Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives

Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and no...

Full description

Saved in:
Bibliographic Details
Published inBlood pressure Vol. 31; no. 1; pp. 254 - 269
Main Authors Pilz, Niklas, Patzak, Andreas, Bothe, Tomas L.
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and non-invasive methods may offer various advantages, such as a continuous and undisturbing measurement character. This review presents a conceptual overview of recent advances in the field of cuffless measurement paradigms and possible future developments which would enable cuffless beat-to-beat BP estimation paradigms to become clinically viable. It was refrained from a direct comparison between most studies and focussed on a conceptual merger of the ideas and conclusions presented in landmark scientific literature. There are two main approaches to cuffless beat-to-beat BP estimation represented in the scientific literature: First, models based on the physiological understanding of the cardiovascular system, mostly reliant on the pulse wave velocity combined with additional parameters. Second, models based on Deep Learning techniques, which have already shown great performance in various other medical fields. This review wants to present the advantages and limitations of each approach. Following this, the conceptional idea of unifying the benefits of physiological understanding and Deep Learning techniques for beat-to-beat BP estimation is presented. This could lead to a generalised and uniform solution for cuffless beat-to-beat BP estimations. This would not only make them an attractive clinical complement or even alternative to conventional cuff-based measurement paradigms but would substantially change how we think about BP as a fundamental marker of cardiovascular medicine. This concept review wants to highlight the current state of non-invasive cuffless continuous blood pressure estimation. Cuffless blood pressure measurement devices usually rely on pulse wave velocity. Pulse wave velocity is mostly calculated via measuring pulse arrival time. Using pulse transit time instead of pulse arrival time showed improved results. Additional biomarkers like heart rate, photoplethysmogram intensity ratio or heart rate power spectrum ratio can be used to improve measurement precision. For cuffless and cuff-based devices intended for 24-hour BP measurements, a more refined validation protocol is required. The ESH assesses the measurement accuracy of cuffless devices as unclear and does not recommend hypertension diagnosis based on cuffless devices. Machine Learning and Deep Learning applications are a powerful tool to generate complex algorithms, which can be used to estimate blood pressure. Selecting biomarkers like pulse wave velocity, heart rate, etc. as input features for Deep Learning systems would be a very promising approach to measure blood pressure more precise.
AbstractList Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and non-invasive methods may offer various advantages, such as a continuous and undisturbing measurement character. This review presents a conceptual overview of recent advances in the field of cuffless measurement paradigms and possible future developments which would enable cuffless beat-to-beat BP estimation paradigms to become clinically viable. It was refrained from a direct comparison between most studies and focussed on a conceptual merger of the ideas and conclusions presented in landmark scientific literature. There are two main approaches to cuffless beat-to-beat BP estimation represented in the scientific literature: First, models based on the physiological understanding of the cardiovascular system, mostly reliant on the pulse wave velocity combined with additional parameters. Second, models based on Deep Learning techniques, which have already shown great performance in various other medical fields. This review wants to present the advantages and limitations of each approach. Following this, the conceptional idea of unifying the benefits of physiological understanding and Deep Learning techniques for beat-to-beat BP estimation is presented. This could lead to a generalised and uniform solution for cuffless beat-to-beat BP estimations. This would not only make them an attractive clinical complement or even alternative to conventional cuff-based measurement paradigms but would substantially change how we think about BP as a fundamental marker of cardiovascular medicine. This concept review wants to highlight the current state of non-invasive cuffless continuous blood pressure estimation. Cuffless blood pressure measurement devices usually rely on pulse wave velocity. Pulse wave velocity is mostly calculated via measuring pulse arrival time. Using pulse transit time instead of pulse arrival time showed improved results. Additional biomarkers like heart rate, photoplethysmogram intensity ratio or heart rate power spectrum ratio can be used to improve measurement precision. For cuffless and cuff-based devices intended for 24-hour BP measurements, a more refined validation protocol is required. The ESH assesses the measurement accuracy of cuffless devices as unclear and does not recommend hypertension diagnosis based on cuffless devices. Machine Learning and Deep Learning applications are a powerful tool to generate complex algorithms, which can be used to estimate blood pressure. Selecting biomarkers like pulse wave velocity, heart rate, etc. as input features for Deep Learning systems would be a very promising approach to measure blood pressure more precise.
Author Pilz, Niklas
Patzak, Andreas
Bothe, Tomas L.
Author_xml – sequence: 1
  givenname: Niklas
  surname: Pilz
  fullname: Pilz, Niklas
  organization: Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Translational Physiology
– sequence: 2
  givenname: Andreas
  surname: Patzak
  fullname: Patzak, Andreas
  organization: Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Translational Physiology
– sequence: 3
  givenname: Tomas L.
  surname: Bothe
  fullname: Bothe, Tomas L.
  organization: Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Translational Physiology
BookMark eNp9kE1LAzEQhoMoWKs_QcjRy9Z8bLrZm1L8goIXPYc0mcBKNlmTbMV_b0r16mEYmHnfZ5j3Ap2GGACha0pWlEhyW4t3RNAVI4ytGGWyo-sTtKBrQRva9_0pWhw0zUF0ji5y_iCEck7IAvlNDGUIc5wzNrNzHnLGOlhcbzRD2Os87AGPoPOcYIRQcHRYpwJp0B7vfIwWT6ma6roxMRiYyhHg5lJneIKUJzClYvIlOnPaZ7j67Uv0_vjwtnlutq9PL5v7bWN4y0tjOdHM9FS2UkuAHtpOiJ3TcgfWSO5oJ60RtCV012krian_OtOvbW9kazvBl-jmyJ1S_JwhFzUO2YD3OkB9VLGOkZ4JJroqFUepSTHnBE5NaRh1-laUqEO66i9ddUhX_aZbfXdH3xBcTKP-islbVfS3j8klHcyQFf8f8QMPhYXK
CitedBy_id crossref_primary_10_1111_apha_14015
crossref_primary_10_1080_08037051_2023_2255704
crossref_primary_10_1016_j_bspc_2023_105305
crossref_primary_10_1016_j_eswa_2023_122812
crossref_primary_10_3389_fcvm_2023_1138356
crossref_primary_10_3389_fmed_2023_1154041
crossref_primary_10_3390_bioengineering10010027
crossref_primary_10_3390_jcm13082170
crossref_primary_10_1111_apha_14064
crossref_primary_10_1088_1361_6579_ad45ab
Cites_doi 10.1007/s00421-011-1983-3
10.1080/08037051.2018.1557508
10.1111/j.1553-2712.2004.tb01379.x
10.1109/ICOSP.2014.7014980
10.1038/nature21056
10.3390/s21010096
10.1016/j.ijchy.2020.100030
10.1126/science.6166045
10.1038/s41592-019-0403-1
10.1161/CIRCOUTCOMES.118.004879
10.1109/TBME.2021.3055154
10.1016/j.cell.2020.03.022
10.1038/s41598-022-16527-2
10.1162/neco_a_01199
10.1038/s41588-018-0295-5
10.1016/j.gpb.2017.07.003
10.1007/s10916-019-1243-3
10.1155/2018/1232583
10.1136/bmj.i4098
10.3390/s20195606
10.1111/jch.13304
10.1109/EMBC.2016.7591454
10.1097/00004872-199512000-00003
10.1016/j.jad.2020.01.132
10.1007/s13244-018-0639-9
10.1093/ajh/hpy138
10.1097/HJH.0000000000003224
10.1155/2018/1548647
10.1109/EMBC.2017.8036930
10.1097/ALN.0000000000000226
10.1097/EJA.0000000000001443
10.1038/s41598-019-46936-9
10.3390/s20113127
10.1161/HYPERTENSIONAHA.107.100727
10.1097/HJH.0000000000002843
10.1093/eurheartj/ehy339
10.1038/s41598-020-73143-8
10.1186/s12938-017-0317-z
10.1016/S0733-8651(18)30231-5
10.1136/bmj.308.6932.820
10.1159/000492953
10.1016/j.neunet.2018.12.010
10.1142/S0129065704001899
10.1097/MBP.0000000000000124
10.1080/08037051.2021.1956178
10.3174/ajnr.A5543
10.1161/01.CIR.0000160923.04524.5B
10.1088/1361-6579/aad902
10.1038/s41598-017-11507-3
10.1038/s41598-020-80905-x
10.2215/CJN.07011009
10.1080/08037051.2020.1785273
10.3390/cancers11091235
10.1111/j.1469-8986.1981.tb03042.x
10.1109/TBME.2015.2480679
10.1016/j.ijchy.2020.100072
10.3390/jcm8111827
10.1161/CIRCULATIONAHA.115.001593
10.1109/EMBC.2019.8857108
10.1161/HYP.0000000000000065
10.1007/s40292-020-00383-0
10.1111/jch.14039
10.1038/s41591-018-0316-z
10.1109/IEMBS.2006.260275
10.1007/s00380-005-0872-2
10.1109/TBME.2014.2318779
10.3109/03091908409032067
10.1088/1361-6579/aa996d
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
DBID 0YH
AAYXX
CITATION
7X8
DOI 10.1080/08037051.2022.2128716
DatabaseName Taylor & Francis Journals Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1651-1999
EndPage 269
ExternalDocumentID 10_1080_08037051_2022_2128716
2128716
Genre Review Article
GroupedDBID ---
00X
03L
0R~
0YH
23N
36B
4.4
5GY
5RE
AAJNR
AALUX
AAPXX
ABBKH
ABDBF
ABEIZ
ABLKL
ABOCM
ABPTK
ABUPF
ACENM
ACFUF
ACGEJ
ACGFS
ADCVX
ADFCX
ADRBQ
ADXPE
AECIN
AENEX
AEOZL
AEYQI
AFKVX
AIJEM
AIRBT
AJWEG
ALIIL
ALMA_UNASSIGNED_HOLDINGS
ALQZU
BABNJ
BLEHA
BOHLJ
CCCUG
CS3
DKSSO
DU5
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
ESX
F5P
GROUPED_DOAJ
HZ~
J.N
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
O9-
OK1
SV3
TFDNU
TFL
TFW
TUS
V1S
~1N
AAYXX
AFPKN
AGYJP
CITATION
H13
TDBHL
7X8
ID FETCH-LOGICAL-c343t-d30a2c91848a8ee9e4755bfa8bedc83f178dc51401b7ad80c871fc96d9c84d753
IEDL.DBID 0YH
ISSN 0803-7051
IngestDate Fri Oct 25 05:06:24 EDT 2024
Fri Aug 23 02:23:27 EDT 2024
Tue Jul 04 18:17:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-d30a2c91848a8ee9e4755bfa8bedc83f178dc51401b7ad80c871fc96d9c84d753
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/08037051.2022.2128716
PQID 2720925257
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2720925257
informaworld_taylorfrancis_310_1080_08037051_2022_2128716
crossref_primary_10_1080_08037051_2022_2128716
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Blood pressure
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
Anwar SM (CIT0061) 2018; 42
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0016
  doi: 10.1007/s00421-011-1983-3
– ident: CIT0010
  doi: 10.1080/08037051.2018.1557508
– ident: CIT0049
  doi: 10.1111/j.1553-2712.2004.tb01379.x
– ident: CIT0017
  doi: 10.1109/ICOSP.2014.7014980
– ident: CIT0059
  doi: 10.1038/nature21056
– ident: CIT0066
  doi: 10.3390/s21010096
– ident: CIT0039
  doi: 10.1016/j.ijchy.2020.100030
– ident: CIT0035
  doi: 10.1126/science.6166045
– ident: CIT0056
  doi: 10.1038/s41592-019-0403-1
– ident: CIT0052
  doi: 10.1161/CIRCOUTCOMES.118.004879
– ident: CIT0022
  doi: 10.1109/TBME.2021.3055154
– ident: CIT0047
  doi: 10.1016/j.cell.2020.03.022
– ident: CIT0041
  doi: 10.1038/s41598-022-16527-2
– ident: CIT0064
  doi: 10.1162/neco_a_01199
– ident: CIT0057
  doi: 10.1038/s41588-018-0295-5
– ident: CIT0062
  doi: 10.1016/j.gpb.2017.07.003
– ident: CIT0065
  doi: 10.1007/s10916-019-1243-3
– ident: CIT0044
  doi: 10.1155/2018/1232583
– ident: CIT0011
  doi: 10.1136/bmj.i4098
– ident: CIT0067
  doi: 10.3390/s20195606
– ident: CIT0012
  doi: 10.1111/jch.13304
– ident: CIT0027
  doi: 10.1109/EMBC.2016.7591454
– ident: CIT0006
  doi: 10.1097/00004872-199512000-00003
– ident: CIT0036
  doi: 10.1016/j.jad.2020.01.132
– ident: CIT0060
  doi: 10.1007/s13244-018-0639-9
– ident: CIT0004
  doi: 10.1093/ajh/hpy138
– ident: CIT0013
  doi: 10.1097/HJH.0000000000003224
– ident: CIT0050
  doi: 10.1155/2018/1548647
– ident: CIT0033
  doi: 10.1109/EMBC.2017.8036930
– ident: CIT0068
  doi: 10.1097/ALN.0000000000000226
– ident: CIT0069
  doi: 10.1097/EJA.0000000000001443
– ident: CIT0023
  doi: 10.1038/s41598-019-46936-9
– ident: CIT0053
  doi: 10.3390/s20113127
– ident: CIT0007
  doi: 10.1161/HYPERTENSIONAHA.107.100727
– ident: CIT0014
  doi: 10.1097/HJH.0000000000002843
– ident: CIT0001
  doi: 10.1093/eurheartj/ehy339
– ident: CIT0020
  doi: 10.1038/s41598-020-73143-8
– ident: CIT0029
  doi: 10.1186/s12938-017-0317-z
– ident: CIT0034
  doi: 10.1016/S0733-8651(18)30231-5
– ident: CIT0005
  doi: 10.1136/bmj.308.6932.820
– ident: CIT0042
  doi: 10.1159/000492953
– ident: CIT0048
  doi: 10.1016/j.neunet.2018.12.010
– ident: CIT0051
  doi: 10.1142/S0129065704001899
– ident: CIT0037
  doi: 10.1097/MBP.0000000000000124
– ident: CIT0045
  doi: 10.1080/08037051.2021.1956178
– ident: CIT0055
  doi: 10.3174/ajnr.A5543
– ident: CIT0008
  doi: 10.1161/01.CIR.0000160923.04524.5B
– ident: CIT0018
  doi: 10.1088/1361-6579/aad902
– ident: CIT0032
  doi: 10.1038/s41598-017-11507-3
– ident: CIT0038
  doi: 10.1038/s41598-020-80905-x
– ident: CIT0003
  doi: 10.2215/CJN.07011009
– ident: CIT0030
  doi: 10.1080/08037051.2020.1785273
– ident: CIT0058
  doi: 10.3390/cancers11091235
– volume: 42
  issue: 1
  year: 2018
  ident: CIT0061
  publication-title: J Med Syst
  contributor:
    fullname: Anwar SM
– ident: CIT0021
  doi: 10.1111/j.1469-8986.1981.tb03042.x
– ident: CIT0031
  doi: 10.1109/TBME.2015.2480679
– ident: CIT0040
  doi: 10.1016/j.ijchy.2020.100072
– ident: CIT0025
  doi: 10.3390/jcm8111827
– ident: CIT0046
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: CIT0063
  doi: 10.1109/EMBC.2019.8857108
– ident: CIT0002
  doi: 10.1161/HYP.0000000000000065
– ident: CIT0026
  doi: 10.1007/s40292-020-00383-0
– ident: CIT0009
  doi: 10.1111/jch.14039
– ident: CIT0054
  doi: 10.1038/s41591-018-0316-z
– ident: CIT0028
  doi: 10.1109/IEMBS.2006.260275
– ident: CIT0043
  doi: 10.1007/s00380-005-0872-2
– ident: CIT0019
  doi: 10.1109/TBME.2014.2318779
– ident: CIT0015
  doi: 10.3109/03091908409032067
– ident: CIT0024
  doi: 10.1088/1361-6579/aa996d
SSID ssj0013300
Score 2.4449794
SecondaryResourceType review_article
Snippet Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 254
SubjectTerms Blood pressure measurement
deep learning
hypertension
pulse transit time
pulse wave velocity
Title Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives
URI https://www.tandfonline.com/doi/abs/10.1080/08037051.2022.2128716
https://search.proquest.com/docview/2720925257
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA46QXwR3RTnjxFBfMvs2rRNHoc4hjCfHOhTSNIEBlsdrhP8770kLXOI-OBDH0rJ0ebSu_ty310QurEJ-AitJKGx5QTwhiGKa04KnnGmqYoyT8acPGXjKX18SRs24aqmVToMbUOjCG-r3c8t1aphxN3BleSwmADdxXEfbK8L-nfRXpyD94clHb2ON4mEJFShwBDixjRFPL-J2XJPW81Lfxhr74FGR-iwDh3xMOj6GO2Yso06wxJg8-IT32JP5vS75G20P6lz5h00dw2oZuUaID7Wa2vnYNswfDsG4E9m5Yd0BHa82OwV4jeLPdMTlib2xHbs2bLwmOhQ5RgEhH4keLmp11ydoOno4fl-TOozFohOaFKRIolkrDngPCaZMdzQPE2VlUyZQrPEDnJW6NShMJXLgkUaJslqnhVcM1oA1jlFLXhdc4YwT0EAc0EF1VRLqSTPFc8U1ZYxncZd1G-mVixDKw0xaDqU1roQThei1kUX8e8KEJXfw7DhwBGR_DH2utGWgB_GZUFkaWCmhUs889g1gT3_h_wLdOBuQ8vHS9Sq3tfmCsKTSvX8Aux5cP8FOFTdew
link.rule.ids 315,783,787,867,27514,27936,27937,59471,59472
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Qb2IborzM4J4i25t2ibHIcrUbacN5ikkaQLCVodugv-9L0nLJiIePPRU8mjzkpf3ex-_IHRpYzgjtJKERpYTwBuGKK45yXnKmaaqlfpizP4g7Y7o4zgZr_TCuLJKh6FtIIrwttptbheMrkribuCJM1hNAO-i6BqMr_P619FGwmnmbjFoPXeXmYQ4tKHAEOLGVF08v4n5dj59Yy_9Ya39EXS_i3ZK3xF3grL30Jop6qjRKQA3Tz_xFfbVnD5MXkeb_TJp3kATx0D1UiwA42O9sHYCxg3Dz2NA_uSl-JCugh1Pl8FC_GqxL_WEtYl9ZTv25bLwmujQ5hgEBEISPFs2bL7vo9H93fC2S8pLFoiOaTwnedySkeYA9JhkxnBDsyRRVjJlcs1i285YrhMHw1Qmc9bSMElW8zTnmtEcwM4BqsHnmkOEeQICmPMqqKZaSiV5pniqqLaM6SRqoutqasUscGmIdkVRWupCOF2IUhdNxFcVIOY-iGHDjSMi_mPsRaUtATvGpUFkYWCmhcs888ixwB79Q_452uoO-z3Rexg8HaNt9yrwP56g2vxtYU7BV5mrM78YvwAJTt_2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-oHgRbRXfRhBvqXU3u5sci1rqo8WDBT2FJJtAoa5Ft4L_3kmySy0iHjzsKWTYzUwm82W-mUXo1MZwRmglCY0sJ4A3DFFcc5LzlDNNVSf1ZMzBMO2P6O1TUrMJ3ytapcPQNjSK8L7abe5pbmtG3Dk8cQbGBOguitrge13Qv4xWEw6eFky689yfJxLiUIUCU4ibUxfx_CZm4XhaaF76w1n7E6i3gdar0BF3g6430ZIpmqjVLQA2v3ziM-zJnP6WvIkagypn3kIT14BqXMwA4mM9s3YCvg3Dt2MA_mRcfEhHYMcv87tC_GqxZ3qCaWJPbMeeLQvDRIcqxyAg9CPB03m95vsWGvWuHy_7pPrHAtExjUuSxx0ZaQ44j0lmDDc0SxJlJVMm1yy2FxnLdeJQmMpkzjoaFslqnuZcM5oD1tlGK_C6ZgdhnoAA5oIKqqmWUkmeKZ4qqi1jOol2UbteWjENrTTERd2htNKFcLoQlS52Ef-uAFH6Owwbfjgi4j_mntTaErBhXBZEFgZWWrjEM49cE9i9f8g_Ro2Hq564vxne7aM1NxK6Px6glfJtZg4hUinVkbfFL7rp3x8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+cuffless+and+non-invasive+measurement+of+arterial+blood+pressure-concepts+and+future+perspectives&rft.jtitle=Blood+pressure&rft.au=Pilz%2C+Niklas&rft.au=Patzak%2C+Andreas&rft.au=Bothe%2C+Tomas+L.&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis&rft.issn=0803-7051&rft.eissn=1651-1999&rft.volume=31&rft.issue=1&rft.spage=254&rft.epage=269&rft_id=info:doi/10.1080%2F08037051.2022.2128716&rft.externalDBID=0YH&rft.externalDocID=2128716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0803-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0803-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0803-7051&client=summon