Large linear-in-temperature resistivity in twisted bilayer graphene

Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ  ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion 1 , 2 . Recent experiments have observed a variety of low-temp...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 15; no. 10; pp. 1011 - 1016
Main Authors Polshyn, Hryhoriy, Yankowitz, Matthew, Chen, Shaowen, Zhang, Yuxuan, Watanabe, K., Taniguchi, T., Dean, Cory R., Young, Andrea F.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2019
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ  ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion 1 , 2 . Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism 3 – 6 . Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ , scales linearly with temperature, T , over a wide range of T before falling again owing to interband activation. The T -linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity. Transport measurements on twisted bilayer graphene show that a large linear-in-temperature increase in resistivity exists for many twist angles. This may have implications for the mechanism of superconductivity in this material.
AbstractList Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion1,2. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism3–6. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ, scales linearly with temperature, T, over a wide range of T before falling again owing to interband activation. The T-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity.
Not provided.
Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ  ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion 1 , 2 . Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism 3 – 6 . Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ , scales linearly with temperature, T , over a wide range of T before falling again owing to interband activation. The T -linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity. Transport measurements on twisted bilayer graphene show that a large linear-in-temperature increase in resistivity exists for many twist angles. This may have implications for the mechanism of superconductivity in this material.
Author Polshyn, Hryhoriy
Chen, Shaowen
Zhang, Yuxuan
Dean, Cory R.
Young, Andrea F.
Watanabe, K.
Taniguchi, T.
Yankowitz, Matthew
Author_xml – sequence: 1
  givenname: Hryhoriy
  orcidid: 0000-0001-8223-8896
  surname: Polshyn
  fullname: Polshyn, Hryhoriy
  organization: Department of Physics, University of California, Santa Barbara
– sequence: 2
  givenname: Matthew
  orcidid: 0000-0002-5637-9203
  surname: Yankowitz
  fullname: Yankowitz, Matthew
  organization: Department of Physics, Columbia University
– sequence: 3
  givenname: Shaowen
  surname: Chen
  fullname: Chen, Shaowen
  organization: Department of Physics, Columbia University, Department of Applied Physics and Applied Mathematics, Columbia University
– sequence: 4
  givenname: Yuxuan
  orcidid: 0000-0003-0369-0230
  surname: Zhang
  fullname: Zhang, Yuxuan
  organization: Department of Physics, University of California, Santa Barbara
– sequence: 5
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: National Institute for Materials Science
– sequence: 6
  givenname: T.
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: National Institute for Materials Science
– sequence: 7
  givenname: Cory R.
  orcidid: 0000-0003-2967-5960
  surname: Dean
  fullname: Dean, Cory R.
  email: cd2478@columbia.edu
  organization: Department of Physics, Columbia University
– sequence: 8
  givenname: Andrea F.
  orcidid: 0000-0001-5954-8028
  surname: Young
  fullname: Young, Andrea F.
  email: afy2003@ucsb.edu
  organization: Department of Physics, University of California, Santa Barbara
BackLink https://www.osti.gov/biblio/1767680$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQhoNUsFZ_gLdFz9Ekkya7Ryl-QcGLnkN2d7ZNabM1SZX-e1NWFAQ9ZQLPM_PynpKR7z0ScsHZNWdQ3kTJp0pTxivKppWicETGXMspFbLko-9Zwwk5jXHFmBSKw5jM5jYssFg7jzZQ52nCzRaDTbuARcDoYnLvLu0L54v0kX_YFrVb2z2GYhHsdokez8hxZ9cRz7_eCXm9v3uZPdL588PT7HZOG5CQaNNILK2SUkHXQi2ZQKg5x7oElC10HLgCKbQEDUJyrGwpLFrV1p2sSm1hQi6HvX0OZWLjEjbLpvcem2S4VlqVLENXA7QN_dsOYzKrfhd8zmWEqCo9VYqVmeID1YQ-xoCd2Qa3sWFvODOHQs1QqMmFmkOhBrKjfzk5gU2u9ylYt_7XFIMZ8xW_wPCT6W_pE24ui2c
CitedBy_id crossref_primary_10_1103_PhysRevX_12_021064
crossref_primary_10_1063_5_0166329
crossref_primary_10_1103_PhysRevLett_127_056802
crossref_primary_10_1103_PhysRevResearch_2_023310
crossref_primary_10_1103_PhysRevResearch_3_023155
crossref_primary_10_1103_PhysRevLett_132_186401
crossref_primary_10_3390_nano11051306
crossref_primary_10_1103_PhysRevB_109_195105
crossref_primary_10_1103_PhysRevResearch_4_043045
crossref_primary_10_1103_PhysRevResearch_5_L012034
crossref_primary_10_1103_PhysRevX_12_021067
crossref_primary_10_1103_PhysRevB_108_075168
crossref_primary_10_1103_PhysRevResearch_6_L022025
crossref_primary_10_1103_PhysRevB_106_115149
crossref_primary_10_1103_PhysRevLett_129_117602
crossref_primary_10_7566_JPSJ_94_044602
crossref_primary_10_1103_PhysRevB_107_115301
crossref_primary_10_1103_PhysRevB_110_L241111
crossref_primary_10_1063_5_0207883
crossref_primary_10_1002_pssb_202200344
crossref_primary_10_1016_j_physleta_2023_129048
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1038_s41586_021_03815_6
crossref_primary_10_1088_1367_2630_ab950c
crossref_primary_10_1021_acsphotonics_0c01224
crossref_primary_10_1103_PhysRevResearch_7_013103
crossref_primary_10_3390_magnetism3030015
crossref_primary_10_1103_PhysRevB_108_235169
crossref_primary_10_1088_1361_648X_ac99ca
crossref_primary_10_1103_PhysRevLett_131_166501
crossref_primary_10_1103_PhysRevB_103_115419
crossref_primary_10_1103_PhysRevB_107_094512
crossref_primary_10_1038_s41535_021_00410_w
crossref_primary_10_1103_PhysRevB_102_165415
crossref_primary_10_1103_PhysRevResearch_3_L032070
crossref_primary_10_1126_science_aay5533
crossref_primary_10_1073_pnas_2404853121
crossref_primary_10_1007_s44214_024_00063_3
crossref_primary_10_1021_acs_nanolett_0c02131
crossref_primary_10_1103_PhysRevResearch_5_043214
crossref_primary_10_1103_PhysRevResearch_6_023203
crossref_primary_10_1103_PhysRevB_109_205102
crossref_primary_10_1021_acsanm_0c03230
crossref_primary_10_1103_PhysRevB_110_085162
crossref_primary_10_7498_aps_70_20210476
crossref_primary_10_1103_PhysRevB_108_165409
crossref_primary_10_1016_j_physc_2024_1354549
crossref_primary_10_1103_PhysRevLett_124_167002
crossref_primary_10_1038_s41586_021_03319_3
crossref_primary_10_1038_s41567_022_01556_5
crossref_primary_10_1088_1367_2630_ad3000
crossref_primary_10_1103_PhysRevB_104_075144
crossref_primary_10_1007_s40820_020_00464_8
crossref_primary_10_1088_1674_1056_acc8c3
crossref_primary_10_1126_sciadv_aba8834
crossref_primary_10_1103_PhysRevLett_133_146001
crossref_primary_10_1038_s41567_023_02362_3
crossref_primary_10_1103_PhysRevB_110_L041108
crossref_primary_10_1103_PhysRevResearch_2_033458
crossref_primary_10_1007_JHEP05_2021_123
crossref_primary_10_1038_s41586_022_05576_2
crossref_primary_10_1088_1674_1056_abbbe2
crossref_primary_10_1103_PhysRevB_110_214517
crossref_primary_10_1103_PhysRevB_107_165122
crossref_primary_10_1021_acs_nanolett_1c04400
crossref_primary_10_1088_2516_1075_ac5eaa
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_1088_1674_1056_abc7b6
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1038_s41467_021_24670_z
crossref_primary_10_1103_PhysRevB_102_201108
crossref_primary_10_1002_adma_202206141
crossref_primary_10_1063_5_0153052
crossref_primary_10_1103_PhysRevB_101_205426
crossref_primary_10_1103_PhysRevB_109_115111
crossref_primary_10_1088_1367_2630_ad8fc6
crossref_primary_10_1103_PhysRevB_103_155128
crossref_primary_10_1038_s41586_020_2473_8
crossref_primary_10_21468_SciPostPhys_17_3_072
crossref_primary_10_1002_advs_202103170
crossref_primary_10_1103_PhysRevLett_125_226401
crossref_primary_10_1021_acsnano_4c02432
crossref_primary_10_1038_s41567_021_01172_9
crossref_primary_10_1088_1361_6668_abf23c
crossref_primary_10_1088_1361_6668_ac19f3
crossref_primary_10_1088_2516_1075_ac49f5
crossref_primary_10_1021_acsnano_4c12905
crossref_primary_10_1038_s41586_025_08725_5
crossref_primary_10_1103_PhysRevB_100_155120
crossref_primary_10_1002_smsc_202000075
crossref_primary_10_1103_PhysRevB_103_235401
crossref_primary_10_1007_s11467_022_1175_0
crossref_primary_10_1088_2053_1583_acbdaa
crossref_primary_10_1038_s41567_020_01041_x
crossref_primary_10_1039_D1TB01795K
crossref_primary_10_1103_PhysRevApplied_18_054012
crossref_primary_10_1103_PhysRevB_107_045426
crossref_primary_10_1016_j_mtphys_2024_101449
crossref_primary_10_1039_D3TC02660D
crossref_primary_10_1021_acsnano_4c08302
crossref_primary_10_1021_jacs_4c03176
crossref_primary_10_1103_PhysRevLett_127_187001
crossref_primary_10_1103_PhysRevB_104_L201113
crossref_primary_10_1016_j_ssc_2023_115265
crossref_primary_10_1063_5_0211557
crossref_primary_10_1038_s41567_020_1030_6
crossref_primary_10_1103_PhysRevB_108_035129
crossref_primary_10_1016_j_aop_2020_168193
crossref_primary_10_1103_PhysRevB_101_045421
crossref_primary_10_1063_1_5135071
crossref_primary_10_1103_PhysRevB_107_L241102
crossref_primary_10_1103_PhysRevMaterials_5_084008
crossref_primary_10_1103_PhysRevLett_128_057702
crossref_primary_10_1103_PhysRevX_12_011061
crossref_primary_10_1021_acs_nanolett_9b04637
crossref_primary_10_1103_PhysRevLett_127_166802
crossref_primary_10_1103_PhysRevB_108_045138
crossref_primary_10_1038_s41598_021_04030_z
crossref_primary_10_1103_PhysRevB_108_094502
crossref_primary_10_1038_s42254_020_00262_6
crossref_primary_10_1103_PhysRevB_101_235140
crossref_primary_10_1103_PhysRevB_101_165141
crossref_primary_10_1103_PhysRevB_106_155108
crossref_primary_10_1063_10_0019420
crossref_primary_10_1063_10_0019421
crossref_primary_10_1088_1361_6633_ad67ed
crossref_primary_10_1103_PhysRevB_103_245424
crossref_primary_10_1038_s41467_023_35986_3
crossref_primary_10_1038_s42005_023_01441_4
crossref_primary_10_1103_PhysRevB_109_165116
crossref_primary_10_1103_PhysRevLett_125_196602
crossref_primary_10_1103_PhysRevB_103_195127
crossref_primary_10_1103_PhysRevB_111_035110
crossref_primary_10_1088_2515_7639_abb74e
crossref_primary_10_1103_PhysRevB_105_085154
crossref_primary_10_1103_PhysRevLett_132_186303
crossref_primary_10_1016_j_matt_2020_03_010
crossref_primary_10_1103_PhysRevB_106_155115
crossref_primary_10_1016_j_cossms_2021_100952
crossref_primary_10_1103_PhysRevB_108_064202
crossref_primary_10_1103_PhysRevB_108_235418
crossref_primary_10_1103_PhysRevB_107_075156
crossref_primary_10_1038_s42254_023_00575_2
crossref_primary_10_1103_PhysRevB_110_075151
crossref_primary_10_1103_PhysRevLett_128_227601
crossref_primary_10_1021_acsaelm_1c00080
crossref_primary_10_1088_1367_2630_ac688c
crossref_primary_10_1103_PhysRevLett_130_126001
crossref_primary_10_1038_s42005_022_00860_z
crossref_primary_10_1021_acs_nanolett_2c02010
crossref_primary_10_1021_acs_nanolett_1c01972
crossref_primary_10_1088_2053_1583_ac69bb
crossref_primary_10_1103_PhysRevB_104_235138
crossref_primary_10_1126_science_abh4273
crossref_primary_10_1103_PhysRevB_105_245408
crossref_primary_10_1088_2399_1984_acf0a9
crossref_primary_10_1103_PhysRevB_106_L201403
crossref_primary_10_1038_s41563_024_01950_9
crossref_primary_10_1103_PhysRevB_108_L100505
crossref_primary_10_1103_PhysRevB_106_L041402
crossref_primary_10_1103_PhysRevResearch_2_013342
crossref_primary_10_35848_1347_4065_ad3e89
crossref_primary_10_1038_s41467_022_29198_4
crossref_primary_10_1103_PhysRevLett_131_016003
crossref_primary_10_1016_j_jallcom_2022_163909
crossref_primary_10_1103_RevModPhys_94_041002
crossref_primary_10_1088_1674_1056_acb2c1
crossref_primary_10_1038_s41586_020_2260_6
crossref_primary_10_1103_PhysRevB_108_195119
crossref_primary_10_1103_PhysRevLett_131_026502
crossref_primary_10_1103_PhysRevLett_131_026501
crossref_primary_10_1103_PhysRevB_104_195113
crossref_primary_10_1103_PhysRevMaterials_9_L021002
crossref_primary_10_1103_PhysRevLett_130_216401
crossref_primary_10_1103_PhysRevB_111_125140
crossref_primary_10_1088_2053_1583_ad3b11
crossref_primary_10_1103_PhysRevB_109_125404
crossref_primary_10_1103_PhysRevResearch_2_013335
crossref_primary_10_1038_s41586_021_03409_2
crossref_primary_10_1103_PhysRevB_108_125106
crossref_primary_10_1103_PhysRevB_105_L100503
crossref_primary_10_1038_s41563_022_01287_1
crossref_primary_10_1103_PhysRevB_110_165406
crossref_primary_10_1039_D2NR02476D
crossref_primary_10_1103_PhysRevB_103_115122
crossref_primary_10_1103_PhysRevB_106_155427
crossref_primary_10_1103_PhysRevResearch_2_033181
crossref_primary_10_1038_s41567_020_0825_9
crossref_primary_10_1039_D4NR02824D
crossref_primary_10_1103_PhysRevB_109_045419
crossref_primary_10_1103_PhysRevB_103_205411
crossref_primary_10_1103_PhysRevB_103_205412
crossref_primary_10_1103_PhysRevB_103_205413
crossref_primary_10_1103_PhysRevLett_127_167001
crossref_primary_10_1016_j_newton_2024_100007
crossref_primary_10_1103_PhysRevB_101_155149
crossref_primary_10_1103_PhysRevB_103_205414
crossref_primary_10_1103_PhysRevB_103_205415
crossref_primary_10_1103_PhysRevB_111_035431
crossref_primary_10_1103_PhysRevResearch_4_013209
crossref_primary_10_1038_s41563_020_00840_0
crossref_primary_10_1103_PhysRevB_103_205416
crossref_primary_10_1103_PhysRevB_109_155145
crossref_primary_10_1103_PhysRevX_14_031045
crossref_primary_10_1039_D0TC00062K
crossref_primary_10_1140_epjp_s13360_023_04815_3
crossref_primary_10_1103_PhysRevB_105_155135
crossref_primary_10_1103_PhysRevLett_128_156401
crossref_primary_10_1021_acs_nanolett_4c04201
crossref_primary_10_1103_PhysRevB_107_235155
crossref_primary_10_1039_D1CP03240B
crossref_primary_10_1103_PhysRevLett_123_197702
crossref_primary_10_1016_j_physrep_2020_12_007
crossref_primary_10_1088_2399_1984_ad36ff
crossref_primary_10_1103_PhysRevB_101_245436
crossref_primary_10_1088_1361_648X_abf0c2
crossref_primary_10_1103_PhysRevB_106_024507
crossref_primary_10_1038_s41586_021_03366_w
crossref_primary_10_1088_1361_648X_abd526
crossref_primary_10_1002_aisy_202100080
crossref_primary_10_1103_PhysRevB_106_035107
crossref_primary_10_1103_PhysRevX_13_011026
crossref_primary_10_1103_PhysRevB_108_L121101
crossref_primary_10_1103_PhysRevB_102_125120
crossref_primary_10_1103_PhysRevB_110_085422
crossref_primary_10_1103_PhysRevLett_124_046403
crossref_primary_10_1021_acs_nanolett_1c00565
crossref_primary_10_1103_PhysRevB_109_184502
crossref_primary_10_1103_PhysRevB_107_125308
crossref_primary_10_1038_s41586_020_2339_0
crossref_primary_10_1103_PhysRevB_107_125423
crossref_primary_10_1103_PhysRevB_110_125421
crossref_primary_10_1103_PhysRevB_108_L121409
crossref_primary_10_1016_j_supcon_2023_100073
crossref_primary_10_1038_d41586_022_02108_w
crossref_primary_10_1016_j_matt_2021_08_020
crossref_primary_10_1209_0295_5075_acef56
crossref_primary_10_1088_1674_1056_abb221
crossref_primary_10_1021_acs_jpclett_4c03542
crossref_primary_10_1002_apxr_202300048
crossref_primary_10_1103_PhysRevResearch_2_033271
crossref_primary_10_1038_s41565_024_01698_y
crossref_primary_10_1103_PhysRevMaterials_8_L051001
crossref_primary_10_1103_PhysRevB_104_035119
crossref_primary_10_1103_PhysRevB_108_235120
crossref_primary_10_1007_s44214_022_00010_0
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1103_PhysRevB_106_184517
crossref_primary_10_1103_PhysRevB_106_235112
crossref_primary_10_1002_adma_202004974
crossref_primary_10_1103_PhysRevLett_129_047601
crossref_primary_10_7498_aps_72_20230120
crossref_primary_10_1038_s41467_021_25864_1
crossref_primary_10_1088_1674_1056_ad9e96
crossref_primary_10_1126_science_abb8754
crossref_primary_10_1038_s41586_024_07880_5
crossref_primary_10_1103_PhysRevB_103_195411
crossref_primary_10_1103_PhysRevLett_129_187001
crossref_primary_10_1103_PhysRevResearch_3_013153
crossref_primary_10_1021_acs_nanolett_3c00560
crossref_primary_10_1038_s41586_021_03252_5
crossref_primary_10_1103_PhysRevB_102_085103
crossref_primary_10_1063_5_0098239
crossref_primary_10_1038_s41586_020_2373_y
crossref_primary_10_1103_PhysRevB_105_134524
crossref_primary_10_1038_s41586_023_05879_y
crossref_primary_10_1021_acs_nanolett_4c02853
crossref_primary_10_1103_PhysRevB_104_115167
crossref_primary_10_1103_PhysRevResearch_4_033061
crossref_primary_10_1103_PhysRevLett_127_266601
crossref_primary_10_1021_acs_nanolett_1c03066
crossref_primary_10_1103_PhysRevB_100_155426
crossref_primary_10_1063_5_0077669
crossref_primary_10_1016_j_aop_2020_168100
crossref_primary_10_1103_PhysRevB_108_184515
crossref_primary_10_1103_PhysRevLett_124_186801
crossref_primary_10_1103_PhysRevLett_127_217001
crossref_primary_10_1038_s41566_020_0644_7
crossref_primary_10_1038_s41567_020_0906_9
crossref_primary_10_1073_pnas_2118482119
crossref_primary_10_1038_s41467_024_50456_0
crossref_primary_10_21468_SciPostPhys_13_1_004
crossref_primary_10_1088_0256_307X_39_7_077301
crossref_primary_10_1103_PhysRevB_108_094115
crossref_primary_10_1063_5_0246338
crossref_primary_10_1103_PhysRevB_104_045146
crossref_primary_10_1103_PhysRevB_110_L121123
crossref_primary_10_1103_RevModPhys_94_035004
crossref_primary_10_1021_acs_nanolett_4c04247
crossref_primary_10_1103_PhysRevB_102_045107
crossref_primary_10_1088_2053_1583_ac161d
crossref_primary_10_1103_PhysRevB_104_195134
crossref_primary_10_1103_PhysRevX_13_041007
crossref_primary_10_1103_PhysRevB_101_125428
crossref_primary_10_1103_PhysRevB_108_125129
crossref_primary_10_1088_2053_1583_ac3259
crossref_primary_10_1103_PhysRevB_103_214311
Cites_doi 10.1038/430512a
10.1038/nnano.2008.58
10.1103/PhysRevLett.117.116804
10.1103/PhysRevB.41.1278
10.1038/nature26160
10.1016/0022-3697(64)90180-5
10.1038/nature23893
10.1103/PhysRevLett.105.256805
10.1126/science.aav1910
10.1103/PhysRevLett.121.257001
10.1126/science.1227612
10.1103/PhysRevB.99.165112
10.1103/PhysRevB.98.035425
10.1126/science.1244358
10.1038/s41567-018-0278-6
10.1103/PhysRevLett.74.3253
10.1103/PhysRevB.77.115449
10.1103/PhysRev.167.331
10.1038/nature26154
10.1002/andp.19334080504
10.1021/acs.nanolett.5b05263
10.1073/pnas.1604145113
10.1103/PhysRevB.82.121407
10.1103/PhysRevLett.122.257002
10.1038/nnano.2010.172
10.1073/pnas.1108174108
10.1073/pnas.1620140114
10.1021/acs.nanolett.6b01906
10.1103/PhysRevB.98.241412
10.1007/BF01341426
10.1103/PhysRevB.96.075311
10.1103/PhysRevB.99.140302
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright Nature Publishing Group Oct 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: Copyright Nature Publishing Group Oct 2019
CorporateAuthor Columbia Univ., New York, NY (United States)
Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM)
– name: Columbia Univ., New York, NY (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-019-0596-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1016
ExternalDocumentID 1767680
10_1038_s41567_019_0596_3
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c343t-cc4e8a64463fd3b402e3b11eb83e4d3f131634274373241e9a82aea6dbf4987a3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Thu May 18 22:41:23 EDT 2023
Sat Aug 23 14:13:47 EDT 2025
Tue Jul 01 00:25:39 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-cc4e8a64463fd3b402e3b11eb83e4d3f131634274373241e9a82aea6dbf4987a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0019443
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0003-0369-0230
0000-0001-5954-8028
0000-0003-3701-8119
0000-0002-5637-9203
0000-0001-8223-8896
0000-0003-2967-5960
0000000303690230
0000000337018119
0000000159548028
0000000329675960
0000000182238896
0000000256379203
PQID 2299756608
PQPubID 27545
PageCount 6
ParticipantIDs osti_scitechconnect_1767680
proquest_journals_2299756608
crossref_primary_10_1038_s41567_019_0596_3
crossref_citationtrail_10_1038_s41567_019_0596_3
springer_journals_10_1038_s41567_019_0596_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References Kim (CR7) 2017; 114
Chung, Xu, Chen (CR28) 2018; 98
Zibrov (CR34) 2017; 549
Dean (CR19) 2010; 5
Cao (CR3) 2018; 556
CR14
Lian, Wang, Bernevig (CR9) 2019; 122
CR11
CR32
Kim (CR33) 2016; 16
Hwang, Das Sarma (CR20) 2008; 77
Chen, Jang, Xiao, Ishigami, Fuhrer (CR18) 2008; 3
Stormer, Pfeiffer, Baldwin, West (CR25) 1990; 41
Emery, Kivelson (CR12) 1995; 74
Wu, MacDonald, Martin (CR8) 2018; 121
Wang (CR35) 2013; 342
McMillan (CR27) 1968; 167
Bistritzer, MacDonald (CR1) 2011; 108
Cao (CR4) 2018; 556
Grüneisen (CR24) 1933; 408
CR6
Choi, Choi (CR10) 2018; 98
Bloch (CR23) 1930; 59
Gorkov (CR26) 2016; 113
Cao (CR16) 2016; 117
Kim (CR15) 2016; 16
Wu, Hwang, Das Sarma (CR13) 2019; 99
Zaanen (CR31) 2004; 430
Bruin, Sakai, Perry, Mackenzie (CR30) 2013; 339
Efetov, Kim (CR21) 2010; 105
Wallbank (CR29) 2019; 15
Surez Morell, Correa, Vargas, Pacheco, Barticevic (CR2) 2010; 82
Komatsu (CR22) 1964; 25
Yankowitz (CR5) 2019; 363
Nam, Koshino (CR17) 2017; 96
F Bloch (596_CR23) 1930; 59
J-H Chen (596_CR18) 2008; 3
R Bistritzer (596_CR1) 2011; 108
Y Cao (596_CR16) 2016; 117
CR Dean (596_CR19) 2010; 5
Y Cao (596_CR3) 2018; 556
F Wu (596_CR13) 2019; 99
Y Cao (596_CR4) 2018; 556
LP Gorkov (596_CR26) 2016; 113
JR Wallbank (596_CR29) 2019; 15
JA Bruin (596_CR30) 2013; 339
J Zaanen (596_CR31) 2004; 430
K Kim (596_CR7) 2017; 114
Y Kim (596_CR15) 2016; 16
E Grüneisen (596_CR24) 1933; 408
HL Stormer (596_CR25) 1990; 41
L Wang (596_CR35) 2013; 342
M Yankowitz (596_CR5) 2019; 363
596_CR6
K Kim (596_CR33) 2016; 16
K Komatsu (596_CR22) 1964; 25
WL McMillan (596_CR27) 1968; 167
EH Hwang (596_CR20) 2008; 77
T-F Chung (596_CR28) 2018; 98
AA Zibrov (596_CR34) 2017; 549
E Surez Morell (596_CR2) 2010; 82
B Lian (596_CR9) 2019; 122
F Wu (596_CR8) 2018; 121
YW Choi (596_CR10) 2018; 98
DK Efetov (596_CR21) 2010; 105
NNT Nam (596_CR17) 2017; 96
596_CR32
596_CR11
VJ Emery (596_CR12) 1995; 74
596_CR14
References_xml – volume: 430
  start-page: 512
  year: 2004
  end-page: 513
  ident: CR31
  article-title: Why the temperature is high
  publication-title: Nature
  doi: 10.1038/430512a
– volume: 3
  start-page: 206
  year: 2008
  end-page: 209
  ident: CR18
  article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.58
– volume: 117
  start-page: 116804
  year: 2016
  ident: CR16
  article-title: Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.116804
– volume: 41
  start-page: 1278
  year: 1990
  end-page: 1281
  ident: CR25
  article-title: Observation of a Bloch–Grüneisen regime in two-dimensional electron transport
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.1278
– ident: CR14
– volume: 556
  start-page: 43
  year: 2018
  end-page: 50
  ident: CR4
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 25
  start-page: 707
  year: 1964
  end-page: 712
  ident: CR22
  article-title: Interpretation of the specific heat of various graphites at very low temperatures
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(64)90180-5
– volume: 549
  start-page: 360
  year: 2017
  end-page: 364
  ident: CR34
  article-title: Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level
  publication-title: Nature
  doi: 10.1038/nature23893
– volume: 105
  start-page: 256805
  year: 2010
  ident: CR21
  article-title: Controlling electron–phonon interactions in graphene at ultrahigh carrier densities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.256805
– volume: 363
  start-page: 1059
  year: 2019
  end-page: 1064
  ident: CR5
  article-title: Tuning superconductivity in twisted bilayer graphene
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 121
  start-page: 257001
  year: 2018
  ident: CR8
  article-title: Theory of phonon-mediated superconductivity in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.257001
– volume: 339
  start-page: 804
  year: 2013
  end-page: 807
  ident: CR30
  article-title: Similarity of scattering rates in metals showing -linear resistivity
  publication-title: Science
  doi: 10.1126/science.1227612
– ident: CR6
– volume: 99
  start-page: 165112
  year: 2019
  ident: CR13
  article-title: Phonon-induced giant linear-in-resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.165112
– volume: 98
  start-page: 035425
  year: 2018
  ident: CR28
  article-title: Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau level crossing
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.035425
– volume: 342
  start-page: 614
  year: 2013
  end-page: 617
  ident: CR35
  article-title: One-dimensional electrical contact to a two-dimensional material
  publication-title: Science
  doi: 10.1126/science.1244358
– volume: 15
  start-page: 32
  year: 2019
  end-page: 36
  ident: CR29
  article-title: Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0278-6
– volume: 74
  start-page: 3253
  year: 1995
  end-page: 3256
  ident: CR12
  article-title: Superconductivity in bad metals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3253
– volume: 77
  start-page: 115449
  year: 2008
  ident: CR20
  article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.115449
– volume: 167
  start-page: 331
  year: 1968
  end-page: 344
  ident: CR27
  article-title: Transition temperature of strong-coupled superconductors
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.167.331
– volume: 556
  start-page: 80
  year: 2018
  end-page: 84
  ident: CR3
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 408
  start-page: 530
  year: 1933
  end-page: 540
  ident: CR24
  article-title: Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19334080504
– volume: 16
  start-page: 1989
  year: 2016
  end-page: 1995
  ident: CR33
  article-title: van der Waals heterostructures with high accuracy rotational alignment
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05263
– volume: 113
  start-page: 4646
  year: 2016
  end-page: 4651
  ident: CR26
  article-title: Phonon mechanism in the most dilute superconductor n-type SrTiO
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1604145113
– ident: CR11
– volume: 82
  start-page: 121407
  year: 2010
  ident: CR2
  article-title: Flat bands in slightly twisted bilayer graphene: tight-binding calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.121407
– volume: 122
  start-page: 257002
  year: 2019
  ident: CR9
  article-title: Twisted bilayer graphene: a phonon-driven superconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.257002
– ident: CR32
– volume: 5
  start-page: 722
  year: 2010
  end-page: 726
  ident: CR19
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 108
  start-page: 12233
  year: 2011
  end-page: 12237
  ident: CR1
  article-title: Moiré bands in twisted double-layer graphene
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1108174108
– volume: 114
  start-page: 3364
  year: 2017
  end-page: 3369
  ident: CR7
  article-title: Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620140114
– volume: 16
  start-page: 5053
  year: 2016
  end-page: 5059
  ident: CR15
  article-title: Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01906
– volume: 98
  start-page: 241412
  year: 2018
  ident: CR10
  article-title: Strong electron–phonon coupling, electron–hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241412
– volume: 59
  start-page: 208
  year: 1930
  end-page: 214
  ident: CR23
  article-title: Zum elektrischen widerstandsgesetz bei tiefen temperaturen
  publication-title: Z. Phys.
  doi: 10.1007/BF01341426
– volume: 96
  start-page: 075311
  year: 2017
  ident: CR17
  article-title: Lattice relaxation and energy band modulation in twisted bilayer graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.075311
– volume: 3
  start-page: 206
  year: 2008
  ident: 596_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.58
– volume: 105
  start-page: 256805
  year: 2010
  ident: 596_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.256805
– volume: 98
  start-page: 035425
  year: 2018
  ident: 596_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.035425
– volume: 41
  start-page: 1278
  year: 1990
  ident: 596_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.1278
– volume: 96
  start-page: 075311
  year: 2017
  ident: 596_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.075311
– volume: 122
  start-page: 257002
  year: 2019
  ident: 596_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.257002
– volume: 16
  start-page: 1989
  year: 2016
  ident: 596_CR33
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05263
– volume: 108
  start-page: 12233
  year: 2011
  ident: 596_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1108174108
– ident: 596_CR6
– volume: 339
  start-page: 804
  year: 2013
  ident: 596_CR30
  publication-title: Science
  doi: 10.1126/science.1227612
– volume: 556
  start-page: 43
  year: 2018
  ident: 596_CR4
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 98
  start-page: 241412
  year: 2018
  ident: 596_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241412
– volume: 5
  start-page: 722
  year: 2010
  ident: 596_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 121
  start-page: 257001
  year: 2018
  ident: 596_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.257001
– volume: 74
  start-page: 3253
  year: 1995
  ident: 596_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3253
– volume: 113
  start-page: 4646
  year: 2016
  ident: 596_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1604145113
– volume: 363
  start-page: 1059
  year: 2019
  ident: 596_CR5
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 549
  start-page: 360
  year: 2017
  ident: 596_CR34
  publication-title: Nature
  doi: 10.1038/nature23893
– volume: 556
  start-page: 80
  year: 2018
  ident: 596_CR3
  publication-title: Nature
  doi: 10.1038/nature26154
– ident: 596_CR32
– volume: 77
  start-page: 115449
  year: 2008
  ident: 596_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.115449
– volume: 25
  start-page: 707
  year: 1964
  ident: 596_CR22
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(64)90180-5
– ident: 596_CR11
– volume: 99
  start-page: 165112
  year: 2019
  ident: 596_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.165112
– volume: 82
  start-page: 121407
  year: 2010
  ident: 596_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.121407
– volume: 408
  start-page: 530
  year: 1933
  ident: 596_CR24
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19334080504
– volume: 117
  start-page: 116804
  year: 2016
  ident: 596_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.116804
– volume: 114
  start-page: 3364
  year: 2017
  ident: 596_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620140114
– volume: 342
  start-page: 614
  year: 2013
  ident: 596_CR35
  publication-title: Science
  doi: 10.1126/science.1244358
– volume: 16
  start-page: 5053
  year: 2016
  ident: 596_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01906
– volume: 59
  start-page: 208
  year: 1930
  ident: 596_CR23
  publication-title: Z. Phys.
  doi: 10.1007/BF01341426
– volume: 15
  start-page: 32
  year: 2019
  ident: 596_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0278-6
– volume: 430
  start-page: 512
  year: 2004
  ident: 596_CR31
  publication-title: Nature
  doi: 10.1038/430512a
– ident: 596_CR14
  doi: 10.1103/PhysRevB.99.140302
– volume: 167
  start-page: 331
  year: 1968
  ident: 596_CR27
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.167.331
SSID ssj0042613
Score 2.6966653
Snippet Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ  ≈ 1.1°, the low-energy electronic...
Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1011
SubjectTerms 142/126
639/766/119/1000/1018
639/766/119/995
Atomic
Banded structure
Bilayers
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electrical resistivity
Electronic structure
Graphene
Letter
Low temperature
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
optics, defects, charge transport, superconductivity, magnetism and spin physics, mesoscale science, materials and chemistry by design, mesostructured materials, synthesis (novel materials), synthesis (self-assembly)
Physics
Physics and Astronomy
Superconductivity
Theoretical
Title Large linear-in-temperature resistivity in twisted bilayer graphene
URI https://link.springer.com/article/10.1038/s41567-019-0596-3
https://www.proquest.com/docview/2299756608
https://www.osti.gov/biblio/1767680
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC50BsGLrC8cdYcc9qQ0JumepPskjjgryzqIKHhr-hUYkMzoRPz7VmU6Ky7oOS-o51ddlfoAfgmTYr1WOubRhJlwUjBVeMVsgcbs1CgVLdnEzbS4fhB_HkeP8cBtGccqu5jYBmo_d3RGfpZj3CwRe6TyfPHMiDWKuquRQmMd-hiCpexBf3w1vb3rYjHVB3z1S-SI5aLkXV-Ty7MllS40dqkYUdAw_ikz9eboYZ9Q53-N0jb_TH7AVgSOycVK09uwFuod2GgHON1yFy7_0kh3QqDRvLBZzWjnVFyYnGBJTa5MNBHJrE6aN9KtT-zsySDiTtql1Rjz9uBhcnV_ec0iQQJzXPCGOSeCNIhoCl55brEUDNxmWbCSB-F5lXFEWwLrTl4ibsqCMjI3wRTeVkLJ0vB96NXzOhxA4jFtSzuyQRaFcMojbMmz4CqjnK288gNIO-FoF7eHE4nFk2672FzqlTw1ylOTPDUfwMm_Rxar1Rnf3XxEEteY92l5raMpH9forESbkekAjjtF6OhjS_1hEQM47ZTzcfnLTx1-_7Ij2MzJKNqBvWPoNS-v4ScCj8YOYV1Ofg-hfzEZj6fDaGvvMDzVkg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Rrar2UtGX2EJbH9pLK4sk402cA0IVdLuUhRNI3Fy_Iq2EspRNhfhT_MbO5FFEpXLjnMSWxp_H35cZzwB8VDYhvVZ4GQjCUnmtZJmHUrqcwOzLSaLaZhNHx_nsVP04m5ytwc1wF4bTKgef2DrqsPT8j3w7I79ZEPdI9O7FL8ldozi6OrTQ6GBxGK-vSLKtdg72aX0_Zdn028neTPZdBaRHhY30XkVtiQbkWAV0pJ8iujSNTmNUAasUiaIoEmtYENlIY2l1ZqPNg6sUCXSLNO4jeKyQTnK-mT79Pnh-ViPYXcCcyEwVOERRUW-vWChxkmcpueGNxDvn4GhJ-_kOx_0nLNuedtN1eN7TVPG1w9ULWIv1S3jSpov61SvYm3MCuWCKai_lopZc4aovzyxIwLPj4KYUYlGL5oqRFIRbnFvi96ItkU0e9jWcPojh3sCoXtZxA0QgkqDdxEWd58qXgUhSlkZf2dK7KpRhDMlgHOP7WuXcMuPctDFz1KazpyF7GranwTF8_vvJRVeo476XN9nihlgGl8r1nFPkG5MWhFCdjGFrWAjT7-iVucXfGL4Mi3P7-L9Tvb1_sA_wdHZyNDfzg-PDTXiWMUDaVMEtGDWXv-M7ojyNe9_iTMDPhwb2HyR8Dgs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRVS9VC0UsSxtfaAXkLVJ7E2cQ1W1wAoKrBAqEjfjr0grrbKUDVr1r_XXdSYfRVQqN85JbGn8PH4vM54B2JUmQr2WOe4Rwlw6JXme-pzbFMHs8lEk62YT55P0-Ep-vx5dr8Dv7i4MpVV2PrF21H7u6B_5MEG_mSH3iNSwaNMiLg7HX25_cuogRZHWrp1GA5HT8GuJ8m3x-eQQ1_pTkoyPfhwc87bDAHdCioo7J4MySAlSUXhhUUsFYeM4WCWC9KKIBdIVicJNZEg84pAblZhgUm8LiWLdCBz3BaxmpIp6sPrtaHJx2Z0DpE1Ecx1zxBOZiS6mKtRwQbKJUj5zTu1vuHh0KvbmuLsfMd5_grT12Td-A69b0sq-Nih7CyuhXIe1OnnULTbg4IzSyRkRVnPHpyWneldtsWaGcp7cCLWoYNOSVUvClWd2OjPI9lldMBv97Tu4ehbTbUKvnJdhC5hHyqDsyAaVptLlHilTEgdXmNzZwue-D1FnHO3ayuXUQGOm6wi6ULqxp0Z7arKnFn3Y-_vJbVO246mXB2RxjZyDCuc6yjBylY4zxKuK-rDTLYRu9_dCP6CxD_vd4jw8_u9U208P9hFeIqj12cnkdACvEsJHnTe4A73q7j68R_5T2Q8t0BjcPDe2_wBjhxOd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+linear-in-temperature+resistivity+in+twisted+bilayer+graphene&rft.jtitle=Nature+physics&rft.au=Polshyn%2C+Hryhoriy&rft.au=Yankowitz%2C+Matthew&rft.au=Chen%2C+Shaowen&rft.au=Zhang%2C+Yuxuan&rft.date=2019-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=15&rft.issue=10&rft.spage=1011&rft.epage=1016&rft_id=info:doi/10.1038%2Fs41567-019-0596-3&rft.externalDocID=10_1038_s41567_019_0596_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon