Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing

A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging becau...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 175; pp. 308 - 326
Main Authors Rahimi, A., Ejtehadi, O., Lee, K.H., Myong, R.S.
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.10.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0094-5765
1879-2030
DOI10.1016/j.actaastro.2020.05.042

Cover

Loading…
Abstract A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes. •Several scenarios possible depending on particle diameter, surface angle, altitude.•Near-field interaction of the multiple plumes at low altitude is near equilibrium.•Maximum particle velocity decreases with particle diameter irrespective of altitude.•High pressure and hot spots on the legs, the connectors, the bottom of the module.
AbstractList A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes. •Several scenarios possible depending on particle diameter, surface angle, altitude.•Near-field interaction of the multiple plumes at low altitude is near equilibrium.•Maximum particle velocity decreases with particle diameter irrespective of altitude.•High pressure and hot spots on the legs, the connectors, the bottom of the module.
A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes.
Author Lee, K.H.
Myong, R.S.
Rahimi, A.
Ejtehadi, O.
Author_xml – sequence: 1
  givenname: A.
  surname: Rahimi
  fullname: Rahimi, A.
  organization: School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju, South Korea
– sequence: 2
  givenname: O.
  surname: Ejtehadi
  fullname: Ejtehadi, O.
  organization: School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju, South Korea
– sequence: 3
  givenname: K.H.
  surname: Lee
  fullname: Lee, K.H.
  organization: Department of Aerospace Engineering, Sejong University, South Korea
– sequence: 4
  givenname: R.S.
  surname: Myong
  fullname: Myong, R.S.
  email: myong@gnu.ac.kr
  organization: School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju, South Korea
BookMark eNqNkE9P3DAQxa0KJJY_nwFLPSe1EzuJDz0gRCkSKhd6NhN7Al4FZzt2kPrt69W2HHppTyPNvPdG73fKjuISkbFLKWopZPdpW4PLACnTUjeiEbXQtVDNB7aRQ2-qRrTiiG2EMKrSfadP2GlKWyFE3wxmw56-IVA1BZw9383rK1ZppQkc8hAzUokOS-QQPSd8XuaQXzjSkv4sfUg7pAQz9yuF-MzzC_J5jUB8LveyOWfHE8wJL37PM_b9y83j9dfq_uH27vrqvnKtanPlxh5wlK2SSnetcUOnERwYM3jhRq3A69JGezeYTo6mh2b07dSqCXunlYH2jH085O5o-bFiyna7rBTLS9soLTqtpByK6vNB5UqJRDhZFzLsO2aCMFsp7B6q3dp3qHYP1QptC9Ti7__y7yi8Av38D-fVwYkFwltAsskFjA59IHTZ-iX8M-MXjZGa9A
CitedBy_id crossref_primary_10_1016_j_cja_2023_11_003
crossref_primary_10_1016_j_actaastro_2024_06_045
crossref_primary_10_3390_aerospace11090742
crossref_primary_10_1016_j_compfluid_2021_104841
crossref_primary_10_1016_j_jcp_2022_111052
crossref_primary_10_1063_5_0230314
crossref_primary_10_1089_space_2022_0015
crossref_primary_10_1109_JSTARS_2025_3540431
crossref_primary_10_1016_j_ast_2022_107852
crossref_primary_10_1093_pnasnexus_pgad300
crossref_primary_10_1007_s11440_022_01527_3
crossref_primary_10_1016_j_icarus_2024_116136
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103812
crossref_primary_10_1016_j_pss_2021_105398
crossref_primary_10_1063_5_0180669
crossref_primary_10_1103_PhysRevFluids_9_024306
crossref_primary_10_1063_5_0143398
crossref_primary_10_1007_s00162_024_00724_y
crossref_primary_10_1016_j_csite_2024_104835
crossref_primary_10_1016_j_actaastro_2024_11_021
crossref_primary_10_1016_j_actaastro_2025_02_046
crossref_primary_10_1016_j_actaastro_2022_02_016
crossref_primary_10_1016_j_actaastro_2023_04_024
crossref_primary_10_1016_j_actaastro_2021_05_009
crossref_primary_10_1186_s42774_020_00032_z
crossref_primary_10_1063_5_0223210
crossref_primary_10_1016_j_ast_2023_108730
crossref_primary_10_3390_aerospace9070358
crossref_primary_10_1007_s10409_024_23626_x
crossref_primary_10_1016_j_actaastro_2022_11_017
crossref_primary_10_1016_j_powtec_2020_07_041
crossref_primary_10_1063_5_0216768
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104008
crossref_primary_10_1063_5_0170871
crossref_primary_10_1063_5_0213648
crossref_primary_10_1063_5_0174388
crossref_primary_10_1063_5_0047925
crossref_primary_10_1016_j_icarus_2024_116135
crossref_primary_10_1016_j_compscitech_2023_109969
crossref_primary_10_3389_fmech_2023_1116330
crossref_primary_10_1016_j_actaastro_2024_02_013
crossref_primary_10_1016_j_actaastro_2024_02_014
crossref_primary_10_1155_2022_4698936
crossref_primary_10_1016_j_ijmst_2024_08_010
Cites_doi 10.1016/j.actaastro.2011.07.014
10.2514/3.4487
10.1063/1.1409367
10.1006/jcph.2000.6678
10.1017/S0022112072001806
10.6112/kscfe.2019.24.1.019
10.3390/aerospace4030048
10.1016/j.jcp.2014.05.013
10.2514/1.A33058
10.1016/j.ast.2015.01.010
10.2514/8.11476
10.1061/41096(366)16
10.2514/1.J051785
10.1029/2010JE003745
10.1007/BF01415828
10.2514/2.5572
10.1007/s00193-008-0129-y
10.1016/j.jcp.2005.09.020
10.1063/1.3562805
10.1016/j.cja.2013.02.003
10.2514/1.50459
10.1063/1.870137
10.1063/1.3490409
10.1063/1.5009122
10.1016/j.jcp.2020.109410
10.1016/j.ijmultiphaseflow.2018.03.004
10.1016/j.ast.2007.11.003
10.1016/j.jcp.2003.10.015
10.1016/j.ast.2016.05.008
10.1016/j.actaastro.2014.04.001
10.2514/1.J052408
10.1016/j.actaastro.2018.04.014
10.2514/3.2443
10.2514/1.50813
10.1063/1.1630799
ContentType Journal Article
Copyright 2020 IAA
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 IAA
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
7TB
7TG
8FD
FR3
H8D
KL.
L7M
DOI 10.1016/j.actaastro.2020.05.042
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2030
EndPage 326
ExternalDocumentID 10_1016_j_actaastro_2020_05_042
S0094576520303258
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7TB
7TG
8FD
EFKBS
FR3
H8D
KL.
L7M
ID FETCH-LOGICAL-c343t-cb7aeb134145639c865eaca998d0cb54ad58795dc8961b97a2bd3f34fe7c549a3
IEDL.DBID .~1
ISSN 0094-5765
IngestDate Wed Aug 13 10:35:44 EDT 2025
Tue Jul 01 01:39:43 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Sun Apr 06 06:53:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Surface erosion
Plume-surface interaction
Discrete phase model
Lunar landing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-cb7aeb134145639c865eaca998d0cb54ad58795dc8961b97a2bd3f34fe7c549a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2450654118
PQPubID 2045287
PageCount 19
ParticipantIDs proquest_journals_2450654118
crossref_citationtrail_10_1016_j_actaastro_2020_05_042
crossref_primary_10_1016_j_actaastro_2020_05_042
elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_05_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Acta astronautica
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tosh, Liever, Arslanbekov, Habchi (bib5) 2011; 48
Schwarzkopf, Sommerfeld, Crowe, Tsuji (bib37) 2011
Liou (bib40) 2006; 214
Gallis, Torczynski, Rader (bib29) 2001; 13
Ejtehadi, Rahimi, Myong (bib52) 2019; 24
Myong (bib28) 1999; 11
Roberts (bib31) 1966
Ebrahimi (bib11) 1997
Myong (bib26) 2004; 195
Ebrahimi, Levine, Kawasaki (bib10) 2000; 16
Li, Ren, Bo, Huang, Ye, Cui (bib35) 2018
Tsien (bib47) 1946; 13
He, He, Cai (bib14) 2012; 70
Klotz (bib2) 2017
Myong (bib27) 2001; 168
Metzger, Smith, Lane (bib44) 2011; 116
Roberts (bib54) 1963
Wrisdale, Mikulskis, Gilmore (bib9) 1996
Singh, Karchani, Myong (bib24) 2018; 30
Mehta, Sengupta, Renno, Norman, Huseman, Gulick, Pokora (bib51) 2013; 51
Ejtehadi, Myong (bib57) 2020; 411
Yim, Sibé, Ierardo (bib20) 2014
Lane, Metzger, Immer, Li (bib33) 2008; 2008
Moríñigo, Salvá (bib6) 2008; 12
Cai, Cai, Zhang, Li (bib18) 2017; 4
Cai, Huang (bib17) 2012; 50
Metzger, Lane, Immer (bib38) 2008; 2008
Burt, Boyd (bib30) 2004
Sommerfeld (bib49) 1994; 3
Scott, Ko (bib13) 1968; 6
(bib41) 2012
Khasawneh, Liu, Cai (bib16) 2010; 22
Sharma, Pisharady, Sunil Kumar (bib21) 2017
Anderson (bib50) 1990
Zheng, Nie, Chen, Chen, Lee (bib22) 2018; 148
Roberts, South (bib32) 1964; 2
Ejtehadi, Rahimi, Karchani, Myong (bib36) 2018; 104
Kiris, Housman, Barad, Brehm, Sozer, Moini-Yekta (bib12) 2016; 55
Lee (bib3) 2011; 48
LeVeque (bib39) 2002
Lane, Metzger, Carlson (bib34) 2010; 2010
Shao (bib45) 2008
Morris, Goldstein, Varghese, Trafton (bib53) 2011
Lyndon (bib1) 1975
Land, Clark (bib56) 1965
Hagemann, Frey (bib8) 2008; 17
He, He, Zhang, Cai (bib19) 2013; 26
Morris, Goldstein, Varghese, Trafton (bib15) 2015; 52
Morsi, Alexander (bib43) 1972; 55
Morris (bib46) 2012
(bib4) July 2004
Le, Xiao, Myong (bib25) 2014; 273
Myong (bib48) 2004; 16
(bib42) 2011; 15317
Hadjadj, Perrot, Verma (bib7) 2015; 42
Wei, Lin, Nie, Zhang, Ren (bib23) 2014; 101
Marble (bib55) 1963
Lane (10.1016/j.actaastro.2020.05.042_bib34) 2010; 2010
LeVeque (10.1016/j.actaastro.2020.05.042_bib39) 2002
Ejtehadi (10.1016/j.actaastro.2020.05.042_bib57) 2020; 411
Hadjadj (10.1016/j.actaastro.2020.05.042_bib7) 2015; 42
Roberts (10.1016/j.actaastro.2020.05.042_bib31) 1966
Morris (10.1016/j.actaastro.2020.05.042_bib46) 2012
Land (10.1016/j.actaastro.2020.05.042_bib56) 1965
Lyndon (10.1016/j.actaastro.2020.05.042_bib1) 1975
Tosh (10.1016/j.actaastro.2020.05.042_bib5) 2011; 48
Lee (10.1016/j.actaastro.2020.05.042_bib3) 2011; 48
Cai (10.1016/j.actaastro.2020.05.042_bib18) 2017; 4
Klotz (10.1016/j.actaastro.2020.05.042_bib2) 2017
Roberts (10.1016/j.actaastro.2020.05.042_bib54) 1963
Morris (10.1016/j.actaastro.2020.05.042_bib15) 2015; 52
Sommerfeld (10.1016/j.actaastro.2020.05.042_bib49) 1994; 3
Moríñigo (10.1016/j.actaastro.2020.05.042_bib6) 2008; 12
Anderson (10.1016/j.actaastro.2020.05.042_bib50) 1990
Shao (10.1016/j.actaastro.2020.05.042_bib45) 2008
Metzger (10.1016/j.actaastro.2020.05.042_bib38) 2008; 2008
Myong (10.1016/j.actaastro.2020.05.042_bib48) 2004; 16
Morsi (10.1016/j.actaastro.2020.05.042_bib43) 1972; 55
Zheng (10.1016/j.actaastro.2020.05.042_bib22) 2018; 148
Morris (10.1016/j.actaastro.2020.05.042_bib53) 2011
(10.1016/j.actaastro.2020.05.042_bib42) 2011; 15317
Khasawneh (10.1016/j.actaastro.2020.05.042_bib16) 2010; 22
Myong (10.1016/j.actaastro.2020.05.042_bib26) 2004; 195
Gallis (10.1016/j.actaastro.2020.05.042_bib29) 2001; 13
Lane (10.1016/j.actaastro.2020.05.042_bib33) 2008; 2008
(10.1016/j.actaastro.2020.05.042_bib4) 2004
Yim (10.1016/j.actaastro.2020.05.042_bib20) 2014
Ejtehadi (10.1016/j.actaastro.2020.05.042_bib52) 2019; 24
Sharma (10.1016/j.actaastro.2020.05.042_bib21) 2017
Liou (10.1016/j.actaastro.2020.05.042_bib40) 2006; 214
Metzger (10.1016/j.actaastro.2020.05.042_bib44) 2011; 116
Cai (10.1016/j.actaastro.2020.05.042_bib17) 2012; 50
Wrisdale (10.1016/j.actaastro.2020.05.042_bib9) 1996
Roberts (10.1016/j.actaastro.2020.05.042_bib32) 1964; 2
Li (10.1016/j.actaastro.2020.05.042_bib35) 2018
Burt (10.1016/j.actaastro.2020.05.042_bib30) 2004
Wei (10.1016/j.actaastro.2020.05.042_bib23) 2014; 101
Ebrahimi (10.1016/j.actaastro.2020.05.042_bib10) 2000; 16
Scott (10.1016/j.actaastro.2020.05.042_bib13) 1968; 6
Le (10.1016/j.actaastro.2020.05.042_bib25) 2014; 273
He (10.1016/j.actaastro.2020.05.042_bib14) 2012; 70
He (10.1016/j.actaastro.2020.05.042_bib19) 2013; 26
Ebrahimi (10.1016/j.actaastro.2020.05.042_bib11) 1997
Schwarzkopf (10.1016/j.actaastro.2020.05.042_bib37) 2011
(10.1016/j.actaastro.2020.05.042_bib41) 2012
Tsien (10.1016/j.actaastro.2020.05.042_bib47) 1946; 13
Ejtehadi (10.1016/j.actaastro.2020.05.042_bib36) 2018; 104
Hagemann (10.1016/j.actaastro.2020.05.042_bib8) 2008; 17
Marble (10.1016/j.actaastro.2020.05.042_bib55) 1963
Myong (10.1016/j.actaastro.2020.05.042_bib28) 1999; 11
Myong (10.1016/j.actaastro.2020.05.042_bib27) 2001; 168
Kiris (10.1016/j.actaastro.2020.05.042_bib12) 2016; 55
Mehta (10.1016/j.actaastro.2020.05.042_bib51) 2013; 51
Singh (10.1016/j.actaastro.2020.05.042_bib24) 2018; 30
References_xml – volume: 2
  start-page: 971
  year: 1964
  end-page: 973
  ident: bib32
  article-title: Comments on exhaust flow field and surface impingement
  publication-title: AIAA J.
– volume: 50
  start-page: 2908
  year: 2012
  end-page: 2918
  ident: bib17
  article-title: High-speed rarefied round jet and jet impingement flows
  publication-title: AIAA J.
– volume: 51
  start-page: 2800
  year: 2013
  end-page: 2818
  ident: bib51
  article-title: Thruster plume surface interactions: applications for spacecraft landings on planetary bodies
  publication-title: AIAA J.
– volume: 101
  start-page: 55
  year: 2014
  end-page: 66
  ident: bib23
  article-title: Investigation on soft-landing dynamics of four-legged lunar lander
  publication-title: Acta Astronaut.
– start-page: 11
  year: 2017
  ident: bib21
  article-title: Plume flow field analysis for lander propulsion system of Chandrayaan-2 mission
  publication-title: 68th International Astronautical Congress
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 9
  ident: bib33
  article-title: Lagrangian trajectory modeling of lunar dust particles, Earth & Space
  publication-title: Eng. Sci. Construct. Oper. Challenging Environ.
– start-page: 3883
  year: 2014
  ident: bib20
  article-title: Plume impingement analysis for the european service module propulsion system
  publication-title: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
– volume: 273
  start-page: 160
  year: 2014
  end-page: 184
  ident: bib25
  article-title: A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases
  publication-title: J. Comput. Phys.
– start-page: 2633
  year: 1965
  ident: bib56
  article-title: Experimental investigation of jet impingement on surfaces of fine particles in a vacuum environment
  publication-title: Natl. Aeronaut. Space Adm.
– volume: 26
  start-page: 269
  year: 2013
  end-page: 278
  ident: bib19
  article-title: Plume aerodynamic effects of cushion engine in lunar landing
  publication-title: Chin. J. Aeronaut.
– start-page: 2942
  year: 1997
  ident: bib11
  article-title: Numerical investigation of multi-plume rocket phenomenology
  publication-title: 33rd Joint Propulsion Conference and Exhibit
– start-page: 60
  year: 2017
  end-page: 61
  ident: bib2
  article-title: New moon, Aviation Week & Space Technology November 27-December 10
– volume: 13
  start-page: 653
  year: 1946
  end-page: 664
  ident: bib47
  article-title: Superaerodynamics, mechanics of rarefied gases
  publication-title: J. Aeronaut. Sci.
– year: 1990
  ident: bib50
  article-title: Modern Compressible Flow: with Historical Perspective
– start-page: 1187
  year: 2011
  end-page: 1192
  ident: bib53
  article-title: Plume impingement on a dusty lunar surface
  publication-title: AIP Conference Proceedings
– year: 2012
  ident: bib46
  article-title: Simulation of Rocket Plume Impingement and Dust Dispersal on the Lunar Surface
– year: July 2004
  ident: bib4
  publication-title: Apollo 16 Astronaut John Young
– start-page: 68725
  year: 1975
  ident: bib1
  article-title: Apollo Program Summary Report
– year: 2012
  ident: bib41
  publication-title: ANSYS FLUENT User Manuals V14.0
– start-page: 269
  year: 1966
  end-page: 290
  ident: bib31
  article-title: The interaction of a rocket exhaust with the lunar surface
  publication-title: The Fluid Dynamic Aspects of Space Flight, Proceeding of the AGARD-NATO Specialists Meeting
– volume: 3
  start-page: 299
  year: 1994
  end-page: 311
  ident: bib49
  article-title: The structure of particle-laden, underexpanded free jets
  publication-title: Shock Waves
– volume: 24
  start-page: 19
  year: 2019
  end-page: 28
  ident: bib52
  article-title: Numerical investigation of the counter-intuitive behavior of Mach disc movement in underexpanded gas-particle jets
  publication-title: J. Comput. Fluids Eng.
– volume: 116
  year: 2011
  ident: bib44
  article-title: Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site
  publication-title: J. Geophys. Res.: Planets
– volume: 48
  start-page: 93
  year: 2011
  ident: bib5
  article-title: Numerical analysis of spacecraft rocket plume impingement under lunar environment
  publication-title: J. Spacecraft Rockets
– volume: 148
  start-page: 69
  year: 2018
  end-page: 81
  ident: bib22
  article-title: Dynamic analysis of lunar lander during soft landing using explicit finite element method
  publication-title: Acta Astronaut.
– year: 2002
  ident: bib39
  article-title: Finite Volume Methods for Hyperbolic Problems
– volume: 195
  start-page: 655
  year: 2004
  end-page: 676
  ident: bib26
  article-title: A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows
  publication-title: J. Comput. Phys.
– volume: 16
  start-page: 104
  year: 2004
  end-page: 117
  ident: bib48
  article-title: Gaseous slip models based on the Langmuir adsorption isotherm
  publication-title: Phys. Fluids
– volume: 13
  start-page: 3482
  year: 2001
  end-page: 3492
  ident: bib29
  article-title: An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method
  publication-title: Phys. Fluids
– volume: 4
  start-page: 48
  year: 2017
  ident: bib18
  article-title: Rarefication effects on jet impingement loads
  publication-title: Aerospace
– volume: 55
  start-page: 189
  year: 2016
  end-page: 219
  ident: bib12
  article-title: Computational framework for launch, ascent, and vehicle aerodynamics (LAVA)
  publication-title: Aero. Sci. Technol.
– volume: 11
  start-page: 2788
  year: 1999
  end-page: 2802
  ident: bib28
  article-title: Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows
  publication-title: Phys. Fluids
– volume: 16
  start-page: 178
  year: 2000
  end-page: 186
  ident: bib10
  article-title: Numerical investigation of twin-nozzle rocket plume phenomenology
  publication-title: J. Propul. Power
– volume: 2010
  start-page: 134
  year: 2010
  end-page: 142
  ident: bib34
  article-title: Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow, Earth and Space
  publication-title: Eng. Sci. Construct. Oper. Challenging Environ.
– volume: 48
  start-page: 346
  year: 2011
  end-page: 354
  ident: bib3
  article-title: Lunar orbiter trade study and conceptual design of onboard propulsion system
  publication-title: J. Spacecraft Rockets
– volume: 70
  start-page: 100
  year: 2012
  end-page: 111
  ident: bib14
  article-title: Simulation of rocket plume and lunar dust using DSMC method
  publication-title: Acta Astronaut.
– year: 2018
  ident: bib35
  article-title: Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust
  publication-title: Acta Astronaut.
– volume: 12
  start-page: 485
  year: 2008
  end-page: 489
  ident: bib6
  article-title: Numerical study of the start-up process in an optimized rocket nozzle
  publication-title: Aero. Sci. Technol.
– start-page: 21
  year: 1963
  end-page: 23
  ident: bib54
  article-title: The action of a hypersonic jet on a dust layer
  publication-title: IAS Paper No. 65-50, Institute of the Aerospace Sciences 31st Annual Meeting
– volume: 15317
  start-page: 724
  year: 2011
  end-page: 746
  ident: bib42
  publication-title: Creat. Diffus. Util.
– start-page: 1351
  year: 2004
  ident: bib30
  article-title: Development of a two-way coupled model for two phase rarefied flows
  publication-title: 42nd AIAA Aerospace Sciences Meeting and Exhibit
– volume: 6
  start-page: 258
  year: 1968
  end-page: 264
  ident: bib13
  article-title: Transient rocket-engine gas flow in soil
  publication-title: AIAA J.
– volume: 214
  start-page: 137
  year: 2006
  end-page: 170
  ident: bib40
  article-title: A sequel to AUSM, Part II: AUSM+-up for all speeds
  publication-title: J. Comput. Phys.
– volume: 411
  start-page: 109410
  year: 2020
  ident: bib57
  article-title: A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework
  publication-title: J. Comput. Phys.
– volume: 168
  start-page: 47
  year: 2001
  end-page: 72
  ident: bib27
  article-title: A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: 158
  year: 2015
  end-page: 168
  ident: bib7
  article-title: Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles
  publication-title: Aero. Sci. Technol.
– volume: 22
  start-page: 117101
  year: 2010
  ident: bib16
  article-title: Highly rarefied two-dimensional jet impingement on a flat plate
  publication-title: Phys. Fluids
– volume: 30
  year: 2018
  ident: bib24
  article-title: Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation
  publication-title: Phys. Fluids
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 8
  ident: bib38
  article-title: Modification of Roberts' theory for rocket exhaust plumes eroding lunar soil, Earth & Space
  publication-title: Eng. Sci. Construct. Oper. Challenging Environ.
– volume: 52
  start-page: 362
  year: 2015
  end-page: 374
  ident: bib15
  article-title: Approach for modeling rocket plume impingement and dust dispersal on the moon
  publication-title: J. Spacecraft Rockets
– start-page: 175
  year: 1963
  end-page: 213
  ident: bib55
  article-title: Dynamics of a gas containing small solid particles
  publication-title: Combust. Propul.
– volume: 17
  start-page: 387
  year: 2008
  end-page: 395
  ident: bib8
  article-title: Shock pattern in the plume of rocket nozzles: needs for design consideration
  publication-title: Shock Waves
– volume: 55
  start-page: 193
  year: 1972
  end-page: 208
  ident: bib43
  article-title: An investigation of particle trajectories in two-phase flow systems
  publication-title: J. Fluid Mech.
– year: 2008
  ident: bib45
  article-title: Physics and Modelling of Wind Erosion
– volume: 104
  start-page: 125
  year: 2018
  end-page: 151
  ident: bib36
  article-title: Complex wave patterns in dilute gas–particle flows based on a novel discontinuous Galerkin scheme
  publication-title: Int. J. Multiphas. Flow
– year: 1996
  ident: bib9
  article-title: Navier-Stokes Calculations of a Twin-Nozzle Rocket Plume
– year: 2011
  ident: bib37
  article-title: Multiphase Flows with Droplets and Particles
– volume: 70
  start-page: 100
  year: 2012
  ident: 10.1016/j.actaastro.2020.05.042_bib14
  article-title: Simulation of rocket plume and lunar dust using DSMC method
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2011.07.014
– start-page: 2942
  year: 1997
  ident: 10.1016/j.actaastro.2020.05.042_bib11
  article-title: Numerical investigation of multi-plume rocket phenomenology
– volume: 6
  start-page: 258
  year: 1968
  ident: 10.1016/j.actaastro.2020.05.042_bib13
  article-title: Transient rocket-engine gas flow in soil
  publication-title: AIAA J.
  doi: 10.2514/3.4487
– year: 2012
  ident: 10.1016/j.actaastro.2020.05.042_bib41
– volume: 13
  start-page: 3482
  year: 2001
  ident: 10.1016/j.actaastro.2020.05.042_bib29
  article-title: An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method
  publication-title: Phys. Fluids
  doi: 10.1063/1.1409367
– volume: 168
  start-page: 47
  year: 2001
  ident: 10.1016/j.actaastro.2020.05.042_bib27
  article-title: A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6678
– start-page: 68725
  year: 1975
  ident: 10.1016/j.actaastro.2020.05.042_bib1
– volume: 55
  start-page: 193
  year: 1972
  ident: 10.1016/j.actaastro.2020.05.042_bib43
  article-title: An investigation of particle trajectories in two-phase flow systems
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112072001806
– volume: 24
  start-page: 19
  year: 2019
  ident: 10.1016/j.actaastro.2020.05.042_bib52
  article-title: Numerical investigation of the counter-intuitive behavior of Mach disc movement in underexpanded gas-particle jets
  publication-title: J. Comput. Fluids Eng.
  doi: 10.6112/kscfe.2019.24.1.019
– volume: 4
  start-page: 48
  year: 2017
  ident: 10.1016/j.actaastro.2020.05.042_bib18
  article-title: Rarefication effects on jet impingement loads
  publication-title: Aerospace
  doi: 10.3390/aerospace4030048
– volume: 273
  start-page: 160
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.042_bib25
  article-title: A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.013
– volume: 52
  start-page: 362
  year: 2015
  ident: 10.1016/j.actaastro.2020.05.042_bib15
  article-title: Approach for modeling rocket plume impingement and dust dispersal on the moon
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A33058
– volume: 42
  start-page: 158
  year: 2015
  ident: 10.1016/j.actaastro.2020.05.042_bib7
  article-title: Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2015.01.010
– volume: 13
  start-page: 653
  year: 1946
  ident: 10.1016/j.actaastro.2020.05.042_bib47
  article-title: Superaerodynamics, mechanics of rarefied gases
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.11476
– volume: 2010
  start-page: 134
  year: 2010
  ident: 10.1016/j.actaastro.2020.05.042_bib34
  article-title: Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow, Earth and Space
  publication-title: Eng. Sci. Construct. Oper. Challenging Environ.
  doi: 10.1061/41096(366)16
– volume: 50
  start-page: 2908
  year: 2012
  ident: 10.1016/j.actaastro.2020.05.042_bib17
  article-title: High-speed rarefied round jet and jet impingement flows
  publication-title: AIAA J.
  doi: 10.2514/1.J051785
– volume: 116
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.042_bib44
  article-title: Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site
  publication-title: J. Geophys. Res.: Planets
  doi: 10.1029/2010JE003745
– volume: 3
  start-page: 299
  year: 1994
  ident: 10.1016/j.actaastro.2020.05.042_bib49
  article-title: The structure of particle-laden, underexpanded free jets
  publication-title: Shock Waves
  doi: 10.1007/BF01415828
– volume: 2008
  start-page: 1
  year: 2008
  ident: 10.1016/j.actaastro.2020.05.042_bib38
  article-title: Modification of Roberts' theory for rocket exhaust plumes eroding lunar soil, Earth & Space
  publication-title: Eng. Sci. Construct. Oper. Challenging Environ.
– volume: 16
  start-page: 178
  year: 2000
  ident: 10.1016/j.actaastro.2020.05.042_bib10
  article-title: Numerical investigation of twin-nozzle rocket plume phenomenology
  publication-title: J. Propul. Power
  doi: 10.2514/2.5572
– year: 2002
  ident: 10.1016/j.actaastro.2020.05.042_bib39
– start-page: 60
  year: 2017
  ident: 10.1016/j.actaastro.2020.05.042_bib2
– start-page: 1351
  year: 2004
  ident: 10.1016/j.actaastro.2020.05.042_bib30
  article-title: Development of a two-way coupled model for two phase rarefied flows
– volume: 17
  start-page: 387
  year: 2008
  ident: 10.1016/j.actaastro.2020.05.042_bib8
  article-title: Shock pattern in the plume of rocket nozzles: needs for design consideration
  publication-title: Shock Waves
  doi: 10.1007/s00193-008-0129-y
– volume: 214
  start-page: 137
  year: 2006
  ident: 10.1016/j.actaastro.2020.05.042_bib40
  article-title: A sequel to AUSM, Part II: AUSM+-up for all speeds
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.09.020
– start-page: 1187
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.042_bib53
  article-title: Plume impingement on a dusty lunar surface
  doi: 10.1063/1.3562805
– volume: 26
  start-page: 269
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.042_bib19
  article-title: Plume aerodynamic effects of cushion engine in lunar landing
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2013.02.003
– year: 1996
  ident: 10.1016/j.actaastro.2020.05.042_bib9
– volume: 48
  start-page: 346
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.042_bib3
  article-title: Lunar orbiter trade study and conceptual design of onboard propulsion system
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.50459
– volume: 11
  start-page: 2788
  year: 1999
  ident: 10.1016/j.actaastro.2020.05.042_bib28
  article-title: Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.870137
– year: 2018
  ident: 10.1016/j.actaastro.2020.05.042_bib35
  article-title: Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust
  publication-title: Acta Astronaut.
– volume: 22
  start-page: 117101
  year: 2010
  ident: 10.1016/j.actaastro.2020.05.042_bib16
  article-title: Highly rarefied two-dimensional jet impingement on a flat plate
  publication-title: Phys. Fluids
  doi: 10.1063/1.3490409
– volume: 30
  year: 2018
  ident: 10.1016/j.actaastro.2020.05.042_bib24
  article-title: Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation
  publication-title: Phys. Fluids
  doi: 10.1063/1.5009122
– volume: 411
  start-page: 109410
  year: 2020
  ident: 10.1016/j.actaastro.2020.05.042_bib57
  article-title: A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109410
– volume: 2008
  start-page: 1
  year: 2008
  ident: 10.1016/j.actaastro.2020.05.042_bib33
  article-title: Lagrangian trajectory modeling of lunar dust particles, Earth & Space
  publication-title: Eng. Sci. Construct. Oper. Challenging Environ.
– volume: 104
  start-page: 125
  year: 2018
  ident: 10.1016/j.actaastro.2020.05.042_bib36
  article-title: Complex wave patterns in dilute gas–particle flows based on a novel discontinuous Galerkin scheme
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.03.004
– volume: 12
  start-page: 485
  year: 2008
  ident: 10.1016/j.actaastro.2020.05.042_bib6
  article-title: Numerical study of the start-up process in an optimized rocket nozzle
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2007.11.003
– volume: 195
  start-page: 655
  year: 2004
  ident: 10.1016/j.actaastro.2020.05.042_bib26
  article-title: A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.10.015
– year: 1990
  ident: 10.1016/j.actaastro.2020.05.042_bib50
– volume: 55
  start-page: 189
  year: 2016
  ident: 10.1016/j.actaastro.2020.05.042_bib12
  article-title: Computational framework for launch, ascent, and vehicle aerodynamics (LAVA)
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2016.05.008
– year: 2008
  ident: 10.1016/j.actaastro.2020.05.042_bib45
– volume: 101
  start-page: 55
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.042_bib23
  article-title: Investigation on soft-landing dynamics of four-legged lunar lander
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.04.001
– start-page: 175
  year: 1963
  ident: 10.1016/j.actaastro.2020.05.042_bib55
  article-title: Dynamics of a gas containing small solid particles
  publication-title: Combust. Propul.
– volume: 51
  start-page: 2800
  year: 2013
  ident: 10.1016/j.actaastro.2020.05.042_bib51
  article-title: Thruster plume surface interactions: applications for spacecraft landings on planetary bodies
  publication-title: AIAA J.
  doi: 10.2514/1.J052408
– volume: 148
  start-page: 69
  year: 2018
  ident: 10.1016/j.actaastro.2020.05.042_bib22
  article-title: Dynamic analysis of lunar lander during soft landing using explicit finite element method
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.04.014
– volume: 2
  start-page: 971
  year: 1964
  ident: 10.1016/j.actaastro.2020.05.042_bib32
  article-title: Comments on exhaust flow field and surface impingement
  publication-title: AIAA J.
  doi: 10.2514/3.2443
– start-page: 21
  year: 1963
  ident: 10.1016/j.actaastro.2020.05.042_bib54
  article-title: The action of a hypersonic jet on a dust layer
– year: 2011
  ident: 10.1016/j.actaastro.2020.05.042_bib37
– year: 2012
  ident: 10.1016/j.actaastro.2020.05.042_bib46
– year: 2004
  ident: 10.1016/j.actaastro.2020.05.042_bib4
– volume: 48
  start-page: 93
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.042_bib5
  article-title: Numerical analysis of spacecraft rocket plume impingement under lunar environment
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.50813
– start-page: 3883
  year: 2014
  ident: 10.1016/j.actaastro.2020.05.042_bib20
  article-title: Plume impingement analysis for the european service module propulsion system
– start-page: 269
  year: 1966
  ident: 10.1016/j.actaastro.2020.05.042_bib31
  article-title: The interaction of a rocket exhaust with the lunar surface
– volume: 15317
  start-page: 724
  year: 2011
  ident: 10.1016/j.actaastro.2020.05.042_bib42
  publication-title: Creat. Diffus. Util.
– start-page: 2633
  year: 1965
  ident: 10.1016/j.actaastro.2020.05.042_bib56
  article-title: Experimental investigation of jet impingement on surfaces of fine particles in a vacuum environment
  publication-title: Natl. Aeronaut. Space Adm.
– volume: 16
  start-page: 104
  year: 2004
  ident: 10.1016/j.actaastro.2020.05.042_bib48
  article-title: Gaseous slip models based on the Langmuir adsorption isotherm
  publication-title: Phys. Fluids
  doi: 10.1063/1.1630799
– start-page: 11
  year: 2017
  ident: 10.1016/j.actaastro.2020.05.042_bib21
  article-title: Plume flow field analysis for lander propulsion system of Chandrayaan-2 mission
SSID ssj0007289
Score 2.463509
Snippet A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 308
SubjectTerms Design engineering
Discrete phase model
Dispersal
Dust
Dust particles
Erosion models
Erosion rates
Exhaust gases
Finite volume method
Flow characteristics
Flow rates
Gas expansion
Heat flux
Lunar dust
Lunar landing
Lunar Module
Lunar surface
Lunar surface vehicles
Mach number
Mass flow rate
Microgravity
Near fields
Particle density (concentration)
Particle size
Physics
Plume-surface interaction
Regolith
Rocket nozzles
Shear stress
Spacecraft components
Stress concentration
Surface erosion
Title Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing
URI https://dx.doi.org/10.1016/j.actaastro.2020.05.042
https://www.proquest.com/docview/2450654118
Volume 175
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywmgY_kpitqqgKSJ2o1M04tiOKqlCl6cpv55xHoUioA2OsOInuLnffSfd9RugmlpEOUhMQbpOQcMkZSYzgxAkmDUAIqW05bTEJx1P-NBOzFho2XBg_Vlnn_iqnl9m6XunX1uwv53PP8ZUc0LKgEKeMCk_45Tzy-vm3n99jHhGNKwgsOfF3b814aVNovSpyzwKkQSnhyelfFepXri4L0OgIHdbIEQ-qjztGLZedoIMfeoKn6HUCcUvKoTS89FmHrNZ5qo3DXhUirzgMWGcWe2YKAPA37OAbmkU797LhK3hJRV7EAA7xYp3pHC8q9ssZmo4eXoZjUh-hQAzjrCAmiTRkYyhVAJTA-nEoINNq6LFsYBLBtRX-tHFrYhneJeA3mliWMp66CDwmNTtH7ewjcxcIS2hljZemYRG0dAFNZEp57FLHRJRazTsobMymTK0v7o-5WKhmkOxdbeytvL1VIBTYu4OCzcZlJbGxe8t94xe1FS0KCsHuzd3Gk6r-YVeKcuFpttBuXf7n2Vdo319V035d1C7ytbsG1FIkvTIse2hv8Pg8nnwBHgjuaw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIpCAQ-sVoMfScyGEFXLoxOV2IxjO6KoClWS_n_OeVQUCXVgdXSJdXf57izd9xmh61hGOkhNQLhNQsIlZyQxghMnmDTQQkhtq2mLcTic8Mc38dZB9y0Xxo9VNthfY3qF1s1Kv_Fmfz6deo6v5NAtCwp5yqiIN9CWV6eCZN-6Gz0Nx0tAjmhcd8GSE2-wMualTal1UeaeCEiDSsWT07-K1C-4rmrQYB_tNc0jvqv3d4A6LjtEuz8kBY_Q-xhSl1RzaXjugYcUizzVxmEvDJHXNAasM4s9OQV68A_sYA_top165fACPlLzFzH0h3i2yHSOZzUB5hhNBg-v90PS3KJADOOsJCaJNAAyVCvolSAAcSgAbDUcs2xgEsG1Ff7CcWtiGd4kEDqaWJYynroIgiY1O0Gb2VfmThGWcJo1Xp2GRXCqC2giU8pjlzomotRq3kVh6zZlGolxf9PFTLWzZJ9q6W_l_a0CocDfXRQsDee1ysZ6k9s2LmolYRTUgvXGvTaSqvlnC0W58ExbOHGd_efdV2h7-PryrJ5H46dztOOf1MN_PbRZ5gt3AU1MmVw2SfoNRynxHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-field+plume-surface+interaction+and+regolith+erosion+and+dispersal+during+the+lunar+landing&rft.jtitle=Acta+astronautica&rft.au=Rahimi%2C+A&rft.au=Ejtehadi%2C+O&rft.au=Lee%2C+KH&rft.au=Myong%2C+RS&rft.date=2020-10-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=175&rft.spage=308&rft_id=info:doi/10.1016%2Fj.actaastro.2020.05.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon