Using Natural Language Processing to Read Plans A Study of 78 Resilience Plans From the 100 Resilient Cities Network
Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big...
Saved in:
Published in | Journal of the American Planning Association Vol. 89; no. 1; pp. 107 - 119 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Routledge
02.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents.
NLP represents a valuable addition to the planner's toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies. |
---|---|
AbstractList | Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents.
NLP represents a valuable addition to the planner's toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies. "Problem, research strategy, and findings: Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents. Takeaway for practice: NLP represents a valuable addition to the planner’s toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies." Keywords: machine learning, natural language processing, plan evaluation, urban resilience. |
Author | Fu, Xinyu Li, Chaosu Zhai, Wei |
Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0002-3591-4158 surname: Fu fullname: Fu, Xinyu – sequence: 2 givenname: Chaosu orcidid: 0000-0002-1146-2361 surname: Li fullname: Li, Chaosu – sequence: 3 givenname: Wei orcidid: 0000-0003-4064-0427 surname: Zhai fullname: Zhai, Wei |
BookMark | eNqFkMtOwzAQRS1UJNrCJyBlySatH3Eciw2o4iVVUCG6tiaJXQWldrEdof49CS0bFjCLmcXcczVzJ2hkndUIXRI8I7jAc0xklrGczSimtG-syLk8QWMimUwxYXiExoMmHURnaBLCO-6LcTFG83Vo7CZ5hth5aJMl2E0HG52svKt0-N5Fl7xqqJNVCzaco1MDbdAXxzlF6_u7t8Vjunx5eFrcLtOKZSymWsiCMwOSYEk1pyBB6LwWHBsuKIi8qEtjSsFLVmZFXtGsFjkpKSY4r4ys2RRdHXx33n10OkS1bUKl2_4G7bqgqBC86H_jpJdeH6SVdyF4bVTVRIiNs9FD0yqC1RCT-olJDTGpY0w9zX_RO99swe__5W4OXGON81v4dL6tVYR967zxYKsmKPa3xRd93H6o |
CitedBy_id | crossref_primary_10_1016_j_ese_2024_100433 crossref_primary_10_1177_08854122241229571 crossref_primary_10_1016_j_compenvurbsys_2024_102131 crossref_primary_10_1038_s41558_023_01890_3 crossref_primary_10_1016_j_ese_2025_100526 crossref_primary_10_1007_s43762_022_00052_z crossref_primary_10_1016_j_cliser_2024_100538 crossref_primary_10_1016_j_foar_2023_05_006 crossref_primary_10_1080_01944363_2024_2309259 crossref_primary_10_1016_j_jum_2024_12_001 crossref_primary_10_3390_urbansci8040197 crossref_primary_10_1080_01944363_2023_2271893 crossref_primary_10_1016_j_culher_2024_09_011 crossref_primary_10_1177_23998083241272097 |
Cites_doi | 10.1177/0739456X14549752 10.1080/09640568.2016.1151771 10.1002/aris.1440370103 10.1080/01944369808975976 10.1080/01944363.2011.616995 10.1080/01944369708975926 10.1016/j.heliyon.2021.e06322 10.1002/asi.23596 10.1016/j.landurbplan.2015.11.011 10.1016/j.ijdrr.2020.101611 10.1007/s10584-019-02488-5 10.1371/journal.pone.0218590 10.1177/0739456X13513614 10.1177/0739456X02238446 10.2196/jmir.9702 10.1177/0739456X16647161 10.1177/147309520200100104 10.1016/j.cities.2021.103239 10.1080/01944363.2020.1831401 10.1038/s41893-019-0250-1 10.1080/17565529.2017.1301868 10.1177/0739456X18769134 10.1080/14649350802661741 10.1177/0049124118799372 10.1177/088541229601000302 10.1177/0885412208327014 10.1016/j.progress.2015.05.002 10.1177/1078087420938443 10.1080/01944363.2020.1766994 10.1080/01944363.2019.1652108 10.1016/j.cities.2016.05.011 10.1177/0739456X21995890 10.1080/08111146.2014.994741 10.1080/01944360008976081 10.1177/0739456X211048928 10.1080/01944360408976395 10.1038/nclimate3012 10.1080/01944363.2017.1404486 10.1080/02723638.2018.1446870 |
ContentType | Journal Article |
Copyright | 2022 American Planning Association, Chicago, IL. 2022 |
Copyright_xml | – notice: 2022 American Planning Association, Chicago, IL. 2022 |
DBID | AAYXX CITATION 7QK FUQ KCI |
DOI | 10.1080/01944363.2022.2038659 |
DatabaseName | CrossRef Avery Index to Architectural Periodicals Avery Index to Architectural Periodicals Avery Index to Architectural Periodicals |
DatabaseTitle | CrossRef Avery Index to Architectural Periodicals |
DatabaseTitleList | Avery Index to Architectural Periodicals |
Database_xml | – sequence: 1 dbid: 7QK name: Avery Index to Architectural Periodicals url: https://proxy.k.utb.cz/login?url=http://search.proquest.com/avery sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Architecture |
EISSN | 1939-0130 |
EndPage | 119 |
ExternalDocumentID | 10_1080_01944363_2022_2038659 2038659 |
Genre | Research Article |
GroupedDBID | --Z -DZ -~X ..I .7I .QK 0BK 0R~ 15B 29L 2DF 4.4 42H 5VS 7WY 85S 8FL 8VB AAGZJ AAIKC AAMFJ AAMIU AAMNW AAPUL AATTQ AAZMC ABCCY ABDBF ABDPE ABFIM ABISK ABJNI ABLIJ ABPEM ABQIJ ABRLO ABTAI ABXUL ABXYU ABZLS ACGFO ACGFS ACHQT ACIWK ACTIO ACTOA ADAHI ADCVX ADKVQ ADMHG AECIN AEGXH AEISY AEKEX AEMOZ AEOZL AEPSL AEYOC AEZRU AFRAH AGDLA AGMYJ AGRBW AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DO4 DU5 EAP EBE EBR EBS EBU ECR EDH EHE EMF EMH ESO ESX E~B E~C FJW G-F GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ H~9 IPNFZ J.O K1G K60 K6~ KYCEM LJTGL M4Z NA5 NY- P2P QN7 QWB RIG RNANH ROSJB RSYQP S-F STATR TAE TBQAZ TDBHL TEG TFH TFL TFW TH9 TN5 TNTFI TRJHH TUROJ U5U UPT UT5 UT9 VAE VQA WH7 YQT YZZ ZCA ZL0 ~01 ~IF ~S~ AAGDL AAHIA AAYXX ADYSH AEFOU AFRVT AIYEW ALSLI AMPGV CITATION 7QK FUQ KCI |
ID | FETCH-LOGICAL-c343t-e79853fa91092e52a9a7e6d750f572a768dbffb75b3b486c24d761b20106cf9d3 |
ISSN | 0194-4363 |
IngestDate | Fri Jul 11 12:19:51 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 01:44:12 EDT 2025 Wed Dec 25 09:06:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-e79853fa91092e52a9a7e6d750f572a768dbffb75b3b486c24d761b20106cf9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3591-4158 0000-0003-4064-0427 0000-0002-1146-2361 |
PQID | 2775801351 |
PQPubID | 24072 |
PageCount | 13 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01944363_2022_2038659 crossref_citationtrail_10_1080_01944363_2022_2038659 proquest_miscellaneous_2775801351 crossref_primary_10_1080_01944363_2022_2038659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-02 |
PublicationDateYYYYMMDD | 2023-01-02 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the American Planning Association |
PublicationYear | 2023 |
Publisher | Routledge |
Publisher_xml | – name: Routledge |
References | CIT0010 CIT0032 CIT0031 CIT0034 CIT0011 CIT0033 CIT0014 Kelly E. D. (CIT0023) 2012 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 Nation P. (CIT0030) 2009; 9 CIT0019 CIT0041 CIT0040 CIT0043 CIT0020 CIT0042 CIT0001 CIT0045 CIT0022 CIT0044 Krippendorff K. (CIT0024) 2018 Fry E. (CIT0012) 1963 CIT0003 CIT0025 CIT0047 CIT0002 CIT0046 CIT0005 Hopkins L. D. (CIT0021) 2001 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0015 – ident: CIT0027 doi: 10.1177/0739456X14549752 – ident: CIT0013 doi: 10.1080/09640568.2016.1151771 – ident: CIT0009 doi: 10.1002/aris.1440370103 – ident: CIT0031 doi: 10.1080/01944369808975976 – ident: CIT0033 doi: 10.1080/01944363.2011.616995 – ident: CIT0001 doi: 10.1080/01944369708975926 – ident: CIT0008 doi: 10.1016/j.heliyon.2021.e06322 – ident: CIT0037 doi: 10.1002/asi.23596 – ident: CIT0028 doi: 10.1016/j.landurbplan.2015.11.011 – ident: CIT0046 doi: 10.1016/j.ijdrr.2020.101611 – ident: CIT0014 doi: 10.1007/s10584-019-02488-5 – ident: CIT0022 doi: 10.1371/journal.pone.0218590 – ident: CIT0035 doi: 10.1177/0739456X13513614 – ident: CIT0042 doi: 10.1177/0739456X02238446 – ident: CIT0016 doi: 10.2196/jmir.9702 – ident: CIT0007 doi: 10.1177/0739456X16647161 – ident: CIT0020 doi: 10.1177/147309520200100104 – ident: CIT0043 doi: 10.1016/j.cities.2021.103239 – volume: 9 start-page: 131 issue: 2 year: 2009 ident: CIT0030 publication-title: International Journal of English Studies – ident: CIT0039 – ident: CIT0018 doi: 10.1080/01944363.2020.1831401 – ident: CIT0010 doi: 10.1038/s41893-019-0250-1 – ident: CIT0003 doi: 10.1080/17565529.2017.1301868 – ident: CIT0036 doi: 10.1177/0739456X18769134 – ident: CIT0032 doi: 10.1080/14649350802661741 – ident: CIT0047 – ident: CIT0002 doi: 10.1177/0049124118799372 – ident: CIT0038 doi: 10.1177/088541229601000302 – ident: CIT0005 doi: 10.1177/0885412208327014 – ident: CIT0041 doi: 10.1016/j.progress.2015.05.002 – volume-title: Community planning: An introduction to the comprehensive plan year: 2012 ident: CIT0023 – volume-title: Teaching faster reading: A manual year: 1963 ident: CIT0012 – ident: CIT0019 doi: 10.1177/1078087420938443 – ident: CIT0011 doi: 10.1080/01944363.2020.1766994 – ident: CIT0029 doi: 10.1080/01944363.2019.1652108 – ident: CIT0034 doi: 10.1016/j.cities.2016.05.011 – volume-title: Content analysis: An introduction to its methodology year: 2018 ident: CIT0024 – ident: CIT0006 doi: 10.1177/0739456X21995890 – ident: CIT0040 doi: 10.1080/08111146.2014.994741 – ident: CIT0004 doi: 10.1080/01944360008976081 – volume-title: Urban development: The logic of making plans year: 2001 ident: CIT0021 – ident: CIT0045 doi: 10.1177/0739456X211048928 – ident: CIT0025 doi: 10.1080/01944360408976395 – ident: CIT0044 doi: 10.1038/nclimate3012 – ident: CIT0017 doi: 10.1080/01944363.2017.1404486 – ident: CIT0026 doi: 10.1080/02723638.2018.1446870 |
SSID | ssj0000357 |
Score | 2.461119 |
Snippet | Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in... "Problem, research strategy, and findings: Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | machine learning natural language processing plan evaluation urban resilience |
Subtitle | A Study of 78 Resilience Plans From the 100 Resilient Cities Network |
Title | Using Natural Language Processing to Read Plans |
URI | https://www.tandfonline.com/doi/abs/10.1080/01944363.2022.2038659 https://www.proquest.com/docview/2775801351 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGA9u-6AIolNxU0cEv5WOtUmaxm9DdhxzTpQ7PPxSmjaBg9EO2xPmX--Tt_aOm2z6pZS8tfT365MnyfOC0HupsorzWsdlJbKYMkVjSVQWkzJnilQwAdmsJZ8vs-mcni_YYjQbs94lvTyuft_qV_I_qEIZ4Gq8ZP8B2WFQKIB7wBeugDBc74WxO--3sTnhS4etx-jaGf9bR6g2Aq2wNsmimy5yns1diCPNc6jsllfu73ZNJsHdJDk5GWr7qLKBV6PGGY3_RaNd81JphmxIWwQwZFkZZBfL5mY1GAQt_eF_2w1lP3yu7O9qub45kRK7ObGxXyloTImXYV7gupxBG8Ry0tMnwPUTceJk6ZaM90aRMLIZGJb4qXGoM7lLxTiphYP8yy_FZH5xUczOFrMdtJfCYgKk4d7s2_l0Os7YhHm3eveywdPLxGC_7TEbOsxGhNutGd2qKbOn6IlHA586sjxDD1Szjx6frh0X7aOHwRu9e45-WQ5hzyEcOIRHDuG-xYZD2BIEf8AltgzCrcY8xyODfAPDIAxUwMCgobbHjkHYM-gFmk_OZh-nsc_FEVeEkj5WXIBip0vQLkWqWFqKkqusBn1TM56WsGitpdaSM0kkzbMqpTXPEmlsLbJKi5q8RLtN26hXCKd1ogUnElYOOWUyEyqpmWB5LiWtE6EPEA1ft6h8oHqTL-WqSEI8Ww9KYUApPCgH6Hjodu0itdzVQaxDV_R2i0y7fDYFuaPvu4BzAfLYHLKVjWpXXQEMY6D1EZYc3qPNa_Ro_G3eoN3-50q9BS23l0doh3_9dOSp-gfrWqPw |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BeyhCYikgdoIExxTqLfGBA2JRgNIDKhI3Eyf2BdQimgrBZ_Er_BB24kALQj0gDpwtW5bH41k87w3AjlQsCYJU-3HCmU-oIr7Eivk4DqnCiTFAedeSyzaLrsn5Db2ZgNcSC2PLKm0MrQuiiPyttsptk9FlSdyecUsIwQyb8A5ZMJXtW8ldYeWFen4yYVv_4OzYyHgXodOTzlHku84CfoIJznwVcGOmdGxsJUeKopjHgWKpsZ6aBig2LngqtZYBlViSkCWIpCbcl_bnmCWap9isOwlVygkOK1DtXJ1H0ef7j6kDaRPf7rLEDf208RGLOMKX-s0-5EbvdBbeyuMqal3uGoNMNpKXL0yS_-s852DG-eDeYaE08zChunWYPhz6UqlDrURs9xdgL6-r8NpxzlHitVyK13MgCzuW9TwLR_BsD6j-Ilz_yfaXoNLtddUyeChtah5gadzikFDJuGqmlNMwlJKkTa5XgJTCFoljYbfNQO5FsyRrdcIQVhjCCWMFGh_THgoaknET-PBNElme_9FFsxaBx8zdLq-dMI-N_UGKu6o36AsUmPBy3zZ1XP3F-ltQizqXLdE6a1-swZQZwnlSC61DJXscqA3j5mVy0-mVB7d_ffXeAdBUUCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSgMxFL1oBRXBt_h2BF1Oa_OaycJFsZb6KiIK7uJkkmyUVuwU0b_yV_wik5mMT8SFuHAdEkJuknNvcu85AFtSszSKlAmTlLOQUE1CiTULcRJTjVMLQLlqyUmHtS_I4SW9HIKnshbGpVW6GNoURBH5Xe0O960yZUZczXolhGCGbXSHXC2Vk63kPq_ySD_c26itv3vQtCbeRqi1f77XDr2wQJhigrNQR9yilEksVHKkKUp4EmmmLHgaGqHEeuBKGiMjKrEkMUsRUTbal-7jmKWGK2zHHYYR5uj3KjByfnbYbr9d_5j6Gm0SulmWZUPfTfwDIH6gS_0CDznmtabguVytItXlujrIZDV9_EQk-a-WcxomvQceNIojMwNDujsLE413HyqzMFbWa_fnoJZnVQSdJGcoCY79A2_gSyxcW9YLXDFC4BSg-vNw8SfTX4BKt9fVixAgVTc8wtI6xTGhknFdV5TTOJaSqDo3S0BKW4vUc7A7KZAbUS-pWr0xhDOG8MZYguprt9uChOSnDvz9RhJZ_vpjCqkWgX_ou1nuOmGvGvd_lHR1b9AXKLLB5Y6TdFz-xfgbMHrabInjg87RCozbFpy_aKFVqGR3A71mfbxMrvtTFcDVX--8Fy8aTtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+natural+language+processing+to+read+plans+%3A+a+study+of+78+resilience+plans+From+the+100+resilient+cities+network&rft.jtitle=Journal+of+the+American+Planning+Association&rft.au=Fu%2C+Xinyu&rft.au=Li%2C+Chaosu&rft.au=Zhai%2C+Wei&rft.date=2023-01-02&rft.issn=0194-4363&rft.volume=89&rft.issue=1&rft.spage=107&rft.epage=119&rft_id=info:doi/10.1080%2F01944363.2022.2038659&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-4363&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-4363&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-4363&client=summon |