Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives
Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and no...
Saved in:
Published in | Blood pressure Vol. 31; no. 1; pp. 254 - 269 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and non-invasive methods may offer various advantages, such as a continuous and undisturbing measurement character. This review presents a conceptual overview of recent advances in the field of cuffless measurement paradigms and possible future developments which would enable cuffless beat-to-beat BP estimation paradigms to become clinically viable. It was refrained from a direct comparison between most studies and focussed on a conceptual merger of the ideas and conclusions presented in landmark scientific literature. There are two main approaches to cuffless beat-to-beat BP estimation represented in the scientific literature: First, models based on the physiological understanding of the cardiovascular system, mostly reliant on the pulse wave velocity combined with additional parameters. Second, models based on Deep Learning techniques, which have already shown great performance in various other medical fields. This review wants to present the advantages and limitations of each approach. Following this, the conceptional idea of unifying the benefits of physiological understanding and Deep Learning techniques for beat-to-beat BP estimation is presented. This could lead to a generalised and uniform solution for cuffless beat-to-beat BP estimations. This would not only make them an attractive clinical complement or even alternative to conventional cuff-based measurement paradigms but would substantially change how we think about BP as a fundamental marker of cardiovascular medicine.
This concept review wants to highlight the current state of non-invasive cuffless continuous blood pressure estimation.
Cuffless blood pressure measurement devices usually rely on pulse wave velocity.
Pulse wave velocity is mostly calculated via measuring pulse arrival time.
Using pulse transit time instead of pulse arrival time showed improved results.
Additional biomarkers like heart rate, photoplethysmogram intensity ratio or heart rate power spectrum ratio can be used to improve measurement precision.
For cuffless and cuff-based devices intended for 24-hour BP measurements, a more refined validation protocol is required.
The ESH assesses the measurement accuracy of cuffless devices as unclear and does not recommend hypertension diagnosis based on cuffless devices.
Machine Learning and Deep Learning applications are a powerful tool to generate complex algorithms, which can be used to estimate blood pressure.
Selecting biomarkers like pulse wave velocity, heart rate, etc. as input features for Deep Learning systems would be a very promising approach to measure blood pressure more precise. |
---|---|
AbstractList | Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable measurements. Cuff-based measurement paradigms have dominated ambulatory blood pressure (BP) measurements for multiple decades. Cuffless and non-invasive methods may offer various advantages, such as a continuous and undisturbing measurement character. This review presents a conceptual overview of recent advances in the field of cuffless measurement paradigms and possible future developments which would enable cuffless beat-to-beat BP estimation paradigms to become clinically viable. It was refrained from a direct comparison between most studies and focussed on a conceptual merger of the ideas and conclusions presented in landmark scientific literature. There are two main approaches to cuffless beat-to-beat BP estimation represented in the scientific literature: First, models based on the physiological understanding of the cardiovascular system, mostly reliant on the pulse wave velocity combined with additional parameters. Second, models based on Deep Learning techniques, which have already shown great performance in various other medical fields. This review wants to present the advantages and limitations of each approach. Following this, the conceptional idea of unifying the benefits of physiological understanding and Deep Learning techniques for beat-to-beat BP estimation is presented. This could lead to a generalised and uniform solution for cuffless beat-to-beat BP estimations. This would not only make them an attractive clinical complement or even alternative to conventional cuff-based measurement paradigms but would substantially change how we think about BP as a fundamental marker of cardiovascular medicine.
This concept review wants to highlight the current state of non-invasive cuffless continuous blood pressure estimation.
Cuffless blood pressure measurement devices usually rely on pulse wave velocity.
Pulse wave velocity is mostly calculated via measuring pulse arrival time.
Using pulse transit time instead of pulse arrival time showed improved results.
Additional biomarkers like heart rate, photoplethysmogram intensity ratio or heart rate power spectrum ratio can be used to improve measurement precision.
For cuffless and cuff-based devices intended for 24-hour BP measurements, a more refined validation protocol is required.
The ESH assesses the measurement accuracy of cuffless devices as unclear and does not recommend hypertension diagnosis based on cuffless devices.
Machine Learning and Deep Learning applications are a powerful tool to generate complex algorithms, which can be used to estimate blood pressure.
Selecting biomarkers like pulse wave velocity, heart rate, etc. as input features for Deep Learning systems would be a very promising approach to measure blood pressure more precise. |
Author | Pilz, Niklas Patzak, Andreas Bothe, Tomas L. |
Author_xml | – sequence: 1 givenname: Niklas surname: Pilz fullname: Pilz, Niklas organization: Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Translational Physiology – sequence: 2 givenname: Andreas surname: Patzak fullname: Patzak, Andreas organization: Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Translational Physiology – sequence: 3 givenname: Tomas L. surname: Bothe fullname: Bothe, Tomas L. organization: Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Translational Physiology |
BookMark | eNp9kE1LAzEQhoMoWKs_QcjRy9Z8bLrZm1L8goIXPYc0mcBKNlmTbMV_b0r16mEYmHnfZ5j3Ap2GGACha0pWlEhyW4t3RNAVI4ytGGWyo-sTtKBrQRva9_0pWhw0zUF0ji5y_iCEck7IAvlNDGUIc5wzNrNzHnLGOlhcbzRD2Os87AGPoPOcYIRQcHRYpwJp0B7vfIwWT6ma6roxMRiYyhHg5lJneIKUJzClYvIlOnPaZ7j67Uv0_vjwtnlutq9PL5v7bWN4y0tjOdHM9FS2UkuAHtpOiJ3TcgfWSO5oJ60RtCV012krian_OtOvbW9kazvBl-jmyJ1S_JwhFzUO2YD3OkB9VLGOkZ4JJroqFUepSTHnBE5NaRh1-laUqEO66i9ddUhX_aZbfXdH3xBcTKP-islbVfS3j8klHcyQFf8f8QMPhYXK |
CitedBy_id | crossref_primary_10_1111_apha_14015 crossref_primary_10_1080_08037051_2023_2255704 crossref_primary_10_1016_j_bspc_2023_105305 crossref_primary_10_1016_j_eswa_2023_122812 crossref_primary_10_3389_fcvm_2023_1138356 crossref_primary_10_3389_fmed_2023_1154041 crossref_primary_10_3390_bioengineering10010027 crossref_primary_10_3390_jcm13082170 crossref_primary_10_1111_apha_14064 crossref_primary_10_1088_1361_6579_ad45ab |
Cites_doi | 10.1007/s00421-011-1983-3 10.1080/08037051.2018.1557508 10.1111/j.1553-2712.2004.tb01379.x 10.1109/ICOSP.2014.7014980 10.1038/nature21056 10.3390/s21010096 10.1016/j.ijchy.2020.100030 10.1126/science.6166045 10.1038/s41592-019-0403-1 10.1161/CIRCOUTCOMES.118.004879 10.1109/TBME.2021.3055154 10.1016/j.cell.2020.03.022 10.1038/s41598-022-16527-2 10.1162/neco_a_01199 10.1038/s41588-018-0295-5 10.1016/j.gpb.2017.07.003 10.1007/s10916-019-1243-3 10.1155/2018/1232583 10.1136/bmj.i4098 10.3390/s20195606 10.1111/jch.13304 10.1109/EMBC.2016.7591454 10.1097/00004872-199512000-00003 10.1016/j.jad.2020.01.132 10.1007/s13244-018-0639-9 10.1093/ajh/hpy138 10.1097/HJH.0000000000003224 10.1155/2018/1548647 10.1109/EMBC.2017.8036930 10.1097/ALN.0000000000000226 10.1097/EJA.0000000000001443 10.1038/s41598-019-46936-9 10.3390/s20113127 10.1161/HYPERTENSIONAHA.107.100727 10.1097/HJH.0000000000002843 10.1093/eurheartj/ehy339 10.1038/s41598-020-73143-8 10.1186/s12938-017-0317-z 10.1016/S0733-8651(18)30231-5 10.1136/bmj.308.6932.820 10.1159/000492953 10.1016/j.neunet.2018.12.010 10.1142/S0129065704001899 10.1097/MBP.0000000000000124 10.1080/08037051.2021.1956178 10.3174/ajnr.A5543 10.1161/01.CIR.0000160923.04524.5B 10.1088/1361-6579/aad902 10.1038/s41598-017-11507-3 10.1038/s41598-020-80905-x 10.2215/CJN.07011009 10.1080/08037051.2020.1785273 10.3390/cancers11091235 10.1111/j.1469-8986.1981.tb03042.x 10.1109/TBME.2015.2480679 10.1016/j.ijchy.2020.100072 10.3390/jcm8111827 10.1161/CIRCULATIONAHA.115.001593 10.1109/EMBC.2019.8857108 10.1161/HYP.0000000000000065 10.1007/s40292-020-00383-0 10.1111/jch.14039 10.1038/s41591-018-0316-z 10.1109/IEMBS.2006.260275 10.1007/s00380-005-0872-2 10.1109/TBME.2014.2318779 10.3109/03091908409032067 10.1088/1361-6579/aa996d |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 |
DBID | 0YH AAYXX CITATION 7X8 |
DOI | 10.1080/08037051.2022.2128716 |
DatabaseName | Taylor & Francis Journals Open Access CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1651-1999 |
EndPage | 269 |
ExternalDocumentID | 10_1080_08037051_2022_2128716 2128716 |
Genre | Review Article |
GroupedDBID | --- 00X 03L 0R~ 0YH 23N 36B 4.4 5GY 5RE AAJNR AALUX AAPXX ABBKH ABDBF ABEIZ ABLKL ABOCM ABPTK ABUPF ACENM ACFUF ACGEJ ACGFS ADCVX ADFCX ADRBQ ADXPE AECIN AENEX AEOZL AEYQI AFKVX AIJEM AIRBT AJWEG ALIIL ALMA_UNASSIGNED_HOLDINGS ALQZU BABNJ BLEHA BOHLJ CCCUG CS3 DKSSO DU5 EAP EBC EBD EBS EMB EMK EMOBN EPL ESX F5P GROUPED_DOAJ HZ~ J.N KRBQP KSSTO KWAYT KYCEM LJTGL M4Z O9- OK1 SV3 TFDNU TFL TFW TUS V1S ~1N AAYXX AFPKN AGYJP CITATION H13 TDBHL 7X8 |
ID | FETCH-LOGICAL-c343t-d30a2c91848a8ee9e4755bfa8bedc83f178dc51401b7ad80c871fc96d9c84d753 |
IEDL.DBID | 0YH |
ISSN | 0803-7051 |
IngestDate | Fri Oct 25 05:06:24 EDT 2024 Fri Aug 23 02:23:27 EDT 2024 Tue Jul 04 18:17:01 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-d30a2c91848a8ee9e4755bfa8bedc83f178dc51401b7ad80c871fc96d9c84d753 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/08037051.2022.2128716 |
PQID | 2720925257 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2720925257 informaworld_taylorfrancis_310_1080_08037051_2022_2128716 crossref_primary_10_1080_08037051_2022_2128716 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Blood pressure |
PublicationYear | 2022 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 Anwar SM (CIT0061) 2018; 42 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0016 doi: 10.1007/s00421-011-1983-3 – ident: CIT0010 doi: 10.1080/08037051.2018.1557508 – ident: CIT0049 doi: 10.1111/j.1553-2712.2004.tb01379.x – ident: CIT0017 doi: 10.1109/ICOSP.2014.7014980 – ident: CIT0059 doi: 10.1038/nature21056 – ident: CIT0066 doi: 10.3390/s21010096 – ident: CIT0039 doi: 10.1016/j.ijchy.2020.100030 – ident: CIT0035 doi: 10.1126/science.6166045 – ident: CIT0056 doi: 10.1038/s41592-019-0403-1 – ident: CIT0052 doi: 10.1161/CIRCOUTCOMES.118.004879 – ident: CIT0022 doi: 10.1109/TBME.2021.3055154 – ident: CIT0047 doi: 10.1016/j.cell.2020.03.022 – ident: CIT0041 doi: 10.1038/s41598-022-16527-2 – ident: CIT0064 doi: 10.1162/neco_a_01199 – ident: CIT0057 doi: 10.1038/s41588-018-0295-5 – ident: CIT0062 doi: 10.1016/j.gpb.2017.07.003 – ident: CIT0065 doi: 10.1007/s10916-019-1243-3 – ident: CIT0044 doi: 10.1155/2018/1232583 – ident: CIT0011 doi: 10.1136/bmj.i4098 – ident: CIT0067 doi: 10.3390/s20195606 – ident: CIT0012 doi: 10.1111/jch.13304 – ident: CIT0027 doi: 10.1109/EMBC.2016.7591454 – ident: CIT0006 doi: 10.1097/00004872-199512000-00003 – ident: CIT0036 doi: 10.1016/j.jad.2020.01.132 – ident: CIT0060 doi: 10.1007/s13244-018-0639-9 – ident: CIT0004 doi: 10.1093/ajh/hpy138 – ident: CIT0013 doi: 10.1097/HJH.0000000000003224 – ident: CIT0050 doi: 10.1155/2018/1548647 – ident: CIT0033 doi: 10.1109/EMBC.2017.8036930 – ident: CIT0068 doi: 10.1097/ALN.0000000000000226 – ident: CIT0069 doi: 10.1097/EJA.0000000000001443 – ident: CIT0023 doi: 10.1038/s41598-019-46936-9 – ident: CIT0053 doi: 10.3390/s20113127 – ident: CIT0007 doi: 10.1161/HYPERTENSIONAHA.107.100727 – ident: CIT0014 doi: 10.1097/HJH.0000000000002843 – ident: CIT0001 doi: 10.1093/eurheartj/ehy339 – ident: CIT0020 doi: 10.1038/s41598-020-73143-8 – ident: CIT0029 doi: 10.1186/s12938-017-0317-z – ident: CIT0034 doi: 10.1016/S0733-8651(18)30231-5 – ident: CIT0005 doi: 10.1136/bmj.308.6932.820 – ident: CIT0042 doi: 10.1159/000492953 – ident: CIT0048 doi: 10.1016/j.neunet.2018.12.010 – ident: CIT0051 doi: 10.1142/S0129065704001899 – ident: CIT0037 doi: 10.1097/MBP.0000000000000124 – ident: CIT0045 doi: 10.1080/08037051.2021.1956178 – ident: CIT0055 doi: 10.3174/ajnr.A5543 – ident: CIT0008 doi: 10.1161/01.CIR.0000160923.04524.5B – ident: CIT0018 doi: 10.1088/1361-6579/aad902 – ident: CIT0032 doi: 10.1038/s41598-017-11507-3 – ident: CIT0038 doi: 10.1038/s41598-020-80905-x – ident: CIT0003 doi: 10.2215/CJN.07011009 – ident: CIT0030 doi: 10.1080/08037051.2020.1785273 – ident: CIT0058 doi: 10.3390/cancers11091235 – volume: 42 issue: 1 year: 2018 ident: CIT0061 publication-title: J Med Syst contributor: fullname: Anwar SM – ident: CIT0021 doi: 10.1111/j.1469-8986.1981.tb03042.x – ident: CIT0031 doi: 10.1109/TBME.2015.2480679 – ident: CIT0040 doi: 10.1016/j.ijchy.2020.100072 – ident: CIT0025 doi: 10.3390/jcm8111827 – ident: CIT0046 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: CIT0063 doi: 10.1109/EMBC.2019.8857108 – ident: CIT0002 doi: 10.1161/HYP.0000000000000065 – ident: CIT0026 doi: 10.1007/s40292-020-00383-0 – ident: CIT0009 doi: 10.1111/jch.14039 – ident: CIT0054 doi: 10.1038/s41591-018-0316-z – ident: CIT0028 doi: 10.1109/IEMBS.2006.260275 – ident: CIT0043 doi: 10.1007/s00380-005-0872-2 – ident: CIT0019 doi: 10.1109/TBME.2014.2318779 – ident: CIT0015 doi: 10.3109/03091908409032067 – ident: CIT0024 doi: 10.1088/1361-6579/aa996d |
SSID | ssj0013300 |
Score | 2.4449794 |
SecondaryResourceType | review_article |
Snippet | Hypertension diagnosis is one of the most common and important procedures in everyday clinical practice. Its applicability depends on correct and comparable... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 254 |
SubjectTerms | Blood pressure measurement deep learning hypertension pulse transit time pulse wave velocity |
Title | Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives |
URI | https://www.tandfonline.com/doi/abs/10.1080/08037051.2022.2128716 https://search.proquest.com/docview/2720925257 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA46QXwR3RTnjxFBfMvs2rRNHoc4hjCfHOhTSNIEBlsdrhP8770kLXOI-OBDH0rJ0ebSu_ty310QurEJ-AitJKGx5QTwhiGKa04KnnGmqYoyT8acPGXjKX18SRs24aqmVToMbUOjCG-r3c8t1aphxN3BleSwmADdxXEfbK8L-nfRXpyD94clHb2ON4mEJFShwBDixjRFPL-J2XJPW81Lfxhr74FGR-iwDh3xMOj6GO2Yso06wxJg8-IT32JP5vS75G20P6lz5h00dw2oZuUaID7Wa2vnYNswfDsG4E9m5Yd0BHa82OwV4jeLPdMTlib2xHbs2bLwmOhQ5RgEhH4keLmp11ydoOno4fl-TOozFohOaFKRIolkrDngPCaZMdzQPE2VlUyZQrPEDnJW6NShMJXLgkUaJslqnhVcM1oA1jlFLXhdc4YwT0EAc0EF1VRLqSTPFc8U1ZYxncZd1G-mVixDKw0xaDqU1roQThei1kUX8e8KEJXfw7DhwBGR_DH2utGWgB_GZUFkaWCmhUs889g1gT3_h_wLdOBuQ8vHS9Sq3tfmCsKTSvX8Aux5cP8FOFTdew |
link.rule.ids | 315,783,787,867,27514,27936,27937,59471,59472 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86Qb2IborzM4J4i25t2ibHIcrUbacN5ikkaQLCVodugv-9L0nLJiIePPRU8mjzkpf3ex-_IHRpYzgjtJKERpYTwBuGKK45yXnKmaaqlfpizP4g7Y7o4zgZr_TCuLJKh6FtIIrwttptbheMrkribuCJM1hNAO-i6BqMr_P619FGwmnmbjFoPXeXmYQ4tKHAEOLGVF08v4n5dj59Yy_9Ya39EXS_i3ZK3xF3grL30Jop6qjRKQA3Tz_xFfbVnD5MXkeb_TJp3kATx0D1UiwA42O9sHYCxg3Dz2NA_uSl-JCugh1Pl8FC_GqxL_WEtYl9ZTv25bLwmujQ5hgEBEISPFs2bL7vo9H93fC2S8pLFoiOaTwnedySkeYA9JhkxnBDsyRRVjJlcs1i285YrhMHw1Qmc9bSMElW8zTnmtEcwM4BqsHnmkOEeQICmPMqqKZaSiV5pniqqLaM6SRqoutqasUscGmIdkVRWupCOF2IUhdNxFcVIOY-iGHDjSMi_mPsRaUtATvGpUFkYWCmhcs888ixwB79Q_452uoO-z3Rexg8HaNt9yrwP56g2vxtYU7BV5mrM78YvwAJTt_2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-oHgRbRXfRhBvqXU3u5sci1rqo8WDBT2FJJtAoa5Ft4L_3kmySy0iHjzsKWTYzUwm82W-mUXo1MZwRmglCY0sJ4A3DFFcc5LzlDNNVSf1ZMzBMO2P6O1TUrMJ3ytapcPQNjSK8L7abe5pbmtG3Dk8cQbGBOguitrge13Qv4xWEw6eFky689yfJxLiUIUCU4ibUxfx_CZm4XhaaF76w1n7E6i3gdar0BF3g6430ZIpmqjVLQA2v3ziM-zJnP6WvIkagypn3kIT14BqXMwA4mM9s3YCvg3Dt2MA_mRcfEhHYMcv87tC_GqxZ3qCaWJPbMeeLQvDRIcqxyAg9CPB03m95vsWGvWuHy_7pPrHAtExjUuSxx0ZaQ44j0lmDDc0SxJlJVMm1yy2FxnLdeJQmMpkzjoaFslqnuZcM5oD1tlGK_C6ZgdhnoAA5oIKqqmWUkmeKZ4qqi1jOol2UbteWjENrTTERd2htNKFcLoQlS52Ef-uAFH6Owwbfjgi4j_mntTaErBhXBZEFgZWWrjEM49cE9i9f8g_Ro2Hq564vxne7aM1NxK6Px6glfJtZg4hUinVkbfFL7rp3x8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+cuffless+and+non-invasive+measurement+of+arterial+blood+pressure-concepts+and+future+perspectives&rft.jtitle=Blood+pressure&rft.au=Pilz%2C+Niklas&rft.au=Patzak%2C+Andreas&rft.au=Bothe%2C+Tomas+L.&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis&rft.issn=0803-7051&rft.eissn=1651-1999&rft.volume=31&rft.issue=1&rft.spage=254&rft.epage=269&rft_id=info:doi/10.1080%2F08037051.2022.2128716&rft.externalDBID=0YH&rft.externalDocID=2128716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0803-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0803-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0803-7051&client=summon |