Using Natural Language Processing to Read Plans A Study of 78 Resilience Plans From the 100 Resilient Cities Network

Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Planning Association Vol. 89; no. 1; pp. 107 - 119
Main Authors Fu, Xinyu, Li, Chaosu, Zhai, Wei
Format Journal Article
LanguageEnglish
Published Routledge 02.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents. NLP represents a valuable addition to the planner's toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies.
AbstractList Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents. NLP represents a valuable addition to the planner's toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies.
"Problem, research strategy, and findings: Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in emerging areas such as climate change and urban resilience. Recently, natural language processing (NLP) has shown promise in processing big textual data. We asked whether planners could use NLP techniques to more efficiently extract useful and reliable information from planning documents. By analyzing 78 resilience plans from the 100 Resilient Cities Network, we found that results generated from topic modeling, which is an NLP technique, coincided to a large extent (80%) with those from the conventional content analysis approach. Topic modeling was generally effective and efficient in extracting the main information of plans, whereas the content analysis approach could find more in-depth details but at the expense of considerable time and effort. We further propose a transferrable model for cutting-edge planners to more efficiently read and study a large collection of plans using machine learning. Our methodology has limitations: Both topic modeling and content analysis can be subject to human bias and generate unreliable results; NLP text processing techniques may create inaccurate results due to their specific method limitations; and the transferable approach can be only applied to big textual data where there are enough sufficiently long documents. Takeaway for practice: NLP represents a valuable addition to the planner’s toolbox. Topic modeling coupled with other NLP techniques can help planners to effectively discover key topics in plans, identify planning priorities and plans of specific emphasis, and find relevant policies." Keywords: machine learning, natural language processing, plan evaluation, urban resilience.
Author Fu, Xinyu
Li, Chaosu
Zhai, Wei
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0002-3591-4158
  surname: Fu
  fullname: Fu, Xinyu
– sequence: 2
  givenname: Chaosu
  orcidid: 0000-0002-1146-2361
  surname: Li
  fullname: Li, Chaosu
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-4064-0427
  surname: Zhai
  fullname: Zhai, Wei
BookMark eNqFkMtOwzAQRS1UJNrCJyBlySatH3Eciw2o4iVVUCG6tiaJXQWldrEdof49CS0bFjCLmcXcczVzJ2hkndUIXRI8I7jAc0xklrGczSimtG-syLk8QWMimUwxYXiExoMmHURnaBLCO-6LcTFG83Vo7CZ5hth5aJMl2E0HG52svKt0-N5Fl7xqqJNVCzaco1MDbdAXxzlF6_u7t8Vjunx5eFrcLtOKZSymWsiCMwOSYEk1pyBB6LwWHBsuKIi8qEtjSsFLVmZFXtGsFjkpKSY4r4ys2RRdHXx33n10OkS1bUKl2_4G7bqgqBC86H_jpJdeH6SVdyF4bVTVRIiNs9FD0yqC1RCT-olJDTGpY0w9zX_RO99swe__5W4OXGON81v4dL6tVYR967zxYKsmKPa3xRd93H6o
CitedBy_id crossref_primary_10_1016_j_ese_2024_100433
crossref_primary_10_1177_08854122241229571
crossref_primary_10_1016_j_compenvurbsys_2024_102131
crossref_primary_10_1038_s41558_023_01890_3
crossref_primary_10_1016_j_ese_2025_100526
crossref_primary_10_1007_s43762_022_00052_z
crossref_primary_10_1016_j_cliser_2024_100538
crossref_primary_10_1016_j_foar_2023_05_006
crossref_primary_10_1080_01944363_2024_2309259
crossref_primary_10_1016_j_jum_2024_12_001
crossref_primary_10_3390_urbansci8040197
crossref_primary_10_1080_01944363_2023_2271893
crossref_primary_10_1016_j_culher_2024_09_011
crossref_primary_10_1177_23998083241272097
Cites_doi 10.1177/0739456X14549752
10.1080/09640568.2016.1151771
10.1002/aris.1440370103
10.1080/01944369808975976
10.1080/01944363.2011.616995
10.1080/01944369708975926
10.1016/j.heliyon.2021.e06322
10.1002/asi.23596
10.1016/j.landurbplan.2015.11.011
10.1016/j.ijdrr.2020.101611
10.1007/s10584-019-02488-5
10.1371/journal.pone.0218590
10.1177/0739456X13513614
10.1177/0739456X02238446
10.2196/jmir.9702
10.1177/0739456X16647161
10.1177/147309520200100104
10.1016/j.cities.2021.103239
10.1080/01944363.2020.1831401
10.1038/s41893-019-0250-1
10.1080/17565529.2017.1301868
10.1177/0739456X18769134
10.1080/14649350802661741
10.1177/0049124118799372
10.1177/088541229601000302
10.1177/0885412208327014
10.1016/j.progress.2015.05.002
10.1177/1078087420938443
10.1080/01944363.2020.1766994
10.1080/01944363.2019.1652108
10.1016/j.cities.2016.05.011
10.1177/0739456X21995890
10.1080/08111146.2014.994741
10.1080/01944360008976081
10.1177/0739456X211048928
10.1080/01944360408976395
10.1038/nclimate3012
10.1080/01944363.2017.1404486
10.1080/02723638.2018.1446870
ContentType Journal Article
Copyright 2022 American Planning Association, Chicago, IL. 2022
Copyright_xml – notice: 2022 American Planning Association, Chicago, IL. 2022
DBID AAYXX
CITATION
7QK
FUQ
KCI
DOI 10.1080/01944363.2022.2038659
DatabaseName CrossRef
Avery Index to Architectural Periodicals
Avery Index to Architectural Periodicals
Avery Index to Architectural Periodicals
DatabaseTitle CrossRef
Avery Index to Architectural Periodicals
DatabaseTitleList
Avery Index to Architectural Periodicals
Database_xml – sequence: 1
  dbid: 7QK
  name: Avery Index to Architectural Periodicals
  url: https://proxy.k.utb.cz/login?url=http://search.proquest.com/avery
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Architecture
EISSN 1939-0130
EndPage 119
ExternalDocumentID 10_1080_01944363_2022_2038659
2038659
Genre Research Article
GroupedDBID --Z
-DZ
-~X
..I
.7I
.QK
0BK
0R~
15B
29L
2DF
4.4
42H
5VS
7WY
85S
8FL
8VB
AAGZJ
AAIKC
AAMFJ
AAMIU
AAMNW
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABDPE
ABFIM
ABISK
ABJNI
ABLIJ
ABPEM
ABQIJ
ABRLO
ABTAI
ABXUL
ABXYU
ABZLS
ACGFO
ACGFS
ACHQT
ACIWK
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADMHG
AECIN
AEGXH
AEISY
AEKEX
AEMOZ
AEOZL
AEPSL
AEYOC
AEZRU
AFRAH
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DO4
DU5
EAP
EBE
EBR
EBS
EBU
ECR
EDH
EHE
EMF
EMH
ESO
ESX
E~B
E~C
FJW
G-F
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
H~9
IPNFZ
J.O
K1G
K60
K6~
KYCEM
LJTGL
M4Z
NA5
NY-
P2P
QN7
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TAE
TBQAZ
TDBHL
TEG
TFH
TFL
TFW
TH9
TN5
TNTFI
TRJHH
TUROJ
U5U
UPT
UT5
UT9
VAE
VQA
WH7
YQT
YZZ
ZCA
ZL0
~01
~IF
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AEFOU
AFRVT
AIYEW
ALSLI
AMPGV
CITATION
7QK
FUQ
KCI
ID FETCH-LOGICAL-c343t-e79853fa91092e52a9a7e6d750f572a768dbffb75b3b486c24d761b20106cf9d3
ISSN 0194-4363
IngestDate Fri Jul 11 12:19:51 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 01:44:12 EDT 2025
Wed Dec 25 09:06:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-e79853fa91092e52a9a7e6d750f572a768dbffb75b3b486c24d761b20106cf9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3591-4158
0000-0003-4064-0427
0000-0002-1146-2361
PQID 2775801351
PQPubID 24072
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_01944363_2022_2038659
crossref_citationtrail_10_1080_01944363_2022_2038659
proquest_miscellaneous_2775801351
crossref_primary_10_1080_01944363_2022_2038659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-02
PublicationDateYYYYMMDD 2023-01-02
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-02
  day: 02
PublicationDecade 2020
PublicationTitle Journal of the American Planning Association
PublicationYear 2023
Publisher Routledge
Publisher_xml – name: Routledge
References CIT0010
CIT0032
CIT0031
CIT0034
CIT0011
CIT0033
CIT0014
Kelly E. D. (CIT0023) 2012
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
Nation P. (CIT0030) 2009; 9
CIT0019
CIT0041
CIT0040
CIT0043
CIT0020
CIT0042
CIT0001
CIT0045
CIT0022
CIT0044
Krippendorff K. (CIT0024) 2018
Fry E. (CIT0012) 1963
CIT0003
CIT0025
CIT0047
CIT0002
CIT0046
CIT0005
Hopkins L. D. (CIT0021) 2001
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0015
– ident: CIT0027
  doi: 10.1177/0739456X14549752
– ident: CIT0013
  doi: 10.1080/09640568.2016.1151771
– ident: CIT0009
  doi: 10.1002/aris.1440370103
– ident: CIT0031
  doi: 10.1080/01944369808975976
– ident: CIT0033
  doi: 10.1080/01944363.2011.616995
– ident: CIT0001
  doi: 10.1080/01944369708975926
– ident: CIT0008
  doi: 10.1016/j.heliyon.2021.e06322
– ident: CIT0037
  doi: 10.1002/asi.23596
– ident: CIT0028
  doi: 10.1016/j.landurbplan.2015.11.011
– ident: CIT0046
  doi: 10.1016/j.ijdrr.2020.101611
– ident: CIT0014
  doi: 10.1007/s10584-019-02488-5
– ident: CIT0022
  doi: 10.1371/journal.pone.0218590
– ident: CIT0035
  doi: 10.1177/0739456X13513614
– ident: CIT0042
  doi: 10.1177/0739456X02238446
– ident: CIT0016
  doi: 10.2196/jmir.9702
– ident: CIT0007
  doi: 10.1177/0739456X16647161
– ident: CIT0020
  doi: 10.1177/147309520200100104
– ident: CIT0043
  doi: 10.1016/j.cities.2021.103239
– volume: 9
  start-page: 131
  issue: 2
  year: 2009
  ident: CIT0030
  publication-title: International Journal of English Studies
– ident: CIT0039
– ident: CIT0018
  doi: 10.1080/01944363.2020.1831401
– ident: CIT0010
  doi: 10.1038/s41893-019-0250-1
– ident: CIT0003
  doi: 10.1080/17565529.2017.1301868
– ident: CIT0036
  doi: 10.1177/0739456X18769134
– ident: CIT0032
  doi: 10.1080/14649350802661741
– ident: CIT0047
– ident: CIT0002
  doi: 10.1177/0049124118799372
– ident: CIT0038
  doi: 10.1177/088541229601000302
– ident: CIT0005
  doi: 10.1177/0885412208327014
– ident: CIT0041
  doi: 10.1016/j.progress.2015.05.002
– volume-title: Community planning: An introduction to the comprehensive plan
  year: 2012
  ident: CIT0023
– volume-title: Teaching faster reading: A manual
  year: 1963
  ident: CIT0012
– ident: CIT0019
  doi: 10.1177/1078087420938443
– ident: CIT0011
  doi: 10.1080/01944363.2020.1766994
– ident: CIT0029
  doi: 10.1080/01944363.2019.1652108
– ident: CIT0034
  doi: 10.1016/j.cities.2016.05.011
– volume-title: Content analysis: An introduction to its methodology
  year: 2018
  ident: CIT0024
– ident: CIT0006
  doi: 10.1177/0739456X21995890
– ident: CIT0040
  doi: 10.1080/08111146.2014.994741
– ident: CIT0004
  doi: 10.1080/01944360008976081
– volume-title: Urban development: The logic of making plans
  year: 2001
  ident: CIT0021
– ident: CIT0045
  doi: 10.1177/0739456X211048928
– ident: CIT0025
  doi: 10.1080/01944360408976395
– ident: CIT0044
  doi: 10.1038/nclimate3012
– ident: CIT0017
  doi: 10.1080/01944363.2017.1404486
– ident: CIT0026
  doi: 10.1080/02723638.2018.1446870
SSID ssj0000357
Score 2.461119
Snippet Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and study lengthy planning documents, especially in...
"Problem, research strategy, and findings: Planners need to read plans to learn and adapt current practice. Planners may struggle to find time to read and...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms machine learning
natural language processing
plan evaluation
urban resilience
Subtitle A Study of 78 Resilience Plans From the 100 Resilient Cities Network
Title Using Natural Language Processing to Read Plans
URI https://www.tandfonline.com/doi/abs/10.1080/01944363.2022.2038659
https://www.proquest.com/docview/2775801351
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGA9u-6AIolNxU0cEv5WOtUmaxm9DdhxzTpQ7PPxSmjaBg9EO2xPmX--Tt_aOm2z6pZS8tfT365MnyfOC0HupsorzWsdlJbKYMkVjSVQWkzJnilQwAdmsJZ8vs-mcni_YYjQbs94lvTyuft_qV_I_qEIZ4Gq8ZP8B2WFQKIB7wBeugDBc74WxO--3sTnhS4etx-jaGf9bR6g2Aq2wNsmimy5yns1diCPNc6jsllfu73ZNJsHdJDk5GWr7qLKBV6PGGY3_RaNd81JphmxIWwQwZFkZZBfL5mY1GAQt_eF_2w1lP3yu7O9qub45kRK7ObGxXyloTImXYV7gupxBG8Ry0tMnwPUTceJk6ZaM90aRMLIZGJb4qXGoM7lLxTiphYP8yy_FZH5xUczOFrMdtJfCYgKk4d7s2_l0Os7YhHm3eveywdPLxGC_7TEbOsxGhNutGd2qKbOn6IlHA586sjxDD1Szjx6frh0X7aOHwRu9e45-WQ5hzyEcOIRHDuG-xYZD2BIEf8AltgzCrcY8xyODfAPDIAxUwMCgobbHjkHYM-gFmk_OZh-nsc_FEVeEkj5WXIBip0vQLkWqWFqKkqusBn1TM56WsGitpdaSM0kkzbMqpTXPEmlsLbJKi5q8RLtN26hXCKd1ogUnElYOOWUyEyqpmWB5LiWtE6EPEA1ft6h8oHqTL-WqSEI8Ww9KYUApPCgH6Hjodu0itdzVQaxDV_R2i0y7fDYFuaPvu4BzAfLYHLKVjWpXXQEMY6D1EZYc3qPNa_Ro_G3eoN3-50q9BS23l0doh3_9dOSp-gfrWqPw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BeyhCYikgdoIExxTqLfGBA2JRgNIDKhI3Eyf2BdQimgrBZ_Er_BB24kALQj0gDpwtW5bH41k87w3AjlQsCYJU-3HCmU-oIr7Eivk4DqnCiTFAedeSyzaLrsn5Db2ZgNcSC2PLKm0MrQuiiPyttsptk9FlSdyecUsIwQyb8A5ZMJXtW8ldYeWFen4yYVv_4OzYyHgXodOTzlHku84CfoIJznwVcGOmdGxsJUeKopjHgWKpsZ6aBig2LngqtZYBlViSkCWIpCbcl_bnmCWap9isOwlVygkOK1DtXJ1H0ef7j6kDaRPf7rLEDf208RGLOMKX-s0-5EbvdBbeyuMqal3uGoNMNpKXL0yS_-s852DG-eDeYaE08zChunWYPhz6UqlDrURs9xdgL6-r8NpxzlHitVyK13MgCzuW9TwLR_BsD6j-Ilz_yfaXoNLtddUyeChtah5gadzikFDJuGqmlNMwlJKkTa5XgJTCFoljYbfNQO5FsyRrdcIQVhjCCWMFGh_THgoaknET-PBNElme_9FFsxaBx8zdLq-dMI-N_UGKu6o36AsUmPBy3zZ1XP3F-ltQizqXLdE6a1-swZQZwnlSC61DJXscqA3j5mVy0-mVB7d_ffXeAdBUUCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSgMxFL1oBRXBt_h2BF1Oa_OaycJFsZb6KiIK7uJkkmyUVuwU0b_yV_wik5mMT8SFuHAdEkJuknNvcu85AFtSszSKlAmTlLOQUE1CiTULcRJTjVMLQLlqyUmHtS_I4SW9HIKnshbGpVW6GNoURBH5Xe0O960yZUZczXolhGCGbXSHXC2Vk63kPq_ySD_c26itv3vQtCbeRqi1f77XDr2wQJhigrNQR9yilEksVHKkKUp4EmmmLHgaGqHEeuBKGiMjKrEkMUsRUTbal-7jmKWGK2zHHYYR5uj3KjByfnbYbr9d_5j6Gm0SulmWZUPfTfwDIH6gS_0CDznmtabguVytItXlujrIZDV9_EQk-a-WcxomvQceNIojMwNDujsLE413HyqzMFbWa_fnoJZnVQSdJGcoCY79A2_gSyxcW9YLXDFC4BSg-vNw8SfTX4BKt9fVixAgVTc8wtI6xTGhknFdV5TTOJaSqDo3S0BKW4vUc7A7KZAbUS-pWr0xhDOG8MZYguprt9uChOSnDvz9RhJZ_vpjCqkWgX_ou1nuOmGvGvd_lHR1b9AXKLLB5Y6TdFz-xfgbMHrabInjg87RCozbFpy_aKFVqGR3A71mfbxMrvtTFcDVX--8Fy8aTtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+natural+language+processing+to+read+plans+%3A+a+study+of+78+resilience+plans+From+the+100+resilient+cities+network&rft.jtitle=Journal+of+the+American+Planning+Association&rft.au=Fu%2C+Xinyu&rft.au=Li%2C+Chaosu&rft.au=Zhai%2C+Wei&rft.date=2023-01-02&rft.issn=0194-4363&rft.volume=89&rft.issue=1&rft.spage=107&rft.epage=119&rft_id=info:doi/10.1080%2F01944363.2022.2038659&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-4363&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-4363&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-4363&client=summon