An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water
[Display omitted] •Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by more than 80%.•Effect of NF membrane type, water recovery and operating pressure were evaluated.•Optimum operating conditions for coagulation-U...
Saved in:
Published in | Separation and purification technology Vol. 211; pp. 310 - 321 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
18.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2018.09.081 |
Cover
Loading…
Abstract | [Display omitted]
•Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by more than 80%.•Effect of NF membrane type, water recovery and operating pressure were evaluated.•Optimum operating conditions for coagulation-UF-NF process were determined.•The integrated process removed 73% of Ca2+ and more than 80% of Mg2+, Ba2+ and Sr2+.
The internal reuse of flowback and produced water (FPW) for another hydraulic fracking is currently the most dominant and economical option but is subject to certain restrictions, including the declined performance of hydraulic fracturing due to residual divalent metal ions. In this study, we investigated the performance of coagulation-ultrafiltration (UF)-nanofiltration (NF) in treating Weiyuan shale gas FPW. Different coagulants (aluminum, iron), dosages (0–1200 mg/L), types of NF membranes (VNF1, NF90, NF270), water recoveries (50–85%) and working pressures (100–400 psi) have been systematically studied and analyzed. The results indicated that (1) aluminum and iron coagulation at optimal dosage decreased UF membrane fouling resistance by 64% and 84%, respectively; coagulation followed by UF was suitable as NF pretreatment; (2) Membrane type significantly influenced permeate flux and contaminant rejection of NF membranes; An decrease in operating pressure (100–200 psi) resulted in a slight fouling suggesting the presence of a limiting flux; (3) Coagulation (iron, 900 mg/L)-UF-NF (200 psi) process removed 99.9% of turbidity, 94.2% of COD and most divalent ions (72.8% of Ca2+, 86.3% of Mg2+, 82.8% of Ba2+, 80.1% of Sr2+ and 91.7% of SO42−). The integrated coagulation-UF-NF process was an effective technology for internal reuse of FPW in shale plays. |
---|---|
AbstractList | [Display omitted]
•Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by more than 80%.•Effect of NF membrane type, water recovery and operating pressure were evaluated.•Optimum operating conditions for coagulation-UF-NF process were determined.•The integrated process removed 73% of Ca2+ and more than 80% of Mg2+, Ba2+ and Sr2+.
The internal reuse of flowback and produced water (FPW) for another hydraulic fracking is currently the most dominant and economical option but is subject to certain restrictions, including the declined performance of hydraulic fracturing due to residual divalent metal ions. In this study, we investigated the performance of coagulation-ultrafiltration (UF)-nanofiltration (NF) in treating Weiyuan shale gas FPW. Different coagulants (aluminum, iron), dosages (0–1200 mg/L), types of NF membranes (VNF1, NF90, NF270), water recoveries (50–85%) and working pressures (100–400 psi) have been systematically studied and analyzed. The results indicated that (1) aluminum and iron coagulation at optimal dosage decreased UF membrane fouling resistance by 64% and 84%, respectively; coagulation followed by UF was suitable as NF pretreatment; (2) Membrane type significantly influenced permeate flux and contaminant rejection of NF membranes; An decrease in operating pressure (100–200 psi) resulted in a slight fouling suggesting the presence of a limiting flux; (3) Coagulation (iron, 900 mg/L)-UF-NF (200 psi) process removed 99.9% of turbidity, 94.2% of COD and most divalent ions (72.8% of Ca2+, 86.3% of Mg2+, 82.8% of Ba2+, 80.1% of Sr2+ and 91.7% of SO42−). The integrated coagulation-UF-NF process was an effective technology for internal reuse of FPW in shale plays. |
Author | Yang, Ping Yang, Xin Chen, Sheng Guo, Can Chang, Haiqing Yang, Boxuan He, Qiping Liu, Baicang Liang, Songmiao |
Author_xml | – sequence: 1 givenname: Haiqing surname: Chang fullname: Chang, Haiqing organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China – sequence: 2 givenname: Baicang orcidid: 0000-0003-3219-1924 surname: Liu fullname: Liu, Baicang email: bcliu@scu.edu.cn organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China – sequence: 3 givenname: Boxuan surname: Yang fullname: Yang, Boxuan organization: College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China – sequence: 4 givenname: Xin surname: Yang fullname: Yang, Xin organization: College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China – sequence: 5 givenname: Can surname: Guo fullname: Guo, Can organization: Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China – sequence: 6 givenname: Qiping surname: He fullname: He, Qiping organization: Chuanqing Drilling Engineering Company Limited, Chinese National Petroleum Corporation, Chengdu 610081, PR China – sequence: 7 givenname: Songmiao orcidid: 0000-0002-7790-3684 surname: Liang fullname: Liang, Songmiao organization: Vontron Technology Co., Ltd., Guiyang 550018, PR China – sequence: 8 givenname: Sheng orcidid: 0000-0002-9428-3675 surname: Chen fullname: Chen, Sheng organization: College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, PR China – sequence: 9 givenname: Ping surname: Yang fullname: Yang, Ping organization: College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China |
BookMark | eNqFkM9KAzEQxoNUsK2-gYe8wK7JJptNPQil-A8EL3oOaXZSU9ekJLsWwYc3bQXBg14yGWZ-3_B9EzTywQNC55SUlFBxsS4TbDZDLCtCZUlmJZH0CI2pbFjBmhkf5T-TrKilECdoktKaENpQWY3R59xj53tYRd1Di03Qq6HTvQu-GLo-aut277732oefFm9iMJAStiHuFaLXHY4wJMDB4vSiO8Arnedd2C61ecXatzuoHUw-tM3n4ik6trpLcPZdp-j55vppcVc8PN7eL-YPhWGc9QWYhjLbSAGtkbxuZ4I3bV1ZAMJqbRiRraWCVHS5tKbmoiIN5w0XIHReJ4JNET_omhhSimDVJro3HT8UJWqXoFqrQ4Jql6AiM5UTzNjlL8y4fm8-Z-C6_-CrAwzZ2LuDqJJx4LN3F8H0qg3ub4EvZrCVWQ |
CitedBy_id | crossref_primary_10_1021_acsestengg_3c00138 crossref_primary_10_1016_j_seppur_2024_126927 crossref_primary_10_1016_j_seppur_2021_119310 crossref_primary_10_1016_j_desal_2019_01_001 crossref_primary_10_1016_j_jece_2019_102878 crossref_primary_10_3390_ma18051020 crossref_primary_10_1089_ees_2019_0102 crossref_primary_10_1002_jctb_6538 crossref_primary_10_1016_j_jenvman_2019_05_043 crossref_primary_10_1016_j_jece_2024_115278 crossref_primary_10_5004_dwt_2023_30075 crossref_primary_10_1016_j_watres_2024_122332 crossref_primary_10_1016_j_polymer_2023_125720 crossref_primary_10_1016_j_jwpe_2022_103479 crossref_primary_10_1016_j_memsci_2021_120198 crossref_primary_10_1016_j_jwpe_2022_103197 crossref_primary_10_1016_j_jclepro_2020_122341 crossref_primary_10_1016_j_scitotenv_2020_140766 crossref_primary_10_1016_j_seppur_2024_128652 crossref_primary_10_1016_j_desal_2023_116944 crossref_primary_10_1016_j_jwpe_2021_102478 crossref_primary_10_1080_10916466_2022_2096633 crossref_primary_10_1016_j_seppur_2022_120819 crossref_primary_10_1007_s11783_019_1147_y crossref_primary_10_1016_j_cej_2019_123743 crossref_primary_10_1016_j_envres_2020_110228 crossref_primary_10_1016_j_memsci_2021_119930 crossref_primary_10_1016_j_seppur_2024_126758 crossref_primary_10_1016_j_eng_2021_01_013 crossref_primary_10_1016_j_seppur_2023_125616 crossref_primary_10_1016_j_memsci_2021_120129 crossref_primary_10_1016_j_chemosphere_2024_142259 crossref_primary_10_1016_j_scitotenv_2023_168135 crossref_primary_10_1021_acssuschemeng_0c04971 crossref_primary_10_1080_09593330_2023_2238130 crossref_primary_10_1016_j_partic_2024_06_005 crossref_primary_10_1016_j_jwpe_2025_107166 crossref_primary_10_1080_01496395_2022_2131578 crossref_primary_10_1021_acs_est_0c03243 crossref_primary_10_1089_ees_2019_0487 crossref_primary_10_1016_j_seppur_2024_128124 crossref_primary_10_1016_j_chemosphere_2024_141834 crossref_primary_10_2139_ssrn_4144355 crossref_primary_10_1016_j_jclepro_2024_141914 crossref_primary_10_1016_j_jwpe_2019_02_001 crossref_primary_10_1016_j_desal_2023_116852 crossref_primary_10_1016_j_seppur_2019_116294 crossref_primary_10_1016_j_fuel_2020_117621 crossref_primary_10_1021_acsestwater_2c00625 crossref_primary_10_1016_j_chemosphere_2020_127968 crossref_primary_10_1016_j_jwpe_2019_101117 crossref_primary_10_1016_j_seppur_2020_116935 crossref_primary_10_1016_j_scitotenv_2023_163478 crossref_primary_10_1002_cmtd_202400046 crossref_primary_10_1016_j_envint_2019_05_063 crossref_primary_10_1016_j_jwpe_2020_101547 crossref_primary_10_1016_j_scitotenv_2020_140030 crossref_primary_10_2139_ssrn_3972690 crossref_primary_10_1016_j_watres_2020_116753 crossref_primary_10_1016_j_resconrec_2021_106011 crossref_primary_10_1039_D4EW00373J crossref_primary_10_1016_j_jhazmat_2021_127124 crossref_primary_10_1016_j_envres_2024_119888 crossref_primary_10_1016_j_jwpe_2023_103541 crossref_primary_10_1016_j_desal_2021_115545 crossref_primary_10_1016_j_ceja_2020_100011 crossref_primary_10_1016_j_envres_2020_109833 crossref_primary_10_1016_j_scitotenv_2023_162376 crossref_primary_10_1016_j_seppur_2024_131110 crossref_primary_10_2139_ssrn_4113836 crossref_primary_10_1016_j_memsci_2020_118738 crossref_primary_10_1021_acsestengg_0c00170 crossref_primary_10_1016_j_cej_2023_145576 crossref_primary_10_1016_j_scitotenv_2022_153887 crossref_primary_10_1016_j_biortech_2021_126191 crossref_primary_10_1016_j_psep_2020_12_030 crossref_primary_10_1016_j_cej_2021_128699 crossref_primary_10_1016_j_jwpe_2024_105173 crossref_primary_10_1016_j_seppur_2020_117047 crossref_primary_10_1016_j_seppur_2025_132046 crossref_primary_10_1016_j_rineng_2023_100938 crossref_primary_10_1016_j_seppur_2020_116599 crossref_primary_10_1016_j_memsci_2022_121100 crossref_primary_10_1021_acsami_0c11136 crossref_primary_10_1016_j_chemosphere_2022_137415 crossref_primary_10_1016_j_seppur_2024_129023 crossref_primary_10_1016_j_scitotenv_2022_156664 crossref_primary_10_1021_acsestwater_2c00453 crossref_primary_10_3390_membranes12121276 crossref_primary_10_1016_j_desal_2021_115377 crossref_primary_10_1007_s10098_019_01789_8 crossref_primary_10_1016_j_memsci_2020_118469 crossref_primary_10_1016_j_clce_2022_100032 crossref_primary_10_1039_D3EW00292F crossref_primary_10_1016_j_envres_2022_113486 crossref_primary_10_1016_j_memsci_2024_122625 crossref_primary_10_3390_w12030770 crossref_primary_10_1016_j_psep_2022_07_057 crossref_primary_10_1016_j_memsci_2019_117187 crossref_primary_10_1016_j_psep_2023_11_002 crossref_primary_10_1016_j_memsci_2020_118638 crossref_primary_10_1016_j_seppur_2022_120920 crossref_primary_10_3390_membranes10050089 crossref_primary_10_1016_j_scitotenv_2019_06_365 crossref_primary_10_1080_10916466_2022_2025833 crossref_primary_10_1016_j_envpol_2023_122717 crossref_primary_10_1016_j_jes_2022_02_002 crossref_primary_10_1016_j_memsci_2020_118526 crossref_primary_10_1016_j_jenvman_2024_121192 |
Cites_doi | 10.1016/j.scitotenv.2018.02.219 10.1039/C8EW00036K 10.1016/j.memsci.2006.12.017 10.1016/j.desal.2018.05.004 10.1016/j.memsci.2008.10.043 10.1126/science.1235009 10.1016/S0376-7388(97)00060-4 10.1016/j.seppur.2017.12.017 10.1016/j.memsci.2013.03.029 10.1016/j.memsci.2012.12.030 10.1021/es4013855 10.1016/j.watres.2011.08.014 10.1016/j.seppur.2016.05.016 10.1021/acs.estlett.5b00211 10.1016/j.desal.2014.10.043 10.1016/j.fuel.2016.05.051 10.1016/j.watres.2004.08.006 10.1016/j.desal.2013.09.021 10.1016/j.apenergy.2014.03.039 10.1016/S0011-9164(97)00090-8 10.1016/j.memsci.2014.03.055 10.2166/wst.2017.237 10.1016/j.jhazmat.2006.11.050 10.1021/es304638h 10.1016/j.watres.2017.09.057 10.1021/es403852h 10.2118/167775-MS 10.1016/j.desal.2009.12.020 10.1016/j.memsci.2015.07.001 10.1021/es051423+ 10.1016/S0001-8686(02)00067-2 10.1016/j.scitotenv.2017.09.031 10.1016/j.desal.2006.02.009 10.1016/j.memsci.2005.12.001 10.1021/es063105w 10.1016/j.memsci.2012.02.007 10.1016/j.memsci.2017.08.028 10.1016/S0011-9164(98)00104-0 10.1021/es401966e 10.1016/j.memsci.2008.05.039 10.1016/j.memsci.2005.02.025 10.1080/19443994.2015.1038588 10.1021/es9907461 10.1021/acs.iecr.6b04016 10.1016/j.desal.2011.04.010 10.1016/j.seppur.2016.07.008 10.1126/science.328.5986.1624 10.1080/19443994.2012.714578 10.1021/acs.estlett.6b00263 10.1016/j.memsci.2016.10.005 10.1016/j.chemosphere.2017.04.108 10.2113/gselements.7.3.181 10.1016/j.desal.2016.10.006 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2018.09.081 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
EndPage | 321 |
ExternalDocumentID | 10_1016_j_seppur_2018_09_081 S1383586618319026 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH |
ID | FETCH-LOGICAL-c343t-ec713f786edc845d9647d52fee035ac308df16021bbfc54620744746e6a845063 |
IEDL.DBID | .~1 |
ISSN | 1383-5866 |
IngestDate | Tue Jul 01 00:32:18 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Fri Feb 23 02:23:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanofiltration Coagulation-ultrafiltration Internal reuse Flowback and produced water Weiyuan shale gas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-ec713f786edc845d9647d52fee035ac308df16021bbfc54620744746e6a845063 |
ORCID | 0000-0003-3219-1924 0000-0002-7790-3684 0000-0002-9428-3675 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_seppur_2018_09_081 crossref_citationtrail_10_1016_j_seppur_2018_09_081 elsevier_sciencedirect_doi_10_1016_j_seppur_2018_09_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-18 |
PublicationDateYYYYMMDD | 2019-03-18 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shaffer, Chavez, Ben-Sasson, Castrillón, Yip, Elimelech (b0040) 2013; 47 Song, Su, Gao, Gao (b0250) 2013; 330 Chorghe, Sari, Chellam (b0135) 2017; 126 Kerr (b0015) 2010; 328 J. Zhou, M. Baltazar, H. Sun, Q. Qu, Water-based environmentally preferred friction reducer in ultrahigh-TDS produced water for slickwater fracturing in shale reservoirs, in: SPE/EAGE European Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Vienna, Austria, 2014. Clark, Horner, Harto (b0050) 2013; 47 Luo, Wan (b0255) 2013; 438 Tang, Kwon, Leckie (b0285) 2009; 326 Chang, Huang, Ries, Masanet (b0120) 2014; 125 Kondash, Warner, Lahav, Vengosh (b0195) 2014; 48 U.S. Energy Information Administration, Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, in: U.S. Department of Energy, Washington, DC, 2013. Lee, Lee, Jo, Park, Lee, Kwak (b0180) 2000; 34 Dischinger, Rosenblum, Noble, Gin, Linden (b0085) 2017; 543 Lin, Chiang, Chang (b0225) 2007; 146 Hong, Elimelech (b0155) 1997; 132 Vidic, Brantley, Vandenbossche, Yoxtheimer, Abad (b0010) 2013; 340 Duan, Gregory (b0175) 2003; 100–102 Tang, Leckie (b0280) 2007; 41 Koter (b0140) 2006; 198 Ohno, Matsui, Itoh, Oguchi, Kondo, Konno, Matsushita, Magara (b0265) 2010; 254 Choi, Dempsey (b0160) 2004; 38 Hu, Liu, Qu, Wang, Ru (b0185) 2006; 40 Llenas, Ribera, Martínez-Lladó, Rovira, de Pablo (b0240) 2013; 51 Barbot, Vidic, Gregory, Vidic (b0030) 2013; 47 IEA, Golden rules for a golden age of gas: world energy outlook – special report on unconventional gas, in: World Energy Outlook 2012, International Energy Agency, Paris, France, 2012. Kong, Sun, Chen, Han, Guo, Tong-Zhang, Lin (b0095) 2018; 195 Riley, Ahoor, Regnery, Cath (b0105) 2018; 613–614 Kondash, Vengosh (b0025) 2015; 2 Subhi, Verliefde, Chen, Le-Clech (b0210) 2012; 403–404 Kelewou, Lhassani, Merzouki, Drogui, Sellamuthu (b0260) 2011; 277 Kang, Cao (b0200) 2014; 463 Gregory, Vidic, Dzombak (b0060) 2011; 7 Rosberg (b0100) 1997; 110 Sari, Chellam (b0230) 2017; 523 Tang, Kwon, Leckie (b0215) 2007; 290 Park, Kwon, Kim, Cho (b0205) 2005; 258 Reig, Luo, Proctor (b0020) 2014 Riley, Ahoor, Oetjen, Cath (b0080) 2018; 442 Edzwald, Haarhoff (b0170) 2011; 45 Wang (b0190) 2012 Schäfer, Fane, Waite (b0275) 1998; 118 Chang, Liu, He, Li, Crittenden, Liu (b0130) 2017; 76 Zhao, Minier-Matar, Chou, Wang, Fane, Adham (b0165) 2017; 402 Estrada, Bhamidimarri (b0035) 2016; 182 Guo, Deng, Tao, Yao, Wang, Lin, Zhang, Zhu, Tang (b0145) 2016; 3 Xu, Drewes, Kim, Bellona, Amy (b0220) 2006; 279 Carrero-Parreño, Onishi, Salcedo-Díaz, Ruiz-Femenia, Fraga, Caballero, Reyes-Labarta (b0290) 2017; 56 Riley, Oliveira, Regnery, Cath (b0090) 2016; 171 Mohammad, Teow, Ang, Chung, Oatley-Radcliffe, Hilal (b0070) 2015; 356 Michel, Reczek, Granops, Rudnicki, Piech (b0075) 2016; 57 Guo, Chang, Liu, He, Xiong, Kumar, Zydney (b0125) 2018; 4 Racar, Dolar, Spehar, Kras, Kosutic (b0270) 2017; 181 Jiang, Rentschler, Perrone, Liu (b0045) 2013; 431 Chang, Qu, Liu, Yu, Li, Shao, Li, Liang (b0150) 2015; 493 H.R. Acharya, C. Henderson, H. Matis, H. Kommepalli, B. Moore, H. Wang, Cost effective recovery of low-TDS Frac Flowback water for re-use: final report, in: U.S. Department of Energy, Washington, DC, 2011. Zou, Ni, Li, Kondash, Coyte, Lauer, Cui, Liao, Vengosh (b0115) 2018; 630 Mondal, Wickramasinghe (b0245) 2008; 322 Dolar, Košutić, Strmecky (b0235) 2016; 168 10.1016/j.seppur.2018.09.081_b0055 Kong (10.1016/j.seppur.2018.09.081_b0095) 2018; 195 Kondash (10.1016/j.seppur.2018.09.081_b0195) 2014; 48 Tang (10.1016/j.seppur.2018.09.081_b0215) 2007; 290 Kang (10.1016/j.seppur.2018.09.081_b0200) 2014; 463 Duan (10.1016/j.seppur.2018.09.081_b0175) 2003; 100–102 Michel (10.1016/j.seppur.2018.09.081_b0075) 2016; 57 Zou (10.1016/j.seppur.2018.09.081_b0115) 2018; 630 Song (10.1016/j.seppur.2018.09.081_b0250) 2013; 330 Riley (10.1016/j.seppur.2018.09.081_b0080) 2018; 442 Riley (10.1016/j.seppur.2018.09.081_b0105) 2018; 613–614 Hong (10.1016/j.seppur.2018.09.081_b0155) 1997; 132 Luo (10.1016/j.seppur.2018.09.081_b0255) 2013; 438 Lee (10.1016/j.seppur.2018.09.081_b0180) 2000; 34 Chorghe (10.1016/j.seppur.2018.09.081_b0135) 2017; 126 10.1016/j.seppur.2018.09.081_b0065 Edzwald (10.1016/j.seppur.2018.09.081_b0170) 2011; 45 Tang (10.1016/j.seppur.2018.09.081_b0280) 2007; 41 Hu (10.1016/j.seppur.2018.09.081_b0185) 2006; 40 Estrada (10.1016/j.seppur.2018.09.081_b0035) 2016; 182 Koter (10.1016/j.seppur.2018.09.081_b0140) 2006; 198 Lin (10.1016/j.seppur.2018.09.081_b0225) 2007; 146 Shaffer (10.1016/j.seppur.2018.09.081_b0040) 2013; 47 Mondal (10.1016/j.seppur.2018.09.081_b0245) 2008; 322 Zhao (10.1016/j.seppur.2018.09.081_b0165) 2017; 402 Reig (10.1016/j.seppur.2018.09.081_b0020) 2014 Chang (10.1016/j.seppur.2018.09.081_b0130) 2017; 76 Kerr (10.1016/j.seppur.2018.09.081_b0015) 2010; 328 10.1016/j.seppur.2018.09.081_b0110 Subhi (10.1016/j.seppur.2018.09.081_b0210) 2012; 403–404 Ohno (10.1016/j.seppur.2018.09.081_b0265) 2010; 254 Chang (10.1016/j.seppur.2018.09.081_b0150) 2015; 493 Schäfer (10.1016/j.seppur.2018.09.081_b0275) 1998; 118 Jiang (10.1016/j.seppur.2018.09.081_b0045) 2013; 431 Riley (10.1016/j.seppur.2018.09.081_b0090) 2016; 171 Tang (10.1016/j.seppur.2018.09.081_b0285) 2009; 326 Chang (10.1016/j.seppur.2018.09.081_b0120) 2014; 125 Wang (10.1016/j.seppur.2018.09.081_b0190) 2012 Kondash (10.1016/j.seppur.2018.09.081_b0025) 2015; 2 Llenas (10.1016/j.seppur.2018.09.081_b0240) 2013; 51 Rosberg (10.1016/j.seppur.2018.09.081_b0100) 1997; 110 Guo (10.1016/j.seppur.2018.09.081_b0145) 2016; 3 Vidic (10.1016/j.seppur.2018.09.081_b0010) 2013; 340 Carrero-Parreño (10.1016/j.seppur.2018.09.081_b0290) 2017; 56 Gregory (10.1016/j.seppur.2018.09.081_b0060) 2011; 7 Barbot (10.1016/j.seppur.2018.09.081_b0030) 2013; 47 10.1016/j.seppur.2018.09.081_b0005 Dischinger (10.1016/j.seppur.2018.09.081_b0085) 2017; 543 Dolar (10.1016/j.seppur.2018.09.081_b0235) 2016; 168 Guo (10.1016/j.seppur.2018.09.081_b0125) 2018; 4 Racar (10.1016/j.seppur.2018.09.081_b0270) 2017; 181 Kelewou (10.1016/j.seppur.2018.09.081_b0260) 2011; 277 Choi (10.1016/j.seppur.2018.09.081_b0160) 2004; 38 Park (10.1016/j.seppur.2018.09.081_b0205) 2005; 258 Xu (10.1016/j.seppur.2018.09.081_b0220) 2006; 279 Mohammad (10.1016/j.seppur.2018.09.081_b0070) 2015; 356 Sari (10.1016/j.seppur.2018.09.081_b0230) 2017; 523 Clark (10.1016/j.seppur.2018.09.081_b0050) 2013; 47 |
References_xml | – volume: 47 start-page: 9569 year: 2013 end-page: 9583 ident: b0040 article-title: Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions publication-title: Environ. Sci. Technol. – reference: J. Zhou, M. Baltazar, H. Sun, Q. Qu, Water-based environmentally preferred friction reducer in ultrahigh-TDS produced water for slickwater fracturing in shale reservoirs, in: SPE/EAGE European Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, Vienna, Austria, 2014. – volume: 47 start-page: 2562 year: 2013 end-page: 2569 ident: b0030 article-title: Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing publication-title: Environ. Sci. Technol. – volume: 118 start-page: 109 year: 1998 end-page: 122 ident: b0275 article-title: Nanofiltration of natural organic matter Removal, fouling and the influence of multivalent ions publication-title: Desalination – volume: 403–404 start-page: 32 year: 2012 end-page: 40 ident: b0210 article-title: Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis publication-title: J. Membr. Sci. – volume: 356 start-page: 226 year: 2015 end-page: 254 ident: b0070 article-title: Nanofiltration membranes review: recent advances and future prospects publication-title: Desalination – volume: 3 start-page: 332 year: 2016 end-page: 338 ident: b0145 article-title: Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? publication-title: Environ. Sci. Technol. Lett. – volume: 277 start-page: 106 year: 2011 end-page: 112 ident: b0260 article-title: Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling publication-title: Desalination – volume: 38 start-page: 4271 year: 2004 end-page: 4281 ident: b0160 article-title: In-line coagulation with low-pressure membrane filtration publication-title: Water Res. – volume: 126 start-page: 481 year: 2017 end-page: 487 ident: b0135 article-title: Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations publication-title: Water Res. – volume: 463 start-page: 145 year: 2014 end-page: 165 ident: b0200 article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review publication-title: J. Membr. Sci. – volume: 168 start-page: 39 year: 2016 end-page: 46 ident: b0235 article-title: Hybrid processes for treatment of landfill leachate: coagulation/UF/NF-RO and adsorption/UF/NF-RO publication-title: Sep. Purif. Technol. – volume: 146 start-page: 20 year: 2007 end-page: 29 ident: b0225 article-title: Removal of small trihalomethane precursors from aqueous solution by nanofiltration publication-title: J. Hazard. Mater. – volume: 523 start-page: 68 year: 2017 end-page: 76 ident: b0230 article-title: Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water publication-title: J. Membr. Sci. – volume: 2 start-page: 276 year: 2015 end-page: 280 ident: b0025 article-title: Water footprint of hydraulic fracturing publication-title: Environ. Sci. Technol. Lett. – volume: 181 start-page: 485 year: 2017 end-page: 491 ident: b0270 article-title: Optimization of coagulation with ferric chloride as a pretreatment for fouling reduction during nanofiltration of rendering plant secondary effluent publication-title: Chemosphere – volume: 45 start-page: 5428 year: 2011 end-page: 5440 ident: b0170 article-title: Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation publication-title: Water Res. – volume: 330 start-page: 61 year: 2013 end-page: 69 ident: b0250 article-title: Investigation on high NF permeate recovery and scaling potential prediction in NF–SWRO integrated membrane operation publication-title: Desalination – volume: 431 start-page: 55 year: 2013 end-page: 61 ident: b0045 article-title: Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production publication-title: J. Membr. Sci. – volume: 125 start-page: 147 year: 2014 end-page: 157 ident: b0120 article-title: Shale-to-well energy use and air pollutant emissions of shale gas production in China publication-title: Appl. Energy – volume: 340 start-page: 1235009 year: 2013 ident: b0010 article-title: Impact of shale gas development on regional water quality publication-title: Science – volume: 7 start-page: 181 year: 2011 end-page: 186 ident: b0060 article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing publication-title: Elements – volume: 76 start-page: 575 year: 2017 end-page: 583 ident: b0130 article-title: Removal of calcium and magnesium ions from shale gas flowback water by chemical activated zeolite publication-title: Water Sci. Technol. – volume: 40 start-page: 325 year: 2006 end-page: 331 ident: b0185 article-title: Coagulation behavior of aluminum salts in eutrophic water: significance of Al publication-title: Environ. Sci. Technol. – volume: 195 start-page: 216 year: 2018 end-page: 223 ident: b0095 article-title: Desalination and fouling of NF/low pressure RO membrane for shale gas fracturing flowback water treatment publication-title: Sep. Purif. Technol. – volume: 493 start-page: 723 year: 2015 end-page: 733 ident: b0150 article-title: Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: effects of membrane properties and backwash water composition publication-title: J. Membr. Sci. – volume: 322 start-page: 162 year: 2008 end-page: 170 ident: b0245 article-title: Produced water treatment by nanofiltration and reverse osmosis membranes publication-title: J. Membr. Sci. – volume: 171 start-page: 297 year: 2016 end-page: 311 ident: b0090 article-title: Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water publication-title: Sep. Purif. Technol. – volume: 41 start-page: 4767 year: 2007 end-page: 4773 ident: b0280 article-title: Membrane independent limiting flux for RO and NF membranes fouled by humic acid publication-title: Environ. Sci. Technol. – volume: 613–614 start-page: 208 year: 2018 end-page: 217 ident: b0105 article-title: Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach publication-title: Sci. Total Environ. – volume: 279 start-page: 165 year: 2006 end-page: 175 ident: b0220 article-title: Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications publication-title: J. Membr. Sci. – volume: 51 start-page: 930 year: 2013 end-page: 935 ident: b0240 article-title: Selection of nanofiltration membranes as pretreatment for scaling prevention in SWRO using real seawater publication-title: Desalination Water Treat. – volume: 110 start-page: 107 year: 1997 end-page: 113 ident: b0100 article-title: Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration—a new approach to reduce costs publication-title: Desalination – volume: 47 start-page: 11829 year: 2013 end-page: 11836 ident: b0050 article-title: Life cycle water consumption for shale gas and conventional natural gas publication-title: Environ. Sci. Technol. – volume: 56 start-page: 4386 year: 2017 end-page: 4398 ident: b0290 article-title: Optimal pretreatment system of flowback water from shale gas production publication-title: Ind. Eng. Chem. Res. – volume: 34 start-page: 3780 year: 2000 end-page: 3788 ident: b0180 article-title: Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment publication-title: Environ. Sci. Technol. – volume: 4 start-page: 942 year: 2018 end-page: 955 ident: b0125 article-title: An ultrafiltration- reverse osmosis combined process for external reuse of Weiyuan shale gas flowback and produced water publication-title: Environ. Sci.-Water Res. – volume: 442 start-page: 51 year: 2018 end-page: 61 ident: b0080 article-title: Closed circuit desalination of O&G produced water: an evaluation of NF/RO performance and integrity publication-title: Desalination – reference: H.R. Acharya, C. Henderson, H. Matis, H. Kommepalli, B. Moore, H. Wang, Cost effective recovery of low-TDS Frac Flowback water for re-use: final report, in: U.S. Department of Energy, Washington, DC, 2011. – volume: 254 start-page: 17 year: 2010 end-page: 22 ident: b0265 article-title: NF membrane fouling by aluminum and iron coagulant residuals after coagulation–MF pretreatment publication-title: Desalination – volume: 182 start-page: 292 year: 2016 end-page: 303 ident: b0035 article-title: A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing publication-title: Fuel – volume: 198 start-page: 335 year: 2006 end-page: 345 ident: b0140 article-title: Determination of the parameters of the Spiegler–Kedem–Katchalsky model for nanofiltration of single electrolyte solutions publication-title: Desalination – year: 2014 ident: b0020 article-title: Global Shale Gas Development: Water Availability and Business Risks – volume: 132 start-page: 159 year: 1997 end-page: 181 ident: b0155 article-title: Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes publication-title: J. Membr. Sci. – volume: 630 start-page: 349 year: 2018 end-page: 356 ident: b0115 article-title: The water footprint of hydraulic fracturing in Sichuan Basin, China publication-title: Sci. Total Environ. – volume: 326 start-page: 526 year: 2009 end-page: 532 ident: b0285 article-title: The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement publication-title: J. Membr. Sci. – volume: 328 start-page: 1624 year: 2010 end-page: 1626 ident: b0015 article-title: Natural gas from shale bursts onto the scene publication-title: Science – volume: 57 start-page: 10222 year: 2016 end-page: 10231 ident: b0075 article-title: Pretreatment and desalination of flowback water from the hydraulic fracturing publication-title: Desalination Water Treat. – volume: 100–102 start-page: 475 year: 2003 end-page: 502 ident: b0175 article-title: Coagulation by hydrolysing metal salts publication-title: Adv. Colloid Interface Sci. – volume: 543 start-page: 319 year: 2017 end-page: 327 ident: b0085 article-title: Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: selectivity and implications for treatment publication-title: J. Membr. Sci. – reference: U.S. Energy Information Administration, Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, in: U.S. Department of Energy, Washington, DC, 2013. – volume: 438 start-page: 18 year: 2013 end-page: 28 ident: b0255 article-title: Effects of pH and salt on nanofiltration—a critical review publication-title: J. Membr. Sci. – year: 2012 ident: b0190 article-title: Use of Acid Mine Drainage in Recycling of Marcellus Shale Flowback Water: Solids Removal and Potential Fouling of Polymeric Microfiltration Membranes – volume: 290 start-page: 86 year: 2007 end-page: 94 ident: b0215 article-title: Fouling of reverse osmosis and nanofiltration membranes by humic acid—effects of solution composition and hydrodynamic conditions publication-title: J. Membr. Sci. – volume: 258 start-page: 43 year: 2005 end-page: 54 ident: b0205 article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters publication-title: J. Membr. Sci. – reference: IEA, Golden rules for a golden age of gas: world energy outlook – special report on unconventional gas, in: World Energy Outlook 2012, International Energy Agency, Paris, France, 2012. – volume: 402 start-page: 143 year: 2017 end-page: 151 ident: b0165 article-title: Gas field produced/process water treatment using forward osmosis hollow fiber membrane: membrane fouling and chemical cleaning publication-title: Desalination – volume: 48 start-page: 1334 year: 2014 end-page: 1342 ident: b0195 article-title: Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage publication-title: Environ. Sci. Technol. – volume: 630 start-page: 349 year: 2018 ident: 10.1016/j.seppur.2018.09.081_b0115 article-title: The water footprint of hydraulic fracturing in Sichuan Basin, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.219 – volume: 4 start-page: 942 year: 2018 ident: 10.1016/j.seppur.2018.09.081_b0125 article-title: An ultrafiltration- reverse osmosis combined process for external reuse of Weiyuan shale gas flowback and produced water publication-title: Environ. Sci.-Water Res. doi: 10.1039/C8EW00036K – volume: 290 start-page: 86 year: 2007 ident: 10.1016/j.seppur.2018.09.081_b0215 article-title: Fouling of reverse osmosis and nanofiltration membranes by humic acid—effects of solution composition and hydrodynamic conditions publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.12.017 – volume: 442 start-page: 51 year: 2018 ident: 10.1016/j.seppur.2018.09.081_b0080 article-title: Closed circuit desalination of O&G produced water: an evaluation of NF/RO performance and integrity publication-title: Desalination doi: 10.1016/j.desal.2018.05.004 – volume: 326 start-page: 526 year: 2009 ident: 10.1016/j.seppur.2018.09.081_b0285 article-title: The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.10.043 – volume: 340 start-page: 1235009 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0010 article-title: Impact of shale gas development on regional water quality publication-title: Science doi: 10.1126/science.1235009 – volume: 132 start-page: 159 year: 1997 ident: 10.1016/j.seppur.2018.09.081_b0155 article-title: Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00060-4 – volume: 195 start-page: 216 year: 2018 ident: 10.1016/j.seppur.2018.09.081_b0095 article-title: Desalination and fouling of NF/low pressure RO membrane for shale gas fracturing flowback water treatment publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.12.017 – volume: 438 start-page: 18 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0255 article-title: Effects of pH and salt on nanofiltration—a critical review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.03.029 – year: 2012 ident: 10.1016/j.seppur.2018.09.081_b0190 – volume: 431 start-page: 55 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0045 article-title: Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.12.030 – volume: 47 start-page: 11829 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0050 article-title: Life cycle water consumption for shale gas and conventional natural gas publication-title: Environ. Sci. Technol. doi: 10.1021/es4013855 – volume: 45 start-page: 5428 year: 2011 ident: 10.1016/j.seppur.2018.09.081_b0170 article-title: Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation publication-title: Water Res. doi: 10.1016/j.watres.2011.08.014 – volume: 168 start-page: 39 year: 2016 ident: 10.1016/j.seppur.2018.09.081_b0235 article-title: Hybrid processes for treatment of landfill leachate: coagulation/UF/NF-RO and adsorption/UF/NF-RO publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.05.016 – volume: 2 start-page: 276 year: 2015 ident: 10.1016/j.seppur.2018.09.081_b0025 article-title: Water footprint of hydraulic fracturing publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.5b00211 – year: 2014 ident: 10.1016/j.seppur.2018.09.081_b0020 – volume: 356 start-page: 226 year: 2015 ident: 10.1016/j.seppur.2018.09.081_b0070 article-title: Nanofiltration membranes review: recent advances and future prospects publication-title: Desalination doi: 10.1016/j.desal.2014.10.043 – ident: 10.1016/j.seppur.2018.09.081_b0005 – volume: 182 start-page: 292 year: 2016 ident: 10.1016/j.seppur.2018.09.081_b0035 article-title: A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing publication-title: Fuel doi: 10.1016/j.fuel.2016.05.051 – volume: 38 start-page: 4271 year: 2004 ident: 10.1016/j.seppur.2018.09.081_b0160 article-title: In-line coagulation with low-pressure membrane filtration publication-title: Water Res. doi: 10.1016/j.watres.2004.08.006 – volume: 330 start-page: 61 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0250 article-title: Investigation on high NF permeate recovery and scaling potential prediction in NF–SWRO integrated membrane operation publication-title: Desalination doi: 10.1016/j.desal.2013.09.021 – ident: 10.1016/j.seppur.2018.09.081_b0110 – volume: 125 start-page: 147 year: 2014 ident: 10.1016/j.seppur.2018.09.081_b0120 article-title: Shale-to-well energy use and air pollutant emissions of shale gas production in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.039 – volume: 110 start-page: 107 year: 1997 ident: 10.1016/j.seppur.2018.09.081_b0100 article-title: Ultrafiltration (new technology), a viable cost-saving pretreatment for reverse osmosis and nanofiltration—a new approach to reduce costs publication-title: Desalination doi: 10.1016/S0011-9164(97)00090-8 – volume: 463 start-page: 145 year: 2014 ident: 10.1016/j.seppur.2018.09.081_b0200 article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.03.055 – volume: 76 start-page: 575 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0130 article-title: Removal of calcium and magnesium ions from shale gas flowback water by chemical activated zeolite publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.237 – volume: 146 start-page: 20 year: 2007 ident: 10.1016/j.seppur.2018.09.081_b0225 article-title: Removal of small trihalomethane precursors from aqueous solution by nanofiltration publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.11.050 – volume: 47 start-page: 2562 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0030 article-title: Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing publication-title: Environ. Sci. Technol. doi: 10.1021/es304638h – volume: 126 start-page: 481 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0135 article-title: Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations publication-title: Water Res. doi: 10.1016/j.watres.2017.09.057 – volume: 48 start-page: 1334 year: 2014 ident: 10.1016/j.seppur.2018.09.081_b0195 article-title: Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage publication-title: Environ. Sci. Technol. doi: 10.1021/es403852h – ident: 10.1016/j.seppur.2018.09.081_b0065 doi: 10.2118/167775-MS – volume: 254 start-page: 17 year: 2010 ident: 10.1016/j.seppur.2018.09.081_b0265 article-title: NF membrane fouling by aluminum and iron coagulant residuals after coagulation–MF pretreatment publication-title: Desalination doi: 10.1016/j.desal.2009.12.020 – volume: 493 start-page: 723 year: 2015 ident: 10.1016/j.seppur.2018.09.081_b0150 article-title: Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: effects of membrane properties and backwash water composition publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.07.001 – volume: 40 start-page: 325 year: 2006 ident: 10.1016/j.seppur.2018.09.081_b0185 article-title: Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control publication-title: Environ. Sci. Technol. doi: 10.1021/es051423+ – volume: 100–102 start-page: 475 year: 2003 ident: 10.1016/j.seppur.2018.09.081_b0175 article-title: Coagulation by hydrolysing metal salts publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(02)00067-2 – volume: 613–614 start-page: 208 year: 2018 ident: 10.1016/j.seppur.2018.09.081_b0105 article-title: Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.031 – volume: 198 start-page: 335 year: 2006 ident: 10.1016/j.seppur.2018.09.081_b0140 article-title: Determination of the parameters of the Spiegler–Kedem–Katchalsky model for nanofiltration of single electrolyte solutions publication-title: Desalination doi: 10.1016/j.desal.2006.02.009 – volume: 279 start-page: 165 year: 2006 ident: 10.1016/j.seppur.2018.09.081_b0220 article-title: Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.12.001 – volume: 41 start-page: 4767 year: 2007 ident: 10.1016/j.seppur.2018.09.081_b0280 article-title: Membrane independent limiting flux for RO and NF membranes fouled by humic acid publication-title: Environ. Sci. Technol. doi: 10.1021/es063105w – volume: 403–404 start-page: 32 year: 2012 ident: 10.1016/j.seppur.2018.09.081_b0210 article-title: Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.02.007 – volume: 543 start-page: 319 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0085 article-title: Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: selectivity and implications for treatment publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.08.028 – volume: 118 start-page: 109 year: 1998 ident: 10.1016/j.seppur.2018.09.081_b0275 article-title: Nanofiltration of natural organic matter Removal, fouling and the influence of multivalent ions publication-title: Desalination doi: 10.1016/S0011-9164(98)00104-0 – volume: 47 start-page: 9569 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0040 article-title: Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions publication-title: Environ. Sci. Technol. doi: 10.1021/es401966e – volume: 322 start-page: 162 year: 2008 ident: 10.1016/j.seppur.2018.09.081_b0245 article-title: Produced water treatment by nanofiltration and reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.05.039 – volume: 258 start-page: 43 year: 2005 ident: 10.1016/j.seppur.2018.09.081_b0205 article-title: Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.02.025 – volume: 57 start-page: 10222 year: 2016 ident: 10.1016/j.seppur.2018.09.081_b0075 article-title: Pretreatment and desalination of flowback water from the hydraulic fracturing publication-title: Desalination Water Treat. doi: 10.1080/19443994.2015.1038588 – volume: 34 start-page: 3780 year: 2000 ident: 10.1016/j.seppur.2018.09.081_b0180 article-title: Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es9907461 – volume: 56 start-page: 4386 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0290 article-title: Optimal pretreatment system of flowback water from shale gas production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b04016 – volume: 277 start-page: 106 year: 2011 ident: 10.1016/j.seppur.2018.09.081_b0260 article-title: Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling publication-title: Desalination doi: 10.1016/j.desal.2011.04.010 – ident: 10.1016/j.seppur.2018.09.081_b0055 – volume: 171 start-page: 297 year: 2016 ident: 10.1016/j.seppur.2018.09.081_b0090 article-title: Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.07.008 – volume: 328 start-page: 1624 year: 2010 ident: 10.1016/j.seppur.2018.09.081_b0015 article-title: Natural gas from shale bursts onto the scene publication-title: Science doi: 10.1126/science.328.5986.1624 – volume: 51 start-page: 930 year: 2013 ident: 10.1016/j.seppur.2018.09.081_b0240 article-title: Selection of nanofiltration membranes as pretreatment for scaling prevention in SWRO using real seawater publication-title: Desalination Water Treat. doi: 10.1080/19443994.2012.714578 – volume: 3 start-page: 332 year: 2016 ident: 10.1016/j.seppur.2018.09.081_b0145 article-title: Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.6b00263 – volume: 523 start-page: 68 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0230 article-title: Relative contributions of organic and inorganic fouling during nanofiltration of inland brackish surface water publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.10.005 – volume: 181 start-page: 485 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0270 article-title: Optimization of coagulation with ferric chloride as a pretreatment for fouling reduction during nanofiltration of rendering plant secondary effluent publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.108 – volume: 7 start-page: 181 year: 2011 ident: 10.1016/j.seppur.2018.09.081_b0060 article-title: Water management challenges associated with the production of shale gas by hydraulic fracturing publication-title: Elements doi: 10.2113/gselements.7.3.181 – volume: 402 start-page: 143 year: 2017 ident: 10.1016/j.seppur.2018.09.081_b0165 article-title: Gas field produced/process water treatment using forward osmosis hollow fiber membrane: membrane fouling and chemical cleaning publication-title: Desalination doi: 10.1016/j.desal.2016.10.006 |
SSID | ssj0017182 |
Score | 2.573737 |
Snippet | [Display omitted]
•Integrated coagulation-UF-NF process is feasible for treating shale gas FPW.•Iron coagulation decreased UF membrane fouling resistance by... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 310 |
SubjectTerms | Coagulation-ultrafiltration Flowback and produced water Internal reuse Nanofiltration Weiyuan shale gas |
Title | An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water |
URI | https://dx.doi.org/10.1016/j.seppur.2018.09.081 |
Volume | 211 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_Aam2Szu_FYxFIVe1Ght7DJ7mi1JCFN6EX87c7mURVEweMkM9kwGeZBZr4h5Mw32nMZM45kGgsUH-widySZkDEAl0zVONt3YzF6DG4mfLJCLrtZGNtW2fr-xqfX3rq90m-12c-n0_69h8UVDzG-hGhGWErYCfZAWvz88_dlm4eHvrf-44nMjuXuxufqHq-5yfPKooJ6YY12Gno_h6cvIWe4RTbbXJEOmtfZJism3SEbXxAEd8nbIKVLxAdNk0w9tfu4nGpWFgqmsxYX10lVmn2SNG8mBCgmrfUT6qMKU80NzYDOnzFw0CeF92fZIlbJK1WptkIabUHTBR5X7JHH4dXD5chpFyo4CQtY6ZgES1KQoTA6CQOu7RSq5j4Y4zKuEuaGGjyBUT-OIeGB8DG_QI0KIxSyYzKzT1bTLDUHhEqQAYCPgc8NAuCY5SgQGjiLBQiQ8pCwTo9R0qKN26UXs6hrK3uJGu1HVvuRexGh9g-Js5TKG7SNP_hl94mib1YTYUD4VfLo35LHZB2pC9uH5oUnZLUsKnOKiUkZ92rL65G1wfXtaPwBj-TmHQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDI54HIAD4rWCXR45cK2mbV7lOEKg4TUXQOIWpU3MzjJqq3mIy_74ddp0AAmxEsc0dlO5lh-K_ZmQ09TZJGbMRYpZTFBS8IPcccmkygGEYqbB2b4bysEjv34ST0vkvOuF8WWVwfa3Nr2x1uFJL0izV49GvfsEkyuRoX_JUI0wlVgmqx6dCpV9tX91MxguLhPQ_DaXnkgfeYaug64p85q6up57YNAkawBPs-RzD_XO61xukc0QLtJ--0XbZMmVO2TjHYjgLvnbL-kC9MHSojLPYSRXNB_PJgZG4wCNG5WmrN6WtG6bBCjGrc0bmqMmbj51tAI6_Y2-gz4b3B9Xr7kpXqgprWeyqA6WvuJxkz3yeHnxcD6IwkyFqGCczSJXYFYKKpPOFhkX1jeiWpGCczETpmBxZiGR6PjzHArBZYohBldcOmmQHOOZH2SlrEq3T6gCxQFS9H0x5yAw0DEgLQiWS5Cg1AFhnRx1EQDH_dyLse4qy_7oVvraS1_HZxqlf0CiBVfdAm78h151v0h_UByNPuFLzp_f5jwha4OHu1t9ezW8-UXWcefMl6Ul2SFZmU3m7gjjlFl-HPTwH2-K6M4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+coagulation-ultrafiltration-nanofiltration+process+for+internal+reuse+of+shale+gas+flowback+and+produced+water&rft.jtitle=Separation+and+purification+technology&rft.au=Chang%2C+Haiqing&rft.au=Liu%2C+Baicang&rft.au=Yang%2C+Boxuan&rft.au=Yang%2C+Xin&rft.date=2019-03-18&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=211&rft.spage=310&rft.epage=321&rft_id=info:doi/10.1016%2Fj.seppur.2018.09.081&rft.externalDocID=S1383586618319026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |