Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method
This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indica...
Saved in:
Published in | Materials Vol. 18; no. 2; p. 278 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer. |
---|---|
AbstractList | This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer. This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO 2 (H-TiO 2 ) aggregates. The X-ray diffraction (XRD) pattern of H-TiO 2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO 2 is phase-pure. The size of the synthesized H-TiO 2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO 2 into the H-TiO 2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO 2 :P25 TiO 2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO 2 plus a single scattering layer. An open circuit voltage ( V oc ) of 0.77 V, short-circuit current ( J sc ) of 15.26 mA/cm 2 , fill factor (FF) of 0.71, conversion efficiency ( η ) of 8.33%, and charge-collection efficiency ( η cc ) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors’ knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO 2 in various proportions to form a scattering layer. This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors' knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer.This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2 (H-TiO2) aggregates. The X-ray diffraction (XRD) pattern of H-TiO2 reveals only an anatase phase. No peaks of any other phases are detected, indicating that the hydrangea-shaped TiO2 is phase-pure. The size of the synthesized H-TiO2 is approximately 300 nm to 2 μm, and its particle size is suitable for use in the scattering layer of a DSSC. Mixing the P25 TiO2 into the H-TiO2 aggregate with the best mixing ratio can significantly improve the conversion efficiency of DSSCs. When the ratio of H-TiO2:P25 TiO2 = 3:7, the scattering layer has the optimal parameters, as determined experimentally. The optimal structure is a double layer that is formed of five layers of P25 TiO2 plus a single scattering layer. An open circuit voltage (Voc) of 0.77 V, short-circuit current (Jsc) of 15.26 mA/cm2, fill factor (FF) of 0.71, conversion efficiency (η) of 8.33%, and charge-collection efficiency (ηcc) of 0.96 are obtained from the optimally designed photoelectrode. To the best of the authors' knowledge, this work is the first in which large particles of hydrangea are mixed with small particles of P25 TiO2 in various proportions to form a scattering layer. |
Author | Chen, Wei-Hung Lin, Yu-Shyan |
AuthorAffiliation | 1 Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan 2 Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 974301, Taiwan |
AuthorAffiliation_xml | – name: 1 Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan – name: 2 Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 974301, Taiwan |
Author_xml | – sequence: 1 givenname: Yu-Shyan surname: Lin fullname: Lin, Yu-Shyan – sequence: 2 givenname: Wei-Hung surname: Chen fullname: Chen, Wei-Hung |
BookMark | eNpdUclqHTEQFMEmXuJLvkCQSwiMrW3mSacQXrwEnrHhOdcILT1-MjMjR9IkjL_e44U4dl-6oYqq7q49tDXEARD6SMkh54oc9YZKwghbyHdolyrVVFQJsfXfvIMOcr4hc3FOJVPv0Q5XslYLoXbRr-8TVGsYcijhDjxex84kvISuy_hvKBt8Hn1ow4xchQuG186UAikM13hlJkj4MkU_uhm2Ez6bfIplA6k3HT6Hson-A9puTZfh4Lnvo58nx1fLs2p1cfpj-W1VOS54qTy1xNTcN4qCVdIzK21tW2uJMM5Kw4RTUihjgdSyNbZWDXOCM0UZXUDT8H309Un3drQ9eAdDSabTtyn0Jk06mqBfI0PY6Ov4R1O6aGZXOSt8flZI8fcIueg-ZDf_wQwQx6w5rZUklLEHs09vqDdxTMN83yOrFrShbGZ9eWK5FHNO0P7bhhL9EJ1-iY7fA8c5i-Q |
Cites_doi | 10.1021/jp3079887 10.1039/C5TA02363G 10.1002/adfm.202312528 10.1007/s13538-023-01375-w 10.1016/0022-0248(92)90076-U 10.1016/j.materresbull.2019.04.034 10.1016/j.jiec.2011.11.029 10.1007/s10008-023-05708-2 10.1016/j.vacuum.2011.10.026 10.1002/crat.201000711 10.1016/j.solmat.2005.07.002 10.1166/jnn.2010.2277 10.1016/j.ccr.2004.03.006 10.1016/j.cap.2011.10.011 10.1007/s11664-020-07965-7 10.1007/s40195-016-0460-8 10.1016/j.matlet.2018.11.049 10.1109/TED.2017.2781141 10.1142/S0217984921410050 10.1149/2.0181704jss 10.1016/j.jpowsour.2014.09.007 10.1016/j.rser.2016.09.097 10.1016/j.jallcom.2016.10.032 10.3389/fenrg.2021.682709 10.1109/TSM.2022.3159826 10.1007/s10854-019-01768-1 10.1021/nl062000o 10.1016/j.jpowsour.2018.12.065 10.1007/s11664-016-4719-7 10.1016/j.solmat.2016.04.004 10.1016/j.jelechem.2020.114516 10.3390/nano14221782 10.1016/j.jpowsour.2016.04.055 10.1016/j.matlet.2017.03.006 10.1016/j.solener.2017.12.024 10.1002/solr.202300889 10.1016/j.matpr.2018.11.073 10.1016/j.jcis.2011.12.006 10.1002/9781119557401 10.1021/acs.nanolett.7b00719 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.3390/ma18020278 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC11766918 10_3390_ma18020278 |
GeographicLocations | United States--US Japan Taiwan |
GeographicLocations_xml | – name: Taiwan – name: United States--US – name: Japan |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC 112-2221-E-259-014; NSTC 113-2221-E-259-006 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c343t-d1b0a53d691eb98d2b8b5bfbb04acb8a24c9849abe058fab5962c43291217e663 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:40:38 EDT 2025 Fri Jul 11 01:05:59 EDT 2025 Fri Jul 25 11:50:31 EDT 2025 Tue Jul 01 00:07:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-d1b0a53d691eb98d2b8b5bfbb04acb8a24c9849abe058fab5962c43291217e663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3159541612?pq-origsite=%requestingapplication% |
PMID | 39859749 |
PQID | 3159541612 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11766918 proquest_miscellaneous_3159801226 proquest_journals_3159541612 crossref_primary_10_3390_ma18020278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250109 |
PublicationDateYYYYMMDD | 2025-01-09 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250109 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Materials |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Gong (ref_1) 2017; 68 Sekaran (ref_2) 2024; 54 Lovergine (ref_4) 1992; 118 Shital (ref_13) 2018; 161 Liu (ref_31) 2016; 45 Chen (ref_20) 2019; 413 Cui (ref_22) 2017; 694 Choi (ref_34) 2012; 12 Chang (ref_15) 2016; 319 ref_17 Prete (ref_3) 2017; 17 ref_16 Lee (ref_35) 2012; 116 Ramakrishnan (ref_21) 2019; 236 Hore (ref_11) 2006; 90 Benetti (ref_25) 2017; 6 Hegazy (ref_38) 2016; 153 Lin (ref_9) 2018; 65 Zhang (ref_19) 2019; 30 Zhu (ref_39) 2007; 7 Miccoli (ref_6) 2011; 46 Vu (ref_36) 2015; 3 Chou (ref_18) 2022; 35 Nguyen (ref_14) 2020; 49 Chen (ref_24) 2017; 196 Park (ref_12) 2012; 18 Pang (ref_30) 2019; 117 Hu (ref_26) 2016; 29 Ju (ref_33) 2010; 10 Xu (ref_37) 2012; 86 Ding (ref_40) 2014; 272 Nemala (ref_23) 2018; 5 ref_29 ref_27 ref_8 Zhou (ref_32) 2012; 374 ref_5 Wang (ref_10) 2004; 248 Xu (ref_28) 2024; 28 ref_7 |
References_xml | – volume: 116 start-page: 21285 year: 2012 ident: ref_35 article-title: Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, Light harvesting, and charge-carrier dynamics in dye-sensitized solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp3079887 – volume: 3 start-page: 11130 year: 2015 ident: ref_36 article-title: Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02363G – ident: ref_5 doi: 10.1002/adfm.202312528 – volume: 54 start-page: 28 year: 2024 ident: ref_2 article-title: An extensive analysis of dye-sensitized solar cell (DSSC) publication-title: Braz. J. Phys. doi: 10.1007/s13538-023-01375-w – volume: 118 start-page: 304 year: 1992 ident: ref_4 article-title: Photoluminescence of CVD grown CdS epilayers on CdTe substrates publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(92)90076-U – volume: 117 start-page: 78 year: 2019 ident: ref_30 article-title: Triiodide reduction activity of hydrangea molybdenum sulfide/reduced graphene oxide composite for dye-sensitized solar cells publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2019.04.034 – volume: 18 start-page: 449 year: 2012 ident: ref_12 article-title: Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2011.11.029 – volume: 28 start-page: 589 year: 2024 ident: ref_28 article-title: Electrophoretic deposition of double-layer ZnO porous films for DSSC photoanode publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-023-05708-2 – volume: 86 start-page: 1161 year: 2012 ident: ref_37 article-title: Large efficiency improvement in nanoporous dye-sensitized solar cells via vacuum assistant dye adsorption publication-title: Vacuum doi: 10.1016/j.vacuum.2011.10.026 – volume: 46 start-page: 795 year: 2011 ident: ref_6 article-title: Synthesis of vertically-aligned GaAs nanowires on GaAs/(111)Si hetero-substrates by metalorganic vapour phase epitaxy publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201000711 – volume: 90 start-page: 1176 year: 2006 ident: ref_11 article-title: Influence of scattering layers on efficiency of dye-sensitized solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2005.07.002 – volume: 10 start-page: 3623 year: 2010 ident: ref_33 article-title: Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2277 – volume: 248 start-page: 1381 year: 2004 ident: ref_10 article-title: Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2004.03.006 – volume: 12 start-page: 737 year: 2012 ident: ref_34 article-title: The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2011.10.011 – volume: 49 start-page: 2578 year: 2020 ident: ref_14 article-title: Enhancing DSSC photoanode performance by using Ni-doped TiO2 to fabricate scattering layers publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-07965-7 – volume: 29 start-page: 840 year: 2016 ident: ref_26 article-title: A composite photoanode based on P25/TiO2 nanotube arrays/flower-like TiO2 for high-efficiency dye-sensitized solar cells publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1007/s40195-016-0460-8 – volume: 236 start-page: 747 year: 2019 ident: ref_21 article-title: Microwave-assisted solvothermal synthesis of worms-like TiO2 nanostructures in submicron regime as light scattering layers for dye-sensitized solar cells publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.11.049 – volume: 65 start-page: 783 year: 2018 ident: ref_9 article-title: Improved AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with TiO2 gate dielectric annealed in nitrogen publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2781141 – ident: ref_29 doi: 10.1142/S0217984921410050 – volume: 6 start-page: N32 year: 2017 ident: ref_25 article-title: Nanofiber-structured TiO2 nanocrystals as a scattering layer in dye-sensitized solar cells publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0181704jss – volume: 272 start-page: 1046 year: 2014 ident: ref_40 article-title: TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.007 – volume: 68 start-page: 234 year: 2017 ident: ref_1 article-title: Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.097 – volume: 694 start-page: 568 year: 2017 ident: ref_22 article-title: Preparation of anatase TiO2 microspheres with high exposure (001) facets as the light-scattering layer for improving performance of dye-sensitized solar cells publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.032 – ident: ref_17 doi: 10.3389/fenrg.2021.682709 – volume: 35 start-page: 363 year: 2022 ident: ref_18 article-title: Optimization and application of TiO2 hollow microsphere modified scattering layer for the photovoltaic conversion efficiency of dye-sensitized solar cell publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2022.3159826 – volume: 30 start-page: 14036 year: 2019 ident: ref_19 article-title: Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01768-1 – volume: 7 start-page: 69 year: 2007 ident: ref_39 article-title: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays publication-title: Nano Lett. doi: 10.1021/nl062000o – volume: 413 start-page: 384 year: 2019 ident: ref_20 article-title: Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.12.065 – volume: 45 start-page: 6192 year: 2016 ident: ref_31 article-title: Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells publication-title: J. Electron. Mater. doi: 10.1007/s11664-016-4719-7 – volume: 153 start-page: 108 year: 2016 ident: ref_38 article-title: TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC) publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.04.004 – ident: ref_27 doi: 10.1016/j.jelechem.2020.114516 – ident: ref_16 doi: 10.3390/nano14221782 – volume: 319 start-page: 131 year: 2016 ident: ref_15 article-title: Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.055 – volume: 196 start-page: 50 year: 2017 ident: ref_24 article-title: Single-crystalline anatase TiO2 nanoleaf: Simple topochemical synthesis and light-scattering effect for dye-sensitized solar cells publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.03.006 – volume: 161 start-page: 64 year: 2018 ident: ref_13 article-title: Monte Carlo simulation for optimization of a simple and efficient bifacial DSSC with a scattering layer in the middle publication-title: Sol. Energy doi: 10.1016/j.solener.2017.12.024 – ident: ref_7 doi: 10.1002/solr.202300889 – volume: 5 start-page: 23351 year: 2018 ident: ref_23 article-title: Titania nanobelts as a scattering layer with Cu2ZnSnS4 as a counter electrode for DSSC with improved efficiency publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.11.073 – volume: 374 start-page: 9 year: 2012 ident: ref_32 article-title: Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.12.006 – ident: ref_8 doi: 10.1002/9781119557401 – volume: 17 start-page: 4075 year: 2017 ident: ref_3 article-title: CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00719 |
SSID | ssj0000331829 |
Score | 2.403284 |
Snippet | This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO2... This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO 2... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 278 |
SubjectTerms | Alternative energy sources Anatase Cellulose Charge efficiency Chemical industry Diffraction patterns Dye-sensitized solar cells Dyes Efficiency Electrodes Electrolytes Ethanol Glass substrates Global warming Heat resistance Manufacturing Mixing ratio Open circuit voltage Optimization Photoanodes Polyethylene glycol Renewable resources Scattering Screen printing Short circuit currents Sintering Solar energy Synthesis Titanium dioxide Viscosity |
Title | Dye-Sensitized Solar Cells with Modified TiO2 Scattering Layer Produced by Hydrothermal Method |
URI | https://www.proquest.com/docview/3159541612 https://www.proquest.com/docview/3159801226 https://pubmed.ncbi.nlm.nih.gov/PMC11766918 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB3R9AIHxKcIlMoIrqvu2t7EPiEoTSNESkVaKSdWHn-okdpNadJD-PXMbDZJc-G2K-_K0ozteTO23wP4pDBpGU2e9XPnMx2tzdDTk88xuhRSso1o3-isN7zU3yflpC24zdtjles1sVmow8xzjfxIUdwtGY3Lz7d_MlaN4t3VVkJjD_ZpCTamA_tfT87Of22qLLmiMSvtipdUUX5_dOOY84z323Yj0RZe7h6OfBBtBs_gaQsTxZeVX5_Do1i_gCcPyANfwu9vy5iN-fz5Yvo3BjHmJFUcx-vrueDqqhjNwjQRwhQX059SjH3DpEm_ih-OcLY4b7heqRmXYrgMd81VrBvqdNSISr-Cy8HJxfEwa9USMq-0WmShwNyVKvRsEdGaINFgiQkx186jcVJ7a7R1GPPSJIcsu-O1kragrCQS8HgNnXpWxzcgvNFFyPuYWMUoBpqymCIBkb7yPYJooQsf15arblekGBUlE2zfamvfLhysjVq1E2Nebd3YhQ-bZhrSvE_h6ji7X33DgVP2umB2nLHpjUmxd1vq6VVDjl0w46UtzNv_9_4OHktW8uViij2AzuLuPr4neLHAQ9gzg9PDdiTR2-mk-AeUOtX8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VcgAOqHyJQAtGwHFVr-1N1gdUoZaQ0qQgJZV6YutPEandlCYVCj-qv5GZ3WzSXLj1ttLsrqXx2PM8tt8D-CBtVCLkPOlw4xIVtE6swyfHbTDRx6gr0b7Bcbt3or6dZqcbcNPchaFjlc2cWE3UfuKoRr4rMe9mhMbF3uXvhFSjaHe1kdCow-IozP_gkm366fAA-_ejEN0vo_1eslAVSJxUcpb41HKTSd_WabA698LmNrPRWq6Ms7kRyulcaWMDz_JoLMnTOCWFThG9B0zQ-N97cF9JzOR0M737dVnT4RJHiNA1Cyra-e6FIYY12t1bz3srMLt-FPNWbutuweMFKGWf6yh6AhuhfAqPblEVPoOfB_OQDOm0-2z8N3g2pCUx2w_n51NGtVw2mPhxRDzLRuPvgg1dxduJn7K-QVTPflTMsmi2c9ab-6vq4tcFNjqoJKyfw8mdePEFbJaTMrwE5nKVet6xkTSTgscJwsaAsKcjXRsBoW_B-8ZzxWVNwVHg0oX8W6z824LtxqnFYhhOi1XQtODd0owDiHZFTBkm1_U7lKZFuwX5WmcsWyMK7nVLOf5VUXGnxK-p0_zV_1t_Cw96o0G_6B8eH72Gh4I0hKmMo7dhc3Z1HXYQ2MzsmyqaGJzddfj-A_ylECg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFaIFFwNGKvWsn3gOqoGmUPhIi0ko94e5TRGqdtklVhZ_Gr2PGj6S59NabpbW90uzszje7s98H8EVoH3OXhkEnVCaInZSBNvhkQu2Ut97LQrRvMGz3T-KD0-R0A_7Vd2GorLJeE4uF2k4N7ZG3BMbdhNA4b_mqLGLU7e1cXgWkIEUnrbWcRukih25xi-nb7Nt-F8f6K-e9vePdflApDARGxGIe2EiHKhG2LSOnZWq5TnWivdZhrIxOFY-NTGOptAuT1CtNUjUmFlxGiOQdBmv87yPY7FBW1IDNH3vD0a_lDk8ocL5wWXKiCiHD1oUivjU661uPgitou16YeSfS9Z7Dswqisu-lT72ADZe_hKd3iAtfwe_uwgVjqn2fT_46y8aUILNdd34-Y7SzywZTO_GIbtnx5CdnY1OweOKn7EghxmejgmcWm_WC9Rf2urgGdoGdDgpB69dw8iB2fAONfJq7t8BMGkc27GhPCkrO4nKhvUMQ1BGmjfDQNuFzbbnssiTkyDCRIftmK_s2Ybs2alZNylm2cqEmfFo243SiMxKVu-lN-Q4Fbd5uQro2GMveiJB7vSWf_CmIuSNi25RR-u7-3j_CY3Td7Gh_eLgFTzgJCtOejtyGxvz6xr1HlDPXHyp3YnD20B78H8x-Fbo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dye-Sensitized+Solar+Cells+with+Modified+TiO2+Scattering+Layer+Produced+by+Hydrothermal+Method&rft.jtitle=Materials&rft.au=Lin%2C+Yu-Shyan&rft.au=Chen%2C+Wei-Hung&rft.date=2025-01-09&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=18&rft.issue=2&rft_id=info:doi/10.3390%2Fma18020278&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |