Intradermal SynCon® Ebola GP DNA Vaccine Is Temperature Stable and Safely Demonstrates Cellular and Humoral Immunogenicity Advantages in Healthy Volunteers
Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2-8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we pe...
Saved in:
Published in | The Journal of infectious diseases Vol. 220; no. 3; pp. 400 - 410 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
02.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2-8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we performed a clinical study to evaluate both intramuscular (IM) and novel intradermal (ID) DNA delivery.
Two DNA vaccine candidates (INO-4201 and INO-4202) targeting the EBOV glycoprotein (GP) were evaluated for safety, tolerability, and immunogenicity in a phase 1 clinical trial. The candidates were evaluated alone, together, or in combination with plasmid-encoded human cytokine interleukin-12 followed by in vivo electroporation using either the CELLECTRA® IM or ID delivery devices.
The safety profile of all 5 regimens was shown to be benign, with the ID route being better tolerated. Antibodies to EBOV GP were generated by all 5 regimens with the fastest and steepest rise observed in the ID group. Cellular immune responses were generated with every regimen.
ID delivery of INO-4201 was well tolerated and resulted in 100% seroreactivity after 2 doses and elicited interferon-γ T-cell responses in over 70% of subjects, providing a new approach for EBOV prevention in diverse populations. Clinical Trials Registration. NCT02464670. |
---|---|
AbstractList | Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2-8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we performed a clinical study to evaluate both intramuscular (IM) and novel intradermal (ID) DNA delivery.
Two DNA vaccine candidates (INO-4201 and INO-4202) targeting the EBOV glycoprotein (GP) were evaluated for safety, tolerability, and immunogenicity in a phase 1 clinical trial. The candidates were evaluated alone, together, or in combination with plasmid-encoded human cytokine interleukin-12 followed by in vivo electroporation using either the CELLECTRA® IM or ID delivery devices.
The safety profile of all 5 regimens was shown to be benign, with the ID route being better tolerated. Antibodies to EBOV GP were generated by all 5 regimens with the fastest and steepest rise observed in the ID group. Cellular immune responses were generated with every regimen.
ID delivery of INO-4201 was well tolerated and resulted in 100% seroreactivity after 2 doses and elicited interferon-γ T-cell responses in over 70% of subjects, providing a new approach for EBOV prevention in diverse populations. Clinical Trials Registration. NCT02464670. Background Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2–8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we performed a clinical study to evaluate both intramuscular (IM) and novel intradermal (ID) DNA delivery. Methods Two DNA vaccine candidates (INO-4201 and INO-4202) targeting the EBOV glycoprotein (GP) were evaluated for safety, tolerability, and immunogenicity in a phase 1 clinical trial. The candidates were evaluated alone, together, or in combination with plasmid-encoded human cytokine interleukin-12 followed by in vivo electroporation using either the CELLECTRA® IM or ID delivery devices. Results The safety profile of all 5 regimens was shown to be benign, with the ID route being better tolerated. Antibodies to EBOV GP were generated by all 5 regimens with the fastest and steepest rise observed in the ID group. Cellular immune responses were generated with every regimen. Conclusions ID delivery of INO-4201 was well tolerated and resulted in 100% seroreactivity after 2 doses and elicited interferon-γ T-cell responses in over 70% of subjects, providing a new approach for EBOV prevention in diverse populations. Clinical Trials Registration. NCT02464670. Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2-8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we performed a clinical study to evaluate both intramuscular (IM) and novel intradermal (ID) DNA delivery.BACKGROUNDNonlive vaccine approaches that are simple to deliver and stable at room temperature or 2-8°C could be advantageous in controlling future Ebola virus (EBOV) outbreaks. Using an immunopotent DNA vaccine that generates protection from lethal EBOV challenge in small animals and nonhuman primates, we performed a clinical study to evaluate both intramuscular (IM) and novel intradermal (ID) DNA delivery.Two DNA vaccine candidates (INO-4201 and INO-4202) targeting the EBOV glycoprotein (GP) were evaluated for safety, tolerability, and immunogenicity in a phase 1 clinical trial. The candidates were evaluated alone, together, or in combination with plasmid-encoded human cytokine interleukin-12 followed by in vivo electroporation using either the CELLECTRA® IM or ID delivery devices.METHODSTwo DNA vaccine candidates (INO-4201 and INO-4202) targeting the EBOV glycoprotein (GP) were evaluated for safety, tolerability, and immunogenicity in a phase 1 clinical trial. The candidates were evaluated alone, together, or in combination with plasmid-encoded human cytokine interleukin-12 followed by in vivo electroporation using either the CELLECTRA® IM or ID delivery devices.The safety profile of all 5 regimens was shown to be benign, with the ID route being better tolerated. Antibodies to EBOV GP were generated by all 5 regimens with the fastest and steepest rise observed in the ID group. Cellular immune responses were generated with every regimen.RESULTSThe safety profile of all 5 regimens was shown to be benign, with the ID route being better tolerated. Antibodies to EBOV GP were generated by all 5 regimens with the fastest and steepest rise observed in the ID group. Cellular immune responses were generated with every regimen.ID delivery of INO-4201 was well tolerated and resulted in 100% seroreactivity after 2 doses and elicited interferon-γ T-cell responses in over 70% of subjects, providing a new approach for EBOV prevention in diverse populations. Clinical Trials Registration. NCT02464670.CONCLUSIONSID delivery of INO-4201 was well tolerated and resulted in 100% seroreactivity after 2 doses and elicited interferon-γ T-cell responses in over 70% of subjects, providing a new approach for EBOV prevention in diverse populations. Clinical Trials Registration. NCT02464670. |
Author | Roberts, Christine C. Tebas, Pablo Jeong, Moonsup White, Scott M. Gillespie, Elisabeth Amante, Dinah Bagarazzi, Mark Racine, Trina Maslow, Joel N. Boyer, Jean Sylvester, Albert J. Knoblock, Dawson Weiner, David B. Broderick, Kate E. Kobinger, Gary P. Sardesai, Niranjan Y. McMullan, Trevor Morrow, Matthew P. Kraynyak, Kimberly A. Patel, Ami Park, Young K. |
Author_xml | – sequence: 1 givenname: Pablo surname: Tebas fullname: Tebas, Pablo – sequence: 2 givenname: Kimberly A. surname: Kraynyak fullname: Kraynyak, Kimberly A. – sequence: 3 givenname: Ami surname: Patel fullname: Patel, Ami – sequence: 4 givenname: Joel N. surname: Maslow fullname: Maslow, Joel N. – sequence: 5 givenname: Matthew P. surname: Morrow fullname: Morrow, Matthew P. – sequence: 6 givenname: Albert J. surname: Sylvester fullname: Sylvester, Albert J. – sequence: 7 givenname: Dawson surname: Knoblock fullname: Knoblock, Dawson – sequence: 8 givenname: Elisabeth surname: Gillespie fullname: Gillespie, Elisabeth – sequence: 9 givenname: Dinah surname: Amante fullname: Amante, Dinah – sequence: 10 givenname: Trina surname: Racine fullname: Racine, Trina – sequence: 11 givenname: Trevor surname: McMullan fullname: McMullan, Trevor – sequence: 12 givenname: Moonsup surname: Jeong fullname: Jeong, Moonsup – sequence: 13 givenname: Christine C. surname: Roberts fullname: Roberts, Christine C. – sequence: 14 givenname: Young K. surname: Park fullname: Park, Young K. – sequence: 15 givenname: Jean surname: Boyer fullname: Boyer, Jean – sequence: 16 givenname: Kate E. surname: Broderick fullname: Broderick, Kate E. – sequence: 17 givenname: Gary P. surname: Kobinger fullname: Kobinger, Gary P. – sequence: 18 givenname: Mark surname: Bagarazzi fullname: Bagarazzi, Mark – sequence: 19 givenname: David B. surname: Weiner fullname: Weiner, David B. – sequence: 20 givenname: Niranjan Y. surname: Sardesai fullname: Sardesai, Niranjan Y. – sequence: 21 givenname: Scott M. surname: White fullname: White, Scott M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30891607$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ctu1DAUBmALFdFpYckSZKkbNqG-JHGyHE0vM1IFSFO6jZz4pHjk2IPtIIVn6TPwEDwZHlK6qMTKm-9cfP4TdGSdBYTeUvKRkpqfa9srHc53-ifl7AVa0IKLrCwpP0ILQhjLaFXXx-gkhB0hJOeleIWOOalqWhKxQA8bG71U4Adp8HayK2d__8KXrTMSX3_BF5-W-E52nbaANwHfwrAHL-PoAW-jbA1gaRXeyh7MhC9gcDakdhECXoExo5H-L1iPg_NpwGYYRuvuwepOxwkv1Q9po7xPXFu8BmnitwnfOTPaCODDa_SylybAm8f3FH29urxdrbObz9eb1fIm63jOY6ZaWpVEMqbqvGxVrnpSsK4t-p4rTspKqprllSpERzopCLRCdJRWPcgCWA81P0Uf5r57776PEGIz6NClD0gLbgwNo3VeVJUoq0TPntGdG71N2zUszysmGCeHhu8f1dgOoJq914P0U_Pv7glkM-i8C8FD_0QoaQ65NnOuzZxr8vyZTweUUbtDetr8t-rdXLUL0fmnEawUeZ024X8AVZW18Q |
CitedBy_id | crossref_primary_10_3389_fimmu_2022_884760 crossref_primary_10_1002_adma_202107781 crossref_primary_10_1002_advs_201902802 crossref_primary_10_3390_vaccines11061016 crossref_primary_10_3390_pharmaceutics13020140 crossref_primary_10_1038_s41541_022_00482_0 crossref_primary_10_1038_s41541_022_00581_y crossref_primary_10_3390_ijms23042188 crossref_primary_10_3390_pharmaceutics15071832 crossref_primary_10_3390_v13030382 crossref_primary_10_3390_vaccines8010021 crossref_primary_10_1016_j_vaccine_2021_06_057 crossref_primary_10_1038_s41467_022_28363_z crossref_primary_10_1021_acs_molpharmaceut_0c00608 crossref_primary_10_1080_14760584_2019_1698952 crossref_primary_10_1016_j_jvacx_2024_100500 crossref_primary_10_3389_fimmu_2022_827605 crossref_primary_10_2139_ssrn_3900407 crossref_primary_10_3390_vaccines8040741 crossref_primary_10_1007_s00203_023_03480_5 crossref_primary_10_1172_jci_insight_146082 crossref_primary_10_1016_j_jobb_2023_05_001 crossref_primary_10_3390_vaccines7020044 crossref_primary_10_1016_j_retram_2022_103348 crossref_primary_10_1016_j_eclinm_2021_101020 crossref_primary_10_3389_fimmu_2020_576748 crossref_primary_10_1111_nyas_14235 crossref_primary_10_3389_fimmu_2022_1023255 crossref_primary_10_1208_s12249_024_02778_x crossref_primary_10_3390_vaccines9111328 crossref_primary_10_1016_j_antiviral_2021_105141 crossref_primary_10_1016_S1473_3099_20_30016_5 crossref_primary_10_1016_j_addr_2020_12_008 crossref_primary_10_1158_1940_6207_CAPR_22_0217 crossref_primary_10_21931_RB_2021_06_03_33 crossref_primary_10_1080_14760584_2023_2292772 crossref_primary_10_1016_j_cell_2024_07_023 crossref_primary_10_1016_j_jneuroim_2021_577599 crossref_primary_10_1016_j_addr_2021_01_014 crossref_primary_10_1128_cmr_00241_21 crossref_primary_10_1016_j_intimp_2021_108162 crossref_primary_10_1016_j_jmb_2023_168297 crossref_primary_10_3390_vaccines9010059 crossref_primary_10_1016_j_omtn_2023_102070 crossref_primary_10_1016_j_eclinm_2020_100689 crossref_primary_10_1016_j_tibtech_2023_11_009 crossref_primary_10_1172_jci_insight_137079 crossref_primary_10_3390_vaccines11020243 crossref_primary_10_1080_21645515_2020_1748979 crossref_primary_10_1016_j_vaccine_2022_03_060 crossref_primary_10_1146_annurev_virology_092818_015708 crossref_primary_10_1080_21645515_2020_1789408 crossref_primary_10_1093_infdis_jiac016 crossref_primary_10_1080_21645515_2024_2448405 crossref_primary_10_3390_vaccines11020280 crossref_primary_10_1007_s40259_020_00412_3 crossref_primary_10_1038_s41541_021_00384_7 crossref_primary_10_3390_nano13121828 crossref_primary_10_1016_j_addr_2021_01_003 crossref_primary_10_1016_j_addr_2024_115292 crossref_primary_10_1016_j_phrs_2023_106699 crossref_primary_10_1080_14760584_2021_1902314 crossref_primary_10_1016_j_cell_2021_01_017 crossref_primary_10_1038_s41467_019_11815_4 crossref_primary_10_1016_j_xcrp_2023_101430 crossref_primary_10_1080_25785826_2022_2111905 crossref_primary_10_1016_j_biopha_2023_115048 crossref_primary_10_1016_j_coi_2020_01_006 crossref_primary_10_1016_j_vaccine_2024_01_065 crossref_primary_10_1038_s41467_020_16505_0 crossref_primary_10_2217_fvl_2021_0170 crossref_primary_10_1016_S1473_3099_23_00376_6 crossref_primary_10_3390_vaccines8010056 crossref_primary_10_4103_jpdtsm_jpdtsm_85_22 crossref_primary_10_1016_j_advms_2023_05_003 crossref_primary_10_3389_fmedt_2020_571030 |
Cites_doi | 10.1007/s12026-008-8076-3 10.1001/jama.2016.4218 10.1093/infdis/jiv532 10.1093/infdis/jiy565 10.1093/infdis/jiu511 10.1016/S1473-3099(15)00362-X 10.1016/j.coi.2011.03.008 10.1038/nm.4201 10.1016/S1473-3099(15)00486-7 10.1016/S1473-3099(15)00154-1 10.1586/14760584.2015.990890 10.1056/NEJMoa1502924 10.1093/infdis/jit236 10.4161/hv.24702 10.1016/j.vaccine.2012.02.069 10.1080/21645515.2015.1039757 10.1126/scitranslmed.3004414 10.1016/S0140-6736(16)32621-6 10.1016/S0140-6736(14)62385-0 10.1016/S0140-6736(15)61117-5 10.1098/rstb.2016.0295 10.1016/S2214-109X(16)30367-9 10.1056/NEJMoa1708120 10.1016/S0140-6736(15)00239-1 10.1089/vim.2012.0061 10.1093/infdis/jiy537 10.1016/S0140-6736(16)32617-4 10.1056/NEJMoa1411627 10.3389/fimmu.2013.00354 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.1093/infdis/jiz132 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1537-6613 |
EndPage | 410 |
ExternalDocumentID | 30891607 10_1093_infdis_jiz132 26749089 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X ..I .2P .I3 .XZ .ZR 08P 0R~ 123 29K 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 70D 85S AABZA AACGO AACZT AAHBH AAHTB AAJKP AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPEJ ABPLY ABPPZ ABPQP ABPTD ABQLI ABQNK ABTLG ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BR6 BTRTY BVRKM C45 CDBKE CS3 CZ4 D-I DAKXR DIK DILTD DU5 D~K EBS ECGQY EE~ EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JENOY JLS JSG JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B LSO LU7 MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SJN TCURE TEORI TJX TR2 W2D W8F WH7 X7H YAYTL YKOAZ YXANX ~91 AAYXX CITATION EJD ADJQC ADRIX AEUPB AFXEN CGR CUY CVF ECM EIF ESX M49 NPM YIF ZKG 2AX ABBHK AEXZC DCCCD IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM K9. NAPCQ SA0 7X8 |
ID | FETCH-LOGICAL-c343t-db1860a22d946bd4df052cb5ff3d3068ad9248d57c0ca70eb77c118fea5e2fe93 |
ISSN | 0022-1899 1537-6613 |
IngestDate | Thu Jul 10 19:26:17 EDT 2025 Wed Aug 13 05:57:09 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Thu Apr 24 23:11:12 EDT 2025 Tue Jul 01 01:31:15 EDT 2025 Thu Jun 19 19:52:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | DNA vaccine clinical trial safety electroporation Ebola immunogenicity temperature stable |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-db1860a22d946bd4df052cb5ff3d3068ad9248d57c0ca70eb77c118fea5e2fe93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30891607 |
PQID | 2448272309 |
PQPubID | 41591 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2194588768 proquest_journals_2448272309 pubmed_primary_30891607 crossref_primary_10_1093_infdis_jiz132 crossref_citationtrail_10_1093_infdis_jiz132 jstor_primary_26749089 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-02 |
PublicationDateYYYYMMDD | 2019-07-02 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | The Journal of infectious diseases |
PublicationTitleAlternate | J Infect Dis |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Grant-Klein (2020031822084989200_CIT0024) 2015; 11 Huttner (2020031822084989200_CIT0013) 2015; 15 Kalams (2020031822084989200_CIT0019) 2013; 208 World Health Organization (2020031822084989200_CIT0034) 2016 Agnandji (2020031822084989200_CIT0010) 2016; 374 Sarwar (2020031822084989200_CIT0005) 2015; 211 Dahlke (2020031822084989200_CIT0030) 2017; 215 Bao (2020031822084989200_CIT0018) 2013; 26 Centers for Disease Control and Prevention (2020031822084989200_CIT0001) Henao-Restrepo (2020031822084989200_CIT0012) 2015; 386 Ebola ça Suffit Ring Vaccination Trial Consortium (2020031822084989200_CIT0014) 2015; 351 Patel (2020031822084989200_CIT0025) 2019; 219 Ewer (2020031822084989200_CIT0009) 2016; 374 Abdulhaqq (2020031822084989200_CIT0022) 2008; 42 De Santis (2020031822084989200_CIT0007) 2016; 16 Trimble (2020031822084989200_CIT0017) 2015; 386 Diehl (2020031822084989200_CIT0028) 2013; 9 Bagarazzi (2020031822084989200_CIT0029) 2012; 4 Li (2020031822084989200_CIT0002) 2017; 5 Zhu (2020031822084989200_CIT0003) 2017; 389 Henao-Restrepo (2020031822084989200_CIT0011) 2017; 389 Flingai (2020031822084989200_CIT0021) 2013; 4 Tebas (2020031822084989200_CIT0020) Sardesai (2020031822084989200_CIT0023) 2011; 23 Arnemo (2020031822084989200_CIT0015) 2016; 213 Tapia (2020031822084989200_CIT0008) 2016; 16 Khurana (2020031822084989200_CIT0031) 2016; 22 Hutnick (2020031822084989200_CIT0033) 2012; 30 Milligan (2020031822084989200_CIT0004) 2016; 315 Broderick (2020031822084989200_CIT0026) 2015; 14 Lambe (2020031822084989200_CIT0032) 2017; 372 US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (2020031822084989200_CIT0027) 2007 Poetsch (2020031822084989200_CIT0016) 2019; 219 Kibuuka (2020031822084989200_CIT0006) 2015; 385 |
References_xml | – volume: 42 start-page: 219 year: 2008 ident: 2020031822084989200_CIT0022 article-title: DNA vaccines: developing new strategies to enhance immune responses publication-title: Immunol Res doi: 10.1007/s12026-008-8076-3 – volume: 315 start-page: 1610 year: 2016 ident: 2020031822084989200_CIT0004 article-title: Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia Ankara-vectored Ebola vaccines: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2016.4218 – volume: 213 start-page: 930 year: 2016 ident: 2020031822084989200_CIT0015 article-title: Stability of a vesicular stomatitis virus-vectored Ebola vaccine publication-title: J Infect Dis doi: 10.1093/infdis/jiv532 – volume: 219 start-page: 556 year: 2019 ident: 2020031822084989200_CIT0016 article-title: Detectable vesicular stomatitis virus (VSV)-specific humoral and cellular immune responses following VSV-Ebola virus vaccination in humans publication-title: J Infect Dis doi: 10.1093/infdis/jiy565 – volume: 211 start-page: 549 year: 2015 ident: 2020031822084989200_CIT0005 article-title: Safety and immunogenicity of DNA vaccines encoding Ebolavirus and Marburgvirus wild-type glycoproteins in a phase I clinical trial publication-title: J Infect Dis doi: 10.1093/infdis/jiu511 – volume: 16 start-page: 31 year: 2016 ident: 2020031822084989200_CIT0008 article-title: Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(15)00362-X – volume: 23 start-page: 421 year: 2011 ident: 2020031822084989200_CIT0023 article-title: Electroporation delivery of DNA vaccines: prospects for success publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2011.03.008 – volume: 22 start-page: 1439 year: 2016 ident: 2020031822084989200_CIT0031 article-title: Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies publication-title: Nat Med doi: 10.1038/nm.4201 – volume: 16 start-page: 311 year: 2016 ident: 2020031822084989200_CIT0007 article-title: Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(15)00486-7 – volume: 15 start-page: 1156 year: 2015 ident: 2020031822084989200_CIT0013 article-title: The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(15)00154-1 – volume: 14 start-page: 195 year: 2015 ident: 2020031822084989200_CIT0026 article-title: Electroporation-enhanced delivery of nucleic acid vaccines publication-title: Expert Rev Vaccines doi: 10.1586/14760584.2015.990890 – volume: 374 start-page: 1647 year: 2016 ident: 2020031822084989200_CIT0010 article-title: Phase 1 trials of rVSV Ebola vaccine in Africa and Europe publication-title: N Engl J Med doi: 10.1056/NEJMoa1502924 – volume: 208 start-page: 818 year: 2013 ident: 2020031822084989200_CIT0019 article-title: Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery publication-title: J Infect Dis doi: 10.1093/infdis/jit236 – volume: 351 start-page: h3740 year: 2015 ident: 2020031822084989200_CIT0014 article-title: The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola publication-title: BMJ – volume: 9 start-page: 2246 year: 2013 ident: 2020031822084989200_CIT0028 article-title: Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers publication-title: Hum Vaccin Immunother doi: 10.4161/hv.24702 – volume: 30 start-page: 3202 year: 2012 ident: 2020031822084989200_CIT0033 article-title: An optimized SIV DNA vaccine can serve as a boost for Ad5 and provide partial protection from a high-dose SIVmac251 challenge publication-title: Vaccine doi: 10.1016/j.vaccine.2012.02.069 – volume: 11 start-page: 1991 year: 2015 ident: 2020031822084989200_CIT0024 article-title: Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges publication-title: Hum Vaccin Immunother doi: 10.1080/21645515.2015.1039757 – volume: 4 start-page: 155ra138 year: 2012 ident: 2020031822084989200_CIT0029 article-title: Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004414 – volume-title: Guidance for industry: toxicity grading scale for healthy adult and adolescent volunteers enrolled in preventive vaccine clinical trials year: 2007 ident: 2020031822084989200_CIT0027 – volume: 389 start-page: 505 year: 2017 ident: 2020031822084989200_CIT0011 article-title: Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!) publication-title: Lancet doi: 10.1016/S0140-6736(16)32621-6 – volume: 385 start-page: 1545 year: 2015 ident: 2020031822084989200_CIT0006 article-title: Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial publication-title: Lancet doi: 10.1016/S0140-6736(14)62385-0 – ident: 2020031822084989200_CIT0001 – volume: 386 start-page: 857 year: 2015 ident: 2020031822084989200_CIT0012 article-title: Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial publication-title: Lancet doi: 10.1016/S0140-6736(15)61117-5 – volume: 215 start-page: 287 year: 2017 ident: 2020031822084989200_CIT0030 article-title: Comprehensive characterization of cellular immune responses following Ebola virus infection publication-title: J Infect Dis – volume: 372 start-page: pii: 20160295 year: 2017 ident: 2020031822084989200_CIT0032 article-title: A review of phase I trials of Ebola virus vaccines: what can we learn from the race to develop novel vaccines? publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2016.0295 – volume: 5 start-page: e324 year: 2017 ident: 2020031822084989200_CIT0002 article-title: Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(16)30367-9 – ident: 2020031822084989200_CIT0020 article-title: Safety and immunogenicity of an anti-Zika virus DNA vaccine - preliminary report publication-title: N Engl J Med doi: 10.1056/NEJMoa1708120 – volume: 386 start-page: 2078 year: 2015 ident: 2020031822084989200_CIT0017 article-title: Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial publication-title: Lancet doi: 10.1016/S0140-6736(15)00239-1 – volume-title: WHO Ebola vaccine target product profile year: 2016 ident: 2020031822084989200_CIT0034 – volume: 26 start-page: 75 year: 2013 ident: 2020031822084989200_CIT0018 article-title: Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA vaccine publication-title: Viral Immunol doi: 10.1089/vim.2012.0061 – volume: 219 start-page: 544 year: 2019 ident: 2020031822084989200_CIT0025 article-title: Protective efficacy and long-term immunogenicity in cynomolgus macaques by Ebola virus glycoprotein synthetic DNA vaccines publication-title: J Infect Dis doi: 10.1093/infdis/jiy537 – volume: 389 start-page: 621 year: 2017 ident: 2020031822084989200_CIT0003 article-title: Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(16)32617-4 – volume: 374 start-page: 1635 year: 2016 ident: 2020031822084989200_CIT0009 article-title: A monovalent chimpanzee adenovirus Ebola vaccine boosted with MVA publication-title: N Engl J Med doi: 10.1056/NEJMoa1411627 – volume: 4 start-page: 354 year: 2013 ident: 2020031822084989200_CIT0021 article-title: Synthetic DNA vaccines: improved vaccine potency by electroporation and co-delivered genetic adjuvants publication-title: Front Immunol doi: 10.3389/fimmu.2013.00354 |
SSID | ssj0004367 |
Score | 2.5612588 |
Snippet | Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2-8°C could be advantageous in controlling future Ebola virus (EBOV)... Background Nonlive vaccine approaches that are simple to deliver and stable at room temperature or 2–8°C could be advantageous in controlling future Ebola... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 400 |
SubjectTerms | Adolescent Adult Antibodies, Viral - immunology Clinical trials Deoxyribonucleic acid DNA DNA vaccines Ebola Vaccines - adverse effects Ebola Vaccines - immunology Ebola virus Ebolavirus Ebolavirus - immunology Electroporation Electroporation - methods Female Glycoproteins - immunology Healthy Volunteers Hemorrhagic Fever, Ebola - immunology Humans Immune response Immune response (cell-mediated) Immunity, Cellular - immunology Immunity, Humoral - immunology Immunogenicity Injections, Intradermal - methods Interleukin 12 Interleukin-12 - immunology Lymphocytes T Male Middle Aged Temperature Vaccination - methods VACCINES Vaccines, DNA - adverse effects Vaccines, DNA - immunology Young Adult γ-Interferon |
Title | Intradermal SynCon® Ebola GP DNA Vaccine Is Temperature Stable and Safely Demonstrates Cellular and Humoral Immunogenicity Advantages in Healthy Volunteers |
URI | https://www.jstor.org/stable/26749089 https://www.ncbi.nlm.nih.gov/pubmed/30891607 https://www.proquest.com/docview/2448272309 https://www.proquest.com/docview/2194588768 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEIgbBINBYSAjATchW-o4P72sunbrfkol2ml3kWM7qChL0dpedM_CM_AQvASvw_FP0lRsCOhFVDmW4_Z8Of6OfX4QegucoEVCzuEVF6lL0zBw47YXu1mbZgGFD9fZ9c-G4dGEHl8EF43Gz5rX0nKR7vHrG-NK_keq0AZyVVGy_yDZalBogO8gX7iChOH6VzIeqJ1ZoXRr7nxaFV2gcV3yrtNzeilYrM7hyDkYdpxzxtXpuTOYO2MJLNlkUVY0U0VNaddNlsl8BbrnUrFFlTxi7nRlnmsXVdUBhK4j-QcqmmQG85lyxd51SeYF-6ydumxE08o5h98M4rKu9SXzXceg2TQVxglsOS_PiCpyP5Yps-UD0nxWrQhXbFWsmFbeJ1NVxgRmXMFvBHM27gaX0_Um-zw3J1fHyn93WN_g0DFVrlczh28OnKwrdbCnW7Gps7QnSz0euUA9_LqiJ8SrIdqvqW3qeTUGQI2j7W-Li0m8BU1CpX_of5let-ze7EYa7-HHpD85PU3GvYvxHXSXgP2iSmscDE7WAbt-GJVp7NXMbfJXeMC-GX7fDL5Bloy_7O2WkGZE40fooRUm7hhcPkYNWWyje6a46Wob3T-zbhtP0LcaULEB6o_vWIMUH44wgBRbkOLBHNdAig1IMWAQG5DiOkhxCVLdwYIUb4IUr0GKpwW2IMVrkD5Fk35v3D1ybVkQl_vUX7gibcWhxwgRbRqmgorMCwhPgyzzBRjAMRNtQmMRRNzjLPJkGkUczOhMskCSTLb9HbRVzAr5HGEe0wwMmliQtqAtQWOPMOFBr5i3CKesiT6U_3_Cbc58VbolT4zvhp8YcSVGXE30vur-1SSLua3jjhZm1YuEkT6Bb6LdUrqJVTTzBBh4TCLie3D7TXUblgF1tscKCa9qAsRDxZxHYdxEzwwqqsF9GFjlkXzx58Ffogfr128XbS2ulvIVMO5F-lqj9xfhc-Ar |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intradermal+SynCon%C2%AE+Ebola+GP+DNA+Vaccine+Is+Temperature+Stable+and+Safely+Demonstrates+Cellular+and+Humoral+Immunogenicity+Advantages+in+Healthy+Volunteers&rft.jtitle=The+Journal+of+infectious+diseases&rft.au=Tebas%2C+Pablo&rft.au=Kraynyak%2C+Kimberly+A&rft.au=Patel%2C+Ami&rft.au=Maslow%2C+Joel+N&rft.date=2019-07-02&rft.pub=Oxford+University+Press&rft.issn=0022-1899&rft.eissn=1537-6613&rft.volume=220&rft.issue=3&rft.spage=400&rft.epage=410&rft_id=info:doi/10.1093%2Finfdis%2Fjiz132&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1899&client=summon |