Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method

This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indica...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 18; no. 2; p. 278
Main Authors Lin, Yu-Shyan, Chen, Wei-Hung
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 09.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer.
AbstractList This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer.
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO 2 (H-TiO 2 ) aggregates. The X-ray diffraction (XRD) pattern of H-TiO 2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO 2 is phase-pure. The size of the synthesized H-TiO 2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO 2 into the H-TiO 2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO 2 :P25 TiO 2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO 2 plus a single scattering layer. An open circuit voltage ( V oc ) of 0.77 V, short-circuit current ( J sc ) of 15.26 mA/cm 2 , fill factor (FF) of 0.71, conversion efficiency ( η ) of 8.33%, and charge-collection efficiency ( η cc ) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO 2 in various proportions to form a scattering layer.
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors' knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer.This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors' knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer.
Author Chen, Wei-Hung
Lin, Yu-Shyan
AuthorAffiliation 1 Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan
2 Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 974301, Taiwan
AuthorAffiliation_xml – name: 1 Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan
– name: 2 Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 974301, Taiwan
Author_xml – sequence: 1
  givenname: Yu-Shyan
  surname: Lin
  fullname: Lin, Yu-Shyan
– sequence: 2
  givenname: Wei-Hung
  surname: Chen
  fullname: Chen, Wei-Hung
BookMark eNpdUclqHTEQFMEmXuJLvkCQSwiMrW3mSacQXrwEnrHhOdcILT1-MjMjR9IkjL_e44U4dl-6oYqq7q49tDXEARD6SMkh54oc9YZKwghbyHdolyrVVFQJsfXfvIMOcr4hc3FOJVPv0Q5XslYLoXbRr-8TVGsYcijhDjxex84kvISuy_hvKBt8Hn1ow4xchQuG186UAikM13hlJkj4MkU_uhm2Ez6bfIplA6k3HT6Hson-A9puTZfh4Lnvo58nx1fLs2p1cfpj-W1VOS54qTy1xNTcN4qCVdIzK21tW2uJMM5Kw4RTUihjgdSyNbZWDXOCM0UZXUDT8H309Un3drQ9eAdDSabTtyn0Jk06mqBfI0PY6Ov4R1O6aGZXOSt8flZI8fcIueg-ZDf_wQwQx6w5rZUklLEHs09vqDdxTMN83yOrFrShbGZ9eWK5FHNO0P7bhhL9EJ1-iY7fA8c5i-Q
Cites_doi 10.1021/jp3079887
10.1039/C5TA02363G
10.1002/adfm.202312528
10.1007/s13538-023-01375-w
10.1016/0022-0248(92)90076-U
10.1016/j.materresbull.2019.04.034
10.1016/j.jiec.2011.11.029
10.1007/s10008-023-05708-2
10.1016/j.vacuum.2011.10.026
10.1002/crat.201000711
10.1016/j.solmat.2005.07.002
10.1166/jnn.2010.2277
10.1016/j.ccr.2004.03.006
10.1016/j.cap.2011.10.011
10.1007/s11664-020-07965-7
10.1007/s40195-016-0460-8
10.1016/j.matlet.2018.11.049
10.1109/TED.2017.2781141
10.1142/S0217984921410050
10.1149/2.0181704jss
10.1016/j.jpowsour.2014.09.007
10.1016/j.rser.2016.09.097
10.1016/j.jallcom.2016.10.032
10.3389/fenrg.2021.682709
10.1109/TSM.2022.3159826
10.1007/s10854-019-01768-1
10.1021/nl062000o
10.1016/j.jpowsour.2018.12.065
10.1007/s11664-016-4719-7
10.1016/j.solmat.2016.04.004
10.1016/j.jelechem.2020.114516
10.3390/nano14221782
10.1016/j.jpowsour.2016.04.055
10.1016/j.matlet.2017.03.006
10.1016/j.solener.2017.12.024
10.1002/solr.202300889
10.1016/j.matpr.2018.11.073
10.1016/j.jcis.2011.12.006
10.1002/9781119557401
10.1021/acs.nanolett.7b00719
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.3390/ma18020278
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC11766918
10_3390_ma18020278
GeographicLocations United States--US
Japan
Taiwan
GeographicLocations_xml – name: Taiwan
– name: United States--US
– name: Japan
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC 112-2221-E-259-014; NSTC 113-2221-E-259-006
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c343t-d1b0a53d691eb98d2b8b5bfbb04acb8a24c9849abe058fab5962c43291217e663
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:40:38 EDT 2025
Fri Jul 11 01:05:59 EDT 2025
Fri Jul 25 11:50:31 EDT 2025
Tue Jul 01 00:07:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-d1b0a53d691eb98d2b8b5bfbb04acb8a24c9849abe058fab5962c43291217e663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3159541612?pq-origsite=%requestingapplication%
PMID 39859749
PQID 3159541612
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11766918
proquest_miscellaneous_3159801226
proquest_journals_3159541612
crossref_primary_10_3390_ma18020278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250109
PublicationDateYYYYMMDD 2025-01-09
PublicationDate_xml – month: 1
  year: 2025
  text: 20250109
  day: 9
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gong (ref_1) 2017; 68
Sekaran (ref_2) 2024; 54
Lovergine (ref_4) 1992; 118
Shital (ref_13) 2018; 161
Liu (ref_31) 2016; 45
Chen (ref_20) 2019; 413
Cui (ref_22) 2017; 694
Choi (ref_34) 2012; 12
Chang (ref_15) 2016; 319
ref_17
Prete (ref_3) 2017; 17
ref_16
Lee (ref_35) 2012; 116
Ramakrishnan (ref_21) 2019; 236
Hore (ref_11) 2006; 90
Benetti (ref_25) 2017; 6
Hegazy (ref_38) 2016; 153
Lin (ref_9) 2018; 65
Zhang (ref_19) 2019; 30
Zhu (ref_39) 2007; 7
Miccoli (ref_6) 2011; 46
Vu (ref_36) 2015; 3
Chou (ref_18) 2022; 35
Nguyen (ref_14) 2020; 49
Chen (ref_24) 2017; 196
Park (ref_12) 2012; 18
Pang (ref_30) 2019; 117
Hu (ref_26) 2016; 29
Ju (ref_33) 2010; 10
Xu (ref_37) 2012; 86
Ding (ref_40) 2014; 272
Nemala (ref_23) 2018; 5
ref_29
ref_27
ref_8
Zhou (ref_32) 2012; 374
ref_5
Wang (ref_10) 2004; 248
Xu (ref_28) 2024; 28
ref_7
References_xml – volume: 116
  start-page: 21285
  year: 2012
  ident: ref_35
  article-title: Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, Light harvesting, and charge-carrier dynamics in dye-sensitized solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3079887
– volume: 3
  start-page: 11130
  year: 2015
  ident: ref_36
  article-title: Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02363G
– ident: ref_5
  doi: 10.1002/adfm.202312528
– volume: 54
  start-page: 28
  year: 2024
  ident: ref_2
  article-title: An extensive analysis of dye-sensitized solar cell (DSSC)
  publication-title: Braz. J. Phys.
  doi: 10.1007/s13538-023-01375-w
– volume: 118
  start-page: 304
  year: 1992
  ident: ref_4
  article-title: Photoluminescence of CVD grown CdS epilayers on CdTe substrates
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(92)90076-U
– volume: 117
  start-page: 78
  year: 2019
  ident: ref_30
  article-title: Triiodide reduction activity of hydrangea molybdenum sulfide/reduced graphene oxide composite for dye-sensitized solar cells
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2019.04.034
– volume: 18
  start-page: 449
  year: 2012
  ident: ref_12
  article-title: Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2011.11.029
– volume: 28
  start-page: 589
  year: 2024
  ident: ref_28
  article-title: Electrophoretic deposition of double-layer ZnO porous films for DSSC photoanode
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-023-05708-2
– volume: 86
  start-page: 1161
  year: 2012
  ident: ref_37
  article-title: Large efficiency improvement in nanoporous dye-sensitized solar cells via vacuum assistant dye adsorption
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2011.10.026
– volume: 46
  start-page: 795
  year: 2011
  ident: ref_6
  article-title: Synthesis of vertically-aligned GaAs nanowires on GaAs/(111)Si hetero-substrates by metalorganic vapour phase epitaxy
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201000711
– volume: 90
  start-page: 1176
  year: 2006
  ident: ref_11
  article-title: Influence of scattering layers on efficiency of dye-sensitized solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.07.002
– volume: 10
  start-page: 3623
  year: 2010
  ident: ref_33
  article-title: Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2277
– volume: 248
  start-page: 1381
  year: 2004
  ident: ref_10
  article-title: Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2004.03.006
– volume: 12
  start-page: 737
  year: 2012
  ident: ref_34
  article-title: The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2011.10.011
– volume: 49
  start-page: 2578
  year: 2020
  ident: ref_14
  article-title: Enhancing DSSC photoanode performance by using Ni-doped TiO2 to fabricate scattering layers
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-07965-7
– volume: 29
  start-page: 840
  year: 2016
  ident: ref_26
  article-title: A composite photoanode based on P25/TiO2 nanotube arrays/flower-like TiO2 for high-efficiency dye-sensitized solar cells
  publication-title: Acta Metall. Sin. (Engl. Lett.)
  doi: 10.1007/s40195-016-0460-8
– volume: 236
  start-page: 747
  year: 2019
  ident: ref_21
  article-title: Microwave-assisted solvothermal synthesis of worms-like TiO2 nanostructures in submicron regime as light scattering layers for dye-sensitized solar cells
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.049
– volume: 65
  start-page: 783
  year: 2018
  ident: ref_9
  article-title: Improved AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with TiO2 gate dielectric annealed in nitrogen
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2781141
– ident: ref_29
  doi: 10.1142/S0217984921410050
– volume: 6
  start-page: N32
  year: 2017
  ident: ref_25
  article-title: Nanofiber-structured TiO2 nanocrystals as a scattering layer in dye-sensitized solar cells
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0181704jss
– volume: 272
  start-page: 1046
  year: 2014
  ident: ref_40
  article-title: TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.007
– volume: 68
  start-page: 234
  year: 2017
  ident: ref_1
  article-title: Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.09.097
– volume: 694
  start-page: 568
  year: 2017
  ident: ref_22
  article-title: Preparation of anatase TiO2 microspheres with high exposure (001) facets as the light-scattering layer for improving performance of dye-sensitized solar cells
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.032
– ident: ref_17
  doi: 10.3389/fenrg.2021.682709
– volume: 35
  start-page: 363
  year: 2022
  ident: ref_18
  article-title: Optimization and application of TiO2 hollow microsphere modified scattering layer for the photovoltaic conversion efficiency of dye-sensitized solar cell
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2022.3159826
– volume: 30
  start-page: 14036
  year: 2019
  ident: ref_19
  article-title: Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-019-01768-1
– volume: 7
  start-page: 69
  year: 2007
  ident: ref_39
  article-title: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl062000o
– volume: 413
  start-page: 384
  year: 2019
  ident: ref_20
  article-title: Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.065
– volume: 45
  start-page: 6192
  year: 2016
  ident: ref_31
  article-title: Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-016-4719-7
– volume: 153
  start-page: 108
  year: 2016
  ident: ref_38
  article-title: TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC)
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.04.004
– ident: ref_27
  doi: 10.1016/j.jelechem.2020.114516
– ident: ref_16
  doi: 10.3390/nano14221782
– volume: 319
  start-page: 131
  year: 2016
  ident: ref_15
  article-title: Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.055
– volume: 196
  start-page: 50
  year: 2017
  ident: ref_24
  article-title: Single-crystalline anatase TiO2 nanoleaf: Simple topochemical synthesis and light-scattering effect for dye-sensitized solar cells
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.03.006
– volume: 161
  start-page: 64
  year: 2018
  ident: ref_13
  article-title: Monte Carlo simulation for optimization of a simple and efficient bifacial DSSC with a scattering layer in the middle
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.12.024
– ident: ref_7
  doi: 10.1002/solr.202300889
– volume: 5
  start-page: 23351
  year: 2018
  ident: ref_23
  article-title: Titania nanobelts as a scattering layer with Cu2ZnSnS4 as a counter electrode for DSSC with improved efficiency
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.11.073
– volume: 374
  start-page: 9
  year: 2012
  ident: ref_32
  article-title: Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.12.006
– ident: ref_8
  doi: 10.1002/9781119557401
– volume: 17
  start-page: 4075
  year: 2017
  ident: ref_3
  article-title: CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00719
SSID ssj0000331829
Score 2.403284
Snippet This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2...
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO 2...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 278
SubjectTerms Alternative energy sources
Anatase
Cellulose
Charge efficiency
Chemical industry
Diffraction patterns
Dye-sensitized solar cells
Dyes
Efficiency
Electrodes
Electrolytes
Ethanol
Glass substrates
Global warming
Heat resistance
Manufacturing
Mixing ratio
Open circuit voltage
Optimization
Photoanodes
Polyethylene glycol
Renewable resources
Scattering
Screen printing
Short circuit currents
Sintering
Solar energy
Synthesis
Titanium dioxide
Viscosity
Title Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method
URI https://www.proquest.com/docview/3159541612
https://www.proquest.com/docview/3159801226
https://pubmed.ncbi.nlm.nih.gov/PMC11766918
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB3R9AIHxKcIlMoIrqvu2t7EPiEoTSNESkVaKSdWHn-okdpNadJD-PXMbDZJc-G2K-_K0ozteTO23wP4pDBpGU2e9XPnMx2tzdDTk88xuhRSso1o3-isN7zU3yflpC24zdtjles1sVmow8xzjfxIUdwtGY3Lz7d_MlaN4t3VVkJjD_ZpCTamA_tfT87Of22qLLmiMSvtipdUUX5_dOOY84z323Yj0RZe7h6OfBBtBs_gaQsTxZeVX5_Do1i_gCcPyANfwu9vy5iN-fz5Yvo3BjHmJFUcx-vrueDqqhjNwjQRwhQX059SjH3DpEm_ih-OcLY4b7heqRmXYrgMd81VrBvqdNSISr-Cy8HJxfEwa9USMq-0WmShwNyVKvRsEdGaINFgiQkx186jcVJ7a7R1GPPSJIcsu-O1kragrCQS8HgNnXpWxzcgvNFFyPuYWMUoBpqymCIBkb7yPYJooQsf15arblekGBUlE2zfamvfLhysjVq1E2Nebd3YhQ-bZhrSvE_h6ji7X33DgVP2umB2nLHpjUmxd1vq6VVDjl0w46UtzNv_9_4OHktW8uViij2AzuLuPr4neLHAQ9gzg9PDdiTR2-mk-AeUOtX8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VcgAOqHyJQAtGwHFVr-1N1gdUoZaQ0qQgJZV6YutPEandlCYVCj-qv5GZ3WzSXLj1ttLsrqXx2PM8tt8D-CBtVCLkPOlw4xIVtE6swyfHbTDRx6gr0b7Bcbt3or6dZqcbcNPchaFjlc2cWE3UfuKoRr4rMe9mhMbF3uXvhFSjaHe1kdCow-IozP_gkm366fAA-_ejEN0vo_1eslAVSJxUcpb41HKTSd_WabA698LmNrPRWq6Ms7kRyulcaWMDz_JoLMnTOCWFThG9B0zQ-N97cF9JzOR0M737dVnT4RJHiNA1Cyra-e6FIYY12t1bz3srMLt-FPNWbutuweMFKGWf6yh6AhuhfAqPblEVPoOfB_OQDOm0-2z8N3g2pCUx2w_n51NGtVw2mPhxRDzLRuPvgg1dxduJn7K-QVTPflTMsmi2c9ab-6vq4tcFNjqoJKyfw8mdePEFbJaTMrwE5nKVet6xkTSTgscJwsaAsKcjXRsBoW_B-8ZzxWVNwVHg0oX8W6z824LtxqnFYhhOi1XQtODd0owDiHZFTBkm1_U7lKZFuwX5WmcsWyMK7nVLOf5VUXGnxK-p0_zV_1t_Cw96o0G_6B8eH72Gh4I0hKmMo7dhc3Z1HXYQ2MzsmyqaGJzddfj-A_ylECg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFaIFFwNGKvWsn3gOqoGmUPhIi0ko94e5TRGqdtklVhZ_Gr2PGj6S59NabpbW90uzszje7s98H8EVoH3OXhkEnVCaInZSBNvhkQu2Ut97LQrRvMGz3T-KD0-R0A_7Vd2GorLJeE4uF2k4N7ZG3BMbdhNA4b_mqLGLU7e1cXgWkIEUnrbWcRukih25xi-nb7Nt-F8f6K-e9vePdflApDARGxGIe2EiHKhG2LSOnZWq5TnWivdZhrIxOFY-NTGOptAuT1CtNUjUmFlxGiOQdBmv87yPY7FBW1IDNH3vD0a_lDk8ocL5wWXKiCiHD1oUivjU661uPgitou16YeSfS9Z7Dswqisu-lT72ADZe_hKd3iAtfwe_uwgVjqn2fT_46y8aUILNdd34-Y7SzywZTO_GIbtnx5CdnY1OweOKn7EghxmejgmcWm_WC9Rf2urgGdoGdDgpB69dw8iB2fAONfJq7t8BMGkc27GhPCkrO4nKhvUMQ1BGmjfDQNuFzbbnssiTkyDCRIftmK_s2Ybs2alZNylm2cqEmfFo243SiMxKVu-lN-Q4Fbd5uQro2GMveiJB7vSWf_CmIuSNi25RR-u7-3j_CY3Td7Gh_eLgFTzgJCtOejtyGxvz6xr1HlDPXHyp3YnD20B78H8x-Fbo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dye-Sensitized+Solar+Cells+with+Modified+TiO2+Scattering+Layer+Produced+by+Hydrothermal+Method&rft.jtitle=Materials&rft.au=Lin%2C+Yu-Shyan&rft.au=Chen%2C+Wei-Hung&rft.date=2025-01-09&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=18&rft.issue=2&rft_id=info:doi/10.3390%2Fma18020278&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon