Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment

•Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten the fatigue life from several days to a few hours.•The 3.5%NaCl solution causes corrosion pits on the surface leading to crack nucleation si...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 133; p. 105420
Main Authors Chanyathunyaroj, Kittisak, Phetchcrai, Sompob, Laungsopapun, Ghit, Rengsomboon, Amornsak
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten the fatigue life from several days to a few hours.•The 3.5%NaCl solution causes corrosion pits on the surface leading to crack nucleation sites. The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution fatigue life was significantly reduced by over 51 times, the fatigue life being shortened from several days to a few hours. Moreover, fatigue under the 3.5% NaCl solution could remove the endurance limit. The solution promoted the generation of many tiny pits, which were created rapidly on the surface of the specimens. These pits acted as crack nucleation sites leading to fatigue failure. The results indicate that pitting corrosion can markedly decrease the fatigue life.
AbstractList The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution fatigue life was significantly reduced by over 51 times, the fatigue life being shortened from several days to a few hours. Moreover, fatigue under the 3.5% NaCl solution could remove the endurance limit. The solution promoted the generation of many tiny pits, which were created rapidly on the surface of the specimens. These pits acted as crack nucleation sites leading to fatigue failure. The results indicate that pitting corrosion can markedly decrease the fatigue life.
•Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten the fatigue life from several days to a few hours.•The 3.5%NaCl solution causes corrosion pits on the surface leading to crack nucleation sites. The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution fatigue life was significantly reduced by over 51 times, the fatigue life being shortened from several days to a few hours. Moreover, fatigue under the 3.5% NaCl solution could remove the endurance limit. The solution promoted the generation of many tiny pits, which were created rapidly on the surface of the specimens. These pits acted as crack nucleation sites leading to fatigue failure. The results indicate that pitting corrosion can markedly decrease the fatigue life.
ArticleNumber 105420
Author Rengsomboon, Amornsak
Chanyathunyaroj, Kittisak
Laungsopapun, Ghit
Phetchcrai, Sompob
Author_xml – sequence: 1
  givenname: Kittisak
  orcidid: 0000-0001-8940-8544
  surname: Chanyathunyaroj
  fullname: Chanyathunyaroj, Kittisak
  email: kittisak_chanya@hotmail.com, kittisak.chanya@mail.kmutt.ac.th
  organization: National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani 12120 Thailand
– sequence: 2
  givenname: Sompob
  surname: Phetchcrai
  fullname: Phetchcrai, Sompob
  organization: National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani 12120 Thailand
– sequence: 3
  givenname: Ghit
  surname: Laungsopapun
  fullname: Laungsopapun, Ghit
  organization: Thailand Institute of Scientific and Technological Research, 35 Moo 3 Khlong Ha, Khlong Luang, Pathum Thani 12120, Thailand
– sequence: 4
  givenname: Amornsak
  surname: Rengsomboon
  fullname: Rengsomboon, Amornsak
  organization: National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Khlong Luang, Pathum Thani 12120 Thailand
BookMark eNqNkEFLwzAUx4NMcJt-BgPisTNpk6Y9eBjDqTDcRc8hTV81pUtmkg727e2oePCip_d4_H__B78ZmlhnAaFrShaU0PyuXZi2UdG897BICS2HK2cpOUNTWogyyRhPJ2hKKEsTStPsAs1CaAkhJRF8irbrEcX6Q3mlI3gTotEBuwbnJKdYdf3O2H43LJ074tBXLeiIo8PZgt_iF7XqMNiD8c7uwMZLdN6oLsDV95yjt_XD6-op2Wwfn1fLTaIzlsWkVlpUVZFTEI1OVcEKpkCwCnhRF7oq65xWhFSlopzXDDjTRV6WtWal0Fmd6myObsbevXefPYQoW9d7O7yUacZZQYQgYkiJMaW9C8FDI_fe7JQ_SkrkyZ5s5Y89ebInR3sDef-L1CYOOWejV6b7B78ceRgkHAx4GbQBq6E2fvAna2f-7PgCS_6Sbg
CitedBy_id crossref_primary_10_37636_recit_v44365387
crossref_primary_10_1016_j_istruc_2021_10_058
crossref_primary_10_1016_j_ijfatigue_2020_105812
crossref_primary_10_1007_s12666_021_02296_5
crossref_primary_10_1016_j_engfailanal_2020_104830
crossref_primary_10_1108_IR_10_2023_0241
crossref_primary_10_1016_j_ijfatigue_2023_107971
crossref_primary_10_3390_ma13184196
crossref_primary_10_1016_j_ijfatigue_2022_106786
crossref_primary_10_1016_j_corsci_2024_112536
crossref_primary_10_1016_j_ijfatigue_2024_108322
crossref_primary_10_3390_ma13173681
crossref_primary_10_1016_j_corsci_2025_112711
crossref_primary_10_3390_cryst12081150
crossref_primary_10_1088_2051_672X_ad8d6d
crossref_primary_10_3390_met11010003
crossref_primary_10_1016_j_jallcom_2023_168976
crossref_primary_10_1016_j_jmrt_2023_05_179
crossref_primary_10_1111_ffe_14053
crossref_primary_10_1016_j_ijfatigue_2021_106671
crossref_primary_10_1007_s11663_023_02826_0
crossref_primary_10_1016_j_surfcoat_2023_130043
crossref_primary_10_3390_ma15196631
crossref_primary_10_1007_s11661_022_06712_3
crossref_primary_10_3390_met11081303
crossref_primary_10_1016_j_msea_2025_148247
crossref_primary_10_3390_met14060621
crossref_primary_10_1007_s11665_024_10156_8
Cites_doi 10.1016/j.corsci.2008.03.006
10.5006/1.3294379
10.1149/1.1391637
10.1016/j.ijfatigue.2011.06.012
10.1016/j.ijfatigue.2005.09.017
10.1016/S0921-5093(00)01216-8
10.1016/S1359-6462(03)00365-8
10.1016/j.ijfatigue.2008.03.016
10.1016/j.ijfatigue.2005.05.015
10.2514/1.40481
10.1520/E0466-15
10.1016/j.ijfatigue.2007.01.010
10.1111/j.1460-2695.2006.01018.x
10.1016/j.matdes.2015.05.079
10.1016/j.jmatprotec.2010.03.004
10.1016/j.msea.2014.07.039
10.1016/j.matdes.2015.08.003
10.1149/1.2404232
10.1016/S0010-938X(99)00012-8
10.1016/j.ijfatigue.2010.05.009
10.1016/j.scriptamat.2007.04.045
10.1016/j.corsci.2013.06.035
10.1007/s11661-002-0274-3
10.1149/2.1011409jes
10.1016/S0142-1123(02)00168-8
10.1016/j.corsci.2011.09.011
10.1016/j.actamat.2012.01.023
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2019.105420
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
ExternalDocumentID 10_1016_j_ijfatigue_2019_105420
S0142112319305249
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c343t-dac7bb861e7fc2a8484ae74be58d8cb9d61b00b9a155d4e54c8699dc497c3d2c3
IEDL.DBID .~1
ISSN 0142-1123
IngestDate Sat Jul 26 03:27:15 EDT 2025
Tue Jul 01 01:54:33 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:49:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rotating bending fatigue
Pitting corrosion
6061 aluminum alloy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-dac7bb861e7fc2a8484ae74be58d8cb9d61b00b9a155d4e54c8699dc497c3d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8940-8544
PQID 2354807707
PQPubID 2045465
ParticipantIDs proquest_journals_2354807707
crossref_primary_10_1016_j_ijfatigue_2019_105420
crossref_citationtrail_10_1016_j_ijfatigue_2019_105420
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2019_105420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zander, Schnatterer, Altenbach, Chaineux (b0190) 2015
Natishan, O’Grady (b0045) 2014
Szklarska-Smialowska (b0050) 1999; 41
Minoda, Yoshida (b0060) 2002
Wang, Kawagoishi, Chen (b0020) 2006
Chlistovsky, Heffernan, DuQuesnay (b0080) 2007
Ishihara, Saka, Nan, Goshima, Sunada (b0120) 2006
Int (b0160) 2016
Alsamuraee, Ameen, Al-Rubaiey (b0195) 2011
Bogar, Foley (b0040) 1972
Genel (b0105) 2007
Park, Paik, Huang, Alkire (b0175) 1999
Wang, Kawagoishi, Chen (b0110) 2003
ASM International (b0170) 2002
Berger, Pyttel, Trossmann (b0025) 2006
Mutombo, Du (b0130) 2011
ASM International Handbook Committee. ASM Handbook, Volume 19: Fatigue and Fracture. 1996.
Zaid, Saidi, Benzaid, Hadji (b0065) 2008
Zupanc, Grum (b0100) 2010
Dragolich, DiMatteo (b0030) 1994
MATERIALS. ASFTA. ASTM E466 − 15: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM 2015. http://doi.org/10.1520/E0466-15.
DuQuesnay, Underhill, Britt (b0095) 2003
Dominguez Almaraz, Mercado Lemus, Villalón López (b0135) 2011
Vargel (b0070) 2004
Pao, Feng, Gill (b0085) 2000
Sriraman, Pidaparti (b0125) 2009
Suresh (b0010) 1998
Pyttel, Schwerdt, Berger (b0015) 2011
Jones, Hoeppner (b0090) 2009
Liang, Rometsch, Cao, Birbilis (b0185) 2013
ASM International. ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special -Purpose Materials. 2001.
Guérin, Alexis, Andrieu, Blanc, Odemer (b0115) 2015
Sankaran, Perez, Jata (b0075) 2001
Takahashi, Shikama, Yoshihara, Aiura, Noguchi (b0140) 2012
Davis (b0165) 1999
El-Menshawy, El-Sayed, El-Bedawy, Ahmed, El-Raghy (b0055) 2012
ASTM International (b0155) 2015
Takahashi, Yoshitake, Nakamichi, Wada, Takuma, Shikama (b0145) 2014
Acosta, Veleva (b0180) 2018
Jones (10.1016/j.ijfatigue.2019.105420_b0090) 2009
10.1016/j.ijfatigue.2019.105420_b0005
Davis (10.1016/j.ijfatigue.2019.105420_b0165) 1999
ASM International (10.1016/j.ijfatigue.2019.105420_b0170) 2002
Park (10.1016/j.ijfatigue.2019.105420_b0175) 1999
Dominguez Almaraz (10.1016/j.ijfatigue.2019.105420_b0135) 2011
Acosta (10.1016/j.ijfatigue.2019.105420_b0180) 2018
DuQuesnay (10.1016/j.ijfatigue.2019.105420_b0095) 2003
Genel (10.1016/j.ijfatigue.2019.105420_b0105) 2007
Wang (10.1016/j.ijfatigue.2019.105420_b0110) 2003
Zupanc (10.1016/j.ijfatigue.2019.105420_b0100) 2010
El-Menshawy (10.1016/j.ijfatigue.2019.105420_b0055) 2012
Wang (10.1016/j.ijfatigue.2019.105420_b0020) 2006
Pao (10.1016/j.ijfatigue.2019.105420_b0085) 2000
Dragolich (10.1016/j.ijfatigue.2019.105420_b0030) 1994
Sankaran (10.1016/j.ijfatigue.2019.105420_b0075) 2001
Ishihara (10.1016/j.ijfatigue.2019.105420_b0120) 2006
Alsamuraee (10.1016/j.ijfatigue.2019.105420_b0195) 2011
Berger (10.1016/j.ijfatigue.2019.105420_b0025) 2006
Natishan (10.1016/j.ijfatigue.2019.105420_b0045) 2014
Vargel (10.1016/j.ijfatigue.2019.105420_b0070) 2004
ASTM International (10.1016/j.ijfatigue.2019.105420_b0155) 2015
Minoda (10.1016/j.ijfatigue.2019.105420_b0060) 2002
10.1016/j.ijfatigue.2019.105420_b0150
Szklarska-Smialowska (10.1016/j.ijfatigue.2019.105420_b0050) 1999; 41
Suresh (10.1016/j.ijfatigue.2019.105420_b0010) 1998
Int (10.1016/j.ijfatigue.2019.105420_b0160) 2016
10.1016/j.ijfatigue.2019.105420_b0035
Zaid (10.1016/j.ijfatigue.2019.105420_b0065) 2008
Guérin (10.1016/j.ijfatigue.2019.105420_b0115) 2015
Zander (10.1016/j.ijfatigue.2019.105420_b0190) 2015
Chlistovsky (10.1016/j.ijfatigue.2019.105420_b0080) 2007
Pyttel (10.1016/j.ijfatigue.2019.105420_b0015) 2011
Bogar (10.1016/j.ijfatigue.2019.105420_b0040) 1972
Sriraman (10.1016/j.ijfatigue.2019.105420_b0125) 2009
Mutombo (10.1016/j.ijfatigue.2019.105420_b0130) 2011
Liang (10.1016/j.ijfatigue.2019.105420_b0185) 2013
Takahashi (10.1016/j.ijfatigue.2019.105420_b0140) 2012
Takahashi (10.1016/j.ijfatigue.2019.105420_b0145) 2014
References_xml – year: 2000
  ident: b0085
  article-title: Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050
  publication-title: Corrosion
– reference: MATERIALS. ASFTA. ASTM E466 − 15: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM 2015. http://doi.org/10.1520/E0466-15.
– year: 2006
  ident: b0120
  article-title: Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law
  publication-title: Fatigue Fract Eng Mater Struct
– volume: 41
  start-page: 1743
  year: 1999
  end-page: 1767
  ident: b0050
  article-title: Pitting corrosion of aluminum
  publication-title: Corros Sci
– year: 2011
  ident: b0015
  article-title: Very high cycle fatigue - Is there a fatigue limit?
  publication-title: Int J Fatigue
– year: 2011
  ident: b0130
  article-title: Corrosion fatigue behaviour of aluminium alloy 6061–T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy
  publication-title: Int J Fatigue
– year: 2015
  ident: b0190
  article-title: Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires
  publication-title: Mater Des
– year: 1994
  ident: b0030
  article-title: Fatigue data book: light structural alloys. Asm
  publication-title: International
– year: 2011
  ident: b0195
  article-title: Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5% NaCl solution with range of temperature (100–500) °C. Am
  publication-title: J Sci Ind Res
– year: 2003
  ident: b0095
  article-title: Fatigue crack growth from corrosion damage in 7075–T6511 aluminium alloy under aircraft loading
  publication-title: Int J Fatigue
– year: 2010
  ident: b0100
  article-title: Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075–T651
  publication-title: J Mater Process Technol
– year: 2013
  ident: b0185
  article-title: General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu
  publication-title: Corros Sci
– year: 1972
  ident: b0040
  article-title: The influence of chloride ion on the pitting of aluminum
  publication-title: J Electrochem Soc
– year: 1999
  ident: b0175
  article-title: Influence of Fe-rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl
  publication-title: J Electrochem Soc
– year: 2011
  ident: b0135
  article-title: Effect of proximity and dimension of two artificial pitting holes on the fatigue endurance of aluminum alloy 6061–T6 under rotating bending fatigue tests
  publication-title: Suppl Proc Mater Fabr Prop Charact Model.
– start-page: 1
  year: 2015
  end-page: 11
  ident: b0155
  article-title: ASTM E340 - 15, standard practice for macroetching metals and alloys
  publication-title: ASTM Int
– year: 2001
  ident: b0075
  article-title: Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075–T6: Modeling and experimental studies
  publication-title: Mater Sci Eng A
– year: 2009
  ident: b0125
  article-title: Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue conditions
  publication-title: J Aircr
– year: 2002
  ident: b0060
  article-title: Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion
  publication-title: Metall Mater Trans A Phys Metall Mater Sci
– year: 2007
  ident: b0080
  article-title: Corrosion-fatigue behaviour of 7075–T651 aluminum alloy subjected to periodic overloads
  publication-title: Int J Fatigue
– year: 1999
  ident: b0165
  article-title: Corrosion of aluminum and aluminum alloys
  publication-title: ASM Int
– year: 2008
  ident: b0065
  article-title: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy
  publication-title: Corros Sci
– year: 2004
  ident: b0070
  publication-title: Corros Aluminium
– year: 2003
  ident: b0110
  article-title: Effect of pitting corrosion on very high cycle fatigue behavior
  publication-title: Scr Mater
– year: 2012
  ident: b0140
  article-title: Study on dominant mechanism of high-cycle fatigue life in 6061–T6 aluminum alloy through microanalyses of microstructurally small cracks
  publication-title: Acta Mater
– year: 2018
  ident: b0180
  article-title: Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP
  publication-title: Rev Metal
– reference: ASM International. ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special -Purpose Materials. 2001.
– reference: ASM International Handbook Committee. ASM Handbook, Volume 19: Fatigue and Fracture. 1996.
– year: 2009
  ident: b0090
  article-title: The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075–T6 aluminum alloy
  publication-title: Int J Fatigue
– year: 2014
  ident: b0145
  article-title: Fatigue limit investigation of 6061–T6 aluminum alloy in giga-cycle regime
  publication-title: Mater Sci Eng A
– year: 2016
  ident: b0160
  article-title: B557–15 standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products
  publication-title: Annu B ASTM Stand
– year: 2014
  ident: b0045
  article-title: Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review
  publication-title: J Electrochem Soc
– year: 2007
  ident: b0105
  article-title: The effect of pitting on the bending fatigue performance of high-strength aluminum alloy
  publication-title: Scr Mater
– year: 2012
  ident: b0055
  article-title: Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061
  publication-title: Corros Sci
– year: 2006
  ident: b0020
  article-title: Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes
  publication-title: Int J Fatigue
– year: 2002
  ident: b0170
  article-title: Metals handbook volume 11 - failure analysis and prevention
  publication-title: ASM Handb
– year: 2006
  ident: b0025
  article-title: Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys
  publication-title: Int J Fatigue
– year: 1998
  ident: b0010
  article-title: Fatigue of materials
– year: 2015
  ident: b0115
  article-title: Corrosion-fatigue lifetime of Aluminium-Copper-Lithium alloy 2050 in chloride solution
  publication-title: Mater Des
– year: 2008
  ident: 10.1016/j.ijfatigue.2019.105420_b0065
  article-title: Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2008.03.006
– year: 2000
  ident: 10.1016/j.ijfatigue.2019.105420_b0085
  article-title: Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050
  publication-title: Corrosion
  doi: 10.5006/1.3294379
– year: 1999
  ident: 10.1016/j.ijfatigue.2019.105420_b0175
  article-title: Influence of Fe-rich intermetallic inclusions on pit initiation on aluminum alloys in aerated NaCl
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1391637
– year: 2011
  ident: 10.1016/j.ijfatigue.2019.105420_b0130
  article-title: Corrosion fatigue behaviour of aluminium alloy 6061–T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2011.06.012
– start-page: 1
  year: 2015
  ident: 10.1016/j.ijfatigue.2019.105420_b0155
  article-title: ASTM E340 - 15, standard practice for macroetching metals and alloys
  publication-title: ASTM Int
– year: 2006
  ident: 10.1016/j.ijfatigue.2019.105420_b0020
  article-title: Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.09.017
– year: 2001
  ident: 10.1016/j.ijfatigue.2019.105420_b0075
  article-title: Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075–T6: Modeling and experimental studies
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(00)01216-8
– year: 2003
  ident: 10.1016/j.ijfatigue.2019.105420_b0110
  article-title: Effect of pitting corrosion on very high cycle fatigue behavior
  publication-title: Scr Mater
  doi: 10.1016/S1359-6462(03)00365-8
– year: 2009
  ident: 10.1016/j.ijfatigue.2019.105420_b0090
  article-title: The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075–T6 aluminum alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2008.03.016
– year: 2006
  ident: 10.1016/j.ijfatigue.2019.105420_b0025
  article-title: Very high cycle fatigue tests with smooth and notched specimens and screws made of light metal alloys
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.05.015
– year: 2009
  ident: 10.1016/j.ijfatigue.2019.105420_b0125
  article-title: Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue conditions
  publication-title: J Aircr
  doi: 10.2514/1.40481
– ident: 10.1016/j.ijfatigue.2019.105420_b0150
  doi: 10.1520/E0466-15
– ident: 10.1016/j.ijfatigue.2019.105420_b0005
– year: 2011
  ident: 10.1016/j.ijfatigue.2019.105420_b0135
  article-title: Effect of proximity and dimension of two artificial pitting holes on the fatigue endurance of aluminum alloy 6061–T6 under rotating bending fatigue tests
  publication-title: Suppl Proc Mater Fabr Prop Charact Model.
– year: 2007
  ident: 10.1016/j.ijfatigue.2019.105420_b0080
  article-title: Corrosion-fatigue behaviour of 7075–T651 aluminum alloy subjected to periodic overloads
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2007.01.010
– year: 2006
  ident: 10.1016/j.ijfatigue.2019.105420_b0120
  article-title: Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.2006.01018.x
– year: 2015
  ident: 10.1016/j.ijfatigue.2019.105420_b0190
  article-title: Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.05.079
– year: 2011
  ident: 10.1016/j.ijfatigue.2019.105420_b0195
  article-title: Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5% NaCl solution with range of temperature (100–500) °C. Am
  publication-title: J Sci Ind Res
– year: 2004
  ident: 10.1016/j.ijfatigue.2019.105420_b0070
  publication-title: Corros Aluminium
– year: 2010
  ident: 10.1016/j.ijfatigue.2019.105420_b0100
  article-title: Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075–T651
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2010.03.004
– year: 2014
  ident: 10.1016/j.ijfatigue.2019.105420_b0145
  article-title: Fatigue limit investigation of 6061–T6 aluminum alloy in giga-cycle regime
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2014.07.039
– year: 2015
  ident: 10.1016/j.ijfatigue.2019.105420_b0115
  article-title: Corrosion-fatigue lifetime of Aluminium-Copper-Lithium alloy 2050 in chloride solution
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.08.003
– ident: 10.1016/j.ijfatigue.2019.105420_b0035
– year: 1972
  ident: 10.1016/j.ijfatigue.2019.105420_b0040
  article-title: The influence of chloride ion on the pitting of aluminum
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2404232
– volume: 41
  start-page: 1743
  year: 1999
  ident: 10.1016/j.ijfatigue.2019.105420_b0050
  article-title: Pitting corrosion of aluminum
  publication-title: Corros Sci
  doi: 10.1016/S0010-938X(99)00012-8
– year: 2011
  ident: 10.1016/j.ijfatigue.2019.105420_b0015
  article-title: Very high cycle fatigue - Is there a fatigue limit?
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2010.05.009
– year: 2007
  ident: 10.1016/j.ijfatigue.2019.105420_b0105
  article-title: The effect of pitting on the bending fatigue performance of high-strength aluminum alloy
  publication-title: Scr Mater
  doi: 10.1016/j.scriptamat.2007.04.045
– year: 2013
  ident: 10.1016/j.ijfatigue.2019.105420_b0185
  article-title: General aspects related to the corrosion of 6xxx series aluminium alloys: Exploring the influence of Mg/Si ratio and Cu
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2013.06.035
– year: 2002
  ident: 10.1016/j.ijfatigue.2019.105420_b0060
  article-title: Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion
  publication-title: Metall Mater Trans A Phys Metall Mater Sci
  doi: 10.1007/s11661-002-0274-3
– year: 2016
  ident: 10.1016/j.ijfatigue.2019.105420_b0160
  article-title: B557–15 standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products
  publication-title: Annu B ASTM Stand
– year: 2014
  ident: 10.1016/j.ijfatigue.2019.105420_b0045
  article-title: Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review
  publication-title: J Electrochem Soc
  doi: 10.1149/2.1011409jes
– year: 1999
  ident: 10.1016/j.ijfatigue.2019.105420_b0165
  article-title: Corrosion of aluminum and aluminum alloys
  publication-title: ASM Int
– year: 1998
  ident: 10.1016/j.ijfatigue.2019.105420_b0010
– year: 2003
  ident: 10.1016/j.ijfatigue.2019.105420_b0095
  article-title: Fatigue crack growth from corrosion damage in 7075–T6511 aluminium alloy under aircraft loading
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(02)00168-8
– year: 2002
  ident: 10.1016/j.ijfatigue.2019.105420_b0170
  article-title: Metals handbook volume 11 - failure analysis and prevention
  publication-title: ASM Handb
– year: 2012
  ident: 10.1016/j.ijfatigue.2019.105420_b0055
  article-title: Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061
  publication-title: Corros Sci
  doi: 10.1016/j.corsci.2011.09.011
– year: 2018
  ident: 10.1016/j.ijfatigue.2019.105420_b0180
  article-title: Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP
  publication-title: Rev Metal
– year: 2012
  ident: 10.1016/j.ijfatigue.2019.105420_b0140
  article-title: Study on dominant mechanism of high-cycle fatigue life in 6061–T6 aluminum alloy through microanalyses of microstructurally small cracks
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.01.023
– year: 1994
  ident: 10.1016/j.ijfatigue.2019.105420_b0030
  article-title: Fatigue data book: light structural alloys. Asm
  publication-title: International
SSID ssj0009075
Score 2.4246395
Snippet •Observed the rotating bending fatigue in 3.5% NaCl environment.•The fatigue life decreased over 51 times by 3.5% NaCl Solution.•The 3.5% NaCl Solution shorten...
The rotating bending fatigue life of extruded 6061 aluminum alloy in a 3.5% NaCl environment was studied. It was found that under this environment solution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105420
SubjectTerms 6061 aluminum alloy
Aluminum alloys
Aluminum base alloys
Bending fatigue
Corrosion fatigue
Crack initiation
Extrusion
Fatigue failure
Fatigue life
Fatigue limit
Fracture mechanics
Materials fatigue
Nucleation
Pitting corrosion
Rotating bending fatigue
Title Fatigue characteristics of 6061 aluminum alloy subject to 3.5% NaCl environment
URI https://dx.doi.org/10.1016/j.ijfatigue.2019.105420
https://www.proquest.com/docview/2354807707
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TwJBEN4QbbQwPiOKZAstj8fd3GPtCJGgRmwkodvsiwSCQAQKG3-7M_dAMCYUNldcdvfuZue5N_MNY7egIBiiZfA0NMADsMojN8KzwkUKDXJoUlCfl17U7cPTIByUWLuohaG0ylz3Zzo91db5nXpOzfp8NKpTWhJGL7iwQJ7FKIIq2CEmLq99_aR5iAxslwZ7NHorx2s0HuL30xEJ2kFBPW-BGn__baF-6erUAHWO2VHuOfJW9nInrOSmp-xwA0_wjL12sudwsw3DzGdDjiFEkytURaPp6p3T7_ZPvlhpOobhyxkPauEd76n2hG-Uvp2zfufhrd318o4JngkgWHpWmVjrJGq6eGh8lUACysWgXZjYxGhhoyaKmRYKvQgLLgSTREJYAyI2gfVNcMH2prOpu2TcCHQtLKHPuCYJuQBcAgNarbWPl0aZRQWVpMnhxKmrxUQWeWNjuSavJPLKjLxl1lhPnGeIGrun3BfbILeYQ6Le3z25UmyczOVzIf2AcO7iuBFf_Wfta3bgU_ydZvJU2N7yY-Vu0ElZ6mrKhVW233p87va-AUyl5RU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSD8Rnf7kGPFWi3j_VGiARE8QIJt82-SCAIROHgv3eGtijGhIOXHprOtJmd53b2G4BbrngwwMjgaV7hHudWeZRGeFa4SGFADs0S1OelEzV7_Kkf9gtQz8_CUFtl5vtTn7701tmdcibN8mw4LFNbElYvyFigzmIVsQUlQqcKi1CqtdrNzjf2boq3S897RLDW5jUcDVAEtEuCoVDQ2FtOs7__DlK_3PUyBjX2YS9LHlkt_b4DKLjJIez-gBQ8gtdG-h5m1pGY2XTAsIqoMoXeaDhZvDH64_7JPhaadmLYfMqC-_COdVR9zH6cfjuGXuOxW2962dAEzwQ8mHtWmVjrJKq6eGB8lfCEKxdz7cLEJkYLG1XR0rRQmEhY7kJukkgIa7iITWB9E5xAcTKduFNgRmB2YQmAxlXJzgVHFljTaq19vFTOIMqlJE2GKE6DLcYybx0byZV4JYlXpuI9g8qKcJaCamwmeciXQa7ph0TXv5n4Ml84mZnoh_QDgrqL40p8_h_eN7Dd7L48y-dWp30BOz6V48vGnksozt8X7gpzlrm-znTyCy8658Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+characteristics+of+6061+aluminum+alloy+subject+to+3.5%25+NaCl+environment&rft.jtitle=International+journal+of+fatigue&rft.au=Chanyathunyaroj%2C+Kittisak&rft.au=Phetchcrai%2C+Sompob&rft.au=Laungsopapun%2C+Ghit&rft.au=Rengsomboon%2C+Amornsak&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=133&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijfatigue.2019.105420&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon