Large linear-in-temperature resistivity in twisted bilayer graphene
Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion 1 , 2 . Recent experiments have observed a variety of low-temp...
Saved in:
Published in | Nature physics Vol. 15; no. 10; pp. 1011 - 1016 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2019
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near
θ
≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion
1
,
2
. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism
3
–
6
. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity,
ρ
, scales linearly with temperature,
T
, over a wide range of
T
before falling again owing to interband activation. The
T
-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity.
Transport measurements on twisted bilayer graphene show that a large linear-in-temperature increase in resistivity exists for many twist angles. This may have implications for the mechanism of superconductivity in this material. |
---|---|
AbstractList | Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion1,2. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism3–6. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ, scales linearly with temperature, T, over a wide range of T before falling again owing to interband activation. The T-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity. Not provided. Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion 1 , 2 . Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism 3 – 6 . Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ , scales linearly with temperature, T , over a wide range of T before falling again owing to interband activation. The T -linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity. Transport measurements on twisted bilayer graphene show that a large linear-in-temperature increase in resistivity exists for many twist angles. This may have implications for the mechanism of superconductivity in this material. |
Author | Polshyn, Hryhoriy Chen, Shaowen Zhang, Yuxuan Dean, Cory R. Young, Andrea F. Watanabe, K. Taniguchi, T. Yankowitz, Matthew |
Author_xml | – sequence: 1 givenname: Hryhoriy orcidid: 0000-0001-8223-8896 surname: Polshyn fullname: Polshyn, Hryhoriy organization: Department of Physics, University of California, Santa Barbara – sequence: 2 givenname: Matthew orcidid: 0000-0002-5637-9203 surname: Yankowitz fullname: Yankowitz, Matthew organization: Department of Physics, Columbia University – sequence: 3 givenname: Shaowen surname: Chen fullname: Chen, Shaowen organization: Department of Physics, Columbia University, Department of Applied Physics and Applied Mathematics, Columbia University – sequence: 4 givenname: Yuxuan orcidid: 0000-0003-0369-0230 surname: Zhang fullname: Zhang, Yuxuan organization: Department of Physics, University of California, Santa Barbara – sequence: 5 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: National Institute for Materials Science – sequence: 6 givenname: T. surname: Taniguchi fullname: Taniguchi, T. organization: National Institute for Materials Science – sequence: 7 givenname: Cory R. orcidid: 0000-0003-2967-5960 surname: Dean fullname: Dean, Cory R. email: cd2478@columbia.edu organization: Department of Physics, Columbia University – sequence: 8 givenname: Andrea F. orcidid: 0000-0001-5954-8028 surname: Young fullname: Young, Andrea F. email: afy2003@ucsb.edu organization: Department of Physics, University of California, Santa Barbara |
BackLink | https://www.osti.gov/biblio/1767680$$D View this record in Osti.gov |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLdFz9Ekkya7Ryl-QcGLnkN2d7ZNabM1SZX-e1NWFAQ9ZQLPM_PynpKR7z0ScsHZNWdQ3kTJp0pTxivKppWicETGXMspFbLko-9Zwwk5jXHFmBSKw5jM5jYssFg7jzZQ52nCzRaDTbuARcDoYnLvLu0L54v0kX_YFrVb2z2GYhHsdokez8hxZ9cRz7_eCXm9v3uZPdL588PT7HZOG5CQaNNILK2SUkHXQi2ZQKg5x7oElC10HLgCKbQEDUJyrGwpLFrV1p2sSm1hQi6HvX0OZWLjEjbLpvcem2S4VlqVLENXA7QN_dsOYzKrfhd8zmWEqCo9VYqVmeID1YQ-xoCd2Qa3sWFvODOHQs1QqMmFmkOhBrKjfzk5gU2u9ylYt_7XFIMZ8xW_wPCT6W_pE24ui2c |
CitedBy_id | crossref_primary_10_1103_PhysRevX_12_021064 crossref_primary_10_1063_5_0166329 crossref_primary_10_1103_PhysRevLett_127_056802 crossref_primary_10_1103_PhysRevResearch_2_023310 crossref_primary_10_1103_PhysRevResearch_3_023155 crossref_primary_10_1103_PhysRevLett_132_186401 crossref_primary_10_3390_nano11051306 crossref_primary_10_1103_PhysRevB_109_195105 crossref_primary_10_1103_PhysRevResearch_4_043045 crossref_primary_10_1103_PhysRevResearch_5_L012034 crossref_primary_10_1103_PhysRevX_12_021067 crossref_primary_10_1103_PhysRevB_108_075168 crossref_primary_10_1103_PhysRevResearch_6_L022025 crossref_primary_10_1103_PhysRevB_106_115149 crossref_primary_10_1103_PhysRevLett_129_117602 crossref_primary_10_7566_JPSJ_94_044602 crossref_primary_10_1103_PhysRevB_107_115301 crossref_primary_10_1103_PhysRevB_110_L241111 crossref_primary_10_1063_5_0207883 crossref_primary_10_1002_pssb_202200344 crossref_primary_10_1016_j_physleta_2023_129048 crossref_primary_10_1039_D3CP04656G crossref_primary_10_1038_s41586_021_03815_6 crossref_primary_10_1088_1367_2630_ab950c crossref_primary_10_1021_acsphotonics_0c01224 crossref_primary_10_1103_PhysRevResearch_7_013103 crossref_primary_10_3390_magnetism3030015 crossref_primary_10_1103_PhysRevB_108_235169 crossref_primary_10_1088_1361_648X_ac99ca crossref_primary_10_1103_PhysRevLett_131_166501 crossref_primary_10_1103_PhysRevB_103_115419 crossref_primary_10_1103_PhysRevB_107_094512 crossref_primary_10_1038_s41535_021_00410_w crossref_primary_10_1103_PhysRevB_102_165415 crossref_primary_10_1103_PhysRevResearch_3_L032070 crossref_primary_10_1126_science_aay5533 crossref_primary_10_1073_pnas_2404853121 crossref_primary_10_1007_s44214_024_00063_3 crossref_primary_10_1021_acs_nanolett_0c02131 crossref_primary_10_1103_PhysRevResearch_5_043214 crossref_primary_10_1103_PhysRevResearch_6_023203 crossref_primary_10_1103_PhysRevB_109_205102 crossref_primary_10_1021_acsanm_0c03230 crossref_primary_10_1103_PhysRevB_110_085162 crossref_primary_10_7498_aps_70_20210476 crossref_primary_10_1103_PhysRevB_108_165409 crossref_primary_10_1016_j_physc_2024_1354549 crossref_primary_10_1103_PhysRevLett_124_167002 crossref_primary_10_1038_s41586_021_03319_3 crossref_primary_10_1038_s41567_022_01556_5 crossref_primary_10_1088_1367_2630_ad3000 crossref_primary_10_1103_PhysRevB_104_075144 crossref_primary_10_1007_s40820_020_00464_8 crossref_primary_10_1088_1674_1056_acc8c3 crossref_primary_10_1126_sciadv_aba8834 crossref_primary_10_1103_PhysRevLett_133_146001 crossref_primary_10_1038_s41567_023_02362_3 crossref_primary_10_1103_PhysRevB_110_L041108 crossref_primary_10_1103_PhysRevResearch_2_033458 crossref_primary_10_1007_JHEP05_2021_123 crossref_primary_10_1038_s41586_022_05576_2 crossref_primary_10_1088_1674_1056_abbbe2 crossref_primary_10_1103_PhysRevB_110_214517 crossref_primary_10_1103_PhysRevB_107_165122 crossref_primary_10_1021_acs_nanolett_1c04400 crossref_primary_10_1088_2516_1075_ac5eaa crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_1088_1674_1056_abc7b6 crossref_primary_10_7498_aps_72_20230079 crossref_primary_10_1038_s41467_021_24670_z crossref_primary_10_1103_PhysRevB_102_201108 crossref_primary_10_1002_adma_202206141 crossref_primary_10_1063_5_0153052 crossref_primary_10_1103_PhysRevB_101_205426 crossref_primary_10_1103_PhysRevB_109_115111 crossref_primary_10_1088_1367_2630_ad8fc6 crossref_primary_10_1103_PhysRevB_103_155128 crossref_primary_10_1038_s41586_020_2473_8 crossref_primary_10_21468_SciPostPhys_17_3_072 crossref_primary_10_1002_advs_202103170 crossref_primary_10_1103_PhysRevLett_125_226401 crossref_primary_10_1021_acsnano_4c02432 crossref_primary_10_1038_s41567_021_01172_9 crossref_primary_10_1088_1361_6668_abf23c crossref_primary_10_1088_1361_6668_ac19f3 crossref_primary_10_1088_2516_1075_ac49f5 crossref_primary_10_1021_acsnano_4c12905 crossref_primary_10_1038_s41586_025_08725_5 crossref_primary_10_1103_PhysRevB_100_155120 crossref_primary_10_1002_smsc_202000075 crossref_primary_10_1103_PhysRevB_103_235401 crossref_primary_10_1007_s11467_022_1175_0 crossref_primary_10_1088_2053_1583_acbdaa crossref_primary_10_1038_s41567_020_01041_x crossref_primary_10_1039_D1TB01795K crossref_primary_10_1103_PhysRevApplied_18_054012 crossref_primary_10_1103_PhysRevB_107_045426 crossref_primary_10_1016_j_mtphys_2024_101449 crossref_primary_10_1039_D3TC02660D crossref_primary_10_1021_acsnano_4c08302 crossref_primary_10_1021_jacs_4c03176 crossref_primary_10_1103_PhysRevLett_127_187001 crossref_primary_10_1103_PhysRevB_104_L201113 crossref_primary_10_1016_j_ssc_2023_115265 crossref_primary_10_1063_5_0211557 crossref_primary_10_1038_s41567_020_1030_6 crossref_primary_10_1103_PhysRevB_108_035129 crossref_primary_10_1016_j_aop_2020_168193 crossref_primary_10_1103_PhysRevB_101_045421 crossref_primary_10_1063_1_5135071 crossref_primary_10_1103_PhysRevB_107_L241102 crossref_primary_10_1103_PhysRevMaterials_5_084008 crossref_primary_10_1103_PhysRevLett_128_057702 crossref_primary_10_1103_PhysRevX_12_011061 crossref_primary_10_1021_acs_nanolett_9b04637 crossref_primary_10_1103_PhysRevLett_127_166802 crossref_primary_10_1103_PhysRevB_108_045138 crossref_primary_10_1038_s41598_021_04030_z crossref_primary_10_1103_PhysRevB_108_094502 crossref_primary_10_1038_s42254_020_00262_6 crossref_primary_10_1103_PhysRevB_101_235140 crossref_primary_10_1103_PhysRevB_101_165141 crossref_primary_10_1103_PhysRevB_106_155108 crossref_primary_10_1063_10_0019420 crossref_primary_10_1063_10_0019421 crossref_primary_10_1088_1361_6633_ad67ed crossref_primary_10_1103_PhysRevB_103_245424 crossref_primary_10_1038_s41467_023_35986_3 crossref_primary_10_1038_s42005_023_01441_4 crossref_primary_10_1103_PhysRevB_109_165116 crossref_primary_10_1103_PhysRevLett_125_196602 crossref_primary_10_1103_PhysRevB_103_195127 crossref_primary_10_1103_PhysRevB_111_035110 crossref_primary_10_1088_2515_7639_abb74e crossref_primary_10_1103_PhysRevB_105_085154 crossref_primary_10_1103_PhysRevLett_132_186303 crossref_primary_10_1016_j_matt_2020_03_010 crossref_primary_10_1103_PhysRevB_106_155115 crossref_primary_10_1016_j_cossms_2021_100952 crossref_primary_10_1103_PhysRevB_108_064202 crossref_primary_10_1103_PhysRevB_108_235418 crossref_primary_10_1103_PhysRevB_107_075156 crossref_primary_10_1038_s42254_023_00575_2 crossref_primary_10_1103_PhysRevB_110_075151 crossref_primary_10_1103_PhysRevLett_128_227601 crossref_primary_10_1021_acsaelm_1c00080 crossref_primary_10_1088_1367_2630_ac688c crossref_primary_10_1103_PhysRevLett_130_126001 crossref_primary_10_1038_s42005_022_00860_z crossref_primary_10_1021_acs_nanolett_2c02010 crossref_primary_10_1021_acs_nanolett_1c01972 crossref_primary_10_1088_2053_1583_ac69bb crossref_primary_10_1103_PhysRevB_104_235138 crossref_primary_10_1126_science_abh4273 crossref_primary_10_1103_PhysRevB_105_245408 crossref_primary_10_1088_2399_1984_acf0a9 crossref_primary_10_1103_PhysRevB_106_L201403 crossref_primary_10_1038_s41563_024_01950_9 crossref_primary_10_1103_PhysRevB_108_L100505 crossref_primary_10_1103_PhysRevB_106_L041402 crossref_primary_10_1103_PhysRevResearch_2_013342 crossref_primary_10_35848_1347_4065_ad3e89 crossref_primary_10_1038_s41467_022_29198_4 crossref_primary_10_1103_PhysRevLett_131_016003 crossref_primary_10_1016_j_jallcom_2022_163909 crossref_primary_10_1103_RevModPhys_94_041002 crossref_primary_10_1088_1674_1056_acb2c1 crossref_primary_10_1038_s41586_020_2260_6 crossref_primary_10_1103_PhysRevB_108_195119 crossref_primary_10_1103_PhysRevLett_131_026502 crossref_primary_10_1103_PhysRevLett_131_026501 crossref_primary_10_1103_PhysRevB_104_195113 crossref_primary_10_1103_PhysRevMaterials_9_L021002 crossref_primary_10_1103_PhysRevLett_130_216401 crossref_primary_10_1103_PhysRevB_111_125140 crossref_primary_10_1088_2053_1583_ad3b11 crossref_primary_10_1103_PhysRevB_109_125404 crossref_primary_10_1103_PhysRevResearch_2_013335 crossref_primary_10_1038_s41586_021_03409_2 crossref_primary_10_1103_PhysRevB_108_125106 crossref_primary_10_1103_PhysRevB_105_L100503 crossref_primary_10_1038_s41563_022_01287_1 crossref_primary_10_1103_PhysRevB_110_165406 crossref_primary_10_1039_D2NR02476D crossref_primary_10_1103_PhysRevB_103_115122 crossref_primary_10_1103_PhysRevB_106_155427 crossref_primary_10_1103_PhysRevResearch_2_033181 crossref_primary_10_1038_s41567_020_0825_9 crossref_primary_10_1039_D4NR02824D crossref_primary_10_1103_PhysRevB_109_045419 crossref_primary_10_1103_PhysRevB_103_205411 crossref_primary_10_1103_PhysRevB_103_205412 crossref_primary_10_1103_PhysRevB_103_205413 crossref_primary_10_1103_PhysRevLett_127_167001 crossref_primary_10_1016_j_newton_2024_100007 crossref_primary_10_1103_PhysRevB_101_155149 crossref_primary_10_1103_PhysRevB_103_205414 crossref_primary_10_1103_PhysRevB_103_205415 crossref_primary_10_1103_PhysRevB_111_035431 crossref_primary_10_1103_PhysRevResearch_4_013209 crossref_primary_10_1038_s41563_020_00840_0 crossref_primary_10_1103_PhysRevB_103_205416 crossref_primary_10_1103_PhysRevB_109_155145 crossref_primary_10_1103_PhysRevX_14_031045 crossref_primary_10_1039_D0TC00062K crossref_primary_10_1140_epjp_s13360_023_04815_3 crossref_primary_10_1103_PhysRevB_105_155135 crossref_primary_10_1103_PhysRevLett_128_156401 crossref_primary_10_1021_acs_nanolett_4c04201 crossref_primary_10_1103_PhysRevB_107_235155 crossref_primary_10_1039_D1CP03240B crossref_primary_10_1103_PhysRevLett_123_197702 crossref_primary_10_1016_j_physrep_2020_12_007 crossref_primary_10_1088_2399_1984_ad36ff crossref_primary_10_1103_PhysRevB_101_245436 crossref_primary_10_1088_1361_648X_abf0c2 crossref_primary_10_1103_PhysRevB_106_024507 crossref_primary_10_1038_s41586_021_03366_w crossref_primary_10_1088_1361_648X_abd526 crossref_primary_10_1002_aisy_202100080 crossref_primary_10_1103_PhysRevB_106_035107 crossref_primary_10_1103_PhysRevX_13_011026 crossref_primary_10_1103_PhysRevB_108_L121101 crossref_primary_10_1103_PhysRevB_102_125120 crossref_primary_10_1103_PhysRevB_110_085422 crossref_primary_10_1103_PhysRevLett_124_046403 crossref_primary_10_1021_acs_nanolett_1c00565 crossref_primary_10_1103_PhysRevB_109_184502 crossref_primary_10_1103_PhysRevB_107_125308 crossref_primary_10_1038_s41586_020_2339_0 crossref_primary_10_1103_PhysRevB_107_125423 crossref_primary_10_1103_PhysRevB_110_125421 crossref_primary_10_1103_PhysRevB_108_L121409 crossref_primary_10_1016_j_supcon_2023_100073 crossref_primary_10_1038_d41586_022_02108_w crossref_primary_10_1016_j_matt_2021_08_020 crossref_primary_10_1209_0295_5075_acef56 crossref_primary_10_1088_1674_1056_abb221 crossref_primary_10_1021_acs_jpclett_4c03542 crossref_primary_10_1002_apxr_202300048 crossref_primary_10_1103_PhysRevResearch_2_033271 crossref_primary_10_1038_s41565_024_01698_y crossref_primary_10_1103_PhysRevMaterials_8_L051001 crossref_primary_10_1103_PhysRevB_104_035119 crossref_primary_10_1103_PhysRevB_108_235120 crossref_primary_10_1007_s44214_022_00010_0 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1103_PhysRevB_106_184517 crossref_primary_10_1103_PhysRevB_106_235112 crossref_primary_10_1002_adma_202004974 crossref_primary_10_1103_PhysRevLett_129_047601 crossref_primary_10_7498_aps_72_20230120 crossref_primary_10_1038_s41467_021_25864_1 crossref_primary_10_1088_1674_1056_ad9e96 crossref_primary_10_1126_science_abb8754 crossref_primary_10_1038_s41586_024_07880_5 crossref_primary_10_1103_PhysRevB_103_195411 crossref_primary_10_1103_PhysRevLett_129_187001 crossref_primary_10_1103_PhysRevResearch_3_013153 crossref_primary_10_1021_acs_nanolett_3c00560 crossref_primary_10_1038_s41586_021_03252_5 crossref_primary_10_1103_PhysRevB_102_085103 crossref_primary_10_1063_5_0098239 crossref_primary_10_1038_s41586_020_2373_y crossref_primary_10_1103_PhysRevB_105_134524 crossref_primary_10_1038_s41586_023_05879_y crossref_primary_10_1021_acs_nanolett_4c02853 crossref_primary_10_1103_PhysRevB_104_115167 crossref_primary_10_1103_PhysRevResearch_4_033061 crossref_primary_10_1103_PhysRevLett_127_266601 crossref_primary_10_1021_acs_nanolett_1c03066 crossref_primary_10_1103_PhysRevB_100_155426 crossref_primary_10_1063_5_0077669 crossref_primary_10_1016_j_aop_2020_168100 crossref_primary_10_1103_PhysRevB_108_184515 crossref_primary_10_1103_PhysRevLett_124_186801 crossref_primary_10_1103_PhysRevLett_127_217001 crossref_primary_10_1038_s41566_020_0644_7 crossref_primary_10_1038_s41567_020_0906_9 crossref_primary_10_1073_pnas_2118482119 crossref_primary_10_1038_s41467_024_50456_0 crossref_primary_10_21468_SciPostPhys_13_1_004 crossref_primary_10_1088_0256_307X_39_7_077301 crossref_primary_10_1103_PhysRevB_108_094115 crossref_primary_10_1063_5_0246338 crossref_primary_10_1103_PhysRevB_104_045146 crossref_primary_10_1103_PhysRevB_110_L121123 crossref_primary_10_1103_RevModPhys_94_035004 crossref_primary_10_1021_acs_nanolett_4c04247 crossref_primary_10_1103_PhysRevB_102_045107 crossref_primary_10_1088_2053_1583_ac161d crossref_primary_10_1103_PhysRevB_104_195134 crossref_primary_10_1103_PhysRevX_13_041007 crossref_primary_10_1103_PhysRevB_101_125428 crossref_primary_10_1103_PhysRevB_108_125129 crossref_primary_10_1088_2053_1583_ac3259 crossref_primary_10_1103_PhysRevB_103_214311 |
Cites_doi | 10.1038/430512a 10.1038/nnano.2008.58 10.1103/PhysRevLett.117.116804 10.1103/PhysRevB.41.1278 10.1038/nature26160 10.1016/0022-3697(64)90180-5 10.1038/nature23893 10.1103/PhysRevLett.105.256805 10.1126/science.aav1910 10.1103/PhysRevLett.121.257001 10.1126/science.1227612 10.1103/PhysRevB.99.165112 10.1103/PhysRevB.98.035425 10.1126/science.1244358 10.1038/s41567-018-0278-6 10.1103/PhysRevLett.74.3253 10.1103/PhysRevB.77.115449 10.1103/PhysRev.167.331 10.1038/nature26154 10.1002/andp.19334080504 10.1021/acs.nanolett.5b05263 10.1073/pnas.1604145113 10.1103/PhysRevB.82.121407 10.1103/PhysRevLett.122.257002 10.1038/nnano.2010.172 10.1073/pnas.1108174108 10.1073/pnas.1620140114 10.1021/acs.nanolett.6b01906 10.1103/PhysRevB.98.241412 10.1007/BF01341426 10.1103/PhysRevB.96.075311 10.1103/PhysRevB.99.140302 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Oct 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Oct 2019 |
CorporateAuthor | Columbia Univ., New York, NY (United States) Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Programmable Quantum Materials (Pro-QM) – name: Columbia Univ., New York, NY (United States) |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OTOTI |
DOI | 10.1038/s41567-019-0596-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1016 |
ExternalDocumentID | 1767680 10_1038_s41567_019_0596_3 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI PUEGO Q9U AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c343t-cc4e8a64463fd3b402e3b11eb83e4d3f131634274373241e9a82aea6dbf4987a3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Thu May 18 22:41:23 EDT 2023 Sat Aug 23 14:13:47 EDT 2025 Tue Jul 01 00:25:39 EDT 2025 Thu Apr 24 22:50:25 EDT 2025 Fri Feb 21 02:37:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-cc4e8a64463fd3b402e3b11eb83e4d3f131634274373241e9a82aea6dbf4987a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0019443 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0003-0369-0230 0000-0001-5954-8028 0000-0003-3701-8119 0000-0002-5637-9203 0000-0001-8223-8896 0000-0003-2967-5960 0000000303690230 0000000337018119 0000000159548028 0000000329675960 0000000182238896 0000000256379203 |
PQID | 2299756608 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1767680 proquest_journals_2299756608 crossref_primary_10_1038_s41567_019_0596_3 crossref_citationtrail_10_1038_s41567_019_0596_3 springer_journals_10_1038_s41567_019_0596_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | Kim (CR7) 2017; 114 Chung, Xu, Chen (CR28) 2018; 98 Zibrov (CR34) 2017; 549 Dean (CR19) 2010; 5 Cao (CR3) 2018; 556 CR14 Lian, Wang, Bernevig (CR9) 2019; 122 CR11 CR32 Kim (CR33) 2016; 16 Hwang, Das Sarma (CR20) 2008; 77 Chen, Jang, Xiao, Ishigami, Fuhrer (CR18) 2008; 3 Stormer, Pfeiffer, Baldwin, West (CR25) 1990; 41 Emery, Kivelson (CR12) 1995; 74 Wu, MacDonald, Martin (CR8) 2018; 121 Wang (CR35) 2013; 342 McMillan (CR27) 1968; 167 Bistritzer, MacDonald (CR1) 2011; 108 Cao (CR4) 2018; 556 Grüneisen (CR24) 1933; 408 CR6 Choi, Choi (CR10) 2018; 98 Bloch (CR23) 1930; 59 Gorkov (CR26) 2016; 113 Cao (CR16) 2016; 117 Kim (CR15) 2016; 16 Wu, Hwang, Das Sarma (CR13) 2019; 99 Zaanen (CR31) 2004; 430 Bruin, Sakai, Perry, Mackenzie (CR30) 2013; 339 Efetov, Kim (CR21) 2010; 105 Wallbank (CR29) 2019; 15 Surez Morell, Correa, Vargas, Pacheco, Barticevic (CR2) 2010; 82 Komatsu (CR22) 1964; 25 Yankowitz (CR5) 2019; 363 Nam, Koshino (CR17) 2017; 96 F Bloch (596_CR23) 1930; 59 J-H Chen (596_CR18) 2008; 3 R Bistritzer (596_CR1) 2011; 108 Y Cao (596_CR16) 2016; 117 CR Dean (596_CR19) 2010; 5 Y Cao (596_CR3) 2018; 556 F Wu (596_CR13) 2019; 99 Y Cao (596_CR4) 2018; 556 LP Gorkov (596_CR26) 2016; 113 JR Wallbank (596_CR29) 2019; 15 JA Bruin (596_CR30) 2013; 339 J Zaanen (596_CR31) 2004; 430 K Kim (596_CR7) 2017; 114 Y Kim (596_CR15) 2016; 16 E Grüneisen (596_CR24) 1933; 408 HL Stormer (596_CR25) 1990; 41 L Wang (596_CR35) 2013; 342 M Yankowitz (596_CR5) 2019; 363 596_CR6 K Kim (596_CR33) 2016; 16 K Komatsu (596_CR22) 1964; 25 WL McMillan (596_CR27) 1968; 167 EH Hwang (596_CR20) 2008; 77 T-F Chung (596_CR28) 2018; 98 AA Zibrov (596_CR34) 2017; 549 E Surez Morell (596_CR2) 2010; 82 B Lian (596_CR9) 2019; 122 F Wu (596_CR8) 2018; 121 YW Choi (596_CR10) 2018; 98 DK Efetov (596_CR21) 2010; 105 NNT Nam (596_CR17) 2017; 96 596_CR32 596_CR11 VJ Emery (596_CR12) 1995; 74 596_CR14 |
References_xml | – volume: 430 start-page: 512 year: 2004 end-page: 513 ident: CR31 article-title: Why the temperature is high publication-title: Nature doi: 10.1038/430512a – volume: 3 start-page: 206 year: 2008 end-page: 209 ident: CR18 article-title: Intrinsic and extrinsic performance limits of graphene devices on SiO publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.58 – volume: 117 start-page: 116804 year: 2016 ident: CR16 article-title: Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.116804 – volume: 41 start-page: 1278 year: 1990 end-page: 1281 ident: CR25 article-title: Observation of a Bloch–Grüneisen regime in two-dimensional electron transport publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.1278 – ident: CR14 – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR4 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 25 start-page: 707 year: 1964 end-page: 712 ident: CR22 article-title: Interpretation of the specific heat of various graphites at very low temperatures publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(64)90180-5 – volume: 549 start-page: 360 year: 2017 end-page: 364 ident: CR34 article-title: Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level publication-title: Nature doi: 10.1038/nature23893 – volume: 105 start-page: 256805 year: 2010 ident: CR21 article-title: Controlling electron–phonon interactions in graphene at ultrahigh carrier densities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.256805 – volume: 363 start-page: 1059 year: 2019 end-page: 1064 ident: CR5 article-title: Tuning superconductivity in twisted bilayer graphene publication-title: Science doi: 10.1126/science.aav1910 – volume: 121 start-page: 257001 year: 2018 ident: CR8 article-title: Theory of phonon-mediated superconductivity in twisted bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.257001 – volume: 339 start-page: 804 year: 2013 end-page: 807 ident: CR30 article-title: Similarity of scattering rates in metals showing -linear resistivity publication-title: Science doi: 10.1126/science.1227612 – ident: CR6 – volume: 99 start-page: 165112 year: 2019 ident: CR13 article-title: Phonon-induced giant linear-in-resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.165112 – volume: 98 start-page: 035425 year: 2018 ident: CR28 article-title: Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau level crossing publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.035425 – volume: 342 start-page: 614 year: 2013 end-page: 617 ident: CR35 article-title: One-dimensional electrical contact to a two-dimensional material publication-title: Science doi: 10.1126/science.1244358 – volume: 15 start-page: 32 year: 2019 end-page: 36 ident: CR29 article-title: Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering publication-title: Nat. Phys. doi: 10.1038/s41567-018-0278-6 – volume: 74 start-page: 3253 year: 1995 end-page: 3256 ident: CR12 article-title: Superconductivity in bad metals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3253 – volume: 77 start-page: 115449 year: 2008 ident: CR20 article-title: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.115449 – volume: 167 start-page: 331 year: 1968 end-page: 344 ident: CR27 article-title: Transition temperature of strong-coupled superconductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.167.331 – volume: 556 start-page: 80 year: 2018 end-page: 84 ident: CR3 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 408 start-page: 530 year: 1933 end-page: 540 ident: CR24 article-title: Die abhängigkeit des elektrischen widerstandes reiner metalle von der temperatur publication-title: Ann. Phys. doi: 10.1002/andp.19334080504 – volume: 16 start-page: 1989 year: 2016 end-page: 1995 ident: CR33 article-title: van der Waals heterostructures with high accuracy rotational alignment publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05263 – volume: 113 start-page: 4646 year: 2016 end-page: 4651 ident: CR26 article-title: Phonon mechanism in the most dilute superconductor n-type SrTiO publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1604145113 – ident: CR11 – volume: 82 start-page: 121407 year: 2010 ident: CR2 article-title: Flat bands in slightly twisted bilayer graphene: tight-binding calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.121407 – volume: 122 start-page: 257002 year: 2019 ident: CR9 article-title: Twisted bilayer graphene: a phonon-driven superconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.257002 – ident: CR32 – volume: 5 start-page: 722 year: 2010 end-page: 726 ident: CR19 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 108 start-page: 12233 year: 2011 end-page: 12237 ident: CR1 article-title: Moiré bands in twisted double-layer graphene publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1108174108 – volume: 114 start-page: 3364 year: 2017 end-page: 3369 ident: CR7 article-title: Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620140114 – volume: 16 start-page: 5053 year: 2016 end-page: 5059 ident: CR15 article-title: Charge inversion and topological phase transition at a twist angle induced van Hove singularity of bilayer graphene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01906 – volume: 98 start-page: 241412 year: 2018 ident: CR10 article-title: Strong electron–phonon coupling, electron–hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241412 – volume: 59 start-page: 208 year: 1930 end-page: 214 ident: CR23 article-title: Zum elektrischen widerstandsgesetz bei tiefen temperaturen publication-title: Z. Phys. doi: 10.1007/BF01341426 – volume: 96 start-page: 075311 year: 2017 ident: CR17 article-title: Lattice relaxation and energy band modulation in twisted bilayer graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.075311 – volume: 3 start-page: 206 year: 2008 ident: 596_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.58 – volume: 105 start-page: 256805 year: 2010 ident: 596_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.256805 – volume: 98 start-page: 035425 year: 2018 ident: 596_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.035425 – volume: 41 start-page: 1278 year: 1990 ident: 596_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.1278 – volume: 96 start-page: 075311 year: 2017 ident: 596_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.075311 – volume: 122 start-page: 257002 year: 2019 ident: 596_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.257002 – volume: 16 start-page: 1989 year: 2016 ident: 596_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05263 – volume: 108 start-page: 12233 year: 2011 ident: 596_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1108174108 – ident: 596_CR6 – volume: 339 start-page: 804 year: 2013 ident: 596_CR30 publication-title: Science doi: 10.1126/science.1227612 – volume: 556 start-page: 43 year: 2018 ident: 596_CR4 publication-title: Nature doi: 10.1038/nature26160 – volume: 98 start-page: 241412 year: 2018 ident: 596_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241412 – volume: 5 start-page: 722 year: 2010 ident: 596_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 121 start-page: 257001 year: 2018 ident: 596_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.257001 – volume: 74 start-page: 3253 year: 1995 ident: 596_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3253 – volume: 113 start-page: 4646 year: 2016 ident: 596_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1604145113 – volume: 363 start-page: 1059 year: 2019 ident: 596_CR5 publication-title: Science doi: 10.1126/science.aav1910 – volume: 549 start-page: 360 year: 2017 ident: 596_CR34 publication-title: Nature doi: 10.1038/nature23893 – volume: 556 start-page: 80 year: 2018 ident: 596_CR3 publication-title: Nature doi: 10.1038/nature26154 – ident: 596_CR32 – volume: 77 start-page: 115449 year: 2008 ident: 596_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.115449 – volume: 25 start-page: 707 year: 1964 ident: 596_CR22 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(64)90180-5 – ident: 596_CR11 – volume: 99 start-page: 165112 year: 2019 ident: 596_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.165112 – volume: 82 start-page: 121407 year: 2010 ident: 596_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.121407 – volume: 408 start-page: 530 year: 1933 ident: 596_CR24 publication-title: Ann. Phys. doi: 10.1002/andp.19334080504 – volume: 117 start-page: 116804 year: 2016 ident: 596_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.116804 – volume: 114 start-page: 3364 year: 2017 ident: 596_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620140114 – volume: 342 start-page: 614 year: 2013 ident: 596_CR35 publication-title: Science doi: 10.1126/science.1244358 – volume: 16 start-page: 5053 year: 2016 ident: 596_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01906 – volume: 59 start-page: 208 year: 1930 ident: 596_CR23 publication-title: Z. Phys. doi: 10.1007/BF01341426 – volume: 15 start-page: 32 year: 2019 ident: 596_CR29 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0278-6 – volume: 430 start-page: 512 year: 2004 ident: 596_CR31 publication-title: Nature doi: 10.1038/430512a – ident: 596_CR14 doi: 10.1103/PhysRevB.99.140302 – volume: 167 start-page: 331 year: 1968 ident: 596_CR27 publication-title: Phys. Rev. doi: 10.1103/PhysRev.167.331 |
SSID | ssj0042613 |
Score | 2.6966653 |
Snippet | Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near
θ
≈ 1.1°, the low-energy electronic... Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1011 |
SubjectTerms | 142/126 639/766/119/1000/1018 639/766/119/995 Atomic Banded structure Bilayers Classical and Continuum Physics Complex Systems Condensed Matter Physics Electrical resistivity Electronic structure Graphene Letter Low temperature Mathematical and Computational Physics Molecular Optical and Plasma Physics optics, defects, charge transport, superconductivity, magnetism and spin physics, mesoscale science, materials and chemistry by design, mesostructured materials, synthesis (novel materials), synthesis (self-assembly) Physics Physics and Astronomy Superconductivity Theoretical |
Title | Large linear-in-temperature resistivity in twisted bilayer graphene |
URI | https://link.springer.com/article/10.1038/s41567-019-0596-3 https://www.proquest.com/docview/2299756608 https://www.osti.gov/biblio/1767680 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC50BsGLrC8cdYcc9qQ0JumepPskjjgryzqIKHhr-hUYkMzoRPz7VmU6Ky7oOS-o51ddlfoAfgmTYr1WOubRhJlwUjBVeMVsgcbs1CgVLdnEzbS4fhB_HkeP8cBtGccqu5jYBmo_d3RGfpZj3CwRe6TyfPHMiDWKuquRQmMd-hiCpexBf3w1vb3rYjHVB3z1S-SI5aLkXV-Ty7MllS40dqkYUdAw_ikz9eboYZ9Q53-N0jb_TH7AVgSOycVK09uwFuod2GgHON1yFy7_0kh3QqDRvLBZzWjnVFyYnGBJTa5MNBHJrE6aN9KtT-zsySDiTtql1Rjz9uBhcnV_ec0iQQJzXPCGOSeCNIhoCl55brEUDNxmWbCSB-F5lXFEWwLrTl4ibsqCMjI3wRTeVkLJ0vB96NXzOhxA4jFtSzuyQRaFcMojbMmz4CqjnK288gNIO-FoF7eHE4nFk2672FzqlTw1ylOTPDUfwMm_Rxar1Rnf3XxEEteY92l5raMpH9forESbkekAjjtF6OhjS_1hEQM47ZTzcfnLTx1-_7Ij2MzJKNqBvWPoNS-v4ScCj8YOYV1Ofg-hfzEZj6fDaGvvMDzVkg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7Rrar2UtGX2EJbH9pLK4sk402cA0IVdLuUhRNI3Fy_Iq2EspRNhfhT_MbO5FFEpXLjnMSWxp_H35cZzwB8VDYhvVZ4GQjCUnmtZJmHUrqcwOzLSaLaZhNHx_nsVP04m5ytwc1wF4bTKgef2DrqsPT8j3w7I79ZEPdI9O7FL8ldozi6OrTQ6GBxGK-vSLKtdg72aX0_Zdn028neTPZdBaRHhY30XkVtiQbkWAV0pJ8iujSNTmNUAasUiaIoEmtYENlIY2l1ZqPNg6sUCXSLNO4jeKyQTnK-mT79Pnh-ViPYXcCcyEwVOERRUW-vWChxkmcpueGNxDvn4GhJ-_kOx_0nLNuedtN1eN7TVPG1w9ULWIv1S3jSpov61SvYm3MCuWCKai_lopZc4aovzyxIwLPj4KYUYlGL5oqRFIRbnFvi96ItkU0e9jWcPojh3sCoXtZxA0QgkqDdxEWd58qXgUhSlkZf2dK7KpRhDMlgHOP7WuXcMuPctDFz1KazpyF7GranwTF8_vvJRVeo476XN9nihlgGl8r1nFPkG5MWhFCdjGFrWAjT7-iVucXfGL4Mi3P7-L9Tvb1_sA_wdHZyNDfzg-PDTXiWMUDaVMEtGDWXv-M7ojyNe9_iTMDPhwb2HyR8Dgs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRVS9VC0UsSxtfaAXkLVJ7E2cQ1W1wAoKrBAqEjfjr0grrbKUDVr1r_XXdSYfRVQqN85JbGn8PH4vM54B2JUmQr2WOe4Rwlw6JXme-pzbFMHs8lEk62YT55P0-Ep-vx5dr8Dv7i4MpVV2PrF21H7u6B_5MEG_mSH3iNSwaNMiLg7HX25_cuogRZHWrp1GA5HT8GuJ8m3x-eQQ1_pTkoyPfhwc87bDAHdCioo7J4MySAlSUXhhUUsFYeM4WCWC9KKIBdIVicJNZEg84pAblZhgUm8LiWLdCBz3BaxmpIp6sPrtaHJx2Z0DpE1Ecx1zxBOZiS6mKtRwQbKJUj5zTu1vuHh0KvbmuLsfMd5_grT12Td-A69b0sq-Nih7CyuhXIe1OnnULTbg4IzSyRkRVnPHpyWneldtsWaGcp7cCLWoYNOSVUvClWd2OjPI9lldMBv97Tu4ehbTbUKvnJdhC5hHyqDsyAaVptLlHilTEgdXmNzZwue-D1FnHO3ayuXUQGOm6wi6ULqxp0Z7arKnFn3Y-_vJbVO246mXB2RxjZyDCuc6yjBylY4zxKuK-rDTLYRu9_dCP6CxD_vd4jw8_u9U208P9hFeIqj12cnkdACvEsJHnTe4A73q7j68R_5T2Q8t0BjcPDe2_wBjhxOd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+linear-in-temperature+resistivity+in+twisted+bilayer+graphene&rft.jtitle=Nature+physics&rft.au=Polshyn%2C+Hryhoriy&rft.au=Yankowitz%2C+Matthew&rft.au=Chen%2C+Shaowen&rft.au=Zhang%2C+Yuxuan&rft.date=2019-10-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=15&rft.issue=10&rft.spage=1011&rft.epage=1016&rft_id=info:doi/10.1038%2Fs41567-019-0596-3&rft.externalDocID=10_1038_s41567_019_0596_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |