Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing
A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging becau...
Saved in:
Published in | Acta astronautica Vol. 175; pp. 308 - 326 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0094-5765 1879-2030 |
DOI | 10.1016/j.actaastro.2020.05.042 |
Cover
Loading…
Abstract | A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes.
•Several scenarios possible depending on particle diameter, surface angle, altitude.•Near-field interaction of the multiple plumes at low altitude is near equilibrium.•Maximum particle velocity decreases with particle diameter irrespective of altitude.•High pressure and hot spots on the legs, the connectors, the bottom of the module. |
---|---|
AbstractList | A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes.
•Several scenarios possible depending on particle diameter, surface angle, altitude.•Near-field interaction of the multiple plumes at low altitude is near equilibrium.•Maximum particle velocity decreases with particle diameter irrespective of altitude.•High pressure and hot spots on the legs, the connectors, the bottom of the module. A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the near-field rocket plume-lunar surface interaction and subsequent regolith erosion and particle dispersal. These subjects are challenging because of the complicated flow physics associated with the inherently multi-physics multi-scale problem, and the special lunar conditions, characterized by micro-gravity, near-vacuum, extreme dryness, and the unique properties of the regolith. Gas expansion into the near-vacuum lunar condition compared to exhaust gas under terrestrial circumstances varies not only in the shape of plume but also in the pressure profile on the surface. To understand the effect of surface erosion on flow characteristics, in conjunction with the finite volume method of plume impingement of a rocket nozzle, the Roberts erosion model was introduced for the influx mass flow rate of dust particles based on excess shear stress. The particulate phase was then handled in a Lagrangian framework using the discrete phase model. A parametric study on erosion rate was also conducted to examine the effect of particle density, particle diameter, Mach number, and hover altitude. Additionally, the maximum speed and inclined angle of the particles from the surface were computed for various particle diameters and hover altitudes. The resulting information about the pressure and heat flux distribution on lunar module components can be used for engineering design. Finally, high-fidelity simulations of particles eroded from the surface indicated that several scenarios may occur depending on particle diameters, grain-inclined angles from the surface, and hover altitudes. |
Author | Lee, K.H. Myong, R.S. Rahimi, A. Ejtehadi, O. |
Author_xml | – sequence: 1 givenname: A. surname: Rahimi fullname: Rahimi, A. organization: School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju, South Korea – sequence: 2 givenname: O. surname: Ejtehadi fullname: Ejtehadi, O. organization: School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju, South Korea – sequence: 3 givenname: K.H. surname: Lee fullname: Lee, K.H. organization: Department of Aerospace Engineering, Sejong University, South Korea – sequence: 4 givenname: R.S. surname: Myong fullname: Myong, R.S. email: myong@gnu.ac.kr organization: School of Mechanical and Aerospace Engineering and ACTRC, Gyeongsang National University, Jinju, South Korea |
BookMark | eNqNkE9P3DAQxa0KJJY_nwFLPSe1EzuJDz0gRCkSKhd6NhN7Al4FZzt2kPrt69W2HHppTyPNvPdG73fKjuISkbFLKWopZPdpW4PLACnTUjeiEbXQtVDNB7aRQ2-qRrTiiG2EMKrSfadP2GlKWyFE3wxmw56-IVA1BZw9383rK1ZppQkc8hAzUokOS-QQPSd8XuaQXzjSkv4sfUg7pAQz9yuF-MzzC_J5jUB8LveyOWfHE8wJL37PM_b9y83j9dfq_uH27vrqvnKtanPlxh5wlK2SSnetcUOnERwYM3jhRq3A69JGezeYTo6mh2b07dSqCXunlYH2jH085O5o-bFiyna7rBTLS9soLTqtpByK6vNB5UqJRDhZFzLsO2aCMFsp7B6q3dp3qHYP1QptC9Ti7__y7yi8Av38D-fVwYkFwltAsskFjA59IHTZ-iX8M-MXjZGa9A |
CitedBy_id | crossref_primary_10_1016_j_cja_2023_11_003 crossref_primary_10_1016_j_actaastro_2024_06_045 crossref_primary_10_3390_aerospace11090742 crossref_primary_10_1016_j_compfluid_2021_104841 crossref_primary_10_1016_j_jcp_2022_111052 crossref_primary_10_1063_5_0230314 crossref_primary_10_1089_space_2022_0015 crossref_primary_10_1109_JSTARS_2025_3540431 crossref_primary_10_1016_j_ast_2022_107852 crossref_primary_10_1093_pnasnexus_pgad300 crossref_primary_10_1007_s11440_022_01527_3 crossref_primary_10_1016_j_icarus_2024_116136 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103812 crossref_primary_10_1016_j_pss_2021_105398 crossref_primary_10_1063_5_0180669 crossref_primary_10_1103_PhysRevFluids_9_024306 crossref_primary_10_1063_5_0143398 crossref_primary_10_1007_s00162_024_00724_y crossref_primary_10_1016_j_csite_2024_104835 crossref_primary_10_1016_j_actaastro_2024_11_021 crossref_primary_10_1016_j_actaastro_2025_02_046 crossref_primary_10_1016_j_actaastro_2022_02_016 crossref_primary_10_1016_j_actaastro_2023_04_024 crossref_primary_10_1016_j_actaastro_2021_05_009 crossref_primary_10_1186_s42774_020_00032_z crossref_primary_10_1063_5_0223210 crossref_primary_10_1016_j_ast_2023_108730 crossref_primary_10_3390_aerospace9070358 crossref_primary_10_1007_s10409_024_23626_x crossref_primary_10_1016_j_actaastro_2022_11_017 crossref_primary_10_1016_j_powtec_2020_07_041 crossref_primary_10_1063_5_0216768 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104008 crossref_primary_10_1063_5_0170871 crossref_primary_10_1063_5_0213648 crossref_primary_10_1063_5_0174388 crossref_primary_10_1063_5_0047925 crossref_primary_10_1016_j_icarus_2024_116135 crossref_primary_10_1016_j_compscitech_2023_109969 crossref_primary_10_3389_fmech_2023_1116330 crossref_primary_10_1016_j_actaastro_2024_02_013 crossref_primary_10_1016_j_actaastro_2024_02_014 crossref_primary_10_1155_2022_4698936 crossref_primary_10_1016_j_ijmst_2024_08_010 |
Cites_doi | 10.1016/j.actaastro.2011.07.014 10.2514/3.4487 10.1063/1.1409367 10.1006/jcph.2000.6678 10.1017/S0022112072001806 10.6112/kscfe.2019.24.1.019 10.3390/aerospace4030048 10.1016/j.jcp.2014.05.013 10.2514/1.A33058 10.1016/j.ast.2015.01.010 10.2514/8.11476 10.1061/41096(366)16 10.2514/1.J051785 10.1029/2010JE003745 10.1007/BF01415828 10.2514/2.5572 10.1007/s00193-008-0129-y 10.1016/j.jcp.2005.09.020 10.1063/1.3562805 10.1016/j.cja.2013.02.003 10.2514/1.50459 10.1063/1.870137 10.1063/1.3490409 10.1063/1.5009122 10.1016/j.jcp.2020.109410 10.1016/j.ijmultiphaseflow.2018.03.004 10.1016/j.ast.2007.11.003 10.1016/j.jcp.2003.10.015 10.1016/j.ast.2016.05.008 10.1016/j.actaastro.2014.04.001 10.2514/1.J052408 10.1016/j.actaastro.2018.04.014 10.2514/3.2443 10.2514/1.50813 10.1063/1.1630799 |
ContentType | Journal Article |
Copyright | 2020 IAA Copyright Elsevier BV Oct 2020 |
Copyright_xml | – notice: 2020 IAA – notice: Copyright Elsevier BV Oct 2020 |
DBID | AAYXX CITATION 7TB 7TG 8FD FR3 H8D KL. L7M |
DOI | 10.1016/j.actaastro.2020.05.042 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2030 |
EndPage | 326 |
ExternalDocumentID | 10_1016_j_actaastro_2020_05_042 S0094576520303258 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7TB 7TG 8FD EFKBS FR3 H8D KL. L7M |
ID | FETCH-LOGICAL-c343t-cb7aeb134145639c865eaca998d0cb54ad58795dc8961b97a2bd3f34fe7c549a3 |
IEDL.DBID | .~1 |
ISSN | 0094-5765 |
IngestDate | Wed Aug 13 10:35:44 EDT 2025 Tue Jul 01 01:39:43 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Sun Apr 06 06:53:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface erosion Plume-surface interaction Discrete phase model Lunar landing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-cb7aeb134145639c865eaca998d0cb54ad58795dc8961b97a2bd3f34fe7c549a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2450654118 |
PQPubID | 2045287 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2450654118 crossref_citationtrail_10_1016_j_actaastro_2020_05_042 crossref_primary_10_1016_j_actaastro_2020_05_042 elsevier_sciencedirect_doi_10_1016_j_actaastro_2020_05_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Elmsford |
PublicationPlace_xml | – name: Elmsford |
PublicationTitle | Acta astronautica |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Tosh, Liever, Arslanbekov, Habchi (bib5) 2011; 48 Schwarzkopf, Sommerfeld, Crowe, Tsuji (bib37) 2011 Liou (bib40) 2006; 214 Gallis, Torczynski, Rader (bib29) 2001; 13 Ejtehadi, Rahimi, Myong (bib52) 2019; 24 Myong (bib28) 1999; 11 Roberts (bib31) 1966 Ebrahimi (bib11) 1997 Myong (bib26) 2004; 195 Ebrahimi, Levine, Kawasaki (bib10) 2000; 16 Li, Ren, Bo, Huang, Ye, Cui (bib35) 2018 Tsien (bib47) 1946; 13 He, He, Cai (bib14) 2012; 70 Klotz (bib2) 2017 Myong (bib27) 2001; 168 Metzger, Smith, Lane (bib44) 2011; 116 Roberts (bib54) 1963 Wrisdale, Mikulskis, Gilmore (bib9) 1996 Singh, Karchani, Myong (bib24) 2018; 30 Mehta, Sengupta, Renno, Norman, Huseman, Gulick, Pokora (bib51) 2013; 51 Ejtehadi, Myong (bib57) 2020; 411 Yim, Sibé, Ierardo (bib20) 2014 Lane, Metzger, Immer, Li (bib33) 2008; 2008 Moríñigo, Salvá (bib6) 2008; 12 Cai, Cai, Zhang, Li (bib18) 2017; 4 Cai, Huang (bib17) 2012; 50 Metzger, Lane, Immer (bib38) 2008; 2008 Burt, Boyd (bib30) 2004 Sommerfeld (bib49) 1994; 3 Scott, Ko (bib13) 1968; 6 (bib41) 2012 Khasawneh, Liu, Cai (bib16) 2010; 22 Sharma, Pisharady, Sunil Kumar (bib21) 2017 Anderson (bib50) 1990 Zheng, Nie, Chen, Chen, Lee (bib22) 2018; 148 Roberts, South (bib32) 1964; 2 Ejtehadi, Rahimi, Karchani, Myong (bib36) 2018; 104 Kiris, Housman, Barad, Brehm, Sozer, Moini-Yekta (bib12) 2016; 55 Lee (bib3) 2011; 48 LeVeque (bib39) 2002 Lane, Metzger, Carlson (bib34) 2010; 2010 Shao (bib45) 2008 Morris, Goldstein, Varghese, Trafton (bib53) 2011 Lyndon (bib1) 1975 Land, Clark (bib56) 1965 Hagemann, Frey (bib8) 2008; 17 He, He, Zhang, Cai (bib19) 2013; 26 Morris, Goldstein, Varghese, Trafton (bib15) 2015; 52 Morsi, Alexander (bib43) 1972; 55 Morris (bib46) 2012 (bib4) July 2004 Le, Xiao, Myong (bib25) 2014; 273 Myong (bib48) 2004; 16 (bib42) 2011; 15317 Hadjadj, Perrot, Verma (bib7) 2015; 42 Wei, Lin, Nie, Zhang, Ren (bib23) 2014; 101 Marble (bib55) 1963 Lane (10.1016/j.actaastro.2020.05.042_bib34) 2010; 2010 LeVeque (10.1016/j.actaastro.2020.05.042_bib39) 2002 Ejtehadi (10.1016/j.actaastro.2020.05.042_bib57) 2020; 411 Hadjadj (10.1016/j.actaastro.2020.05.042_bib7) 2015; 42 Roberts (10.1016/j.actaastro.2020.05.042_bib31) 1966 Morris (10.1016/j.actaastro.2020.05.042_bib46) 2012 Land (10.1016/j.actaastro.2020.05.042_bib56) 1965 Lyndon (10.1016/j.actaastro.2020.05.042_bib1) 1975 Tosh (10.1016/j.actaastro.2020.05.042_bib5) 2011; 48 Lee (10.1016/j.actaastro.2020.05.042_bib3) 2011; 48 Cai (10.1016/j.actaastro.2020.05.042_bib18) 2017; 4 Klotz (10.1016/j.actaastro.2020.05.042_bib2) 2017 Roberts (10.1016/j.actaastro.2020.05.042_bib54) 1963 Morris (10.1016/j.actaastro.2020.05.042_bib15) 2015; 52 Sommerfeld (10.1016/j.actaastro.2020.05.042_bib49) 1994; 3 Moríñigo (10.1016/j.actaastro.2020.05.042_bib6) 2008; 12 Anderson (10.1016/j.actaastro.2020.05.042_bib50) 1990 Shao (10.1016/j.actaastro.2020.05.042_bib45) 2008 Metzger (10.1016/j.actaastro.2020.05.042_bib38) 2008; 2008 Myong (10.1016/j.actaastro.2020.05.042_bib48) 2004; 16 Morsi (10.1016/j.actaastro.2020.05.042_bib43) 1972; 55 Zheng (10.1016/j.actaastro.2020.05.042_bib22) 2018; 148 Morris (10.1016/j.actaastro.2020.05.042_bib53) 2011 (10.1016/j.actaastro.2020.05.042_bib42) 2011; 15317 Khasawneh (10.1016/j.actaastro.2020.05.042_bib16) 2010; 22 Myong (10.1016/j.actaastro.2020.05.042_bib26) 2004; 195 Gallis (10.1016/j.actaastro.2020.05.042_bib29) 2001; 13 Lane (10.1016/j.actaastro.2020.05.042_bib33) 2008; 2008 (10.1016/j.actaastro.2020.05.042_bib4) 2004 Yim (10.1016/j.actaastro.2020.05.042_bib20) 2014 Ejtehadi (10.1016/j.actaastro.2020.05.042_bib52) 2019; 24 Sharma (10.1016/j.actaastro.2020.05.042_bib21) 2017 Liou (10.1016/j.actaastro.2020.05.042_bib40) 2006; 214 Metzger (10.1016/j.actaastro.2020.05.042_bib44) 2011; 116 Cai (10.1016/j.actaastro.2020.05.042_bib17) 2012; 50 Wrisdale (10.1016/j.actaastro.2020.05.042_bib9) 1996 Roberts (10.1016/j.actaastro.2020.05.042_bib32) 1964; 2 Li (10.1016/j.actaastro.2020.05.042_bib35) 2018 Burt (10.1016/j.actaastro.2020.05.042_bib30) 2004 Wei (10.1016/j.actaastro.2020.05.042_bib23) 2014; 101 Ebrahimi (10.1016/j.actaastro.2020.05.042_bib10) 2000; 16 Scott (10.1016/j.actaastro.2020.05.042_bib13) 1968; 6 Le (10.1016/j.actaastro.2020.05.042_bib25) 2014; 273 He (10.1016/j.actaastro.2020.05.042_bib14) 2012; 70 He (10.1016/j.actaastro.2020.05.042_bib19) 2013; 26 Ebrahimi (10.1016/j.actaastro.2020.05.042_bib11) 1997 Schwarzkopf (10.1016/j.actaastro.2020.05.042_bib37) 2011 (10.1016/j.actaastro.2020.05.042_bib41) 2012 Tsien (10.1016/j.actaastro.2020.05.042_bib47) 1946; 13 Ejtehadi (10.1016/j.actaastro.2020.05.042_bib36) 2018; 104 Hagemann (10.1016/j.actaastro.2020.05.042_bib8) 2008; 17 Marble (10.1016/j.actaastro.2020.05.042_bib55) 1963 Myong (10.1016/j.actaastro.2020.05.042_bib28) 1999; 11 Myong (10.1016/j.actaastro.2020.05.042_bib27) 2001; 168 Kiris (10.1016/j.actaastro.2020.05.042_bib12) 2016; 55 Mehta (10.1016/j.actaastro.2020.05.042_bib51) 2013; 51 Singh (10.1016/j.actaastro.2020.05.042_bib24) 2018; 30 |
References_xml | – volume: 2 start-page: 971 year: 1964 end-page: 973 ident: bib32 article-title: Comments on exhaust flow field and surface impingement publication-title: AIAA J. – volume: 50 start-page: 2908 year: 2012 end-page: 2918 ident: bib17 article-title: High-speed rarefied round jet and jet impingement flows publication-title: AIAA J. – volume: 51 start-page: 2800 year: 2013 end-page: 2818 ident: bib51 article-title: Thruster plume surface interactions: applications for spacecraft landings on planetary bodies publication-title: AIAA J. – volume: 101 start-page: 55 year: 2014 end-page: 66 ident: bib23 article-title: Investigation on soft-landing dynamics of four-legged lunar lander publication-title: Acta Astronaut. – start-page: 11 year: 2017 ident: bib21 article-title: Plume flow field analysis for lander propulsion system of Chandrayaan-2 mission publication-title: 68th International Astronautical Congress – volume: 2008 start-page: 1 year: 2008 end-page: 9 ident: bib33 article-title: Lagrangian trajectory modeling of lunar dust particles, Earth & Space publication-title: Eng. Sci. Construct. Oper. Challenging Environ. – start-page: 3883 year: 2014 ident: bib20 article-title: Plume impingement analysis for the european service module propulsion system publication-title: 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference – volume: 273 start-page: 160 year: 2014 end-page: 184 ident: bib25 article-title: A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases publication-title: J. Comput. Phys. – start-page: 2633 year: 1965 ident: bib56 article-title: Experimental investigation of jet impingement on surfaces of fine particles in a vacuum environment publication-title: Natl. Aeronaut. Space Adm. – volume: 26 start-page: 269 year: 2013 end-page: 278 ident: bib19 article-title: Plume aerodynamic effects of cushion engine in lunar landing publication-title: Chin. J. Aeronaut. – start-page: 2942 year: 1997 ident: bib11 article-title: Numerical investigation of multi-plume rocket phenomenology publication-title: 33rd Joint Propulsion Conference and Exhibit – start-page: 60 year: 2017 end-page: 61 ident: bib2 article-title: New moon, Aviation Week & Space Technology November 27-December 10 – volume: 13 start-page: 653 year: 1946 end-page: 664 ident: bib47 article-title: Superaerodynamics, mechanics of rarefied gases publication-title: J. Aeronaut. Sci. – year: 1990 ident: bib50 article-title: Modern Compressible Flow: with Historical Perspective – start-page: 1187 year: 2011 end-page: 1192 ident: bib53 article-title: Plume impingement on a dusty lunar surface publication-title: AIP Conference Proceedings – year: 2012 ident: bib46 article-title: Simulation of Rocket Plume Impingement and Dust Dispersal on the Lunar Surface – year: July 2004 ident: bib4 publication-title: Apollo 16 Astronaut John Young – start-page: 68725 year: 1975 ident: bib1 article-title: Apollo Program Summary Report – year: 2012 ident: bib41 publication-title: ANSYS FLUENT User Manuals V14.0 – start-page: 269 year: 1966 end-page: 290 ident: bib31 article-title: The interaction of a rocket exhaust with the lunar surface publication-title: The Fluid Dynamic Aspects of Space Flight, Proceeding of the AGARD-NATO Specialists Meeting – volume: 3 start-page: 299 year: 1994 end-page: 311 ident: bib49 article-title: The structure of particle-laden, underexpanded free jets publication-title: Shock Waves – volume: 24 start-page: 19 year: 2019 end-page: 28 ident: bib52 article-title: Numerical investigation of the counter-intuitive behavior of Mach disc movement in underexpanded gas-particle jets publication-title: J. Comput. Fluids Eng. – volume: 116 year: 2011 ident: bib44 article-title: Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site publication-title: J. Geophys. Res.: Planets – volume: 48 start-page: 93 year: 2011 ident: bib5 article-title: Numerical analysis of spacecraft rocket plume impingement under lunar environment publication-title: J. Spacecraft Rockets – volume: 148 start-page: 69 year: 2018 end-page: 81 ident: bib22 article-title: Dynamic analysis of lunar lander during soft landing using explicit finite element method publication-title: Acta Astronaut. – year: 2002 ident: bib39 article-title: Finite Volume Methods for Hyperbolic Problems – volume: 195 start-page: 655 year: 2004 end-page: 676 ident: bib26 article-title: A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows publication-title: J. Comput. Phys. – volume: 16 start-page: 104 year: 2004 end-page: 117 ident: bib48 article-title: Gaseous slip models based on the Langmuir adsorption isotherm publication-title: Phys. Fluids – volume: 13 start-page: 3482 year: 2001 end-page: 3492 ident: bib29 article-title: An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method publication-title: Phys. Fluids – volume: 4 start-page: 48 year: 2017 ident: bib18 article-title: Rarefication effects on jet impingement loads publication-title: Aerospace – volume: 55 start-page: 189 year: 2016 end-page: 219 ident: bib12 article-title: Computational framework for launch, ascent, and vehicle aerodynamics (LAVA) publication-title: Aero. Sci. Technol. – volume: 11 start-page: 2788 year: 1999 end-page: 2802 ident: bib28 article-title: Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows publication-title: Phys. Fluids – volume: 16 start-page: 178 year: 2000 end-page: 186 ident: bib10 article-title: Numerical investigation of twin-nozzle rocket plume phenomenology publication-title: J. Propul. Power – volume: 2010 start-page: 134 year: 2010 end-page: 142 ident: bib34 article-title: Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow, Earth and Space publication-title: Eng. Sci. Construct. Oper. Challenging Environ. – volume: 48 start-page: 346 year: 2011 end-page: 354 ident: bib3 article-title: Lunar orbiter trade study and conceptual design of onboard propulsion system publication-title: J. Spacecraft Rockets – volume: 70 start-page: 100 year: 2012 end-page: 111 ident: bib14 article-title: Simulation of rocket plume and lunar dust using DSMC method publication-title: Acta Astronaut. – year: 2018 ident: bib35 article-title: Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust publication-title: Acta Astronaut. – volume: 12 start-page: 485 year: 2008 end-page: 489 ident: bib6 article-title: Numerical study of the start-up process in an optimized rocket nozzle publication-title: Aero. Sci. Technol. – start-page: 21 year: 1963 end-page: 23 ident: bib54 article-title: The action of a hypersonic jet on a dust layer publication-title: IAS Paper No. 65-50, Institute of the Aerospace Sciences 31st Annual Meeting – volume: 15317 start-page: 724 year: 2011 end-page: 746 ident: bib42 publication-title: Creat. Diffus. Util. – start-page: 1351 year: 2004 ident: bib30 article-title: Development of a two-way coupled model for two phase rarefied flows publication-title: 42nd AIAA Aerospace Sciences Meeting and Exhibit – volume: 6 start-page: 258 year: 1968 end-page: 264 ident: bib13 article-title: Transient rocket-engine gas flow in soil publication-title: AIAA J. – volume: 214 start-page: 137 year: 2006 end-page: 170 ident: bib40 article-title: A sequel to AUSM, Part II: AUSM+-up for all speeds publication-title: J. Comput. Phys. – volume: 411 start-page: 109410 year: 2020 ident: bib57 article-title: A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework publication-title: J. Comput. Phys. – volume: 168 start-page: 47 year: 2001 end-page: 72 ident: bib27 article-title: A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics publication-title: J. Comput. Phys. – volume: 42 start-page: 158 year: 2015 end-page: 168 ident: bib7 article-title: Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles publication-title: Aero. Sci. Technol. – volume: 22 start-page: 117101 year: 2010 ident: bib16 article-title: Highly rarefied two-dimensional jet impingement on a flat plate publication-title: Phys. Fluids – volume: 30 year: 2018 ident: bib24 article-title: Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation publication-title: Phys. Fluids – volume: 2008 start-page: 1 year: 2008 end-page: 8 ident: bib38 article-title: Modification of Roberts' theory for rocket exhaust plumes eroding lunar soil, Earth & Space publication-title: Eng. Sci. Construct. Oper. Challenging Environ. – volume: 52 start-page: 362 year: 2015 end-page: 374 ident: bib15 article-title: Approach for modeling rocket plume impingement and dust dispersal on the moon publication-title: J. Spacecraft Rockets – start-page: 175 year: 1963 end-page: 213 ident: bib55 article-title: Dynamics of a gas containing small solid particles publication-title: Combust. Propul. – volume: 17 start-page: 387 year: 2008 end-page: 395 ident: bib8 article-title: Shock pattern in the plume of rocket nozzles: needs for design consideration publication-title: Shock Waves – volume: 55 start-page: 193 year: 1972 end-page: 208 ident: bib43 article-title: An investigation of particle trajectories in two-phase flow systems publication-title: J. Fluid Mech. – year: 2008 ident: bib45 article-title: Physics and Modelling of Wind Erosion – volume: 104 start-page: 125 year: 2018 end-page: 151 ident: bib36 article-title: Complex wave patterns in dilute gas–particle flows based on a novel discontinuous Galerkin scheme publication-title: Int. J. Multiphas. Flow – year: 1996 ident: bib9 article-title: Navier-Stokes Calculations of a Twin-Nozzle Rocket Plume – year: 2011 ident: bib37 article-title: Multiphase Flows with Droplets and Particles – volume: 70 start-page: 100 year: 2012 ident: 10.1016/j.actaastro.2020.05.042_bib14 article-title: Simulation of rocket plume and lunar dust using DSMC method publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2011.07.014 – start-page: 2942 year: 1997 ident: 10.1016/j.actaastro.2020.05.042_bib11 article-title: Numerical investigation of multi-plume rocket phenomenology – volume: 6 start-page: 258 year: 1968 ident: 10.1016/j.actaastro.2020.05.042_bib13 article-title: Transient rocket-engine gas flow in soil publication-title: AIAA J. doi: 10.2514/3.4487 – year: 2012 ident: 10.1016/j.actaastro.2020.05.042_bib41 – volume: 13 start-page: 3482 year: 2001 ident: 10.1016/j.actaastro.2020.05.042_bib29 article-title: An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method publication-title: Phys. Fluids doi: 10.1063/1.1409367 – volume: 168 start-page: 47 year: 2001 ident: 10.1016/j.actaastro.2020.05.042_bib27 article-title: A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6678 – start-page: 68725 year: 1975 ident: 10.1016/j.actaastro.2020.05.042_bib1 – volume: 55 start-page: 193 year: 1972 ident: 10.1016/j.actaastro.2020.05.042_bib43 article-title: An investigation of particle trajectories in two-phase flow systems publication-title: J. Fluid Mech. doi: 10.1017/S0022112072001806 – volume: 24 start-page: 19 year: 2019 ident: 10.1016/j.actaastro.2020.05.042_bib52 article-title: Numerical investigation of the counter-intuitive behavior of Mach disc movement in underexpanded gas-particle jets publication-title: J. Comput. Fluids Eng. doi: 10.6112/kscfe.2019.24.1.019 – volume: 4 start-page: 48 year: 2017 ident: 10.1016/j.actaastro.2020.05.042_bib18 article-title: Rarefication effects on jet impingement loads publication-title: Aerospace doi: 10.3390/aerospace4030048 – volume: 273 start-page: 160 year: 2014 ident: 10.1016/j.actaastro.2020.05.042_bib25 article-title: A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.013 – volume: 52 start-page: 362 year: 2015 ident: 10.1016/j.actaastro.2020.05.042_bib15 article-title: Approach for modeling rocket plume impingement and dust dispersal on the moon publication-title: J. Spacecraft Rockets doi: 10.2514/1.A33058 – volume: 42 start-page: 158 year: 2015 ident: 10.1016/j.actaastro.2020.05.042_bib7 article-title: Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2015.01.010 – volume: 13 start-page: 653 year: 1946 ident: 10.1016/j.actaastro.2020.05.042_bib47 article-title: Superaerodynamics, mechanics of rarefied gases publication-title: J. Aeronaut. Sci. doi: 10.2514/8.11476 – volume: 2010 start-page: 134 year: 2010 ident: 10.1016/j.actaastro.2020.05.042_bib34 article-title: Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow, Earth and Space publication-title: Eng. Sci. Construct. Oper. Challenging Environ. doi: 10.1061/41096(366)16 – volume: 50 start-page: 2908 year: 2012 ident: 10.1016/j.actaastro.2020.05.042_bib17 article-title: High-speed rarefied round jet and jet impingement flows publication-title: AIAA J. doi: 10.2514/1.J051785 – volume: 116 year: 2011 ident: 10.1016/j.actaastro.2020.05.042_bib44 article-title: Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site publication-title: J. Geophys. Res.: Planets doi: 10.1029/2010JE003745 – volume: 3 start-page: 299 year: 1994 ident: 10.1016/j.actaastro.2020.05.042_bib49 article-title: The structure of particle-laden, underexpanded free jets publication-title: Shock Waves doi: 10.1007/BF01415828 – volume: 2008 start-page: 1 year: 2008 ident: 10.1016/j.actaastro.2020.05.042_bib38 article-title: Modification of Roberts' theory for rocket exhaust plumes eroding lunar soil, Earth & Space publication-title: Eng. Sci. Construct. Oper. Challenging Environ. – volume: 16 start-page: 178 year: 2000 ident: 10.1016/j.actaastro.2020.05.042_bib10 article-title: Numerical investigation of twin-nozzle rocket plume phenomenology publication-title: J. Propul. Power doi: 10.2514/2.5572 – year: 2002 ident: 10.1016/j.actaastro.2020.05.042_bib39 – start-page: 60 year: 2017 ident: 10.1016/j.actaastro.2020.05.042_bib2 – start-page: 1351 year: 2004 ident: 10.1016/j.actaastro.2020.05.042_bib30 article-title: Development of a two-way coupled model for two phase rarefied flows – volume: 17 start-page: 387 year: 2008 ident: 10.1016/j.actaastro.2020.05.042_bib8 article-title: Shock pattern in the plume of rocket nozzles: needs for design consideration publication-title: Shock Waves doi: 10.1007/s00193-008-0129-y – volume: 214 start-page: 137 year: 2006 ident: 10.1016/j.actaastro.2020.05.042_bib40 article-title: A sequel to AUSM, Part II: AUSM+-up for all speeds publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.09.020 – start-page: 1187 year: 2011 ident: 10.1016/j.actaastro.2020.05.042_bib53 article-title: Plume impingement on a dusty lunar surface doi: 10.1063/1.3562805 – volume: 26 start-page: 269 year: 2013 ident: 10.1016/j.actaastro.2020.05.042_bib19 article-title: Plume aerodynamic effects of cushion engine in lunar landing publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2013.02.003 – year: 1996 ident: 10.1016/j.actaastro.2020.05.042_bib9 – volume: 48 start-page: 346 year: 2011 ident: 10.1016/j.actaastro.2020.05.042_bib3 article-title: Lunar orbiter trade study and conceptual design of onboard propulsion system publication-title: J. Spacecraft Rockets doi: 10.2514/1.50459 – volume: 11 start-page: 2788 year: 1999 ident: 10.1016/j.actaastro.2020.05.042_bib28 article-title: Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows publication-title: Phys. Fluids doi: 10.1063/1.870137 – year: 2018 ident: 10.1016/j.actaastro.2020.05.042_bib35 article-title: Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust publication-title: Acta Astronaut. – volume: 22 start-page: 117101 year: 2010 ident: 10.1016/j.actaastro.2020.05.042_bib16 article-title: Highly rarefied two-dimensional jet impingement on a flat plate publication-title: Phys. Fluids doi: 10.1063/1.3490409 – volume: 30 year: 2018 ident: 10.1016/j.actaastro.2020.05.042_bib24 article-title: Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation publication-title: Phys. Fluids doi: 10.1063/1.5009122 – volume: 411 start-page: 109410 year: 2020 ident: 10.1016/j.actaastro.2020.05.042_bib57 article-title: A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109410 – volume: 2008 start-page: 1 year: 2008 ident: 10.1016/j.actaastro.2020.05.042_bib33 article-title: Lagrangian trajectory modeling of lunar dust particles, Earth & Space publication-title: Eng. Sci. Construct. Oper. Challenging Environ. – volume: 104 start-page: 125 year: 2018 ident: 10.1016/j.actaastro.2020.05.042_bib36 article-title: Complex wave patterns in dilute gas–particle flows based on a novel discontinuous Galerkin scheme publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2018.03.004 – volume: 12 start-page: 485 year: 2008 ident: 10.1016/j.actaastro.2020.05.042_bib6 article-title: Numerical study of the start-up process in an optimized rocket nozzle publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2007.11.003 – volume: 195 start-page: 655 year: 2004 ident: 10.1016/j.actaastro.2020.05.042_bib26 article-title: A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.10.015 – year: 1990 ident: 10.1016/j.actaastro.2020.05.042_bib50 – volume: 55 start-page: 189 year: 2016 ident: 10.1016/j.actaastro.2020.05.042_bib12 article-title: Computational framework for launch, ascent, and vehicle aerodynamics (LAVA) publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2016.05.008 – year: 2008 ident: 10.1016/j.actaastro.2020.05.042_bib45 – volume: 101 start-page: 55 year: 2014 ident: 10.1016/j.actaastro.2020.05.042_bib23 article-title: Investigation on soft-landing dynamics of four-legged lunar lander publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.04.001 – start-page: 175 year: 1963 ident: 10.1016/j.actaastro.2020.05.042_bib55 article-title: Dynamics of a gas containing small solid particles publication-title: Combust. Propul. – volume: 51 start-page: 2800 year: 2013 ident: 10.1016/j.actaastro.2020.05.042_bib51 article-title: Thruster plume surface interactions: applications for spacecraft landings on planetary bodies publication-title: AIAA J. doi: 10.2514/1.J052408 – volume: 148 start-page: 69 year: 2018 ident: 10.1016/j.actaastro.2020.05.042_bib22 article-title: Dynamic analysis of lunar lander during soft landing using explicit finite element method publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.04.014 – volume: 2 start-page: 971 year: 1964 ident: 10.1016/j.actaastro.2020.05.042_bib32 article-title: Comments on exhaust flow field and surface impingement publication-title: AIAA J. doi: 10.2514/3.2443 – start-page: 21 year: 1963 ident: 10.1016/j.actaastro.2020.05.042_bib54 article-title: The action of a hypersonic jet on a dust layer – year: 2011 ident: 10.1016/j.actaastro.2020.05.042_bib37 – year: 2012 ident: 10.1016/j.actaastro.2020.05.042_bib46 – year: 2004 ident: 10.1016/j.actaastro.2020.05.042_bib4 – volume: 48 start-page: 93 year: 2011 ident: 10.1016/j.actaastro.2020.05.042_bib5 article-title: Numerical analysis of spacecraft rocket plume impingement under lunar environment publication-title: J. Spacecraft Rockets doi: 10.2514/1.50813 – start-page: 3883 year: 2014 ident: 10.1016/j.actaastro.2020.05.042_bib20 article-title: Plume impingement analysis for the european service module propulsion system – start-page: 269 year: 1966 ident: 10.1016/j.actaastro.2020.05.042_bib31 article-title: The interaction of a rocket exhaust with the lunar surface – volume: 15317 start-page: 724 year: 2011 ident: 10.1016/j.actaastro.2020.05.042_bib42 publication-title: Creat. Diffus. Util. – start-page: 2633 year: 1965 ident: 10.1016/j.actaastro.2020.05.042_bib56 article-title: Experimental investigation of jet impingement on surfaces of fine particles in a vacuum environment publication-title: Natl. Aeronaut. Space Adm. – volume: 16 start-page: 104 year: 2004 ident: 10.1016/j.actaastro.2020.05.042_bib48 article-title: Gaseous slip models based on the Langmuir adsorption isotherm publication-title: Phys. Fluids doi: 10.1063/1.1630799 – start-page: 11 year: 2017 ident: 10.1016/j.actaastro.2020.05.042_bib21 article-title: Plume flow field analysis for lander propulsion system of Chandrayaan-2 mission |
SSID | ssj0007289 |
Score | 2.463509 |
Snippet | A rocket plume impinging on the lunar surface when a lunar lander approaches a landing site can cause significant dust dispersal. This study investigated the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 308 |
SubjectTerms | Design engineering Discrete phase model Dispersal Dust Dust particles Erosion models Erosion rates Exhaust gases Finite volume method Flow characteristics Flow rates Gas expansion Heat flux Lunar dust Lunar landing Lunar Module Lunar surface Lunar surface vehicles Mach number Mass flow rate Microgravity Near fields Particle density (concentration) Particle size Physics Plume-surface interaction Regolith Rocket nozzles Shear stress Spacecraft components Stress concentration Surface erosion |
Title | Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing |
URI | https://dx.doi.org/10.1016/j.actaastro.2020.05.042 https://www.proquest.com/docview/2450654118 |
Volume | 175 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCqTywmgY_kpitqqgKSJ2o1M04tiOKqlCl6cpv55xHoUioA2OsOInuLnffSfd9RugmlpEOUhMQbpOQcMkZSYzgxAkmDUAIqW05bTEJx1P-NBOzFho2XBg_Vlnn_iqnl9m6XunX1uwv53PP8ZUc0LKgEKeMCk_45Tzy-vm3n99jHhGNKwgsOfF3b814aVNovSpyzwKkQSnhyelfFepXri4L0OgIHdbIEQ-qjztGLZedoIMfeoKn6HUCcUvKoTS89FmHrNZ5qo3DXhUirzgMWGcWe2YKAPA37OAbmkU797LhK3hJRV7EAA7xYp3pHC8q9ssZmo4eXoZjUh-hQAzjrCAmiTRkYyhVAJTA-nEoINNq6LFsYBLBtRX-tHFrYhneJeA3mliWMp66CDwmNTtH7ewjcxcIS2hljZemYRG0dAFNZEp57FLHRJRazTsobMymTK0v7o-5WKhmkOxdbeytvL1VIBTYu4OCzcZlJbGxe8t94xe1FS0KCsHuzd3Gk6r-YVeKcuFpttBuXf7n2Vdo319V035d1C7ytbsG1FIkvTIse2hv8Pg8nnwBHgjuaw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIpCAQ-sVoMfScyGEFXLoxOV2IxjO6KoClWS_n_OeVQUCXVgdXSJdXf57izd9xmh61hGOkhNQLhNQsIlZyQxghMnmDTQQkhtq2mLcTic8Mc38dZB9y0Xxo9VNthfY3qF1s1Kv_Fmfz6deo6v5NAtCwp5yqiIN9CWV6eCZN-6Gz0Nx0tAjmhcd8GSE2-wMualTal1UeaeCEiDSsWT07-K1C-4rmrQYB_tNc0jvqv3d4A6LjtEuz8kBY_Q-xhSl1RzaXjugYcUizzVxmEvDJHXNAasM4s9OQV68A_sYA_top165fACPlLzFzH0h3i2yHSOZzUB5hhNBg-v90PS3KJADOOsJCaJNAAyVCvolSAAcSgAbDUcs2xgEsG1Ff7CcWtiGd4kEDqaWJYynroIgiY1O0Gb2VfmThGWcJo1Xp2GRXCqC2giU8pjlzomotRq3kVh6zZlGolxf9PFTLWzZJ9q6W_l_a0CocDfXRQsDee1ysZ6k9s2LmolYRTUgvXGvTaSqvlnC0W58ExbOHGd_efdV2h7-PryrJ5H46dztOOf1MN_PbRZ5gt3AU1MmVw2SfoNRynxHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-field+plume-surface+interaction+and+regolith+erosion+and+dispersal+during+the+lunar+landing&rft.jtitle=Acta+astronautica&rft.au=Rahimi%2C+A&rft.au=Ejtehadi%2C+O&rft.au=Lee%2C+KH&rft.au=Myong%2C+RS&rft.date=2020-10-01&rft.pub=Elsevier+BV&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=175&rft.spage=308&rft_id=info:doi/10.1016%2Fj.actaastro.2020.05.042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |