Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment
•Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten the fatigue life from several days to a few hours.•The 3.5%NaCl solution causes corrosion pits on the surface leading to crack nucleation si...
Saved in:
Published in | International journal of fatigue Vol. 133; p. 105420 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten the fatigue life from several days to a few hours.•The 3.5%NaCl solution causes corrosion pits on the surface leading to crack nucleation sites.
The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution fatigue life was significantly reduced by over 51 times, the fatigue life being shortened from several days to a few hours. Moreover, fatigue under the 3.5% NaCl solution could remove the endurance limit. The solution promoted the generation of many tiny pits, which were created rapidly on the surface of the specimens. These pits acted as crack nucleation sites leading to fatigue failure. The results indicate that pitting corrosion can markedly decrease the fatigue life. |
---|---|
AbstractList | The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution fatigue life was significantly reduced by over 51 times, the fatigue life being shortened from several days to a few hours. Moreover, fatigue under the 3.5% NaCl solution could remove the endurance limit. The solution promoted the generation of many tiny pits, which were created rapidly on the surface of the specimens. These pits acted as crack nucleation sites leading to fatigue failure. The results indicate that pitting corrosion can markedly decrease the fatigue life. •Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten the fatigue life from several days to a few hours.•The 3.5%NaCl solution causes corrosion pits on the surface leading to crack nucleation sites. The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution fatigue life was significantly reduced by over 51 times, the fatigue life being shortened from several days to a few hours. Moreover, fatigue under the 3.5% NaCl solution could remove the endurance limit. The solution promoted the generation of many tiny pits, which were created rapidly on the surface of the specimens. These pits acted as crack nucleation sites leading to fatigue failure. The results indicate that pitting corrosion can markedly decrease the fatigue life. |
ArticleNumber | 105420 |
Author | Rengsomboon, Amornsak Chanyathunyaroj, Kittisak Laungsopapun, Ghit Phetchcrai, Sompob |
Author_xml | – sequence: 1 givenname: Kittisak orcidid: 0000-0001-8940-8544 surname: Chanyathunyaroj fullname: Chanyathunyaroj, Kittisak email: kittisak_chanya@hotmail.com, kittisak.chanya@mail.kmutt.ac.th organization: National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani 12120 Thailand – sequence: 2 givenname: Sompob surname: Phetchcrai fullname: Phetchcrai, Sompob organization: National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani 12120 Thailand – sequence: 3 givenname: Ghit surname: Laungsopapun fullname: Laungsopapun, Ghit organization: Thailand Institute of Scientific and Technological Research, 35 Moo 3 Khlong Ha, Khlong Luang, Pathum Thani 12120, Thailand – sequence: 4 givenname: Amornsak surname: Rengsomboon fullname: Rengsomboon, Amornsak organization: National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani 12120 Thailand |
BookMark | eNqNkEFLwzAUx4NMcJt-BgPisTNpk6Y9eBjDqTDcRc8hTV81pUtmkg727e2oePCip_d4_H__B78ZmlhnAaFrShaU0PyuXZi2UdG897BICS2HK2cpOUNTWogyyRhPJ2hKKEsTStPsAs1CaAkhJRF8irbrEcX6Q3mlI3gTotEBuwbnJKdYdf3O2H43LJ074tBXLeiIo8PZgt_iF7XqMNiD8c7uwMZLdN6oLsDV95yjt_XD6-op2Wwfn1fLTaIzlsWkVlpUVZFTEI1OVcEKpkCwCnhRF7oq65xWhFSlopzXDDjTRV6WtWal0Fmd6myObsbevXefPYQoW9d7O7yUacZZQYQgYkiJMaW9C8FDI_fe7JQ_SkrkyZ5s5Y89ebInR3sDef-L1CYOOWejV6b7B78ceRgkHAx4GbQBq6E2fvAna2f-7PgCS_6Sbg |
CitedBy_id | crossref_primary_10_37636_recit_v44365387 crossref_primary_10_1016_j_istruc_2021_10_058 crossref_primary_10_1016_j_ijfatigue_2020_105812 crossref_primary_10_1007_s12666_021_02296_5 crossref_primary_10_1016_j_engfailanal_2020_104830 crossref_primary_10_1108_IR_10_2023_0241 crossref_primary_10_1016_j_ijfatigue_2023_107971 crossref_primary_10_3390_ma13184196 crossref_primary_10_1016_j_ijfatigue_2022_106786 crossref_primary_10_1016_j_corsci_2024_112536 crossref_primary_10_1016_j_ijfatigue_2024_108322 crossref_primary_10_3390_ma13173681 crossref_primary_10_1016_j_corsci_2025_112711 crossref_primary_10_3390_cryst12081150 crossref_primary_10_1088_2051_672X_ad8d6d crossref_primary_10_3390_met11010003 crossref_primary_10_1016_j_jallcom_2023_168976 crossref_primary_10_1016_j_jmrt_2023_05_179 crossref_primary_10_1111_ffe_14053 crossref_primary_10_1016_j_ijfatigue_2021_106671 crossref_primary_10_1007_s11663_023_02826_0 crossref_primary_10_1016_j_surfcoat_2023_130043 crossref_primary_10_3390_ma15196631 crossref_primary_10_1007_s11661_022_06712_3 crossref_primary_10_3390_met11081303 crossref_primary_10_1016_j_msea_2025_148247 crossref_primary_10_3390_met14060621 crossref_primary_10_1007_s11665_024_10156_8 |
Cites_doi | 10.1016/j.corsci.2008.03.006 10.5006/1.3294379 10.1149/1.1391637 10.1016/j.ijfatigue.2011.06.012 10.1016/j.ijfatigue.2005.09.017 10.1016/S0921-5093(00)01216-8 10.1016/S1359-6462(03)00365-8 10.1016/j.ijfatigue.2008.03.016 10.1016/j.ijfatigue.2005.05.015 10.2514/1.40481 10.1520/E0466-15 10.1016/j.ijfatigue.2007.01.010 10.1111/j.1460-2695.2006.01018.x 10.1016/j.matdes.2015.05.079 10.1016/j.jmatprotec.2010.03.004 10.1016/j.msea.2014.07.039 10.1016/j.matdes.2015.08.003 10.1149/1.2404232 10.1016/S0010-938X(99)00012-8 10.1016/j.ijfatigue.2010.05.009 10.1016/j.scriptamat.2007.04.045 10.1016/j.corsci.2013.06.035 10.1007/s11661-002-0274-3 10.1149/2.1011409jes 10.1016/S0142-1123(02)00168-8 10.1016/j.corsci.2011.09.011 10.1016/j.actamat.2012.01.023 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Apr 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.ijfatigue.2019.105420 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
ExternalDocumentID | 10_1016_j_ijfatigue_2019_105420 S0142112319305249 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c343t-dac7bb861e7fc2a8484ae74be58d8cb9d61b00b9a155d4e54c8699dc497c3d2c3 |
IEDL.DBID | .~1 |
ISSN | 0142-1123 |
IngestDate | Sat Jul 26 03:27:15 EDT 2025 Tue Jul 01 01:54:33 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:49:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rotating bending fatigue Pitting corrosion 6061 aluminum alloy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-dac7bb861e7fc2a8484ae74be58d8cb9d61b00b9a155d4e54c8699dc497c3d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8940-8544 |
PQID | 2354807707 |
PQPubID | 2045465 |
ParticipantIDs | proquest_journals_2354807707 crossref_primary_10_1016_j_ijfatigue_2019_105420 crossref_citationtrail_10_1016_j_ijfatigue_2019_105420 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2019_105420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International journal of fatigue |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zander, Schnatterer, Altenbach, Chaineux (b0190) 2015 Natishan, O’Grady (b0045) 2014 Szklarska-Smialowska (b0050) 1999; 41 Minoda, Yoshida (b0060) 2002 Wang, Kawagoishi, Chen (b0020) 2006 Chlistovsky, Heffernan, DuQuesnay (b0080) 2007 Ishihara, Saka, Nan, Goshima, Sunada (b0120) 2006 Int (b0160) 2016 Alsamuraee, Ameen, Al-Rubaiey (b0195) 2011 Bogar, Foley (b0040) 1972 Genel (b0105) 2007 Park, Paik, Huang, Alkire (b0175) 1999 Wang, Kawagoishi, Chen (b0110) 2003 ASM International (b0170) 2002 Berger, Pyttel, Trossmann (b0025) 2006 Mutombo, Du (b0130) 2011 ASM International Handbook Committee. ASM Handbook, Volume 19: Fatigue and Fracture. 1996. Zaid, Saidi, Benzaid, Hadji (b0065) 2008 Zupanc, Grum (b0100) 2010 Dragolich, DiMatteo (b0030) 1994 MATERIALS. ASFTA. ASTM E466 − 15: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM 2015. http://doi.org/10.1520/E0466-15. DuQuesnay, Underhill, Britt (b0095) 2003 Dominguez Almaraz, Mercado Lemus, Villalón López (b0135) 2011 Vargel (b0070) 2004 Pao, Feng, Gill (b0085) 2000 Sriraman, Pidaparti (b0125) 2009 Suresh (b0010) 1998 Pyttel, Schwerdt, Berger (b0015) 2011 Jones, Hoeppner (b0090) 2009 Liang, Rometsch, Cao, Birbilis (b0185) 2013 ASM International. ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special -Purpose Materials. 2001. Guérin, Alexis, Andrieu, Blanc, Odemer (b0115) 2015 Sankaran, Perez, Jata (b0075) 2001 Takahashi, Shikama, Yoshihara, Aiura, Noguchi (b0140) 2012 Davis (b0165) 1999 El-Menshawy, El-Sayed, El-Bedawy, Ahmed, El-Raghy (b0055) 2012 ASTM International (b0155) 2015 Takahashi, Yoshitake, Nakamichi, Wada, Takuma, Shikama (b0145) 2014 Acosta, Veleva (b0180) 2018 Jones (10.1016/j.ijfatigue.2019.105420_b0090) 2009 10.1016/j.ijfatigue.2019.105420_b0005 Davis (10.1016/j.ijfatigue.2019.105420_b0165) 1999 ASM International (10.1016/j.ijfatigue.2019.105420_b0170) 2002 Park (10.1016/j.ijfatigue.2019.105420_b0175) 1999 Dominguez Almaraz (10.1016/j.ijfatigue.2019.105420_b0135) 2011 Acosta (10.1016/j.ijfatigue.2019.105420_b0180) 2018 DuQuesnay (10.1016/j.ijfatigue.2019.105420_b0095) 2003 Genel (10.1016/j.ijfatigue.2019.105420_b0105) 2007 Wang (10.1016/j.ijfatigue.2019.105420_b0110) 2003 Zupanc (10.1016/j.ijfatigue.2019.105420_b0100) 2010 El-Menshawy (10.1016/j.ijfatigue.2019.105420_b0055) 2012 Wang (10.1016/j.ijfatigue.2019.105420_b0020) 2006 Pao (10.1016/j.ijfatigue.2019.105420_b0085) 2000 Dragolich (10.1016/j.ijfatigue.2019.105420_b0030) 1994 Sankaran (10.1016/j.ijfatigue.2019.105420_b0075) 2001 Ishihara (10.1016/j.ijfatigue.2019.105420_b0120) 2006 Alsamuraee (10.1016/j.ijfatigue.2019.105420_b0195) 2011 Berger (10.1016/j.ijfatigue.2019.105420_b0025) 2006 Natishan (10.1016/j.ijfatigue.2019.105420_b0045) 2014 Vargel (10.1016/j.ijfatigue.2019.105420_b0070) 2004 ASTM International (10.1016/j.ijfatigue.2019.105420_b0155) 2015 Minoda (10.1016/j.ijfatigue.2019.105420_b0060) 2002 10.1016/j.ijfatigue.2019.105420_b0150 Szklarska-Smialowska (10.1016/j.ijfatigue.2019.105420_b0050) 1999; 41 Suresh (10.1016/j.ijfatigue.2019.105420_b0010) 1998 Int (10.1016/j.ijfatigue.2019.105420_b0160) 2016 10.1016/j.ijfatigue.2019.105420_b0035 Zaid (10.1016/j.ijfatigue.2019.105420_b0065) 2008 Guérin (10.1016/j.ijfatigue.2019.105420_b0115) 2015 Zander (10.1016/j.ijfatigue.2019.105420_b0190) 2015 Chlistovsky (10.1016/j.ijfatigue.2019.105420_b0080) 2007 Pyttel (10.1016/j.ijfatigue.2019.105420_b0015) 2011 Bogar (10.1016/j.ijfatigue.2019.105420_b0040) 1972 Sriraman (10.1016/j.ijfatigue.2019.105420_b0125) 2009 Mutombo (10.1016/j.ijfatigue.2019.105420_b0130) 2011 Liang (10.1016/j.ijfatigue.2019.105420_b0185) 2013 Takahashi (10.1016/j.ijfatigue.2019.105420_b0140) 2012 Takahashi (10.1016/j.ijfatigue.2019.105420_b0145) 2014 |
References_xml | – year: 2000 ident: b0085 article-title: Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050 publication-title: Corrosion – reference: MATERIALS. ASFTA. ASTM E466 − 15: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM 2015. http://doi.org/10.1520/E0466-15. – year: 2006 ident: b0120 article-title: Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law publication-title: Fatigue Fract Eng Mater Struct – volume: 41 start-page: 1743 year: 1999 end-page: 1767 ident: b0050 article-title: Pitting corrosion of aluminum publication-title: Corros Sci – year: 2011 ident: b0015 article-title: Very high cycle fatigue - Is there a fatigue limit? publication-title: Int J Fatigue – year: 2011 ident: b0130 article-title: Corrosion fatigue behaviour of aluminium alloy 6061–T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy publication-title: Int J Fatigue – year: 2015 ident: b0190 article-title: Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires publication-title: Mater Des – year: 1994 ident: b0030 article-title: Fatigue data book: light structural alloys. Asm publication-title: International – year: 2011 ident: b0195 article-title: Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5% NaCl solution with range of temperature (100–500) °C. Am publication-title: J Sci Ind Res – year: 2003 ident: b0095 article-title: Fatigue crack growth from corrosion damage in 7075–T6511 aluminium alloy under aircraft loading publication-title: Int J Fatigue – year: 2010 ident: b0100 article-title: Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075–T651 publication-title: J Mater Process Technol – year: 2013 ident: b0185 article-title: General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu publication-title: Corros Sci – year: 1972 ident: b0040 article-title: The influence of chloride ion on the pitting of aluminum publication-title: J Electrochem Soc – year: 1999 ident: b0175 article-title: Influence of Fe-rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl publication-title: J Electrochem Soc – year: 2011 ident: b0135 article-title: Effect of proximity and dimension of two artificial pitting holes on the fatigue endurance of aluminum alloy 6061–T6 under rotating bending fatigue tests publication-title: Suppl Proc Mater Fabr Prop Charact Model. – start-page: 1 year: 2015 end-page: 11 ident: b0155 article-title: ASTM E340 - 15, standard practice for macroetching metals and alloys publication-title: ASTM Int – year: 2001 ident: b0075 article-title: Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075–T6: Modeling and experimental studies publication-title: Mater Sci Eng A – year: 2009 ident: b0125 article-title: Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue conditions publication-title: J Aircr – year: 2002 ident: b0060 article-title: Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion publication-title: Metall Mater Trans A Phys Metall Mater Sci – year: 2007 ident: b0080 article-title: Corrosion-fatigue behaviour of 7075–T651 aluminum alloy subjected to periodic overloads publication-title: Int J Fatigue – year: 1999 ident: b0165 article-title: Corrosion of aluminum and aluminum alloys publication-title: ASM Int – year: 2008 ident: b0065 article-title: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy publication-title: Corros Sci – year: 2004 ident: b0070 publication-title: Corros Aluminium – year: 2003 ident: b0110 article-title: Effect of pitting corrosion on very high cycle fatigue behavior publication-title: Scr Mater – year: 2012 ident: b0140 article-title: Study on dominant mechanism of high-cycle fatigue life in 6061–T6 aluminum alloy through microanalyses of microstructurally small cracks publication-title: Acta Mater – year: 2018 ident: b0180 article-title: Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP publication-title: Rev Metal – reference: ASM International. ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special -Purpose Materials. 2001. – reference: ASM International Handbook Committee. ASM Handbook, Volume 19: Fatigue and Fracture. 1996. – year: 2009 ident: b0090 article-title: The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075–T6 aluminum alloy publication-title: Int J Fatigue – year: 2014 ident: b0145 article-title: Fatigue limit investigation of 6061–T6 aluminum alloy in giga-cycle regime publication-title: Mater Sci Eng A – year: 2016 ident: b0160 article-title: B557–15 standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products publication-title: Annu B ASTM Stand – year: 2014 ident: b0045 article-title: Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review publication-title: J Electrochem Soc – year: 2007 ident: b0105 article-title: The effect of pitting on the bending fatigue performance of high-strength aluminum alloy publication-title: Scr Mater – year: 2012 ident: b0055 article-title: Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061 publication-title: Corros Sci – year: 2006 ident: b0020 article-title: Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes publication-title: Int J Fatigue – year: 2002 ident: b0170 article-title: Metals handbook volume 11 - failure analysis and prevention publication-title: ASM Handb – year: 2006 ident: b0025 article-title: Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys publication-title: Int J Fatigue – year: 1998 ident: b0010 article-title: Fatigue of materials – year: 2015 ident: b0115 article-title: Corrosion-fatigue lifetime of Aluminium-Copper-Lithium alloy 2050 in chloride solution publication-title: Mater Des – year: 2008 ident: 10.1016/j.ijfatigue.2019.105420_b0065 article-title: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy publication-title: Corros Sci doi: 10.1016/j.corsci.2008.03.006 – year: 2000 ident: 10.1016/j.ijfatigue.2019.105420_b0085 article-title: Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050 publication-title: Corrosion doi: 10.5006/1.3294379 – year: 1999 ident: 10.1016/j.ijfatigue.2019.105420_b0175 article-title: Influence of Fe-rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl publication-title: J Electrochem Soc doi: 10.1149/1.1391637 – year: 2011 ident: 10.1016/j.ijfatigue.2019.105420_b0130 article-title: Corrosion fatigue behaviour of aluminium alloy 6061–T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.06.012 – start-page: 1 year: 2015 ident: 10.1016/j.ijfatigue.2019.105420_b0155 article-title: ASTM E340 - 15, standard practice for macroetching metals and alloys publication-title: ASTM Int – year: 2006 ident: 10.1016/j.ijfatigue.2019.105420_b0020 article-title: Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.09.017 – year: 2001 ident: 10.1016/j.ijfatigue.2019.105420_b0075 article-title: Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075–T6: Modeling and experimental studies publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(00)01216-8 – year: 2003 ident: 10.1016/j.ijfatigue.2019.105420_b0110 article-title: Effect of pitting corrosion on very high cycle fatigue behavior publication-title: Scr Mater doi: 10.1016/S1359-6462(03)00365-8 – year: 2009 ident: 10.1016/j.ijfatigue.2019.105420_b0090 article-title: The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075–T6 aluminum alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2008.03.016 – year: 2006 ident: 10.1016/j.ijfatigue.2019.105420_b0025 article-title: Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2005.05.015 – year: 2009 ident: 10.1016/j.ijfatigue.2019.105420_b0125 article-title: Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue conditions publication-title: J Aircr doi: 10.2514/1.40481 – ident: 10.1016/j.ijfatigue.2019.105420_b0150 doi: 10.1520/E0466-15 – ident: 10.1016/j.ijfatigue.2019.105420_b0005 – year: 2011 ident: 10.1016/j.ijfatigue.2019.105420_b0135 article-title: Effect of proximity and dimension of two artificial pitting holes on the fatigue endurance of aluminum alloy 6061–T6 under rotating bending fatigue tests publication-title: Suppl Proc Mater Fabr Prop Charact Model. – year: 2007 ident: 10.1016/j.ijfatigue.2019.105420_b0080 article-title: Corrosion-fatigue behaviour of 7075–T651 aluminum alloy subjected to periodic overloads publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2007.01.010 – year: 2006 ident: 10.1016/j.ijfatigue.2019.105420_b0120 article-title: Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.2006.01018.x – year: 2015 ident: 10.1016/j.ijfatigue.2019.105420_b0190 article-title: Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires publication-title: Mater Des doi: 10.1016/j.matdes.2015.05.079 – year: 2011 ident: 10.1016/j.ijfatigue.2019.105420_b0195 article-title: Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5% NaCl solution with range of temperature (100–500) °C. Am publication-title: J Sci Ind Res – year: 2004 ident: 10.1016/j.ijfatigue.2019.105420_b0070 publication-title: Corros Aluminium – year: 2010 ident: 10.1016/j.ijfatigue.2019.105420_b0100 article-title: Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075–T651 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2010.03.004 – year: 2014 ident: 10.1016/j.ijfatigue.2019.105420_b0145 article-title: Fatigue limit investigation of 6061–T6 aluminum alloy in giga-cycle regime publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.07.039 – year: 2015 ident: 10.1016/j.ijfatigue.2019.105420_b0115 article-title: Corrosion-fatigue lifetime of Aluminium-Copper-Lithium alloy 2050 in chloride solution publication-title: Mater Des doi: 10.1016/j.matdes.2015.08.003 – ident: 10.1016/j.ijfatigue.2019.105420_b0035 – year: 1972 ident: 10.1016/j.ijfatigue.2019.105420_b0040 article-title: The influence of chloride ion on the pitting of aluminum publication-title: J Electrochem Soc doi: 10.1149/1.2404232 – volume: 41 start-page: 1743 year: 1999 ident: 10.1016/j.ijfatigue.2019.105420_b0050 article-title: Pitting corrosion of aluminum publication-title: Corros Sci doi: 10.1016/S0010-938X(99)00012-8 – year: 2011 ident: 10.1016/j.ijfatigue.2019.105420_b0015 article-title: Very high cycle fatigue - Is there a fatigue limit? publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2010.05.009 – year: 2007 ident: 10.1016/j.ijfatigue.2019.105420_b0105 article-title: The effect of pitting on the bending fatigue performance of high-strength aluminum alloy publication-title: Scr Mater doi: 10.1016/j.scriptamat.2007.04.045 – year: 2013 ident: 10.1016/j.ijfatigue.2019.105420_b0185 article-title: General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu publication-title: Corros Sci doi: 10.1016/j.corsci.2013.06.035 – year: 2002 ident: 10.1016/j.ijfatigue.2019.105420_b0060 article-title: Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion publication-title: Metall Mater Trans A Phys Metall Mater Sci doi: 10.1007/s11661-002-0274-3 – year: 2016 ident: 10.1016/j.ijfatigue.2019.105420_b0160 article-title: B557–15 standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products publication-title: Annu B ASTM Stand – year: 2014 ident: 10.1016/j.ijfatigue.2019.105420_b0045 article-title: Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review publication-title: J Electrochem Soc doi: 10.1149/2.1011409jes – year: 1999 ident: 10.1016/j.ijfatigue.2019.105420_b0165 article-title: Corrosion of aluminum and aluminum alloys publication-title: ASM Int – year: 1998 ident: 10.1016/j.ijfatigue.2019.105420_b0010 – year: 2003 ident: 10.1016/j.ijfatigue.2019.105420_b0095 article-title: Fatigue crack growth from corrosion damage in 7075–T6511 aluminium alloy under aircraft loading publication-title: Int J Fatigue doi: 10.1016/S0142-1123(02)00168-8 – year: 2002 ident: 10.1016/j.ijfatigue.2019.105420_b0170 article-title: Metals handbook volume 11 - failure analysis and prevention publication-title: ASM Handb – year: 2012 ident: 10.1016/j.ijfatigue.2019.105420_b0055 article-title: Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061 publication-title: Corros Sci doi: 10.1016/j.corsci.2011.09.011 – year: 2018 ident: 10.1016/j.ijfatigue.2019.105420_b0180 article-title: Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP publication-title: Rev Metal – year: 2012 ident: 10.1016/j.ijfatigue.2019.105420_b0140 article-title: Study on dominant mechanism of high-cycle fatigue life in 6061–T6 aluminum alloy through microanalyses of microstructurally small cracks publication-title: Acta Mater doi: 10.1016/j.actamat.2012.01.023 – year: 1994 ident: 10.1016/j.ijfatigue.2019.105420_b0030 article-title: Fatigue data book: light structural alloys. Asm publication-title: International |
SSID | ssj0009075 |
Score | 2.4246395 |
Snippet | •Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten... The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105420 |
SubjectTerms | 6061 aluminum alloy Aluminum alloys Aluminum base alloys Bending fatigue Corrosion fatigue Crack initiation Extrusion Fatigue failure Fatigue life Fatigue limit Fracture mechanics Materials fatigue Nucleation Pitting corrosion Rotating bending fatigue |
Title | Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2019.105420 https://www.proquest.com/docview/2354807707 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TwJBEN4QbbQwPiOKZAstj8fd3GPtCJGgRmwkodvsiwSCQAQKG3-7M_dAMCYUNldcdvfuZue5N_MNY7egIBiiZfA0NMADsMojN8KzwkUKDXJoUlCfl17U7cPTIByUWLuohaG0ylz3Zzo91db5nXpOzfp8NKpTWhJGL7iwQJ7FKIIq2CEmLq99_aR5iAxslwZ7NHorx2s0HuL30xEJ2kFBPW-BGn__baF-6erUAHWO2VHuOfJW9nInrOSmp-xwA0_wjL12sudwsw3DzGdDjiFEkytURaPp6p3T7_ZPvlhpOobhyxkPauEd76n2hG-Uvp2zfufhrd318o4JngkgWHpWmVjrJGq6eGh8lUACysWgXZjYxGhhoyaKmRYKvQgLLgSTREJYAyI2gfVNcMH2prOpu2TcCHQtLKHPuCYJuQBcAgNarbWPl0aZRQWVpMnhxKmrxUQWeWNjuSavJPLKjLxl1lhPnGeIGrun3BfbILeYQ6Le3z25UmyczOVzIf2AcO7iuBFf_Wfta3bgU_ydZvJU2N7yY-Vu0ElZ6mrKhVW233p87va-AUyl5RU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8Rnf7kGPFWi3j_VGiARE8QIJt82-SCAIROHgv3eGtijGhIOXHprOtJmd53b2G4BbrngwwMjgaV7hHudWeZRGeFa4SGFADs0S1OelEzV7_Kkf9gtQz8_CUFtl5vtTn7701tmdcibN8mw4LFNbElYvyFigzmIVsQUlQqcKi1CqtdrNzjf2boq3S897RLDW5jUcDVAEtEuCoVDQ2FtOs7__DlK_3PUyBjX2YS9LHlkt_b4DKLjJIez-gBQ8gtdG-h5m1pGY2XTAsIqoMoXeaDhZvDH64_7JPhaadmLYfMqC-_COdVR9zH6cfjuGXuOxW2962dAEzwQ8mHtWmVjrJKq6eGB8lfCEKxdz7cLEJkYLG1XR0rRQmEhY7kJukkgIa7iITWB9E5xAcTKduFNgRmB2YQmAxlXJzgVHFljTaq19vFTOIMqlJE2GKE6DLcYybx0byZV4JYlXpuI9g8qKcJaCamwmeciXQa7ph0TXv5n4Ml84mZnoh_QDgrqL40p8_h_eN7Dd7L48y-dWp30BOz6V48vGnksozt8X7gpzlrm-znTyCy8658Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+characteristics+of+6061+aluminum+alloy+subject+to+3.5%25+NaCl+environment&rft.jtitle=International+journal+of+fatigue&rft.au=Chanyathunyaroj%2C+Kittisak&rft.au=Phetchcrai%2C+Sompob&rft.au=Laungsopapun%2C+Ghit&rft.au=Rengsomboon%2C+Amornsak&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=133&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijfatigue.2019.105420&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |