Construction of nanowall-supported-nanorod nico ldh array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors
•Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F cm−2.•All-solid-state asymmetric supercapacitor delivers 6.37 mWh cm−3 at 62.5 mW cm−2. Carbon cloth is regarded as a promising substrate fo...
Saved in:
Published in | Electrochimica acta Vol. 362; p. 137081 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.12.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F cm−2.•All-solid-state asymmetric supercapacitor delivers 6.37 mWh cm−3 at 62.5 mW cm−2.
Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its relatively hydrophobic property prevents the large-scale growth of active substances, restricting the potential practical applications. In this paper, by using NiCo LDH nanowall array as a hydrophilic substrate, a high mass-loading nanowall-supported-nanorod NiCo LDH arrays are formed via an alternate solvo/hydrothermal synthesis and subsequently alkali conversion process. The strong substrate adhesion of NiCo LDH nanoarrays ensures efficient electron transfer of the electrode. Moreover, the as-achieved open holey framework, integrated by free-standing nanorods and porous nanowalls, provides a hierarchical nanostructure for realizing the enhanced capacitive performance. Consequently, nanowall-supported-nanorod NiCo LDH electrode achieves a high capacitance of 7.73 F cm−2 at a current density of 5 mA cm−2 with excellent rate performance. When assembled into an all-solid-state hybrid supercapacitor, it delivers a maximum working voltage of 1.8 V, and an energy density of 0.46 mWh cm−2 (6.37 mWh cm−3) at a power density of 4.5 mW cm−2 (62.5 mW cm−2). Therefore, this work provides a proof-of-concept design for the high-performance supercapacitor electrode with carbon cloth substrate.
[Display omitted] |
---|---|
AbstractList | Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its relatively hydrophobic property prevents the large-scale growth of active substances, restricting the potential practical applications. In this paper, by using NiCo LDH nanowall array as a hydrophilic substrate, a high mass-loading nanowall-supported-nanorod NiCo LDH arrays are formed via an alternate solvo/hydrothermal synthesis and subsequently alkali conversion process. The strong substrate adhesion of NiCo LDH nanoarrays ensures efficient electron transfer of the electrode. Moreover, the as-achieved open holey framework, integrated by free-standing nanorods and porous nanowalls, provides a hierarchical nanostructure for realizing the enhanced capacitive performance. Consequently, nanowall-supported-nanorod NiCo LDH electrode achieves a high capacitance of 7.73 F cm−2 at a current density of 5 mA cm−2 with excellent rate performance. When assembled into an all-solid-state hybrid supercapacitor, it delivers a maximum working voltage of 1.8 V, and an energy density of 0.46 mWh cm−2 (6.37 mWh cm−3) at a power density of 4.5 mW cm−2 (62.5 mW cm−2). Therefore, this work provides a proof-of-concept design for the high-performance supercapacitor electrode with carbon cloth substrate. •Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F cm−2.•All-solid-state asymmetric supercapacitor delivers 6.37 mWh cm−3 at 62.5 mW cm−2. Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its relatively hydrophobic property prevents the large-scale growth of active substances, restricting the potential practical applications. In this paper, by using NiCo LDH nanowall array as a hydrophilic substrate, a high mass-loading nanowall-supported-nanorod NiCo LDH arrays are formed via an alternate solvo/hydrothermal synthesis and subsequently alkali conversion process. The strong substrate adhesion of NiCo LDH nanoarrays ensures efficient electron transfer of the electrode. Moreover, the as-achieved open holey framework, integrated by free-standing nanorods and porous nanowalls, provides a hierarchical nanostructure for realizing the enhanced capacitive performance. Consequently, nanowall-supported-nanorod NiCo LDH electrode achieves a high capacitance of 7.73 F cm−2 at a current density of 5 mA cm−2 with excellent rate performance. When assembled into an all-solid-state hybrid supercapacitor, it delivers a maximum working voltage of 1.8 V, and an energy density of 0.46 mWh cm−2 (6.37 mWh cm−3) at a power density of 4.5 mW cm−2 (62.5 mW cm−2). Therefore, this work provides a proof-of-concept design for the high-performance supercapacitor electrode with carbon cloth substrate. [Display omitted] |
ArticleNumber | 137081 |
Author | Ye, Jing Chen, Shihuan Chen, Huizhen Yang, Luhuan Xu, Xuetang Liao, Shuqing Wang, Fan Yang, Tianyi |
Author_xml | – sequence: 1 givenname: Tianyi surname: Yang fullname: Yang, Tianyi – sequence: 2 givenname: Jing surname: Ye fullname: Ye, Jing – sequence: 3 givenname: Shihuan surname: Chen fullname: Chen, Shihuan – sequence: 4 givenname: Shuqing surname: Liao fullname: Liao, Shuqing – sequence: 5 givenname: Huizhen surname: Chen fullname: Chen, Huizhen – sequence: 6 givenname: Luhuan surname: Yang fullname: Yang, Luhuan – sequence: 7 givenname: Xuetang surname: Xu fullname: Xu, Xuetang email: xxtang@gxu.edu.cn – sequence: 8 givenname: Fan orcidid: 0000-0002-6106-4724 surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn |
BookMark | eNqNUcuK3DAQFGEXMvv4hhXk7Ilk-SEfcliGvGAhl-Qs2nJ7R4MtOS1NlvmVfG3kmZBDLgkIWhRVXU3VDbvywSNjD1JspZDN28MWJ7QJ8tuWosyoaoWWr9hG6lYVStfdFdsIIVVRNbp5zW5iPAgh2qYVG_ZzF3xMdLTJBc_DyD348ALTVMTjsgRKOBQrRGHg3tnAp2HPgQhO_GybceQvLu353j3v-QwxFlOAwflnnhdaoH4dU8iMMdCZVSxI-T-Dt8ghnuYZEznLsyOShQWsS4HiHbseYYp4_3vesm8f3n_dfSqevnz8vHt8KqyqVCpsX9ZK1BV2I4h2xLZHbM5TVdBb7FtZg0A91FqMcrBVZ-sGZa9tDXosUd2yN5e9C4XvR4zJHMKRfLY0ZU5MdaLSXWa9u7AshRgJR5OvhDW1ROAmI4VZ6zAH86cOs9ZhLnVkffuXfiE3A53-Q_l4UWIO4YdDMtE6zNkNjjLfDMH9c8cvrzmx6Q |
CitedBy_id | crossref_primary_10_1016_j_est_2023_106713 crossref_primary_10_1016_j_est_2023_107648 crossref_primary_10_2139_ssrn_4175036 crossref_primary_10_1021_acs_energyfuels_3c00315 crossref_primary_10_1007_s10570_021_04178_x crossref_primary_10_1016_j_est_2023_110337 crossref_primary_10_1016_j_apsusc_2024_161390 crossref_primary_10_1016_j_jcis_2022_04_088 crossref_primary_10_1016_j_cej_2022_138613 crossref_primary_10_1016_j_est_2024_114253 crossref_primary_10_1016_j_jallcom_2023_171227 crossref_primary_10_1016_j_electacta_2021_138649 crossref_primary_10_1007_s40843_023_2732_5 crossref_primary_10_1039_D2TA05977K crossref_primary_10_1016_j_materresbull_2024_112969 crossref_primary_10_1039_D3DT01991H crossref_primary_10_1016_j_electacta_2024_144166 crossref_primary_10_1039_D3TC03014H crossref_primary_10_1002_smtd_202101320 crossref_primary_10_1016_j_est_2022_104300 crossref_primary_10_1016_j_jallcom_2021_161162 crossref_primary_10_1016_j_est_2024_111634 crossref_primary_10_1016_j_electacta_2021_139645 crossref_primary_10_1016_j_jelechem_2025_118972 crossref_primary_10_1016_j_jallcom_2023_171034 crossref_primary_10_1016_j_est_2023_109132 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1016_j_apsusc_2021_149598 crossref_primary_10_1021_acsaem_2c03629 crossref_primary_10_1016_j_catcom_2023_106659 crossref_primary_10_1021_acsaem_3c00341 crossref_primary_10_1016_j_mtchem_2022_101152 crossref_primary_10_1016_j_jcis_2023_03_059 crossref_primary_10_1016_j_apsusc_2022_156174 crossref_primary_10_1039_D3CP00450C crossref_primary_10_1016_j_jallcom_2022_167459 crossref_primary_10_1002_sstr_202400207 crossref_primary_10_1016_j_jpowsour_2023_233990 crossref_primary_10_1039_D2NJ06210K crossref_primary_10_1016_j_jpowsour_2022_232185 crossref_primary_10_1016_j_jallcom_2024_173425 crossref_primary_10_1021_acs_iecr_0c04811 crossref_primary_10_1039_D2QM00503D crossref_primary_10_1016_j_est_2021_102858 crossref_primary_10_1016_j_est_2023_109322 crossref_primary_10_1016_j_jallcom_2022_165909 crossref_primary_10_1016_j_nanoen_2021_106079 crossref_primary_10_1016_j_jcis_2024_03_105 crossref_primary_10_1021_acsanm_4c00388 crossref_primary_10_1016_j_apsusc_2022_153893 crossref_primary_10_1016_j_cej_2024_149736 crossref_primary_10_1016_j_ensm_2022_03_005 crossref_primary_10_1016_j_est_2024_112704 crossref_primary_10_1016_j_electacta_2024_144985 crossref_primary_10_1016_j_fuel_2022_126323 crossref_primary_10_2139_ssrn_4165528 crossref_primary_10_3390_nano14070573 crossref_primary_10_1002_adma_202306015 crossref_primary_10_1002_er_8736 crossref_primary_10_1016_j_jcis_2023_05_191 crossref_primary_10_1039_D3TA07658J crossref_primary_10_1088_1361_6528_abe074 |
Cites_doi | 10.1016/j.jpowsour.2017.12.046 10.1039/C7TA04071G 10.1016/j.cej.2018.08.142 10.1002/celc.201901122 10.1039/C9TA00819E 10.1016/j.electacta.2018.10.137 10.1016/j.nanoen.2019.06.032 10.1021/acsami.7b02987 10.1002/adfm.201809004 10.1002/advs.201801797 10.1016/j.jechem.2017.10.034 10.1016/j.nanoen.2019.02.001 10.1039/C6NR04578B 10.1039/C5CS00580A 10.1002/chem.201803658 10.1021/acsnano.9b06910 10.1016/j.cej.2020.125364 10.1016/j.ces.2020.115548 10.1002/smll.201805418 10.1002/adma.201605336 10.1016/j.electacta.2018.11.038 10.1039/C7CC04604A 10.1039/D0TA01553A 10.1016/j.jpowsour.2019.05.011 10.1007/s12274-017-1621-4 10.1016/j.electacta.2020.136077 10.1016/j.cej.2019.122486 10.1016/j.cej.2019.122620 10.1021/acsnano.8b00653 10.1039/C9TA04835A 10.1021/acsami.7b16021 10.1021/acssuschemeng.9b04256 10.1016/j.mattod.2015.10.006 10.1016/j.rser.2019.01.023 10.1002/advs.201600539 10.1039/C5NR01320H 10.1016/j.cej.2020.125856 10.1039/C6TA04413A 10.1016/j.nanoen.2016.04.012 10.1002/advs.201800733 10.1021/jacs.5b10699 10.1038/s41598-018-23642-6 10.1002/smll.201901145 10.1039/C7CS00505A 10.1016/j.cej.2017.12.065 10.1016/j.electacta.2018.10.021 10.1002/aenm.202001460 10.1016/j.electacta.2017.07.133 10.1039/C9TA11517J 10.1002/chem.201804218 10.1016/j.jpowsour.2019.227590 10.1016/j.jpowsour.2014.12.085 10.1039/C9NR09083E 10.1021/acsami.7b16271 10.1016/j.nanoen.2018.12.011 10.1016/j.jpowsour.2019.226977 10.1016/j.electacta.2019.134710 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Dec 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2020.137081 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2020_137081 S0013468620314742 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c343t-cb253054e9fa07fe7bee67fe7b34abceb715a0e8d580f1dc49c56e1b8c5a8f2e3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 07:07:52 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Tue Jul 01 03:02:16 EDT 2025 Tue Oct 01 07:16:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor High mass-loading Areal capacitance NiCo LDH |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-cb253054e9fa07fe7bee67fe7b34abceb715a0e8d580f1dc49c56e1b8c5a8f2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6106-4724 |
PQID | 2468390489 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2468390489 crossref_citationtrail_10_1016_j_electacta_2020_137081 crossref_primary_10_1016_j_electacta_2020_137081 elsevier_sciencedirect_doi_10_1016_j_electacta_2020_137081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Xuan, Qian, Han, Wan, Li, Lu, Pan, Niu, Gong (bib0028) 2019; 321 Dubal, Chodankar, Kim, Gomez-Romero (bib0002) 2018; 47 Balamurugan, Li, Thanh, Park, Kim, Lee (bib0023) 2017; 5 Yu, Zhang, Lou, Wu, Zhu, Chen, Shen, Fu, Bao, Wu (bib0047) 2018; 8 Chen, Wei, Mo, Wu, Li, Chen, Zhang, Hu (bib0058) 2020; 400 Tao, Wu, Chen, Chen, Wang, Tong, Pei, Shen, Guan (bib0022) 2020; 396 Li, Liu, Zhang, Cheng, Zhao, Dai, Wu, Zhang, Ding, Wu, Liu, Wang (bib0041) 2019; 57 Zhang, Zheng, Yuan, Tian, Yue, Zheng, Di, Liu (bib0011) 2020; 380 Chen, Yan, Luo, Gao, Huang, Han, Zeng, Zhu (bib0059) 2018; 10 Pan, Jiang, Yang, Wu, Tian, Liu, Song, Gu, Sun, Hu (bib0013) 2018; 12 Xie, Xu, Duan, Tian, Zhang, Xiang, Lin, Guo, Ding (bib0029) 2018; 11 Ouyang, Xia, Ye, Wang, Jiao, Lei, Hao (bib0021) 2018; 10 Yang, Ye, Liang, Wu, Long, Xu, Wang (bib0027) 2020; 449 Zou, Guo, Liu, Luo, Ye, Xu, Wang (bib0026) 2018; 24 Liang, Lin, Jia, Chen, Qi, Cao, Lin, Fei, Feng (bib0035) 2018; 378 Shao, Zheng, Zou, Luo, Cen, Ye, Xu, Wang (bib0025) 2017; 248 Zhao, Wang, Bian, Yu, Fan, Zhou, Wu, Tung, O’Hare, Zhang (bib0048) 2015; 7 Jiang, Sun, Chen, Zhou, Rong, Hu, Chen, Zhu, Han (bib0051) 2020; 342 Mishra, Shetti, Basu, Raghava Reddy, Aminabhavi (bib0020) 2019; 6 Chen, Dang, Liang, Bi, Gerken, Jin, Alp, Stahl (bib0038) 2015; 137 Li, Hu, Liu, Zhao, Li, Meng, Tian, Xu, Mai (bib0016) 2018; 24 Yang, Zhao, Meng, Wu, Yang, Pu, Gao (bib0008) 2019; 438 Ma, Zhu, Wang, Liu, Meng, Chen, Peng, Deng (bib0046) 2020; 217 Wang, Song, Xia (bib0040) 2016; 45 Xu, Du, Adekoya, Zhang, Zhang, Sun, Lei (bib0015) 2020; 10 Li, Wu, Guan, Elshahawy, Dong, Pennycook, Wang (bib0018) 2019; 15 Liu, Li, Batmunkh, Xiao, Sun, Zhao, Liu, Huang, Ma (bib0053) 2019; 7 Zhang, Yin, Liu, Gu, Gong, Wang (bib0006) 2019; 59 Dehghani-Sanij, Tharumalingam, Dusseault, Fraser (bib0003) 2019; 104 Choudhary, Li, Moore, Nagaiah, Zhai, Jung, Thomas (bib0005) 2017; 29 Wang, Zhang, Yan, Lyu, Wang, Bell, Wang (bib0033) 2017; 9 Zuo, Li, Zhou, Li, Xia, Liu (bib0004) 2017; 4 Chen, Chai, Cao, Zhou, Li, Yang (bib0010) 2020; 381 Yang, Zhu, Wen, Guan, Sun, Feng, Tian, Zheng, Cheng, Ya (bib0032) 2019; 7 Zhang, Ni, Li, Lin, Zhu, Wang, Wang (bib0034) 2017; 53 Li, Li, Zhao, Zhao, Zhou, Chen, Tao, Liu, Han (bib0056) 2019; 430 Chen, Zhou, Wang, Huang, Chen, Xu, Wong (bib0042) 2020; 8 Guan, Fu, Zhang, Lei, Peng (bib0017) 2020; 8 Xu, Li, Zhao (bib0007) 2018; 336 Ouyang, Huang, Xia, Ye, Jiao, Wang, Lei, Hao (bib0009) 2019; 355 Liu, Hou, Gao, Yang, Liu, Wang (bib0050) 2019; 295 Zheng, Quan, Li, He, Ye, Xu, Wang (bib0024) 2016; 8 Guo, Hong, Wang, Li, Meng, Dai, Liu, He, Mai (bib0019) 2019; 29 Wang, Zhang, Yang, Yan, Hong, Dong, Liu, Zhang, Wen (bib0031) 2019; 295 Zhang, Kong, Zhao, Jiang, Lei (bib0049) 2016; 4 Zhang, Xiao, Li, Ma, Yuan, Xie, Chen, Lu (bib0055) 2018; 27 Long, Wang, Xiao, An, Yang (bib0030) 2016; 19 Chen, Liu, Mou, Zhang, Jiang, Liu, Huang, Liu (bib0043) 2019; 63 Nagaraju, Sekhar, Ramulu, Yu (bib0054) 2019; 15 Liu, Yin, Hui, Hui, Lee, Jun (bib0045) 2018; 5 Li, Yuan, Wang, Cui, Jiang, Chen, Song, Guo (bib0037) 2019; 7 Jiang, Zhang, Li, Ai (bib0039) 2015; 278 Elkholy, Heakal, Allam (bib0012) 2019; 296 Wang, Lu, Zhao, Luo, Yang, Peng, Yan, Liu, Luo (bib0036) 2019; 13 Chodankar, Dubal, Ji, Kim (bib0052) 2019; 15 Xia, Jiang, Zhao, Beaujuge, Alshareef (bib0057) 2016; 24 Nguyen, Montemor (bib0001) 2019; 6 Zhao, Lei (bib0014) 2020; 10 Chen, Lu, Liu, Xu, Wang, Deng, Zeng, Deng (bib0044) 2020; 12 Mishra (10.1016/j.electacta.2020.137081_bib0020) 2019; 6 Xie (10.1016/j.electacta.2020.137081_bib0029) 2018; 11 Li (10.1016/j.electacta.2020.137081_bib0037) 2019; 7 Liu (10.1016/j.electacta.2020.137081_bib0053) 2019; 7 Balamurugan (10.1016/j.electacta.2020.137081_bib0023) 2017; 5 Jiang (10.1016/j.electacta.2020.137081_bib0039) 2015; 278 Nguyen (10.1016/j.electacta.2020.137081_bib0001) 2019; 6 Wang (10.1016/j.electacta.2020.137081_bib0036) 2019; 13 Ma (10.1016/j.electacta.2020.137081_bib0046) 2020; 217 Chen (10.1016/j.electacta.2020.137081_bib0043) 2019; 63 Chen (10.1016/j.electacta.2020.137081_bib0042) 2020; 8 Zhang (10.1016/j.electacta.2020.137081_bib0006) 2019; 59 Long (10.1016/j.electacta.2020.137081_bib0030) 2016; 19 Liu (10.1016/j.electacta.2020.137081_bib0045) 2018; 5 Yang (10.1016/j.electacta.2020.137081_bib0008) 2019; 438 Dehghani-Sanij (10.1016/j.electacta.2020.137081_bib0003) 2019; 104 Chodankar (10.1016/j.electacta.2020.137081_bib0052) 2019; 15 Ouyang (10.1016/j.electacta.2020.137081_bib0009) 2019; 355 Nagaraju (10.1016/j.electacta.2020.137081_bib0054) 2019; 15 Yang (10.1016/j.electacta.2020.137081_bib0027) 2020; 449 Zou (10.1016/j.electacta.2020.137081_bib0026) 2018; 24 Yu (10.1016/j.electacta.2020.137081_bib0047) 2018; 8 Dubal (10.1016/j.electacta.2020.137081_bib0002) 2018; 47 Zhang (10.1016/j.electacta.2020.137081_bib0011) 2020; 380 Zhang (10.1016/j.electacta.2020.137081_bib0034) 2017; 53 Xu (10.1016/j.electacta.2020.137081_bib0007) 2018; 336 Tao (10.1016/j.electacta.2020.137081_bib0022) 2020; 396 Chen (10.1016/j.electacta.2020.137081_bib0058) 2020; 400 Liu (10.1016/j.electacta.2020.137081_bib0050) 2019; 295 Zhao (10.1016/j.electacta.2020.137081_bib0014) 2020; 10 Chen (10.1016/j.electacta.2020.137081_bib0059) 2018; 10 Wang (10.1016/j.electacta.2020.137081_bib0040) 2016; 45 Li (10.1016/j.electacta.2020.137081_bib0056) 2019; 430 Zuo (10.1016/j.electacta.2020.137081_bib0004) 2017; 4 Wang (10.1016/j.electacta.2020.137081_bib0031) 2019; 295 Xia (10.1016/j.electacta.2020.137081_bib0057) 2016; 24 Zhao (10.1016/j.electacta.2020.137081_bib0048) 2015; 7 Yang (10.1016/j.electacta.2020.137081_bib0032) 2019; 7 Li (10.1016/j.electacta.2020.137081_bib0041) 2019; 57 Chen (10.1016/j.electacta.2020.137081_bib0044) 2020; 12 Guo (10.1016/j.electacta.2020.137081_bib0019) 2019; 29 Ouyang (10.1016/j.electacta.2020.137081_bib0021) 2018; 10 Xu (10.1016/j.electacta.2020.137081_bib0015) 2020; 10 Chen (10.1016/j.electacta.2020.137081_bib0010) 2020; 381 Zhang (10.1016/j.electacta.2020.137081_bib0055) 2018; 27 Jiang (10.1016/j.electacta.2020.137081_bib0051) 2020; 342 Li (10.1016/j.electacta.2020.137081_bib0016) 2018; 24 Zheng (10.1016/j.electacta.2020.137081_bib0024) 2016; 8 Chen (10.1016/j.electacta.2020.137081_bib0038) 2015; 137 Shao (10.1016/j.electacta.2020.137081_bib0025) 2017; 248 Liang (10.1016/j.electacta.2020.137081_bib0035) 2018; 378 Li (10.1016/j.electacta.2020.137081_bib0018) 2019; 15 Xuan (10.1016/j.electacta.2020.137081_bib0028) 2019; 321 Choudhary (10.1016/j.electacta.2020.137081_bib0005) 2017; 29 Zhang (10.1016/j.electacta.2020.137081_bib0049) 2016; 4 Pan (10.1016/j.electacta.2020.137081_bib0013) 2018; 12 Wang (10.1016/j.electacta.2020.137081_bib0033) 2017; 9 Elkholy (10.1016/j.electacta.2020.137081_bib0012) 2019; 296 Guan (10.1016/j.electacta.2020.137081_bib0017) 2020; 8 |
References_xml | – volume: 59 start-page: 41 year: 2019 end-page: 49 ident: bib0006 article-title: A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches publication-title: Nano Energy – volume: 8 start-page: 6828 year: 2020 end-page: 6841 ident: bib0042 article-title: Anti-freezing flexible aqueous Zn-MnO publication-title: Mater. Chem. A – volume: 45 start-page: 5925 year: 2016 end-page: 5950 ident: bib0040 article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications publication-title: Chem. Soc. Rev. – volume: 63 year: 2019 ident: bib0043 article-title: Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors publication-title: Nano Energy – volume: 380 year: 2020 ident: bib0011 article-title: Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH) publication-title: Chem. Eng. J – volume: 19 start-page: 213 year: 2016 end-page: 226 ident: bib0030 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today – volume: 296 start-page: 59 year: 2019 end-page: 68 ident: bib0012 article-title: A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors publication-title: Electrochim. Acta – volume: 8 start-page: 5246 year: 2018 ident: bib0047 article-title: Synthesis of NiMn-LDH Nanosheet@Ni publication-title: Sci. Rep. – volume: 336 start-page: 602 year: 2018 end-page: 611 ident: bib0007 article-title: Ni-Co-S/Co(OH) publication-title: Chem. Eng. J – volume: 13 start-page: 12206 year: 2019 end-page: 12218 ident: bib0036 article-title: Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction publication-title: ACS Nano – volume: 321 year: 2019 ident: bib0028 article-title: In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor publication-title: Electrochim. Acta – volume: 53 start-page: 8010 year: 2017 end-page: 8013 ident: bib0034 article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions publication-title: Chem. Commun. – volume: 295 start-page: 340 year: 2019 end-page: 346 ident: bib0050 article-title: Co doped α-Ni(OH) publication-title: Electrochim. Acta – volume: 10 start-page: 3549 year: 2018 end-page: 3561 ident: bib0021 article-title: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 ident: bib0014 article-title: 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage publication-title: Adv. Energy Mater – volume: 15 year: 2019 ident: bib0018 article-title: (Ni,Co)Se publication-title: Small – volume: 24 start-page: 19309 year: 2018 end-page: 19316 ident: bib0026 article-title: Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: a Comparison of Alkali Anion Exchange and Sulfuration publication-title: Chem. Eur. J – volume: 438 year: 2019 ident: bib0008 article-title: Facile synthesis of yolk-shelled NiO/Ni composites as cathode material for high-performance hybrid supercapacitors publication-title: J. Power Sources – volume: 57 start-page: 22 year: 2019 end-page: 33 ident: bib0041 article-title: Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors publication-title: Nano Energy – volume: 4 start-page: 12833 year: 2016 end-page: 12840 ident: bib0049 article-title: CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices publication-title: J. Mater. Chem. A – volume: 278 start-page: 445 year: 2015 end-page: 451 ident: bib0039 article-title: Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction publication-title: J. Power Sources – volume: 381 year: 2020 ident: bib0010 article-title: Hierarchical CoGa layered double hydroxides grown on nickel foam as high energy density hybrid supercapacitor publication-title: Chem. Eng. J – volume: 6 year: 2019 ident: bib0001 article-title: metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices publication-title: Adv. Sci. – volume: 10 year: 2020 ident: bib0015 article-title: Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage publication-title: Adv. Energy Mater – volume: 104 start-page: 192 year: 2019 end-page: 208 ident: bib0003 article-title: Study of energy storage systems and environmental challenges of batteries publication-title: Renewable Sustainable Energy Rev. – volume: 217 year: 2020 ident: bib0046 article-title: Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage publication-title: Chem. Eng. Sci. – volume: 396 year: 2020 ident: bib0022 article-title: Synthesis of amorphous hydroxyl-rich Co publication-title: Chem. Eng. J – volume: 11 start-page: 216 year: 2018 end-page: 224 ident: bib0029 article-title: Facile growth of homogeneous Ni(OH) publication-title: Nano Res – volume: 7 start-page: 17325 year: 2019 end-page: 17334 ident: bib0037 article-title: Two-dimensional Cobalt Oxy-hydrate Sulfide Nanosheets with Modified t publication-title: ACS Sustain. Chem. Eng. – volume: 449 year: 2020 ident: bib0027 article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors publication-title: J. Power Sources – volume: 400 year: 2020 ident: bib0058 article-title: CoS publication-title: Chem. Eng. J – volume: 15 year: 2019 ident: bib0054 article-title: An Integrated Approach Toward Renewable Energy Storage Using Rechargeable Ag@NiCoS-Based Hybrid Supercapacitors publication-title: Small – volume: 12 start-page: 2968 year: 2018 end-page: 2979 ident: bib0013 article-title: In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor publication-title: ACS Nano – volume: 430 start-page: 51 year: 2019 end-page: 59 ident: bib0056 article-title: Ultrathin nanosheet-assembled hollow microplate CoMoO publication-title: J. Power Sources – volume: 24 start-page: 78 year: 2016 end-page: 86 ident: bib0057 article-title: Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes publication-title: Nano Energy – volume: 24 start-page: 18307 year: 2018 end-page: 18321 ident: bib0016 article-title: Recent Advances in Nanowire-Based, Flexible, Freestanding Electrodes for Energy Storage publication-title: Chem. Eur. J – volume: 5 year: 2018 ident: bib0045 article-title: High-Performance Flexible Quasi-Solid-State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen-Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures publication-title: Adv. Sci. – volume: 248 start-page: 322 year: 2017 end-page: 332 ident: bib0025 article-title: Alkali conversion of Ni-Co nanoarrays on carbon cloth for a high-capacity supercapacitor electrode publication-title: Electrochim. Acta – volume: 355 start-page: 416 year: 2019 end-page: 427 ident: bib0009 article-title: Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo publication-title: Chem. Eng. J – volume: 137 start-page: 15090 year: 2015 end-page: 15093 ident: bib0038 article-title: Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: detection of Fe publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 5771 year: 2019 end-page: 5786 ident: bib0020 article-title: Carbon cloth‐based hybrid materials as flexible electrochemical supercapacitors publication-title: ChemElectroChem – volume: 15 year: 2019 ident: bib0052 article-title: Self-Assembled Nickel Pyrophosphate-Decorated Amorphous Bimetal Hydroxides 2D-on-2D Nanostructure for High-Energy Solid-State Asymmetric Supercapacitor publication-title: Small – volume: 7 start-page: 7168 year: 2015 end-page: 7173 ident: bib0048 article-title: Ni publication-title: Nanoscale – volume: 8 start-page: 17055 year: 2016 end-page: 17063 ident: bib0024 article-title: In situ fabrication of Ni–Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors publication-title: Nanoscale – volume: 27 start-page: 195 year: 2018 end-page: 202 ident: bib0055 article-title: Porous NiCo publication-title: J. Energy Chem – volume: 12 start-page: 1852 year: 2020 end-page: 1863 ident: bib0044 article-title: A hierarchical glucose-intercalated NiMn-G-LDH@NiCo publication-title: Nanoscale – volume: 5 start-page: 19760 year: 2017 end-page: 19772 ident: bib0023 article-title: Hierarchical design of Cu publication-title: J. Mater. Chem. A – volume: 7 start-page: 23941 year: 2019 end-page: 23948 ident: bib0053 article-title: Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings publication-title: J. Mater. Chem. A – volume: 9 start-page: 15510 year: 2017 end-page: 15524 ident: bib0033 article-title: 2–Methylimidazole-Derived Ni−Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors publication-title: ACS Appl. Mater. Interfaces – volume: 342 year: 2020 ident: bib0051 article-title: Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors publication-title: Electrochim. Acta – volume: 295 start-page: 1 year: 2019 end-page: 6 ident: bib0031 article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time publication-title: Electrochim. Acta – volume: 378 start-page: 248 year: 2018 end-page: 254 ident: bib0035 article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor publication-title: J. Power Source – volume: 29 year: 2019 ident: bib0019 article-title: Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor publication-title: Adv. Funct. Mater – volume: 10 start-page: 4662 year: 2018 end-page: 4671 ident: bib0059 article-title: Construction of Core-Shell NiMoO publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2017 ident: bib0004 article-title: Battery-supercapacitor hybrid devices: recent progress and future prospects publication-title: Adv. Sci. – volume: 29 year: 2017 ident: bib0005 article-title: Asymmetric supercapacitor electrodes and devices publication-title: Adv. Mater. – volume: 8 start-page: 3300 year: 2020 end-page: 3310 ident: bib0017 article-title: Cation-exchange-assisted formation of NiS/SnS publication-title: J. Mater. Chem. A – volume: 7 start-page: 8771 year: 2019 end-page: 8776 ident: bib0032 article-title: Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis publication-title: J. Mater. Chem. A – volume: 47 start-page: 2065 year: 2018 end-page: 2129 ident: bib0002 article-title: Towards flexible solid-state supercapacitors for smart and wearable electronics publication-title: Chem. Soc. Rev. – volume: 378 start-page: 248 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0035 article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor publication-title: J. Power Source doi: 10.1016/j.jpowsour.2017.12.046 – volume: 5 start-page: 19760 year: 2017 ident: 10.1016/j.electacta.2020.137081_bib0023 article-title: Hierarchical design of Cu1-xNixS nanosheets for high-performance asymmetric solid-state supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04071G – volume: 355 start-page: 416 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0009 article-title: Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors publication-title: Chem. Eng. J doi: 10.1016/j.cej.2018.08.142 – volume: 6 start-page: 5771 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0020 article-title: Carbon cloth‐based hybrid materials as flexible electrochemical supercapacitors publication-title: ChemElectroChem doi: 10.1002/celc.201901122 – volume: 7 start-page: 8771 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0032 article-title: Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00819E – volume: 295 start-page: 340 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0050 article-title: Co doped α-Ni(OH)2 multiple-dimensional structure electrode material publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.137 – volume: 63 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0043 article-title: Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.032 – volume: 9 start-page: 15510 year: 2017 ident: 10.1016/j.electacta.2020.137081_bib0033 article-title: 2–Methylimidazole-Derived Ni−Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02987 – volume: 29 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0019 article-title: Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor publication-title: Adv. Funct. Mater doi: 10.1002/adfm.201809004 – volume: 6 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0001 article-title: metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices publication-title: Adv. Sci. doi: 10.1002/advs.201801797 – volume: 27 start-page: 195 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0055 article-title: Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density publication-title: J. Energy Chem doi: 10.1016/j.jechem.2017.10.034 – volume: 59 start-page: 41 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0006 article-title: A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.001 – volume: 8 start-page: 17055 year: 2016 ident: 10.1016/j.electacta.2020.137081_bib0024 article-title: In situ fabrication of Ni–Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors publication-title: Nanoscale doi: 10.1039/C6NR04578B – volume: 45 start-page: 5925 year: 2016 ident: 10.1016/j.electacta.2020.137081_bib0040 article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00580A – volume: 24 start-page: 18307 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0016 article-title: Recent Advances in Nanowire-Based, Flexible, Freestanding Electrodes for Energy Storage publication-title: Chem. Eur. J doi: 10.1002/chem.201803658 – volume: 13 start-page: 12206 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0036 article-title: Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction publication-title: ACS Nano doi: 10.1021/acsnano.9b06910 – volume: 396 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0022 article-title: Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor publication-title: Chem. Eng. J doi: 10.1016/j.cej.2020.125364 – volume: 217 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0046 article-title: Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115548 – volume: 15 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0054 article-title: An Integrated Approach Toward Renewable Energy Storage Using Rechargeable Ag@NiCoS-Based Hybrid Supercapacitors publication-title: Small doi: 10.1002/smll.201805418 – volume: 29 year: 2017 ident: 10.1016/j.electacta.2020.137081_bib0005 article-title: Asymmetric supercapacitor electrodes and devices publication-title: Adv. Mater. doi: 10.1002/adma.201605336 – volume: 296 start-page: 59 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0012 article-title: A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.11.038 – volume: 53 start-page: 8010 year: 2017 ident: 10.1016/j.electacta.2020.137081_bib0034 article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions publication-title: Chem. Commun. doi: 10.1039/C7CC04604A – volume: 8 start-page: 6828 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0042 article-title: Anti-freezing flexible aqueous Zn-MnO2 battery working at –35 C enabled by borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte, J publication-title: Mater. Chem. A doi: 10.1039/D0TA01553A – volume: 430 start-page: 51 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0056 article-title: Ultrathin nanosheet-assembled hollow microplate CoMoO4 array derived from metal-organic framework for supercapacitor with ultrahigh areal capacitance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.05.011 – volume: 11 start-page: 216 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0029 article-title: Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications publication-title: Nano Res doi: 10.1007/s12274-017-1621-4 – volume: 342 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0051 article-title: Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136077 – volume: 380 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0011 article-title: Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors publication-title: Chem. Eng. J doi: 10.1016/j.cej.2019.122486 – volume: 381 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0010 article-title: Hierarchical CoGa layered double hydroxides grown on nickel foam as high energy density hybrid supercapacitor publication-title: Chem. Eng. J doi: 10.1016/j.cej.2019.122620 – volume: 12 start-page: 2968 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0013 article-title: In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor publication-title: ACS Nano doi: 10.1021/acsnano.8b00653 – volume: 7 start-page: 23941 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0053 article-title: Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04835A – volume: 10 start-page: 3549 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0021 article-title: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16021 – volume: 7 start-page: 17325 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0037 article-title: Two-dimensional Cobalt Oxy-hydrate Sulfide Nanosheets with Modified t2g Orbital State of CoO6−x Octahedron for Efficient Overall Water Splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04256 – volume: 19 start-page: 213 year: 2016 ident: 10.1016/j.electacta.2020.137081_bib0030 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.006 – volume: 104 start-page: 192 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0003 article-title: Study of energy storage systems and environmental challenges of batteries publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.01.023 – volume: 4 year: 2017 ident: 10.1016/j.electacta.2020.137081_bib0004 article-title: Battery-supercapacitor hybrid devices: recent progress and future prospects publication-title: Adv. Sci. doi: 10.1002/advs.201600539 – volume: 7 start-page: 7168 year: 2015 ident: 10.1016/j.electacta.2020.137081_bib0048 article-title: Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors publication-title: Nanoscale doi: 10.1039/C5NR01320H – volume: 400 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0058 article-title: CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors publication-title: Chem. Eng. J doi: 10.1016/j.cej.2020.125856 – volume: 4 start-page: 12833 year: 2016 ident: 10.1016/j.electacta.2020.137081_bib0049 article-title: CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04413A – volume: 24 start-page: 78 year: 2016 ident: 10.1016/j.electacta.2020.137081_bib0057 article-title: Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.012 – volume: 5 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0045 article-title: High-Performance Flexible Quasi-Solid-State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen-Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures publication-title: Adv. Sci. doi: 10.1002/advs.201800733 – volume: 137 start-page: 15090 year: 2015 ident: 10.1016/j.electacta.2020.137081_bib0038 article-title: Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: detection of Fe4+ by Mossbauer Spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10699 – volume: 8 start-page: 5246 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0047 article-title: Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance publication-title: Sci. Rep. doi: 10.1038/s41598-018-23642-6 – volume: 15 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0052 article-title: Self-Assembled Nickel Pyrophosphate-Decorated Amorphous Bimetal Hydroxides 2D-on-2D Nanostructure for High-Energy Solid-State Asymmetric Supercapacitor publication-title: Small doi: 10.1002/smll.201901145 – volume: 47 start-page: 2065 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0002 article-title: Towards flexible solid-state supercapacitors for smart and wearable electronics publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00505A – volume: 336 start-page: 602 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0007 article-title: Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors publication-title: Chem. Eng. J doi: 10.1016/j.cej.2017.12.065 – volume: 295 start-page: 1 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0031 article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.021 – volume: 10 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0014 article-title: 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage publication-title: Adv. Energy Mater doi: 10.1002/aenm.202001460 – volume: 15 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0018 article-title: (Ni,Co)Se2/NiCo-LDH Core/Shell Structural Electrode with the Cactus-Like (Ni,Co)Se2 Core for Asymmetric Supercapacitors publication-title: Small – volume: 248 start-page: 322 year: 2017 ident: 10.1016/j.electacta.2020.137081_bib0025 article-title: Alkali conversion of Ni-Co nanoarrays on carbon cloth for a high-capacity supercapacitor electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.133 – volume: 8 start-page: 3300 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0017 article-title: Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11517J – volume: 24 start-page: 19309 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0026 article-title: Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: a Comparison of Alkali Anion Exchange and Sulfuration publication-title: Chem. Eur. J doi: 10.1002/chem.201804218 – volume: 449 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0027 article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227590 – volume: 278 start-page: 445 year: 2015 ident: 10.1016/j.electacta.2020.137081_bib0039 article-title: Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.085 – volume: 12 start-page: 1852 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0044 article-title: A hierarchical glucose-intercalated NiMn-G-LDH@NiCo2S4 core–shell structure as a binder-free electrode for flexible all-solid-state asymmetric supercapacitors publication-title: Nanoscale doi: 10.1039/C9NR09083E – volume: 10 year: 2020 ident: 10.1016/j.electacta.2020.137081_bib0015 article-title: Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage publication-title: Adv. Energy Mater – volume: 10 start-page: 4662 year: 2018 ident: 10.1016/j.electacta.2020.137081_bib0059 article-title: Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16271 – volume: 57 start-page: 22 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0041 article-title: Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.011 – volume: 438 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0008 article-title: Facile synthesis of yolk-shelled NiO/Ni composites as cathode material for high-performance hybrid supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226977 – volume: 321 year: 2019 ident: 10.1016/j.electacta.2020.137081_bib0028 article-title: In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134710 |
SSID | ssj0007670 |
Score | 2.5850785 |
Snippet | •Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F... Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 137081 |
SubjectTerms | Adhesive strength Areal capacitance Arrays Carbon Cloth Data integration Electrical resistivity Electrodes Electron transfer Flux density High mass-loading Intermetallic compounds Nanorods NiCo LDH Substrates Supercapacitor Supercapacitors Weight reduction |
Title | Construction of nanowall-supported-nanorod nico ldh array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors |
URI | https://dx.doi.org/10.1016/j.electacta.2020.137081 https://www.proquest.com/docview/2468390489 |
Volume | 362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQPRQOVQtU0NKVD1wN-XBimxtaFW1bwakrcbNsx1YXZbOrXRDiwg_h1zLjJGwXCXFAimTFsp3IM5kZRzPvEXKkgrMIw8I8hBuMCxuYKi3Ca0M0mzslskjTeXFZjsb891VxtUGGfS0MplV2tr-16dFadz0n3W6ezCcTrPFNc44FDojADic8rGDnArX8-GGV5iFKkfQsBjh6LccrUs0YuOCgmCEHhEhk-pqHemGrowM6_0w-dZEjPWtf7gvZ8M0O-TjsCdt2yPZ_2IK75BGpOHtwWDoLtDHN7M7UNVveziOaecWwCwwobUAdaF39o2axMPe0o8apPMW_tBQRjekUgmxWz2LGPYUFnVlYbGqQNIXAN45i81UZAjXL--kU-bochSf6hQO37CZI7rNHxuc__w5HrCNiYC7n-Q1zNivALnCvgklE8MJ6X8Y258Y6b0VamMTLqpBJSCvHlStKn1rpCiND5vOvZLOZNX6f0DIL1kuVOukELw03sE4RchcSJWXq-QEp-83XrkMpR7KMWvfpaNf6WWoapaZbqR2Q5HnivAXqeHvKaS9dvaZzGtzJ25MPe33Q3We_1BloWK7AKKpv71n7O9nCuzZr5pBsgrL4HxD73NhBVO4B-XD268_o8gmR9Qjs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcigcKiiglhbwgatpPpzY5latWi3Q9tRKvVm2Y4tF2exqtwj1wg_h1zLjJC1FQj0gRbKU2E7kGc-Mo5n3AN7r6B3BsPCA4QYX0kWua0fw2hjNll7LItF0np3X00vx-aq62oDJWAtDaZWD7e9terLWw53DYTUPl7MZ1fjmpaACB0JgxxPeI3gscPsSjcGHn3d5HrKW2UhjQN3vJXklrhmLF54UCyKBkJnK_-Wi_jLWyQOdPIPtIXRkR_3XPYeN0O3A1mRkbNuBp3-AC76AX8TFOaLDskVkne0WP2zb8vX3ZYIzbzjdQgvKOtQH1jZfmV2t7A0buHGawOg3LSNIYzbHKJu3i5Ryz3BCb1eOmhZFzTDyTb348q4Ogdn1zXxOhF2e4RvDyqNf9jNi93kJlyfHF5MpH5gYuC9Fec29Kyo0DCLoaDMZg3Qh1KkthXU-OJlXNguqqVQW88YL7as65E75yqpYhPIVbHaLLuwCq4vogtK5V16K2gqL81Sx9DHTSuVB7EE9Lr7xA0w5sWW0ZsxH-2ZupWZIaqaX2h5ktwOXPVLHw0M-jtI195TOoD95ePDBqA9m2PdrU6CGlRqton79P3O_g63pxdmpOf10_mUfntCTPoXmADZRccIbDISu3duk6L8BgYwKeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+nanowall-supported-nanorod+nico+ldh+array+electrode+with+high+mass-loading+on+carbon+cloth+for+high-performance+asymmetric+supercapacitors&rft.jtitle=Electrochimica+acta&rft.au=Yang%2C+Tianyi&rft.au=Ye%2C+Jing&rft.au=Chen%2C+Shihuan&rft.au=Liao%2C+Shuqing&rft.date=2020-12-01&rft.issn=0013-4686&rft.volume=362&rft.spage=137081&rft_id=info:doi/10.1016%2Fj.electacta.2020.137081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2020_137081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |