Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion
•An improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion is proposed.•Change in after-cracking corrosion rate is considered to assess the time-dependent seismic fragility of RC bridges.•Differences in the results when reinforcing steel is subjected to genera...
Saved in:
Published in | Engineering structures Vol. 155; pp. 61 - 72 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion is proposed.•Change in after-cracking corrosion rate is considered to assess the time-dependent seismic fragility of RC bridges.•Differences in the results when reinforcing steel is subjected to general and pitting corrosion are investigated.•Seismic fragility of deteriorating RC bridges in marine environment is evaluated.
This paper presents an improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion and considers the change in after-cracking corrosion rate to assess the time-dependent seismic fragility of RC bridge substructures in marine environments. The proposed deterioration model is applicable for both existing and new RC bridge substructures and could be employed for life-cycle analysis of RC bridge substructures in marine environments. In this paper, the model is implemented to conduct a probabilistic seismic fragility analysis of a three-span continuous box girder bridge accounting for uncertainties in establishing bridge geometry, material properties, ground motion and corrosion parameters. Differences in the results obtained when reinforcing steel is subjected to general and pitting corrosion are investigated. The results show that the effect of chloride-induced corrosion cannot be neglected when performing the seismic fragility analysis of RC bridge substructures in marine environments. Additionally, the calculated time-dependent fragility curves indicate that there is a nonlinear accelerated growth of RC column vulnerability along the service life of highway bridges, especially after twenty-five years of exposure to chlorides. |
---|---|
AbstractList | •An improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion is proposed.•Change in after-cracking corrosion rate is considered to assess the time-dependent seismic fragility of RC bridges.•Differences in the results when reinforcing steel is subjected to general and pitting corrosion are investigated.•Seismic fragility of deteriorating RC bridges in marine environment is evaluated.
This paper presents an improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion and considers the change in after-cracking corrosion rate to assess the time-dependent seismic fragility of RC bridge substructures in marine environments. The proposed deterioration model is applicable for both existing and new RC bridge substructures and could be employed for life-cycle analysis of RC bridge substructures in marine environments. In this paper, the model is implemented to conduct a probabilistic seismic fragility analysis of a three-span continuous box girder bridge accounting for uncertainties in establishing bridge geometry, material properties, ground motion and corrosion parameters. Differences in the results obtained when reinforcing steel is subjected to general and pitting corrosion are investigated. The results show that the effect of chloride-induced corrosion cannot be neglected when performing the seismic fragility analysis of RC bridge substructures in marine environments. Additionally, the calculated time-dependent fragility curves indicate that there is a nonlinear accelerated growth of RC column vulnerability along the service life of highway bridges, especially after twenty-five years of exposure to chlorides. This paper presents an improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion and considers the change in after-cracking corrosion rate to assess the time-dependent seismic fragility of RC bridge substructures in marine environments. The proposed deterioration model is applicable for both existing and new RC bridge substructures and could be employed for life-cycle analysis of RC bridge substructures in marine environments. In this paper, the model is implemented to conduct a probabilistic seismic fragility analysis of a three-span continuous box girder bridge accounting for uncertainties in establishing bridge geometry, material properties, ground motion and corrosion parameters. Differences in the results obtained when reinforcing steel is subjected to general and pitting corrosion are investigated. The results show that the effect of chloride-induced corrosion cannot be neglected when performing the seismic fragility analysis of RC bridge substructures in marine environments. Additionally, the calculated time-dependent fragility curves indicate that there is a nonlinear accelerated growth of RC column vulnerability along the service life of highway bridges, especially after twenty-five years of exposure to chlorides. |
Author | Zhang, Haonan Cui, Fengkun Ghosn, Michel Xu, Yue |
Author_xml | – sequence: 1 givenname: Fengkun surname: Cui fullname: Cui, Fengkun email: 929599342@qq.com organization: School of Highways, Chang’ an University, Xi’ an, Shaanxi 710064, China – sequence: 2 givenname: Haonan orcidid: 0000-0003-1193-7408 surname: Zhang fullname: Zhang, Haonan organization: School of Highways, Chang’ an University, Xi’ an, Shaanxi 710064, China – sequence: 3 givenname: Michel surname: Ghosn fullname: Ghosn, Michel organization: Department of Civil Engineering, The City College of the City University of New York, New York, NY 10031, USA – sequence: 4 givenname: Yue surname: Xu fullname: Xu, Yue organization: School of Highways, Chang’ an University, Xi’ an, Shaanxi 710064, China |
BookMark | eNqNkMFO3DAQhi1EJZZtnwFLPWc7dkKcHDigFaVISEjQni2vPVkmCvbWdpD27evVIg5c6Mka-_9mPN85O_XBI2MXAlYCRPtjXKHfphxnm1cShCq3K2jVCVuITtWVqmV9yhYgGlGB7Nszdp7SCACy62DBdk9I6YUsH6LZ0kR5z4030z5R4mHgDjNGCtFk8lv-uOabSG6LPM2b48g5YjpUI9rMc-AvJpJHbp-nUJJYkXezRcdtiDEkCv4r-zKYKeG3t3PJ_vy8-b3-Vd0_3N6tr-8rWzd1rpyUTT-A6rCve9s1qpeNkZ0x0oBRUrQCh0a1fV1qMDBcuhb7jbMSpXONgXrJvh_77mL4O2PKegxzLKslXSwJ2YKArqSujilbfpciDtpSLssGn6OhSQvQB8l61O-SD7g6PBTJhVcf-F2k4mD_H-T1kcQi4ZUw6mQJfXFFsbjULtCnPf4BcZ-hdw |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2019_117348 crossref_primary_10_3390_coatings12121825 crossref_primary_10_1016_j_engstruct_2023_117257 crossref_primary_10_1080_19648189_2022_2076746 crossref_primary_10_1016_j_istruc_2022_03_009 crossref_primary_10_1007_s10518_021_01126_9 crossref_primary_10_1016_j_soildyn_2022_107732 crossref_primary_10_3390_app10020459 crossref_primary_10_1016_j_istruc_2025_108515 crossref_primary_10_3390_en13246640 crossref_primary_10_1016_j_istruc_2022_11_117 crossref_primary_10_1002_suco_202200378 crossref_primary_10_3390_app14198789 crossref_primary_10_1016_j_jobe_2022_104008 crossref_primary_10_1142_S0219455423500384 crossref_primary_10_1061_AJRUA6_RUENG_1109 crossref_primary_10_1016_j_oceaneng_2023_114547 crossref_primary_10_1080_15732479_2021_1919148 crossref_primary_10_1002_suco_202300257 crossref_primary_10_1061_AJRUA6_RUENG_1068 crossref_primary_10_1016_j_conbuildmat_2022_127390 crossref_primary_10_1007_s10518_021_01297_5 crossref_primary_10_1155_2019_2739212 crossref_primary_10_1016_j_istruc_2023_06_068 crossref_primary_10_1016_j_istruc_2024_106273 crossref_primary_10_1061__ASCE_BE_1943_5592_0001429 crossref_primary_10_1080_15732479_2023_2271887 crossref_primary_10_1061_AJRUA6_0001154 crossref_primary_10_1002_suco_202000106 crossref_primary_10_1016_j_conbuildmat_2021_123662 crossref_primary_10_1016_j_cscm_2024_e04099 crossref_primary_10_1061__ASCE_CF_1943_5509_0001241 crossref_primary_10_1061_JBENF2_BEENG_5796 crossref_primary_10_1186_s40069_024_00734_4 crossref_primary_10_1016_j_istruc_2020_08_081 crossref_primary_10_1061_AJRUA6_RUENG_1054 crossref_primary_10_1080_15732479_2019_1590424 crossref_primary_10_1590_s1983_41952024000400008 crossref_primary_10_1016_j_conbuildmat_2023_134241 crossref_primary_10_1061_AJRUA6_RUENG_1290 crossref_primary_10_1061__ASCE_BE_1943_5592_0001711 crossref_primary_10_1080_15732479_2021_1987481 crossref_primary_10_1007_s12205_021_5969_3 crossref_primary_10_1108_IJSI_12_2022_0147 crossref_primary_10_1007_s10518_020_00934_9 crossref_primary_10_1007_s10706_023_02409_5 crossref_primary_10_1016_j_engstruct_2024_117448 crossref_primary_10_1007_s10518_025_02122_z crossref_primary_10_1016_j_engstruct_2024_117717 crossref_primary_10_1016_j_engstruct_2019_109507 crossref_primary_10_1002_eer2_5 crossref_primary_10_1007_s10518_019_00647_8 crossref_primary_10_1002_eer2_7 crossref_primary_10_1016_j_istruc_2022_07_024 crossref_primary_10_20964_2022_02_35 crossref_primary_10_1016_j_rcns_2024_07_002 crossref_primary_10_1061__ASCE_CF_1943_5509_0001357 crossref_primary_10_1360_SST_2022_0399 crossref_primary_10_1061_AJRUA6_0001251 crossref_primary_10_1016_j_ress_2022_109050 crossref_primary_10_3390_app10238595 crossref_primary_10_3390_coatings13010016 crossref_primary_10_1016_j_jobe_2023_106510 crossref_primary_10_1016_j_jobe_2024_109584 crossref_primary_10_1061__ASCE_ST_1943_541X_0003216 crossref_primary_10_1016_j_engstruct_2022_114106 crossref_primary_10_1002_suco_202000681 crossref_primary_10_1016_j_compgeo_2023_105977 crossref_primary_10_1016_j_jobe_2022_104321 crossref_primary_10_1155_vib_3706021 crossref_primary_10_1617_s11527_020_01566_w crossref_primary_10_1002_eqe_4004 crossref_primary_10_1061_AJRUA6_0001224 crossref_primary_10_1061__ASCE_EM_1943_7889_0001951 crossref_primary_10_1080_13632469_2024_2361770 crossref_primary_10_1016_j_engstruct_2020_111752 crossref_primary_10_1186_s43251_025_00157_5 crossref_primary_10_1088_1742_6596_2070_1_012175 crossref_primary_10_1016_j_conbuildmat_2022_129091 crossref_primary_10_3390_buildings15050737 crossref_primary_10_1080_15732479_2019_1703762 crossref_primary_10_1080_13632469_2020_1809561 crossref_primary_10_1016_j_prostr_2024_09_048 crossref_primary_10_3390_buildings12122223 crossref_primary_10_1016_j_engstruct_2021_112818 crossref_primary_10_1016_j_compstruct_2024_118242 crossref_primary_10_1155_2021_9640521 crossref_primary_10_1177_1369433220956812 crossref_primary_10_1016_j_engstruct_2021_113228 crossref_primary_10_1016_j_engfailanal_2023_107500 crossref_primary_10_1080_15732479_2021_1973040 crossref_primary_10_1016_j_ress_2021_108137 crossref_primary_10_1016_j_soildyn_2020_106150 crossref_primary_10_1016_j_engstruct_2023_115611 crossref_primary_10_1016_j_oceaneng_2025_120883 crossref_primary_10_3390_app122312078 crossref_primary_10_2174_1874149501913010140 crossref_primary_10_1080_15732479_2021_1944225 crossref_primary_10_1080_23311916_2018_1545741 crossref_primary_10_1061__ASCE_BE_1943_5592_0001491 crossref_primary_10_1016_j_engstruct_2024_117643 crossref_primary_10_1016_j_engstruct_2024_118615 crossref_primary_10_1016_j_engstruct_2020_111417 crossref_primary_10_1016_j_soildyn_2023_107987 crossref_primary_10_1016_j_soildyn_2020_106165 crossref_primary_10_1007_s12205_020_0659_0 crossref_primary_10_1016_j_marstruc_2022_103288 |
Cites_doi | 10.1680/macr.2005.57.3.135 10.1061/(ASCE)0733-9445(1997)123:12(1638) 10.1016/S0008-8846(98)00259-2 10.1016/j.strusafe.2004.03.002 10.1061/(ASCE)ST.1943-541X.0000260 10.1061/(ASCE)0733-9445(2004)130:10(1570) 10.1016/j.strusafe.2007.12.001 10.1061/(ASCE)BE.1943-5592.0000197 10.1680/macr.2008.62.2.91 10.1016/j.ress.2006.12.015 10.1061/40492(2000)157 10.1061/(ASCE)ST.1943-541X.0000231 10.1016/S0167-4730(03)00014-6 10.1016/j.cemconres.2007.08.004 10.1016/S0008-8846(03)00246-1 10.1002/eqe.2281 10.1061/(ASCE)BE.1943-5592.0000889 10.5006/1.3287863 10.1016/j.engstruct.2003.09.006 10.1007/BF02480466 10.1002/eqe.655 10.1016/j.ress.2006.12.013 10.1016/j.cemconres.2007.10.007 10.1016/S0167-4730(97)00021-0 10.1016/j.strusafe.2005.11.002 10.1016/j.conbuildmat.2011.10.008 10.1016/j.cemconcomp.2009.05.007 10.1061/(ASCE)BE.1943-5592.0000565 10.1016/j.strusafe.2008.10.001 10.1002/eqe.782 10.1016/j.cemconres.2009.03.009 10.1016/j.strusafe.2008.04.001 10.1016/S0167-4730(00)00018-7 10.1016/S0008-8846(01)00644-5 10.1061/(ASCE)1076-0342(1998)4:4(146) 10.1061/(ASCE)0733-9445(2003)129:6(753) 10.1016/j.engstruct.2010.08.021 10.5006/1.3278434 10.1016/j.cemconres.2008.03.018 10.1016/j.corsci.2012.11.028 10.1061/(ASCE)BE.1943-5592.0000888 10.1061/(ASCE)0733-9445(2002)128:4(526) 10.1061/(ASCE)1084-0702(2007)12:6(689) 10.1007/BF02479594 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 15, 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 15, 2018 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2017.10.067 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
EndPage | 72 |
ExternalDocumentID | 10_1016_j_engstruct_2017_10_067 S014102961731996X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c343t-d2249f078e939c847924a28aa2a0a72161ef476932a00a0f5d6e9bdc2e2dd4a03 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 07:34:34 EDT 2025 Tue Jul 01 03:01:58 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Fri Feb 23 02:26:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Marine environment Probability Corrosion rate Reinforced concrete bridges Seismic fragility Deterioration model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-d2249f078e939c847924a28aa2a0a72161ef476932a00a0f5d6e9bdc2e2dd4a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1193-7408 |
PQID | 2011260108 |
PQPubID | 2045481 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2011260108 crossref_citationtrail_10_1016_j_engstruct_2017_10_067 crossref_primary_10_1016_j_engstruct_2017_10_067 elsevier_sciencedirect_doi_10_1016_j_engstruct_2017_10_067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Picandet, Khelidj, Bellegou (b0065) 2009; 39 Cornell (b0235) 2002; 4 Thoft-Christensen P. Stochastic modeling of the crack initiation time for reinforced concrete structures. In: Proc of the 2000 structures congress and exposition ASCE.Pennsylvania (USA); 2000. Cao, Cheung, Chan (b0185) 2013; 69 Li (b0085) 2004; 130 Choi, DesRoches, Nielson (b0220) 2004; 26 Wu W, Li L, Shao X. Seismic assessment of medium-span concrete cable-stayed bridges using the component and system fragility functions. J Bridg Eng 2016; 21(6): 04016027, 1–12. Olivia, Mandal (b0285) 2005; 6 Akiyama, Frangopol, Yoshida (b0080) 2010; 32 Guo, Trejo, Yim (b0095) 2014; 141 Yuan, Jiang, Peng (b0180) 2010; 107 Poursaee, Hansson (b0190) 2008; 38 Stewart (b0050) 2004; 26 Liu, Weyers (b0090) 1998; 28 Ministry of Transport of the People’s Republic of China. Guidelines for seismic design of Chinese highway bridges. JTG/T B02–01. Beijing (China); 2008. Zhang, Lu, Li (b0165) 1995; 25 Stewart, Rosowsky (b0170) 1998; 4 Vidal, Castel, François (b0210) 2004; 34 Choi E. Seismic analysis and retrofit of mid-America bridges [Ph.D. Thesis]. School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta (Georgia); 2002. Melchers (b0035) 2004; 60 Bastidas-Arteaga, Bressolette, Chateauneuf, Sánchez-Silva (b0200) 2009; 31 Vidal, Castel, François (b0070) 2007; 37 Pang, Wu, Shen, Yuan (b0250) 2014; 19 Choe, Gardoni, Rosowsky, Haukaas (b0020) 2009; 31 Thoft-Christensen (b0110) 2004 Dong, Frangopol, Saydam (b0195) 2013; 42 Costa, Appleton (b0125) 1999; 32 Alhozaimy, Hussain, Al-Zaid, Al-Negheimish (b0130) 2012; 28 [accessed 12 April 2016]. Martínez, Andrade (b0100) 2009; 31 Yu, Hartt (b0140) 2007; 63 Alonso, Andrade, Rodriguez, Diez (b0205) 1998; 31 DuraCrete. Statistical quantification of the variables in the limit state functions. The European Union - Brite EuRam III; 2000. Choe, Gardoni, Rosowsky, Haukaas (b0015) 2008; 93 Ghosh, Padgett (b0025) 2010; 136 Nielson BG. Analytical Fragility curves for highway bridges in moderate seismic zones [Ph.D. Thesis]. Atlantic (Georgia): School of civil and environmental engineering, Georgia Institute of Technology; 2005. Kassir, Ghosn (b0115) 2002; 32 Li (b0175) 2003; 129 Caltrans. Caltrans seismic design criteria. 2nd ed. California Department of Transportation: Sacramento, CA; 1999. Vu, Stewart (b0075) 2000; 22 PEER (Pacific Earthquake Engineering Research Center). PEER Ground Motion Database; 2013. Chinese Institute of Construction Standardization. Code for durability assessment of concrete structures. CECS 220. Beijing (China); 2007. Val, Melchers (b0155) 1997; 123 Barbato, Gu, Conte (b0255) 2010; 136 Pan, Agrawal, Ghosn (b0275) 2007; 12 Darmawan, Stewart (b0005) 2007; 29 Nielson, DesRoches (b0225) 2007; 36 Val, Stewart (b0010) 2003; 25 Stewart (b0040) 2009; 31 Padgett, Nielson, DesRoches (b0280) 2008; 37 Alipour, Shafei, Shinozuka (b0030) 2011; 16 Gjorv (b0120) 1994; 16 Tuutti (b0105) 1982 Stewart, Al-Harthy (b0055) 2008; 93 Stewart, Rosowsky (b0135) 1998; 20 Darmawan (b0045) 2010; 62 Djerbi, Bonnet, Khelidj, Baroghel-bouny (b0060) 2008; 38 Du, Clark, Chan (b0160) 2005; 57 Thanapol, Akiyama, Frangopol (b0245) 2016; 21 Stewart (10.1016/j.engstruct.2017.10.067_b0135) 1998; 20 Melchers (10.1016/j.engstruct.2017.10.067_b0035) 2004; 60 Yuan (10.1016/j.engstruct.2017.10.067_b0180) 2010; 107 Vidal (10.1016/j.engstruct.2017.10.067_b0070) 2007; 37 Kassir (10.1016/j.engstruct.2017.10.067_b0115) 2002; 32 Cao (10.1016/j.engstruct.2017.10.067_b0185) 2013; 69 Alhozaimy (10.1016/j.engstruct.2017.10.067_b0130) 2012; 28 10.1016/j.engstruct.2017.10.067_b0290 Stewart (10.1016/j.engstruct.2017.10.067_b0040) 2009; 31 Pan (10.1016/j.engstruct.2017.10.067_b0275) 2007; 12 Thanapol (10.1016/j.engstruct.2017.10.067_b0245) 2016; 21 Val (10.1016/j.engstruct.2017.10.067_b0155) 1997; 123 Bastidas-Arteaga (10.1016/j.engstruct.2017.10.067_b0200) 2009; 31 10.1016/j.engstruct.2017.10.067_b0215 Djerbi (10.1016/j.engstruct.2017.10.067_b0060) 2008; 38 Martínez (10.1016/j.engstruct.2017.10.067_b0100) 2009; 31 Alipour (10.1016/j.engstruct.2017.10.067_b0030) 2011; 16 Olivia (10.1016/j.engstruct.2017.10.067_b0285) 2005; 6 Ghosh (10.1016/j.engstruct.2017.10.067_b0025) 2010; 136 Li (10.1016/j.engstruct.2017.10.067_b0085) 2004; 130 Vidal (10.1016/j.engstruct.2017.10.067_b0210) 2004; 34 Thoft-Christensen (10.1016/j.engstruct.2017.10.067_b0110) 2004 10.1016/j.engstruct.2017.10.067_b0260 Costa (10.1016/j.engstruct.2017.10.067_b0125) 1999; 32 Stewart (10.1016/j.engstruct.2017.10.067_b0170) 1998; 4 10.1016/j.engstruct.2017.10.067_b0265 10.1016/j.engstruct.2017.10.067_b0145 Li (10.1016/j.engstruct.2017.10.067_b0175) 2003; 129 Guo (10.1016/j.engstruct.2017.10.067_b0095) 2014; 141 Gjorv (10.1016/j.engstruct.2017.10.067_b0120) 1994; 16 Darmawan (10.1016/j.engstruct.2017.10.067_b0005) 2007; 29 Tuutti (10.1016/j.engstruct.2017.10.067_b0105) 1982 Yu (10.1016/j.engstruct.2017.10.067_b0140) 2007; 63 Choe (10.1016/j.engstruct.2017.10.067_b0020) 2009; 31 Dong (10.1016/j.engstruct.2017.10.067_b0195) 2013; 42 Stewart (10.1016/j.engstruct.2017.10.067_b0055) 2008; 93 10.1016/j.engstruct.2017.10.067_b0270 10.1016/j.engstruct.2017.10.067_b0150 Zhang (10.1016/j.engstruct.2017.10.067_b0165) 1995; 25 10.1016/j.engstruct.2017.10.067_b0230 Choi (10.1016/j.engstruct.2017.10.067_b0220) 2004; 26 Val (10.1016/j.engstruct.2017.10.067_b0010) 2003; 25 Stewart (10.1016/j.engstruct.2017.10.067_b0050) 2004; 26 Picandet (10.1016/j.engstruct.2017.10.067_b0065) 2009; 39 Darmawan (10.1016/j.engstruct.2017.10.067_b0045) 2010; 62 Nielson (10.1016/j.engstruct.2017.10.067_b0225) 2007; 36 Padgett (10.1016/j.engstruct.2017.10.067_b0280) 2008; 37 Alonso (10.1016/j.engstruct.2017.10.067_b0205) 1998; 31 Poursaee (10.1016/j.engstruct.2017.10.067_b0190) 2008; 38 Vu (10.1016/j.engstruct.2017.10.067_b0075) 2000; 22 Liu (10.1016/j.engstruct.2017.10.067_b0090) 1998; 28 Du (10.1016/j.engstruct.2017.10.067_b0160) 2005; 57 Pang (10.1016/j.engstruct.2017.10.067_b0250) 2014; 19 10.1016/j.engstruct.2017.10.067_b0240 Barbato (10.1016/j.engstruct.2017.10.067_b0255) 2010; 136 Cornell (10.1016/j.engstruct.2017.10.067_b0235) 2002; 4 Choe (10.1016/j.engstruct.2017.10.067_b0015) 2008; 93 Akiyama (10.1016/j.engstruct.2017.10.067_b0080) 2010; 32 |
References_xml | – volume: 31 start-page: 545 year: 2009 end-page: 554 ident: b0100 article-title: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures publication-title: Cem Concr Compos – volume: 130 start-page: 1570 year: 2004 end-page: 1577 ident: b0085 article-title: Reliability based service life prediction of corrosion affected concrete structures publication-title: J Struct Eng – year: 1982 ident: b0105 article-title: Corrosion of steel in concrete – volume: 31 start-page: 435 year: 1998 end-page: 441 ident: b0205 article-title: Factors controlling cracking of concrete affected by reinforcement corrosion publication-title: Mater Struct – volume: 21 start-page: 1 year: 2016 end-page: 17 ident: b0245 article-title: Updating the seismic reliability of existing RC structures in a marine environment by incorporating the spatial steel corrosion distribution: Application to bridge piers publication-title: J Bridg Eng – volume: 37 start-page: 1551 year: 2007 end-page: 1561 ident: b0070 article-title: Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment publication-title: Cem Concr Res – reference: Wu W, Li L, Shao X. Seismic assessment of medium-span concrete cable-stayed bridges using the component and system fragility functions. J Bridg Eng 2016; 21(6): 04016027, 1–12. – reference: Nielson BG. Analytical Fragility curves for highway bridges in moderate seismic zones [Ph.D. Thesis]. Atlantic (Georgia): School of civil and environmental engineering, Georgia Institute of Technology; 2005. – reference: Chinese Institute of Construction Standardization. Code for durability assessment of concrete structures. CECS 220. Beijing (China); 2007. – volume: 25 start-page: 343 year: 2003 end-page: 362 ident: b0010 article-title: Life-cycle cost analysis of reinforced concrete structures in marine environments publication-title: Struct Saf – volume: 107 start-page: 562 year: 2010 end-page: 567 ident: b0180 article-title: Corrosion process of steel bar in concrete in full lifetime publication-title: ACI Mater J – volume: 32 start-page: 3768 year: 2010 end-page: 3779 ident: b0080 article-title: Time-dependent reliability analysis of existing RC structures in a marine environment using hazard associated with airborne chlorides publication-title: Eng Struct – volume: 38 start-page: 877 year: 2008 end-page: 883 ident: b0060 article-title: Influence of traversing crack on chloride diffusion into concrete publication-title: Cem Concr Res – volume: 63 start-page: 843 year: 2007 end-page: 849 ident: b0140 article-title: Effects of reinforcement and coarse aggregates on chloride ingress into concrete and time-to-corrosion: Part 1-Spatial chloride distribution and implications publication-title: Corrosion – volume: 123 start-page: 1638 year: 1997 end-page: 1644 ident: b0155 article-title: Reliability of deteriorating RC slab bridges publication-title: J Struct Eng ASCE – reference: Choi E. Seismic analysis and retrofit of mid-America bridges [Ph.D. Thesis]. School of Civil and Environmental Engineering, Georgia Institute of Technology; Atlanta (Georgia); 2002. – volume: 19 start-page: 1 year: 2014 end-page: 11 ident: b0250 article-title: Seismic fragility analysis of cable-stayed bridges considering different sources of uncertainties publication-title: J Bridg Eng – volume: 37 start-page: 711 year: 2008 end-page: 725 ident: b0280 article-title: Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios publication-title: Earthq Eng Struct Dyn – volume: 22 start-page: 313 year: 2000 end-page: 333 ident: b0075 article-title: Structural reliability of concrete bridges including improved chloride-induced corrosion models publication-title: Struct Saf – volume: 39 start-page: 537 year: 2009 end-page: 547 ident: b0065 article-title: Crack effects on gas and water permeability of concretes publication-title: Cem Concr Res – reference: [accessed 12 April 2016]. – volume: 12 start-page: 689 year: 2007 end-page: 699 ident: b0275 article-title: Seismic fragility of continuous steel highway bridges in New York state publication-title: J Bridge Eng – volume: 32 start-page: 139 year: 2002 end-page: 143 ident: b0115 article-title: Chloride-induced corrosion of reinforced concrete bridge decks publication-title: Cem Concr Res – volume: 69 start-page: 97 year: 2013 end-page: 109 ident: b0185 article-title: Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate publication-title: Corros Sci – volume: 31 start-page: 19 year: 2009 end-page: 30 ident: b0040 article-title: Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams publication-title: Struct Saf – volume: 93 start-page: 383 year: 2008 end-page: 393 ident: b0015 article-title: Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion publication-title: Reliab Eng Syst Saf – volume: 20 start-page: 91 year: 1998 end-page: 109 ident: b0135 article-title: Time-dependent reliability of deteriorating reinforced concrete bridge decks publication-title: Struct Saf – volume: 28 start-page: 365 year: 1998 end-page: 379 ident: b0090 article-title: Modeling the dynamic corrosion process in chloride contaminated concrete structures publication-title: Cem Concr Res – volume: 57 start-page: 135 year: 2005 end-page: 147 ident: b0160 article-title: Residual capacity of corroded reinforcing bars publication-title: Mag Concr Res – volume: 4 start-page: 526 year: 2002 end-page: 533 ident: b0235 article-title: Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines publication-title: J Struct Eng – volume: 4 start-page: 146 year: 1998 end-page: 155 ident: b0170 article-title: Structural safety and serviceability of concrete bridges subject to corrosion publication-title: J Infrastruct Syst – volume: 62 start-page: 91 year: 2010 ident: b0045 article-title: Pitting corrosion model for reinforced concrete structures in a chloride environment publication-title: Mag Concr Res – volume: 34 start-page: 165 year: 2004 end-page: 174 ident: b0210 article-title: Analyzing crack width to predict corrosion in reinforced concrete publication-title: Cem Concr Res – volume: 136 start-page: 1497 year: 2010 end-page: 1511 ident: b0025 article-title: Aging considerations in the development of time-dependent seismic fragility curves publication-title: J Struct Eng ASCE – volume: 26 start-page: 187 year: 2004 end-page: 199 ident: b0220 article-title: Seismic fragility of typical bridges in moderate seismic zones publication-title: Eng Struct – volume: 31 start-page: 84 year: 2009 end-page: 96 ident: b0200 article-title: Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes publication-title: Struct Saf – volume: 25 start-page: 41 year: 1995 end-page: 44 ident: b0165 article-title: The mechanical behaviour of corroded bar publication-title: J Ind Build – volume: 141 start-page: 1 year: 2014 end-page: 12 ident: b0095 article-title: New model for estimating the time-variant seismic performance of corroding RC bridge columns publication-title: J Struct Eng ASCE – reference: DuraCrete. Statistical quantification of the variables in the limit state functions. The European Union - Brite EuRam III; 2000. – volume: 129 start-page: 753 year: 2003 end-page: 761 ident: b0175 article-title: Life-cycle modeling of corrosion-affected concrete structures: propagation publication-title: J Struct Eng – volume: 31 start-page: 275 year: 2009 end-page: 283 ident: b0020 article-title: Seismic fragility estimates for reinforced concrete bridges subject to corrosion publication-title: Struct Saf – volume: 29 start-page: 16 year: 2007 end-page: 31 ident: b0005 article-title: Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders publication-title: Struct Saf – volume: 16 start-page: 35 year: 1994 end-page: 39 ident: b0120 article-title: Steel corrosion in concrete structures exposed to Norwegian marine environment publication-title: Concr Int – volume: 38 start-page: 1098 year: 2008 end-page: 1105 ident: b0190 article-title: The influence of longitudinal cracks on the corrosion protection afforded reinforcing steel in high performance concrete publication-title: Cem Concr Res – volume: 42 start-page: 1451 year: 2013 end-page: 1467 ident: b0195 article-title: Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards publication-title: Earthq Eng Struct Dyn – volume: 26 start-page: 453 year: 2004 end-page: 470 ident: b0050 article-title: Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure publication-title: Struct Saf – volume: 28 start-page: 670 year: 2012 end-page: 679 ident: b0130 article-title: Coupled effect of ambient high relative humidity and varying temperature marine environment on corrosion of reinforced concrete publication-title: Constr Build Mater – volume: 136 start-page: 1330 year: 2010 end-page: 1341 ident: b0255 article-title: Probabilistic push-over analysis of structural and soil-structure systems publication-title: J Struct Eng – volume: 32 start-page: 252 year: 1999 end-page: 259 ident: b0125 article-title: Chloride penetration into concrete in marine environment -Part I: Main parameters affecting chloride penetration publication-title: Mater Struct Constr – reference: Thoft-Christensen P. Stochastic modeling of the crack initiation time for reinforced concrete structures. In: Proc of the 2000 structures congress and exposition ASCE.Pennsylvania (USA); 2000. – reference: PEER (Pacific Earthquake Engineering Research Center). PEER Ground Motion Database; 2013. – volume: 60 start-page: 824 year: 2004 end-page: 836 ident: b0035 article-title: Pitting corrosion of mild steel in marine immersion environment-part 1: maximum pit depth publication-title: Corrosion – reference: Ministry of Transport of the People’s Republic of China. Guidelines for seismic design of Chinese highway bridges. JTG/T B02–01. Beijing (China); 2008. – volume: 16 start-page: 597 year: 2011 end-page: 611 ident: b0030 article-title: Performance evaluation of deteriorating highway bridges located in high seismic areas publication-title: J Bridg Eng ASCE – volume: 6 start-page: 1 year: 2005 end-page: 13 ident: b0285 article-title: Curvature ductility of reinforced concrete beam publication-title: J Civ Eng – volume: 36 start-page: 823 year: 2007 end-page: 839 ident: b0225 article-title: Seismic fragility methodology for highway bridges using a component level approach publication-title: Earthq Eng Struct Dyn – reference: Caltrans. Caltrans seismic design criteria. 2nd ed. California Department of Transportation: Sacramento, CA; 1999. – volume: 93 start-page: 373 year: 2008 end-page: 382 ident: b0055 article-title: Pitting corrosion and structural reliability of corroding RC structures : Experimental data and probabilistic analysis publication-title: Reliab Eng Syst Saf – year: 2004 ident: b0110 article-title: Corrosion and cracking of reinforced concrete – volume: 57 start-page: 135 issue: 3 year: 2005 ident: 10.1016/j.engstruct.2017.10.067_b0160 article-title: Residual capacity of corroded reinforcing bars publication-title: Mag Concr Res doi: 10.1680/macr.2005.57.3.135 – volume: 16 start-page: 35 issue: 4 year: 1994 ident: 10.1016/j.engstruct.2017.10.067_b0120 article-title: Steel corrosion in concrete structures exposed to Norwegian marine environment publication-title: Concr Int – volume: 123 start-page: 1638 issue: 12 year: 1997 ident: 10.1016/j.engstruct.2017.10.067_b0155 article-title: Reliability of deteriorating RC slab bridges publication-title: J Struct Eng ASCE doi: 10.1061/(ASCE)0733-9445(1997)123:12(1638) – volume: 28 start-page: 365 issue: 3 year: 1998 ident: 10.1016/j.engstruct.2017.10.067_b0090 article-title: Modeling the dynamic corrosion process in chloride contaminated concrete structures publication-title: Cem Concr Res doi: 10.1016/S0008-8846(98)00259-2 – volume: 26 start-page: 453 issue: 4 year: 2004 ident: 10.1016/j.engstruct.2017.10.067_b0050 article-title: Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure publication-title: Struct Saf doi: 10.1016/j.strusafe.2004.03.002 – ident: 10.1016/j.engstruct.2017.10.067_b0290 – volume: 136 start-page: 1497 issue: 12 year: 2010 ident: 10.1016/j.engstruct.2017.10.067_b0025 article-title: Aging considerations in the development of time-dependent seismic fragility curves publication-title: J Struct Eng ASCE doi: 10.1061/(ASCE)ST.1943-541X.0000260 – volume: 130 start-page: 1570 issue: 10 year: 2004 ident: 10.1016/j.engstruct.2017.10.067_b0085 article-title: Reliability based service life prediction of corrosion affected concrete structures publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2004)130:10(1570) – volume: 31 start-page: 19 issue: 1 year: 2009 ident: 10.1016/j.engstruct.2017.10.067_b0040 article-title: Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams publication-title: Struct Saf doi: 10.1016/j.strusafe.2007.12.001 – volume: 16 start-page: 597 issue: 5 year: 2011 ident: 10.1016/j.engstruct.2017.10.067_b0030 article-title: Performance evaluation of deteriorating highway bridges located in high seismic areas publication-title: J Bridg Eng ASCE doi: 10.1061/(ASCE)BE.1943-5592.0000197 – volume: 62 start-page: 91 issue: 2 year: 2010 ident: 10.1016/j.engstruct.2017.10.067_b0045 article-title: Pitting corrosion model for reinforced concrete structures in a chloride environment publication-title: Mag Concr Res doi: 10.1680/macr.2008.62.2.91 – volume: 93 start-page: 383 issue: 3 year: 2008 ident: 10.1016/j.engstruct.2017.10.067_b0015 article-title: Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2006.12.015 – year: 2004 ident: 10.1016/j.engstruct.2017.10.067_b0110 – ident: 10.1016/j.engstruct.2017.10.067_b0215 doi: 10.1061/40492(2000)157 – volume: 136 start-page: 1330 issue: 11 year: 2010 ident: 10.1016/j.engstruct.2017.10.067_b0255 article-title: Probabilistic push-over analysis of structural and soil-structure systems publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000231 – volume: 25 start-page: 343 issue: 4 year: 2003 ident: 10.1016/j.engstruct.2017.10.067_b0010 article-title: Life-cycle cost analysis of reinforced concrete structures in marine environments publication-title: Struct Saf doi: 10.1016/S0167-4730(03)00014-6 – volume: 37 start-page: 1551 issue: 11 year: 2007 ident: 10.1016/j.engstruct.2017.10.067_b0070 article-title: Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2007.08.004 – volume: 34 start-page: 165 issue: 1 year: 2004 ident: 10.1016/j.engstruct.2017.10.067_b0210 article-title: Analyzing crack width to predict corrosion in reinforced concrete publication-title: Cem Concr Res doi: 10.1016/S0008-8846(03)00246-1 – volume: 42 start-page: 1451 issue: 10 year: 2013 ident: 10.1016/j.engstruct.2017.10.067_b0195 article-title: Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2281 – volume: 21 start-page: 1 issue: 7 year: 2016 ident: 10.1016/j.engstruct.2017.10.067_b0245 article-title: Updating the seismic reliability of existing RC structures in a marine environment by incorporating the spatial steel corrosion distribution: Application to bridge piers publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0000889 – volume: 60 start-page: 824 issue: 9 year: 2004 ident: 10.1016/j.engstruct.2017.10.067_b0035 article-title: Pitting corrosion of mild steel in marine immersion environment-part 1: maximum pit depth publication-title: Corrosion doi: 10.5006/1.3287863 – volume: 26 start-page: 187 issue: 2 year: 2004 ident: 10.1016/j.engstruct.2017.10.067_b0220 article-title: Seismic fragility of typical bridges in moderate seismic zones publication-title: Eng Struct doi: 10.1016/j.engstruct.2003.09.006 – ident: 10.1016/j.engstruct.2017.10.067_b0145 – volume: 31 start-page: 435 issue: 7 year: 1998 ident: 10.1016/j.engstruct.2017.10.067_b0205 article-title: Factors controlling cracking of concrete affected by reinforcement corrosion publication-title: Mater Struct doi: 10.1007/BF02480466 – volume: 36 start-page: 823 issue: 6 year: 2007 ident: 10.1016/j.engstruct.2017.10.067_b0225 article-title: Seismic fragility methodology for highway bridges using a component level approach publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.655 – volume: 93 start-page: 373 year: 2008 ident: 10.1016/j.engstruct.2017.10.067_b0055 article-title: Pitting corrosion and structural reliability of corroding RC structures : Experimental data and probabilistic analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2006.12.013 – ident: 10.1016/j.engstruct.2017.10.067_b0240 – ident: 10.1016/j.engstruct.2017.10.067_b0265 – volume: 38 start-page: 877 issue: 6 year: 2008 ident: 10.1016/j.engstruct.2017.10.067_b0060 article-title: Influence of traversing crack on chloride diffusion into concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2007.10.007 – volume: 20 start-page: 91 issue: 1 year: 1998 ident: 10.1016/j.engstruct.2017.10.067_b0135 article-title: Time-dependent reliability of deteriorating reinforced concrete bridge decks publication-title: Struct Saf doi: 10.1016/S0167-4730(97)00021-0 – volume: 29 start-page: 16 issue: 1 year: 2007 ident: 10.1016/j.engstruct.2017.10.067_b0005 article-title: Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders publication-title: Struct Saf doi: 10.1016/j.strusafe.2005.11.002 – volume: 28 start-page: 670 issue: 1 year: 2012 ident: 10.1016/j.engstruct.2017.10.067_b0130 article-title: Coupled effect of ambient high relative humidity and varying temperature marine environment on corrosion of reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2011.10.008 – volume: 31 start-page: 545 issue: 8 year: 2009 ident: 10.1016/j.engstruct.2017.10.067_b0100 article-title: Examples of reinforcement corrosion monitoring by embedded sensors in concrete structures publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2009.05.007 – volume: 19 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.engstruct.2017.10.067_b0250 article-title: Seismic fragility analysis of cable-stayed bridges considering different sources of uncertainties publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0000565 – volume: 25 start-page: 41 year: 1995 ident: 10.1016/j.engstruct.2017.10.067_b0165 article-title: The mechanical behaviour of corroded bar publication-title: J Ind Build – volume: 31 start-page: 275 issue: 4 year: 2009 ident: 10.1016/j.engstruct.2017.10.067_b0020 article-title: Seismic fragility estimates for reinforced concrete bridges subject to corrosion publication-title: Struct Saf doi: 10.1016/j.strusafe.2008.10.001 – volume: 37 start-page: 711 issue: 5 year: 2008 ident: 10.1016/j.engstruct.2017.10.067_b0280 article-title: Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.782 – volume: 39 start-page: 537 issue: 6 year: 2009 ident: 10.1016/j.engstruct.2017.10.067_b0065 article-title: Crack effects on gas and water permeability of concretes publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2009.03.009 – volume: 31 start-page: 84 issue: 1 year: 2009 ident: 10.1016/j.engstruct.2017.10.067_b0200 article-title: Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes publication-title: Struct Saf doi: 10.1016/j.strusafe.2008.04.001 – volume: 22 start-page: 313 issue: 4 year: 2000 ident: 10.1016/j.engstruct.2017.10.067_b0075 article-title: Structural reliability of concrete bridges including improved chloride-induced corrosion models publication-title: Struct Saf doi: 10.1016/S0167-4730(00)00018-7 – volume: 32 start-page: 139 issue: 1 year: 2002 ident: 10.1016/j.engstruct.2017.10.067_b0115 article-title: Chloride-induced corrosion of reinforced concrete bridge decks publication-title: Cem Concr Res doi: 10.1016/S0008-8846(01)00644-5 – volume: 4 start-page: 146 issue: 4 year: 1998 ident: 10.1016/j.engstruct.2017.10.067_b0170 article-title: Structural safety and serviceability of concrete bridges subject to corrosion publication-title: J Infrastruct Syst doi: 10.1061/(ASCE)1076-0342(1998)4:4(146) – volume: 129 start-page: 753 issue: 6 year: 2003 ident: 10.1016/j.engstruct.2017.10.067_b0175 article-title: Life-cycle modeling of corrosion-affected concrete structures: propagation publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2003)129:6(753) – volume: 6 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.engstruct.2017.10.067_b0285 article-title: Curvature ductility of reinforced concrete beam publication-title: J Civ Eng – volume: 32 start-page: 3768 issue: 11 year: 2010 ident: 10.1016/j.engstruct.2017.10.067_b0080 article-title: Time-dependent reliability analysis of existing RC structures in a marine environment using hazard associated with airborne chlorides publication-title: Eng Struct doi: 10.1016/j.engstruct.2010.08.021 – ident: 10.1016/j.engstruct.2017.10.067_b0260 – volume: 63 start-page: 843 issue: 9 year: 2007 ident: 10.1016/j.engstruct.2017.10.067_b0140 article-title: Effects of reinforcement and coarse aggregates on chloride ingress into concrete and time-to-corrosion: Part 1-Spatial chloride distribution and implications publication-title: Corrosion doi: 10.5006/1.3278434 – volume: 38 start-page: 1098 issue: 8–9 year: 2008 ident: 10.1016/j.engstruct.2017.10.067_b0190 article-title: The influence of longitudinal cracks on the corrosion protection afforded reinforcing steel in high performance concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2008.03.018 – volume: 69 start-page: 97 year: 2013 ident: 10.1016/j.engstruct.2017.10.067_b0185 article-title: Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate publication-title: Corros Sci doi: 10.1016/j.corsci.2012.11.028 – ident: 10.1016/j.engstruct.2017.10.067_b0230 doi: 10.1061/(ASCE)BE.1943-5592.0000888 – ident: 10.1016/j.engstruct.2017.10.067_b0270 – volume: 4 start-page: 526 year: 2002 ident: 10.1016/j.engstruct.2017.10.067_b0235 article-title: Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2002)128:4(526) – volume: 12 start-page: 689 issue: 6 year: 2007 ident: 10.1016/j.engstruct.2017.10.067_b0275 article-title: Seismic fragility of continuous steel highway bridges in New York state publication-title: J Bridge Eng doi: 10.1061/(ASCE)1084-0702(2007)12:6(689) – year: 1982 ident: 10.1016/j.engstruct.2017.10.067_b0105 – volume: 32 start-page: 252 issue: 4 year: 1999 ident: 10.1016/j.engstruct.2017.10.067_b0125 article-title: Chloride penetration into concrete in marine environment -Part I: Main parameters affecting chloride penetration publication-title: Mater Struct Constr doi: 10.1007/BF02479594 – volume: 141 start-page: 1 issue: 6 year: 2014 ident: 10.1016/j.engstruct.2017.10.067_b0095 article-title: New model for estimating the time-variant seismic performance of corroding RC bridge columns publication-title: J Struct Eng ASCE – volume: 107 start-page: 562 issue: 6 year: 2010 ident: 10.1016/j.engstruct.2017.10.067_b0180 article-title: Corrosion process of steel bar in concrete in full lifetime publication-title: ACI Mater J – ident: 10.1016/j.engstruct.2017.10.067_b0150 |
SSID | ssj0002880 |
Score | 2.5384743 |
Snippet | •An improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion is proposed.•Change in after-cracking corrosion rate is... This paper presents an improved reinforced concrete steel bar deterioration model that incorporates pitting corrosion and considers the change in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 61 |
SubjectTerms | Analysis Box girder bridges Chlorides Continuous bridges Corrosion Corrosion effects Corrosion rate Deterioration Deterioration model Fragility Ground motion Highway bridges Life cycle analysis Marine ecology Marine environment Pitting Pitting (corrosion) Probability Reinforced concrete Reinforced concrete bridges Reinforcing steels Seismic analysis Seismic fragility Service life Steel structures Substructures Time dependence |
Title | Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion |
URI | https://dx.doi.org/10.1016/j.engstruct.2017.10.067 https://www.proquest.com/docview/2011260108 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIrykgdWU8dx82BDFVUBwUBB6hY5fpQgmla0DCz8du7yKBQhdWC82I6su8s9ou_uCDlzgTAQDVmWgjdmMkoFSx33mQpDbX2geYT1znf3Qf9J3gw7wwbp1rUwCKusbH9p0wtrXT1pV9xsT7OsPSggiiIGF-wjlHaIFewyRC0___yGeYiomJ6GmxnuXsJ42XxUtmlFjFd4jjCvYuD8nx7ql60uHFBvi2xWkSO9LC-3TRo23yEbP_oJ7pLpwGazcaape1MjBL1-UFU1HaETRw1CX7JC5vmIPnRpWa1FZ2A8ivu9Q-6NFP6bofMJHSusDaT6GWF6xjLI30ETDIWMFa4OEt0jT72rx26fVSMVmPalP2cGPHbsICywsR9r8EyQfikRKSUUV9jHx7NO4nhEoLnirmMCG6dGCyuMkYr7-6SZT3J7QCi3zu-YKE2VdFJylwaep6wOhQwCpSPRIkHNxkRX_cZx7MVrUgPLXpIF_xPkPy4A_1uELw5Oy5Ybq49c1HJKlrQnAcew-vBxLdmk-oBnuO5htzUeHf7n3UdkHSiECzKvc0yasMGeQBQzT08LNT0la5fXt_37L5zy9mc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DMCAeIpHAQ-spo7jpgkbqkAFWgZopW6R40cJomlFy8DCb-cuj_IQEgOjYzuy7pz77qLv7gg5dYEw4A1ZlgAaMxkmgiWO-0w1m9r6MOYh5jt374J2X94MGoMF0qpyYZBWWdr-wqbn1rp8Ui-lWZ-kaf0hpyiKCCDYRyrtYJEsS_h8sY3B2fsnz0OEefs0XM1w-TeSl82GRZ1WJHk1z5DnlXec_xWifhjrHIGuNsh66TrSi-J0m2TBZltk7UtBwW0yebDpdJRq6l7UEFmvb1SVVUfo2FGD3Jc0V3o2pPctWqRr0SlYj_x8rxB84wh_ztDZmI4UJgdS_Yg8PWMZBPBwFQyFkBWODirdIf2ry16rzcqeCkz70p8xA5AdOfALbORHGqAJ4i8lQqWE4goL-XjWSeyPCGOuuGuYwEaJ0cIKY6Ti_i5ZysaZ3SOUW-c3TJgkSjopuUsCz1NWN4UMAqVDsU-CSoyxLguOY9-L57hilj3Fc_nHKH-cAPnvEz7fOClqbvy95bzSU_zt-sSADH9vrlWajcsveIrzHpZb4-HBf959QlbavW4n7lzf3R6SVZhB7iDzGjWyBIvtEbg0s-Q4v7IfOMT39Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+fragility+analysis+of+deteriorating+RC+bridge+substructures+subject+to+marine+chloride-induced+corrosion&rft.jtitle=Engineering+structures&rft.au=Cui%2C+Fengkun&rft.au=Zhang%2C+Haonan&rft.au=Ghosn%2C+Michel&rft.au=Xu%2C+Yue&rft.date=2018-01-15&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=155&rft.spage=61&rft_id=info:doi/10.1016%2Fj.engstruct.2017.10.067&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |