Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.12.001
– volume: 41
  start-page: 4767
  year: 2007
  ident: 10.1016/j.seppur.2018.09.081_b0280
  article-title: Membrane independent limiting flux for RO and NF membranes fouled by humic acid
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es063105w
– volume: 403–404
  start-page: 32
  year: 2012
  ident: 10.1016/j.seppur.2018.09.081_b0210
  article-title: Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.02.007
– volume: 543
  start-page: 319
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0085
  article-title: Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: selectivity and implications for treatment
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.08.028
– volume: 118
  start-page: 109
  year: 1998
  ident: 10.1016/j.seppur.2018.09.081_b0275
  article-title: Nanofiltration of natural organic matter Removal, fouling and the influence of multivalent ions
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00104-0
– volume: 47
  start-page: 9569
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0040
  article-title: Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401966e
– volume: 322
  start-page: 162
  year: 2008
  ident: 10.1016/j.seppur.2018.09.081_b0245
  article-title: Produced water treatment by nanofiltration and reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.05.039
– volume: 258
  start-page: 43
  year: 2005
  ident: 10.1016/j.seppur.2018.09.081_b0205
  article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.02.025
– volume: 57
  start-page: 10222
  year: 2016
  ident: 10.1016/j.seppur.2018.09.081_b0075
  article-title: Pretreatment and desalination of flowback water from the hydraulic fracturing
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2015.1038588
– volume: 34
  start-page: 3780
  year: 2000
  ident: 10.1016/j.seppur.2018.09.081_b0180
  article-title: Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9907461
– volume: 56
  start-page: 4386
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0290
  article-title: Optimal pretreatment system of flowback water from shale gas production
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b04016
– volume: 277
  start-page: 106
  year: 2011
  ident: 10.1016/j.seppur.2018.09.081_b0260
  article-title: Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.04.010
– ident: 10.1016/j.seppur.2018.09.081_b0055
– volume: 171
  start-page: 297
  year: 2016
  ident: 10.1016/j.seppur.2018.09.081_b0090
  article-title: Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.07.008
– volume: 328
  start-page: 1624
  year: 2010
  ident: 10.1016/j.seppur.2018.09.081_b0015
  article-title: Natural gas from shale bursts onto the scene
  publication-title: Science
  doi: 10.1126/science.328.5986.1624
– volume: 51
  start-page: 930
  year: 2013
  ident: 10.1016/j.seppur.2018.09.081_b0240
  article-title: Selection of nanofiltration membranes as pretreatment for scaling prevention in SWRO using real seawater
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2012.714578
– volume: 3
  start-page: 332
  year: 2016
  ident: 10.1016/j.seppur.2018.09.081_b0145
  article-title: Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds?
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.6b00263
– volume: 523
  start-page: 68
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0230
  article-title: Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.10.005
– volume: 181
  start-page: 485
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0270
  article-title: Optimization of coagulation with ferric chloride as a pretreatment for fouling reduction during nanofiltration of rendering plant secondary effluent
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.04.108
– volume: 7
  start-page: 181
  year: 2011
  ident: 10.1016/j.seppur.2018.09.081_b0060
  article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing
  publication-title: Elements
  doi: 10.2113/gselements.7.3.181
– volume: 402
  start-page: 143
  year: 2017
  ident: 10.1016/j.seppur.2018.09.081_b0165
  article-title: Gas field produced/process water treatment using forward osmosis hollow fiber membrane: membrane fouling and chemical cleaning
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.10.006
SSID ssj0017182
Score 2.573737
Snippet [Display omitted] •Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 310
SubjectTerms Coagulation-ultrafiltration
Flowback and produced water
Internal reuse
Nanofiltration
Weiyuan shale gas
Title An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water
URI https://dx.doi.org/10.1016/j.seppur.2018.09.081
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_Aam2Szu_FYxFIVe1Ght7DJ7mi1JCFN6EX87c7mURVEweMkM9kwGeZBZr4h5Mw32nMZM45kGgsUH-widySZkDEAl0zVONt3YzF6DG4mfLJCLrtZGNtW2fr-xqfX3rq90m-12c-n0_69h8UVDzG-hGhGWErYCfZAWvz88_dlm4eHvrf-44nMjuXuxufqHq-5yfPKooJ6YY12Gno_h6cvIWe4RTbbXJEOmtfZJism3SEbXxAEd8nbIKVLxAdNk0w9tfu4nGpWFgqmsxYX10lVmn2SNG8mBCgmrfUT6qMKU80NzYDOnzFw0CeF92fZIlbJK1WptkIabUHTBR5X7JHH4dXD5chpFyo4CQtY6ZgES1KQoTA6CQOu7RSq5j4Y4zKuEuaGGjyBUT-OIeGB8DG_QI0KIxSyYzKzT1bTLDUHhEqQAYCPgc8NAuCY5SgQGjiLBQiQ8pCwTo9R0qKN26UXs6hrK3uJGu1HVvuRexGh9g-Js5TKG7SNP_hl94mib1YTYUD4VfLo35LHZB2pC9uH5oUnZLUsKnOKiUkZ92rL65G1wfXtaPwBj-TmHQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI54HIAD4rWCXR45cK2mbV7lOEKg4TUXQOIWpU3MzjJqq3mIy_74ddp0AAmxEsc0dlO5lh-K_ZmQ09TZJGbMRYpZTFBS8IPcccmkygGEYqbB2b4bysEjv34ST0vkvOuF8WWVwfa3Nr2x1uFJL0izV49GvfsEkyuRoX_JUI0wlVgmqx6dCpV9tX91MxguLhPQ_DaXnkgfeYaug64p85q6up57YNAkawBPs-RzD_XO61xukc0QLtJ--0XbZMmVO2TjHYjgLvnbL-kC9MHSojLPYSRXNB_PJgZG4wCNG5WmrN6WtG6bBCjGrc0bmqMmbj51tAI6_Y2-gz4b3B9Xr7kpXqgprWeyqA6WvuJxkz3yeHnxcD6IwkyFqGCczSJXYFYKKpPOFhkX1jeiWpGCczETpmBxZiGR6PjzHArBZYohBldcOmmQHOOZH2SlrEq3T6gCxQFS9H0x5yAw0DEgLQiWS5Cg1AFhnRx1EQDH_dyLse4qy_7oVvraS1_HZxqlf0CiBVfdAm78h151v0h_UByNPuFLzp_f5jwha4OHu1t9ezW8-UXWcefMl6Ul2SFZmU3m7gjjlFl-HPTwH2-K6M4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+coagulation-ultrafiltration-nanofiltration+process+for+internal+reuse+of+shale+gas+flowback+and+produced+water&rft.jtitle=Separation+and+purification+technology&rft.au=Chang%2C+Haiqing&rft.au=Liu%2C+Baicang&rft.au=Yang%2C+Boxuan&rft.au=Yang%2C+Xin&rft.date=2019-03-18&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=211&rft.spage=310&rft.epage=321&rft_id=info:doi/10.1016%2Fj.seppur.2018.09.081&rft.externalDocID=S1383586618319026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon