System reliability-based Direct Design Method for space frames with cold–formed steel hollow sections
•Advanced nonlinear finite element analysis can design a steel frame as a system.•A reliability framework of developing system resistance factors for the Direct Design Method is presented.•Sixteen 3D cold-formed steel frames with hollow locally stable cross-sections were analysed for their system re...
Saved in:
Published in | Engineering structures Vol. 166; pp. 79 - 92 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Advanced nonlinear finite element analysis can design a steel frame as a system.•A reliability framework of developing system resistance factors for the Direct Design Method is presented.•Sixteen 3D cold-formed steel frames with hollow locally stable cross-sections were analysed for their system reliabilities.•The relationships between system resistance factors and system reliability index were established.
Design-by-analysis methods for steel structures are receiving considerable attention from professional engineers, researchers and standard-writing groups. Designing by analysis, termed as the Direct Design Method (DDM), is premised on the use of geometric nonlinear inelastic finite element analysis to determine the ultimate strength of steel structural frames and subsequently incorporating a system resistance factor (ϕs) to account for the effects of uncertainties in geometric parameters, stiffness and strength. This paper outlines the DDM in the context of cold-formed compact Hollow Steel Sections (HSS), including the reliability analysis framework at system level underpinning the Method. The system resistance factors for a series of representative 3D frames with hollow locally stable cross-sections are derived. |
---|---|
AbstractList | Design-by-analysis methods for steel structures are receiving considerable attention from professional engineers, researchers and standard-writing groups. Designing by analysis, termed as the Direct Design Method (DDM), is premised on the use of geometric nonlinear inelastic finite element analysis to determine the ultimate strength of steel structural frames and subsequently incorporating a system resistance factor (ϕs) to account for the effects of uncertainties in geometric parameters, stiffness and strength. This paper outlines the DDM in the context of cold-formed compact Hollow Steel Sections (HSS), including the reliability analysis framework at system level underpinning the Method. The system resistance factors for a series of representative 3D frames with hollow locally stable cross-sections are derived. •Advanced nonlinear finite element analysis can design a steel frame as a system.•A reliability framework of developing system resistance factors for the Direct Design Method is presented.•Sixteen 3D cold-formed steel frames with hollow locally stable cross-sections were analysed for their system reliabilities.•The relationships between system resistance factors and system reliability index were established. Design-by-analysis methods for steel structures are receiving considerable attention from professional engineers, researchers and standard-writing groups. Designing by analysis, termed as the Direct Design Method (DDM), is premised on the use of geometric nonlinear inelastic finite element analysis to determine the ultimate strength of steel structural frames and subsequently incorporating a system resistance factor (ϕs) to account for the effects of uncertainties in geometric parameters, stiffness and strength. This paper outlines the DDM in the context of cold-formed compact Hollow Steel Sections (HSS), including the reliability analysis framework at system level underpinning the Method. The system resistance factors for a series of representative 3D frames with hollow locally stable cross-sections are derived. |
Author | Zhang, Hao Liu, Wenyu Rasmussen, Kim |
Author_xml | – sequence: 1 givenname: Wenyu surname: Liu fullname: Liu, Wenyu – sequence: 2 givenname: Hao surname: Zhang fullname: Zhang, Hao email: hao.zhang@sydney.edu.au – sequence: 3 givenname: Kim surname: Rasmussen fullname: Rasmussen, Kim |
BookMark | eNqNkMFOGzEURS1EpQbab6ilrmd4Hk889oIFgkIrgVgAa8vjeU4cTcap7RRlxz_0D_mSOk3VRTdl9WS9e67tc0KOpzAhIZ8Y1AyYOFvVOC1Sjlub6waYrIHXIJojMmOy41XHG35MZsBaVkGjxHtyktIKABopYUYWD7uUcU0jjt70fvR5V_Um4UCvfESb6RUmv5joHeZlGKgLkaaNsUhdNGtM9NnnJbVhHF5ffpbluoClD0e6DOMYnmkqHT5M6QN558yY8OOfeUqerr88Xn6tbu9vvl1e3FaWtzxXaASbS6UQ563rlXDQKiE71QBa2_euG1RbPiGlsKAa5uR8UI4B3x-hYPyUfD70bmL4vsWU9Sps41Su1A10gikmpCip80PKxpBSRKetz2b_0ByNHzUDvXerV_qvW713q4Hr4rbw3T_8Jvq1ibs3kBcHEouEHx6jTtbjZHH4rVsPwf-34xfUK53f |
CitedBy_id | crossref_primary_10_1016_j_jcsr_2022_107425 crossref_primary_10_1016_j_jcsr_2022_107569 crossref_primary_10_1016_j_conbuildmat_2023_133708 crossref_primary_10_1016_j_jcsr_2021_107108 crossref_primary_10_1016_j_jcsr_2023_108019 crossref_primary_10_1016_j_strusafe_2023_102400 crossref_primary_10_1016_j_engstruct_2024_118886 crossref_primary_10_1016_j_engstruct_2022_115578 crossref_primary_10_3390_buildings13112786 crossref_primary_10_1002_cepa_2502 crossref_primary_10_1016_j_engstruct_2018_12_054 crossref_primary_10_1016_j_jcsr_2019_105723 crossref_primary_10_1016_j_jcsr_2019_105722 crossref_primary_10_1002_cepa_1310 crossref_primary_10_1016_j_istruc_2023_105190 crossref_primary_10_1016_j_jcsr_2022_107137 crossref_primary_10_1016_j_strusafe_2022_102211 crossref_primary_10_1016_j_jcsr_2024_108803 crossref_primary_10_1016_j_engstruct_2020_111775 crossref_primary_10_1016_j_strusafe_2024_102451 crossref_primary_10_1016_j_engstruct_2022_115339 crossref_primary_10_1016_j_istruc_2024_106876 crossref_primary_10_1016_j_engstruct_2022_114013 crossref_primary_10_1016_j_engstruct_2023_116198 crossref_primary_10_1002_cepa_1783 |
Cites_doi | 10.1061/(ASCE)0733-9445(1992)118:9(2532) 10.1016/S0141-0296(03)00134-2 10.1016/j.strusafe.2010.02.005 10.1016/0263-8231(88)90012-2 10.1061/JSDEAG.0004988 10.1016/j.engstruct.2014.10.003 10.1061/(ASCE)0733-9445(2006)132:2(267) 10.1016/j.jcsr.2014.02.016 10.1016/j.jcsr.2016.04.017 10.1016/j.jcsr.2016.05.005 10.1016/j.engstruct.2017.08.004 10.1016/j.jcsr.2016.05.004 10.1016/0167-4730(94)00037-Q 10.1016/S0141-0296(98)00099-6 10.1111/mice.12117 10.1016/j.ress.2012.04.011 10.1016/S0141-0296(99)00038-3 10.1016/j.istruc.2016.06.002 10.1016/j.jcsr.2016.05.014 10.1016/j.engstruct.2007.03.018 10.1016/j.engstruct.2008.04.002 10.1016/S0141-0296(01)00041-4 10.1111/mice.12086 10.1061/(ASCE)ST.1943-541X.0001991 10.1016/S0141-0296(98)00105-9 10.1016/j.tws.2014.08.006 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jul 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2018 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2018.03.062 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
EndPage | 92 |
ExternalDocumentID | 10_1016_j_engstruct_2018_03_062 S014102961733331X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c343t-ea615899ee54fb96f049687920eccbbf7d94296886c0921f85d9f1036c09099e3 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 11:25:47 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Tue Jul 01 03:01:59 EDT 2025 Fri Feb 23 02:47:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural reliability Building standards (codes) Cold-formed steel Advanced analysis with imperfections Nonlinear frame analysis System-based design |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-ea615899ee54fb96f049687920eccbbf7d94296886c0921f85d9f1036c09099e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2076191686 |
PQPubID | 2045481 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2076191686 crossref_citationtrail_10_1016_j_engstruct_2018_03_062 crossref_primary_10_1016_j_engstruct_2018_03_062 elsevier_sciencedirect_doi_10_1016_j_engstruct_2018_03_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ziemian, McGuire, Deierlein (b0005) 1992; 118 AISI-S100. North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute (AISI), Mexico, Canacero; 2012. Liu, Rasmussen, Zhang (b0190) 2016; 8 Zhang, Chandrangsu, Rasmussen (b0140) 2010 AS4100, Steel structures, Standards Australia, Sydney, Australia; 1998. Rasmussen, Hancock (b0150) 1988; 6 Kim, Park, Choi (b0020) 2001; 23 Ma, Fan, Wen, Zhang, Shen (b0035) 2015; 86 Long, Hung (b0030) 2008; 30 Zhang, Shayan, Rasmussen, Ellingwood (b0095) 2016; 123 Ellingwood (b0080) 2000; 22 Dai, Xue, Wang (b0125) 2014; 29 C.E.A.C.M, Laboratory report, commission 8, Politecnico di Milano, Istituto, di Scienza delle Construzioni, Laboratorio Prove Materiali; 1966. Li, Ellingwood (b0120) 2008; 30 Zhang, Liu, Ellingwood, Rasmussen (b0065) 2018; 144 Shayan, Rasmussen, Zhang (b0155) 2014; 98 Buonopane, Schafer (b0085) 2006; 132 Ellingwood, MacGregor, Galambos, Cornell (b0145) 1982; 108 Zhang, Rassmussen, Zhang (b0180) 2016; 122 Zhang, Ellingwood, Rasmussen (b0070) 2014; 81 Dai, Zhang, Wang (b0130) 2012; 106 Wilkinson T, Hancock GJ. Tests for the compact web slenderness of cold-formed rectangular hollow sections. Research Report R744, Centre for Advanced Structural Engineering, Department of Civil Engineering, The University of Sydney; 1997. Trouncer, Rasmmusen (b0185) 2016; 124 Liu (b0175) 2016 AS4600, Cold-formed steel structures, Standards Australia, Sydney, Australia; 2005. Dai, Zhang, Wang (b0135) 2015; 30 Sena Cardoso (b0100) 2016 Ziemian, McGuire, Dierlein (b0110) 1992; 118 White, Hajjar (b0010) 2000; 22 Trahair, Chan (b0025) 2003; 25 Avery, Mahendran (b0015) 2000; 22 Abaqus, Reference manual, version 6.10. Simulia, Dassault Systèmes, France; 2010. AISC360-10. Specification for structural steel buildings, American Institute of Steel Construction (AISC), Chicago, Illinois; 2010. Liu, Rasmussen, Zhang (b0170) 2017; 150 Rosowsky (b0195) 1995; 17 ASCE7-05. Minimum design loads for buildings and other structures, ASCE, Reston, VA; 2006. Galambos, Ravindra (b0200) 1978; 104 AISC-LRFD, Manual of steel construction, load and resistance factor design, American Institute of Steel Construction (AISC); 2010. Zhang, Shayan, Rasmussen, Ellingwood (b0090) 2016; 123 Melchers (b0115) 1999 Ma (10.1016/j.engstruct.2018.03.062_b0035) 2015; 86 Ellingwood (10.1016/j.engstruct.2018.03.062_b0080) 2000; 22 Zhang (10.1016/j.engstruct.2018.03.062_b0090) 2016; 123 Zhang (10.1016/j.engstruct.2018.03.062_b0180) 2016; 122 Shayan (10.1016/j.engstruct.2018.03.062_b0155) 2014; 98 Zhang (10.1016/j.engstruct.2018.03.062_b0065) 2018; 144 Liu (10.1016/j.engstruct.2018.03.062_b0170) 2017; 150 10.1016/j.engstruct.2018.03.062_b0055 Trahair (10.1016/j.engstruct.2018.03.062_b0025) 2003; 25 10.1016/j.engstruct.2018.03.062_b0075 Dai (10.1016/j.engstruct.2018.03.062_b0125) 2014; 29 Li (10.1016/j.engstruct.2018.03.062_b0120) 2008; 30 Buonopane (10.1016/j.engstruct.2018.03.062_b0085) 2006; 132 Dai (10.1016/j.engstruct.2018.03.062_b0130) 2012; 106 10.1016/j.engstruct.2018.03.062_b0050 Sena Cardoso (10.1016/j.engstruct.2018.03.062_b0100) 2016 Liu (10.1016/j.engstruct.2018.03.062_b0190) 2016; 8 Rosowsky (10.1016/j.engstruct.2018.03.062_b0195) 1995; 17 Zhang (10.1016/j.engstruct.2018.03.062_b0140) 2010 Trouncer (10.1016/j.engstruct.2018.03.062_b0185) 2016; 124 10.1016/j.engstruct.2018.03.062_b0105 White (10.1016/j.engstruct.2018.03.062_b0010) 2000; 22 Avery (10.1016/j.engstruct.2018.03.062_b0015) 2000; 22 10.1016/j.engstruct.2018.03.062_b0045 10.1016/j.engstruct.2018.03.062_b0165 Kim (10.1016/j.engstruct.2018.03.062_b0020) 2001; 23 Galambos (10.1016/j.engstruct.2018.03.062_b0200) 1978; 104 Zhang (10.1016/j.engstruct.2018.03.062_b0095) 2016; 123 Ziemian (10.1016/j.engstruct.2018.03.062_b0005) 1992; 118 10.1016/j.engstruct.2018.03.062_b0040 10.1016/j.engstruct.2018.03.062_b0160 10.1016/j.engstruct.2018.03.062_b0060 Ziemian (10.1016/j.engstruct.2018.03.062_b0110) 1992; 118 Dai (10.1016/j.engstruct.2018.03.062_b0135) 2015; 30 Long (10.1016/j.engstruct.2018.03.062_b0030) 2008; 30 Ellingwood (10.1016/j.engstruct.2018.03.062_b0145) 1982; 108 Liu (10.1016/j.engstruct.2018.03.062_b0175) 2016 Melchers (10.1016/j.engstruct.2018.03.062_b0115) 1999 Zhang (10.1016/j.engstruct.2018.03.062_b0070) 2014; 81 Rasmussen (10.1016/j.engstruct.2018.03.062_b0150) 1988; 6 |
References_xml | – volume: 29 start-page: 801 year: 2014 end-page: 814 ident: b0125 article-title: An adaptive wavelet frame neural network method for efficient reliability analysis publication-title: Comput-Aided Civ Infrastruct Eng – volume: 144 start-page: 1 year: 2018 end-page: 8 ident: b0065 article-title: System reliabilities of steel frames designed by the inelastic analysis and design method in AISC 360–10 publication-title: J Struct Eng, ASCE – volume: 81 start-page: 341 year: 2014 end-page: 348 ident: b0070 article-title: System reliabilities in steel structural frame design by inelastic analysis publication-title: Eng Struct – volume: 6 start-page: 433 year: 1988 end-page: 452 ident: b0150 article-title: Geometric imperfections in plated structures subject to interaction between buckling modes publication-title: Thin-Walled Struct – volume: 118 start-page: 2532 year: 1992 end-page: 2549 ident: b0110 article-title: Inelastic limit states design. Part I: planar frame studies publication-title: J Struct Eng, ASCE – volume: 106 start-page: 86 year: 2012 end-page: 93 ident: b0130 article-title: A support vector density-based importance sampling for reliability assessment publication-title: Reliab Eng Syst Saf – volume: 30 start-page: 151 year: 2015 end-page: 162 ident: b0135 article-title: A multiwavelet netural network-based response surface method for structural reliability analysis publication-title: Comput-Aided Civ Infrastruct Eng – volume: 98 start-page: 167 year: 2014 end-page: 177 ident: b0155 article-title: On the modelling of initial geometric imperfections of steel frames in advanced analysis publication-title: J Constr Steel Res – volume: 86 start-page: 1 year: 2015 end-page: 9 ident: b0035 article-title: Experimental and numerical studies on a single-layer cylindrical reticulated shell with semi-rigid joints publication-title: Thin-Walled Struct – volume: 17 start-page: 17 year: 1995 end-page: 32 ident: b0195 article-title: Estimation of design loads for reduced reference periods publication-title: Struct Saf – volume: 22 start-page: 155 year: 2000 end-page: 167 ident: b0010 article-title: Stability of steel frames: the cases for simple elastic and rigorous inelastic analysis/design procedures publication-title: Eng Struct – start-page: 393 year: 2010 end-page: 401 ident: b0140 article-title: Probabilistic study of the strength of steel scaffold systems publication-title: Struct Safety – reference: Abaqus, Reference manual, version 6.10. Simulia, Dassault Systèmes, France; 2010. – volume: 132 start-page: 267 year: 2006 end-page: 276 ident: b0085 article-title: Reliability of steel frames designed with advanced analysis publication-title: J Struct Eng, ASCE – volume: 122 start-page: 571 year: 2016 end-page: 583 ident: b0180 article-title: Experimental investigation of locally and distortionally buckled portal frames publication-title: J Constr Steel Res – volume: 30 start-page: 338 year: 2008 end-page: 351 ident: b0120 article-title: Damage inspection and vulnerability analysis of existing buildings with steel moment-resisting frame publication-title: Eng Struct – volume: 23 start-page: 1491 year: 2001 end-page: 1502 ident: b0020 article-title: Direct design of three-dimensional frames using practical advanced analysis publication-title: Eng Struct – year: 1999 ident: b0115 article-title: Structural reliability analysis and prediction – volume: 108 year: 1982 ident: b0145 article-title: Probability based load criteria: load factors and load combinations publication-title: J Struct Div, ASCE – reference: AS4100, Steel structures, Standards Australia, Sydney, Australia; 1998. – reference: ASCE7-05. Minimum design loads for buildings and other structures, ASCE, Reston, VA; 2006. – volume: 150 start-page: 986 year: 2017 end-page: 995 ident: b0170 article-title: Modelling and probabilistic study of the residual stress of cold-formed hollow steel sections publication-title: Eng Struct – reference: C.E.A.C.M, Laboratory report, commission 8, Politecnico di Milano, Istituto, di Scienza delle Construzioni, Laboratorio Prove Materiali; 1966. – volume: 25 start-page: 1627 year: 2003 end-page: 1637 ident: b0025 article-title: Out-of-plane advanced analysis of steel structures publication-title: Eng Struct – volume: 104 start-page: 1459 year: 1978 end-page: 1468 ident: b0200 article-title: Properties of steel for use in LRFD publication-title: J Struct Div, ASCE – volume: 123 start-page: 154 year: 2016 end-page: 161 ident: b0095 article-title: System-based design of planar steel frames, II: reliability results and design recommendations publication-title: J Constr Steel Res – year: 2016 ident: b0175 article-title: Sytem reliability-based design of three-dimensional steel structures by advanced analysis – volume: 124 start-page: 57 year: 2016 end-page: 76 ident: b0185 article-title: Ultra-light gauge steel storage rack frames. Part 1: Experimental investigations publication-title: J Constr Steel Res – volume: 22 start-page: 106 year: 2000 end-page: 115 ident: b0080 article-title: LRFD: implementing structural reliability in professional practice publication-title: Eng Struct – volume: 118 start-page: 2532 year: 1992 end-page: 2549 ident: b0005 article-title: Deierlein, inelastic limit states design. Part I: Planar frame studies publication-title: J Struct Eng – volume: 123 start-page: 135 year: 2016 end-page: 143 ident: b0090 article-title: System-based design of planar steel frames, I: reliability framework publication-title: J Constr Steel Res – reference: AS4600, Cold-formed steel structures, Standards Australia, Sydney, Australia; 2005. – reference: Wilkinson T, Hancock GJ. Tests for the compact web slenderness of cold-formed rectangular hollow sections. Research Report R744, Centre for Advanced Structural Engineering, Department of Civil Engineering, The University of Sydney; 1997. – reference: AISC-LRFD, Manual of steel construction, load and resistance factor design, American Institute of Steel Construction (AISC); 2010. – year: 2016 ident: b0100 article-title: System reliability-based criteria for designing cold-formed steel structures by advanced analysis – volume: 8 start-page: 170 year: 2016 end-page: 182 ident: b0190 article-title: Systems reliability for 3D steel frames subject to gravity loads publication-title: Structures – volume: 30 start-page: 3105 year: 2008 end-page: 3113 ident: b0030 article-title: Local buckling check according to eurocode-3 for plastichinge analysis of 3-d steel frames publication-title: Eng Struct – reference: AISC360-10. Specification for structural steel buildings, American Institute of Steel Construction (AISC), Chicago, Illinois; 2010. – reference: AISI-S100. North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute (AISI), Mexico, Canacero; 2012. – volume: 22 start-page: 901 year: 2000 end-page: 919 ident: b0015 article-title: Distributed plasticity analysis of steel frame structures comprising non-compact sections publication-title: Eng Struct – volume: 118 start-page: 2532 issue: 9 year: 1992 ident: 10.1016/j.engstruct.2018.03.062_b0110 article-title: Inelastic limit states design. Part I: planar frame studies publication-title: J Struct Eng, ASCE doi: 10.1061/(ASCE)0733-9445(1992)118:9(2532) – volume: 108 issue: 5 year: 1982 ident: 10.1016/j.engstruct.2018.03.062_b0145 article-title: Probability based load criteria: load factors and load combinations publication-title: J Struct Div, ASCE – volume: 25 start-page: 1627 issue: 13 year: 2003 ident: 10.1016/j.engstruct.2018.03.062_b0025 article-title: Out-of-plane advanced analysis of steel structures publication-title: Eng Struct doi: 10.1016/S0141-0296(03)00134-2 – start-page: 393 issue: 32 year: 2010 ident: 10.1016/j.engstruct.2018.03.062_b0140 article-title: Probabilistic study of the strength of steel scaffold systems publication-title: Struct Safety doi: 10.1016/j.strusafe.2010.02.005 – volume: 6 start-page: 433 issue: 6 year: 1988 ident: 10.1016/j.engstruct.2018.03.062_b0150 article-title: Geometric imperfections in plated structures subject to interaction between buckling modes publication-title: Thin-Walled Struct doi: 10.1016/0263-8231(88)90012-2 – volume: 104 start-page: 1459 issue: 9 year: 1978 ident: 10.1016/j.engstruct.2018.03.062_b0200 article-title: Properties of steel for use in LRFD publication-title: J Struct Div, ASCE doi: 10.1061/JSDEAG.0004988 – ident: 10.1016/j.engstruct.2018.03.062_b0040 – volume: 81 start-page: 341 year: 2014 ident: 10.1016/j.engstruct.2018.03.062_b0070 article-title: System reliabilities in steel structural frame design by inelastic analysis publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.10.003 – volume: 132 start-page: 267 issue: 2 year: 2006 ident: 10.1016/j.engstruct.2018.03.062_b0085 article-title: Reliability of steel frames designed with advanced analysis publication-title: J Struct Eng, ASCE doi: 10.1061/(ASCE)0733-9445(2006)132:2(267) – volume: 98 start-page: 167 year: 2014 ident: 10.1016/j.engstruct.2018.03.062_b0155 article-title: On the modelling of initial geometric imperfections of steel frames in advanced analysis publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2014.02.016 – volume: 122 start-page: 571 year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0180 article-title: Experimental investigation of locally and distortionally buckled portal frames publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2016.04.017 – volume: 123 start-page: 154 year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0095 article-title: System-based design of planar steel frames, II: reliability results and design recommendations publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2016.05.005 – volume: 150 start-page: 986 year: 2017 ident: 10.1016/j.engstruct.2018.03.062_b0170 article-title: Modelling and probabilistic study of the residual stress of cold-formed hollow steel sections publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.08.004 – volume: 123 start-page: 135 year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0090 article-title: System-based design of planar steel frames, I: reliability framework publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2016.05.004 – ident: 10.1016/j.engstruct.2018.03.062_b0050 – volume: 17 start-page: 17 year: 1995 ident: 10.1016/j.engstruct.2018.03.062_b0195 article-title: Estimation of design loads for reduced reference periods publication-title: Struct Saf doi: 10.1016/0167-4730(94)00037-Q – volume: 22 start-page: 106 year: 2000 ident: 10.1016/j.engstruct.2018.03.062_b0080 article-title: LRFD: implementing structural reliability in professional practice publication-title: Eng Struct doi: 10.1016/S0141-0296(98)00099-6 – volume: 29 start-page: 801 issue: 10 year: 2014 ident: 10.1016/j.engstruct.2018.03.062_b0125 article-title: An adaptive wavelet frame neural network method for efficient reliability analysis publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12117 – volume: 106 start-page: 86 year: 2012 ident: 10.1016/j.engstruct.2018.03.062_b0130 article-title: A support vector density-based importance sampling for reliability assessment publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2012.04.011 – ident: 10.1016/j.engstruct.2018.03.062_b0075 – volume: 22 start-page: 901 year: 2000 ident: 10.1016/j.engstruct.2018.03.062_b0015 article-title: Distributed plasticity analysis of steel frame structures comprising non-compact sections publication-title: Eng Struct doi: 10.1016/S0141-0296(99)00038-3 – volume: 8 start-page: 170 issue: Part 2 year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0190 article-title: Systems reliability for 3D steel frames subject to gravity loads publication-title: Structures doi: 10.1016/j.istruc.2016.06.002 – year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0100 – ident: 10.1016/j.engstruct.2018.03.062_b0165 – volume: 124 start-page: 57 year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0185 article-title: Ultra-light gauge steel storage rack frames. Part 1: Experimental investigations publication-title: J Constr Steel Res doi: 10.1016/j.jcsr.2016.05.014 – ident: 10.1016/j.engstruct.2018.03.062_b0060 – year: 1999 ident: 10.1016/j.engstruct.2018.03.062_b0115 – year: 2016 ident: 10.1016/j.engstruct.2018.03.062_b0175 – volume: 118 start-page: 2532 issue: 9 year: 1992 ident: 10.1016/j.engstruct.2018.03.062_b0005 article-title: Deierlein, inelastic limit states design. Part I: Planar frame studies publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1992)118:9(2532) – volume: 30 start-page: 338 year: 2008 ident: 10.1016/j.engstruct.2018.03.062_b0120 article-title: Damage inspection and vulnerability analysis of existing buildings with steel moment-resisting frame publication-title: Eng Struct doi: 10.1016/j.engstruct.2007.03.018 – volume: 30 start-page: 3105 year: 2008 ident: 10.1016/j.engstruct.2018.03.062_b0030 article-title: Local buckling check according to eurocode-3 for plastichinge analysis of 3-d steel frames publication-title: Eng Struct doi: 10.1016/j.engstruct.2008.04.002 – volume: 23 start-page: 1491 year: 2001 ident: 10.1016/j.engstruct.2018.03.062_b0020 article-title: Direct design of three-dimensional frames using practical advanced analysis publication-title: Eng Struct doi: 10.1016/S0141-0296(01)00041-4 – volume: 30 start-page: 151 year: 2015 ident: 10.1016/j.engstruct.2018.03.062_b0135 article-title: A multiwavelet netural network-based response surface method for structural reliability analysis publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12086 – ident: 10.1016/j.engstruct.2018.03.062_b0105 – ident: 10.1016/j.engstruct.2018.03.062_b0045 – volume: 144 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.engstruct.2018.03.062_b0065 article-title: System reliabilities of steel frames designed by the inelastic analysis and design method in AISC 360–10 publication-title: J Struct Eng, ASCE doi: 10.1061/(ASCE)ST.1943-541X.0001991 – ident: 10.1016/j.engstruct.2018.03.062_b0160 – volume: 22 start-page: 155 year: 2000 ident: 10.1016/j.engstruct.2018.03.062_b0010 article-title: Stability of steel frames: the cases for simple elastic and rigorous inelastic analysis/design procedures publication-title: Eng Struct doi: 10.1016/S0141-0296(98)00105-9 – ident: 10.1016/j.engstruct.2018.03.062_b0055 – volume: 86 start-page: 1 year: 2015 ident: 10.1016/j.engstruct.2018.03.062_b0035 article-title: Experimental and numerical studies on a single-layer cylindrical reticulated shell with semi-rigid joints publication-title: Thin-Walled Struct doi: 10.1016/j.tws.2014.08.006 |
SSID | ssj0002880 |
Score | 2.3681092 |
Snippet | •Advanced nonlinear finite element analysis can design a steel frame as a system.•A reliability framework of developing system resistance factors for the... Design-by-analysis methods for steel structures are receiving considerable attention from professional engineers, researchers and standard-writing groups.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 79 |
SubjectTerms | Advanced analysis with imperfections Building codes Building standards (codes) Cold-formed steel Design Design analysis Finite element analysis Finite element method Inelastic finite elements Nonlinear analysis Nonlinear frame analysis Parameter uncertainty Reliability analysis Resistance factors Space frames Steel Steel frames Steel structures Stiffness Structural engineering Structural reliability System reliability System-based design Ultimate tensile strength |
Title | System reliability-based Direct Design Method for space frames with cold–formed steel hollow sections |
URI | https://dx.doi.org/10.1016/j.engstruct.2018.03.062 https://www.proquest.com/docview/2076191686 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA9jXvQg_sXpHDl4jWvTNk29jemYynbRwW6hadMxGd2wA_Eifge_oZ_El6SdTpAd7C1tXijvvbw_4Zf3ELqIPS9NpPJIkAYO8QNHkhgSLRKFkmZOQiNlmsEMhqw_8u_GwbiGutVdGA2rLG2_tenGWpdv2iU324vptP1gIIo0AhfsweOO9Q12P9Rafvn2DfOg3HRP05OJnr2G8VL5xJZp1RgvbqqdMvqXh_plq40D6u2h3TJyxB37c_uopvIDtPOjnuAhmtj64_hZzaa2_vYr0W4qxday4WuD18AD0zYaQ7yKwaAkCmcaolVgfSiLQTPSz_cPHcwCIaynZhhM5Gz-gguD28qLIzTq3Tx2-6TspEASz_eWRMUQuEBmpVTgZzJiGeQFjIcRdUCCUmZhGoFfYpyzxImom_EgjTIXnBsMIYRU3jGq5_NcnSAsdQcrGkPiwxPfjX0QNoNNnOjNDO6QNxCruCeSssy47nYxExWe7Ems2C4024XjCWB7AzkrwoWttLGZ5KoSj1hTGgH-YDNxsxKoKPdtAd_1sY7LODv9z9pnaFuPLKy3ieowQZ1D8LKULaOdLbTVub3vD78A6HXxCQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2V9gAcEKsoFPCBq9WsrsOtKlQpXS60Um9WFgcVRWlFKyFu_AN_yJcwdpKKIqEeyC2xJ4pm7FmslzcAt4Ftx1EoberGrkEd1whpgIUW9VqhlRiR5UndDGY4Yv7EeZy60wp0yn9hFKyy8P25T9feunjSLLTZXMxmzScNUbQ8DME2XuZ0B2qKncqtQq3d6_ujtUO2uG6gpuZTJbAB85LZc87UqmBeXBOeMuuvIPXLXesY1D2EgyJ5JO38-46gIrNj2P9BKXgCzzkFOXmV6Syn4H6nKlLFJHdu5F5DNshQd44mmLIS9CmRJIlCaS2JOpcluDjir49Plc-iIL5PpgS9ZDp_I0sN3cqWpzDpPow7Pi2aKdDIduwVlQHmLlhcSek6SeixBEsDxlueZaARwzBpxR6GJsY5iwzPMhPuxl5iYnzDW8wipX0G1WyeyXMgoWpiZQVY-_DIMQMH7c1wH0dqP2NE5HVgpfZEVDCNq4YXqSghZS9irXah1C4MW6Da62CsBRc52cZ2kbvSPGJj3QgMCduFG6VBRbF1lziuTnZMxtnFf959A7v-eDgQg96ofwl7aiRH-TagipPlFeYyq_C6WKvfJuTzug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=System+reliability-based+Direct+Design+Method+for+space+frames+with+cold%E2%80%93formed+steel+hollow+sections&rft.jtitle=Engineering+structures&rft.au=Liu%2C+Wenyu&rft.au=Zhang%2C+Hao&rft.au=Rasmussen%2C+Kim&rft.date=2018-07-01&rft.issn=0141-0296&rft.volume=166&rft.spage=79&rft.epage=92&rft_id=info:doi/10.1016%2Fj.engstruct.2018.03.062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2018_03_062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |