Construction of nanowall-supported-nanorod nico ldh array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors

•Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F cm−2.•All-solid-state asymmetric supercapacitor delivers 6.37 mWh cm−3 at 62.5 mW cm−2. Carbon cloth is regarded as a promising substrate fo...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 362; p. 137081
Main Authors Yang, Tianyi, Ye, Jing, Chen, Shihuan, Liao, Shuqing, Chen, Huizhen, Yang, Luhuan, Xu, Xuetang, Wang, Fan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F cm−2.•All-solid-state asymmetric supercapacitor delivers 6.37 mWh cm−3 at 62.5 mW cm−2. Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its relatively hydrophobic property prevents the large-scale growth of active substances, restricting the potential practical applications. In this paper, by using NiCo LDH nanowall array as a hydrophilic substrate, a high mass-loading nanowall-supported-nanorod NiCo LDH arrays are formed via an alternate solvo/hydrothermal synthesis and subsequently alkali conversion process. The strong substrate adhesion of NiCo LDH nanoarrays ensures efficient electron transfer of the electrode. Moreover, the as-achieved open holey framework, integrated by free-standing nanorods and porous nanowalls, provides a hierarchical nanostructure for realizing the enhanced capacitive performance. Consequently, nanowall-supported-nanorod NiCo LDH electrode achieves a high capacitance of 7.73 F cm−2 at a current density of 5 mA cm−2 with excellent rate performance. When assembled into an all-solid-state hybrid supercapacitor, it delivers a maximum working voltage of 1.8 V, and an energy density of 0.46 mWh cm−2 (6.37 mWh cm−3) at a power density of 4.5 mW cm−2 (62.5 mW cm−2). Therefore, this work provides a proof-of-concept design for the high-performance supercapacitor electrode with carbon cloth substrate. [Display omitted]
AbstractList Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its relatively hydrophobic property prevents the large-scale growth of active substances, restricting the potential practical applications. In this paper, by using NiCo LDH nanowall array as a hydrophilic substrate, a high mass-loading nanowall-supported-nanorod NiCo LDH arrays are formed via an alternate solvo/hydrothermal synthesis and subsequently alkali conversion process. The strong substrate adhesion of NiCo LDH nanoarrays ensures efficient electron transfer of the electrode. Moreover, the as-achieved open holey framework, integrated by free-standing nanorods and porous nanowalls, provides a hierarchical nanostructure for realizing the enhanced capacitive performance. Consequently, nanowall-supported-nanorod NiCo LDH electrode achieves a high capacitance of 7.73 F cm−2 at a current density of 5 mA cm−2 with excellent rate performance. When assembled into an all-solid-state hybrid supercapacitor, it delivers a maximum working voltage of 1.8 V, and an energy density of 0.46 mWh cm−2 (6.37 mWh cm−3) at a power density of 4.5 mW cm−2 (62.5 mW cm−2). Therefore, this work provides a proof-of-concept design for the high-performance supercapacitor electrode with carbon cloth substrate.
•Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F cm−2.•All-solid-state asymmetric supercapacitor delivers 6.37 mWh cm−3 at 62.5 mW cm−2. Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its relatively hydrophobic property prevents the large-scale growth of active substances, restricting the potential practical applications. In this paper, by using NiCo LDH nanowall array as a hydrophilic substrate, a high mass-loading nanowall-supported-nanorod NiCo LDH arrays are formed via an alternate solvo/hydrothermal synthesis and subsequently alkali conversion process. The strong substrate adhesion of NiCo LDH nanoarrays ensures efficient electron transfer of the electrode. Moreover, the as-achieved open holey framework, integrated by free-standing nanorods and porous nanowalls, provides a hierarchical nanostructure for realizing the enhanced capacitive performance. Consequently, nanowall-supported-nanorod NiCo LDH electrode achieves a high capacitance of 7.73 F cm−2 at a current density of 5 mA cm−2 with excellent rate performance. When assembled into an all-solid-state hybrid supercapacitor, it delivers a maximum working voltage of 1.8 V, and an energy density of 0.46 mWh cm−2 (6.37 mWh cm−3) at a power density of 4.5 mW cm−2 (62.5 mW cm−2). Therefore, this work provides a proof-of-concept design for the high-performance supercapacitor electrode with carbon cloth substrate. [Display omitted]
ArticleNumber 137081
Author Ye, Jing
Chen, Shihuan
Chen, Huizhen
Yang, Luhuan
Xu, Xuetang
Liao, Shuqing
Wang, Fan
Yang, Tianyi
Author_xml – sequence: 1
  givenname: Tianyi
  surname: Yang
  fullname: Yang, Tianyi
– sequence: 2
  givenname: Jing
  surname: Ye
  fullname: Ye, Jing
– sequence: 3
  givenname: Shihuan
  surname: Chen
  fullname: Chen, Shihuan
– sequence: 4
  givenname: Shuqing
  surname: Liao
  fullname: Liao, Shuqing
– sequence: 5
  givenname: Huizhen
  surname: Chen
  fullname: Chen, Huizhen
– sequence: 6
  givenname: Luhuan
  surname: Yang
  fullname: Yang, Luhuan
– sequence: 7
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  email: xxtang@gxu.edu.cn
– sequence: 8
  givenname: Fan
  orcidid: 0000-0002-6106-4724
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
BookMark eNqNUcuK3DAQFGEXMvv4hhXk7Ilk-SEfcliGvGAhl-Qs2nJ7R4MtOS1NlvmVfG3kmZBDLgkIWhRVXU3VDbvywSNjD1JspZDN28MWJ7QJ8tuWosyoaoWWr9hG6lYVStfdFdsIIVVRNbp5zW5iPAgh2qYVG_ZzF3xMdLTJBc_DyD348ALTVMTjsgRKOBQrRGHg3tnAp2HPgQhO_GybceQvLu353j3v-QwxFlOAwflnnhdaoH4dU8iMMdCZVSxI-T-Dt8ghnuYZEznLsyOShQWsS4HiHbseYYp4_3vesm8f3n_dfSqevnz8vHt8KqyqVCpsX9ZK1BV2I4h2xLZHbM5TVdBb7FtZg0A91FqMcrBVZ-sGZa9tDXosUd2yN5e9C4XvR4zJHMKRfLY0ZU5MdaLSXWa9u7AshRgJR5OvhDW1ROAmI4VZ6zAH86cOs9ZhLnVkffuXfiE3A53-Q_l4UWIO4YdDMtE6zNkNjjLfDMH9c8cvrzmx6Q
CitedBy_id crossref_primary_10_1016_j_est_2023_106713
crossref_primary_10_1016_j_est_2023_107648
crossref_primary_10_2139_ssrn_4175036
crossref_primary_10_1021_acs_energyfuels_3c00315
crossref_primary_10_1007_s10570_021_04178_x
crossref_primary_10_1016_j_est_2023_110337
crossref_primary_10_1016_j_apsusc_2024_161390
crossref_primary_10_1016_j_jcis_2022_04_088
crossref_primary_10_1016_j_cej_2022_138613
crossref_primary_10_1016_j_est_2024_114253
crossref_primary_10_1016_j_jallcom_2023_171227
crossref_primary_10_1016_j_electacta_2021_138649
crossref_primary_10_1007_s40843_023_2732_5
crossref_primary_10_1039_D2TA05977K
crossref_primary_10_1016_j_materresbull_2024_112969
crossref_primary_10_1039_D3DT01991H
crossref_primary_10_1016_j_electacta_2024_144166
crossref_primary_10_1039_D3TC03014H
crossref_primary_10_1002_smtd_202101320
crossref_primary_10_1016_j_est_2022_104300
crossref_primary_10_1016_j_jallcom_2021_161162
crossref_primary_10_1016_j_est_2024_111634
crossref_primary_10_1016_j_electacta_2021_139645
crossref_primary_10_1016_j_jelechem_2025_118972
crossref_primary_10_1016_j_jallcom_2023_171034
crossref_primary_10_1016_j_est_2023_109132
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_1016_j_apsusc_2021_149598
crossref_primary_10_1021_acsaem_2c03629
crossref_primary_10_1016_j_catcom_2023_106659
crossref_primary_10_1021_acsaem_3c00341
crossref_primary_10_1016_j_mtchem_2022_101152
crossref_primary_10_1016_j_jcis_2023_03_059
crossref_primary_10_1016_j_apsusc_2022_156174
crossref_primary_10_1039_D3CP00450C
crossref_primary_10_1016_j_jallcom_2022_167459
crossref_primary_10_1002_sstr_202400207
crossref_primary_10_1016_j_jpowsour_2023_233990
crossref_primary_10_1039_D2NJ06210K
crossref_primary_10_1016_j_jpowsour_2022_232185
crossref_primary_10_1016_j_jallcom_2024_173425
crossref_primary_10_1021_acs_iecr_0c04811
crossref_primary_10_1039_D2QM00503D
crossref_primary_10_1016_j_est_2021_102858
crossref_primary_10_1016_j_est_2023_109322
crossref_primary_10_1016_j_jallcom_2022_165909
crossref_primary_10_1016_j_nanoen_2021_106079
crossref_primary_10_1016_j_jcis_2024_03_105
crossref_primary_10_1021_acsanm_4c00388
crossref_primary_10_1016_j_apsusc_2022_153893
crossref_primary_10_1016_j_cej_2024_149736
crossref_primary_10_1016_j_ensm_2022_03_005
crossref_primary_10_1016_j_est_2024_112704
crossref_primary_10_1016_j_electacta_2024_144985
crossref_primary_10_1016_j_fuel_2022_126323
crossref_primary_10_2139_ssrn_4165528
crossref_primary_10_3390_nano14070573
crossref_primary_10_1002_adma_202306015
crossref_primary_10_1002_er_8736
crossref_primary_10_1016_j_jcis_2023_05_191
crossref_primary_10_1039_D3TA07658J
crossref_primary_10_1088_1361_6528_abe074
Cites_doi 10.1016/j.jpowsour.2017.12.046
10.1039/C7TA04071G
10.1016/j.cej.2018.08.142
10.1002/celc.201901122
10.1039/C9TA00819E
10.1016/j.electacta.2018.10.137
10.1016/j.nanoen.2019.06.032
10.1021/acsami.7b02987
10.1002/adfm.201809004
10.1002/advs.201801797
10.1016/j.jechem.2017.10.034
10.1016/j.nanoen.2019.02.001
10.1039/C6NR04578B
10.1039/C5CS00580A
10.1002/chem.201803658
10.1021/acsnano.9b06910
10.1016/j.cej.2020.125364
10.1016/j.ces.2020.115548
10.1002/smll.201805418
10.1002/adma.201605336
10.1016/j.electacta.2018.11.038
10.1039/C7CC04604A
10.1039/D0TA01553A
10.1016/j.jpowsour.2019.05.011
10.1007/s12274-017-1621-4
10.1016/j.electacta.2020.136077
10.1016/j.cej.2019.122486
10.1016/j.cej.2019.122620
10.1021/acsnano.8b00653
10.1039/C9TA04835A
10.1021/acsami.7b16021
10.1021/acssuschemeng.9b04256
10.1016/j.mattod.2015.10.006
10.1016/j.rser.2019.01.023
10.1002/advs.201600539
10.1039/C5NR01320H
10.1016/j.cej.2020.125856
10.1039/C6TA04413A
10.1016/j.nanoen.2016.04.012
10.1002/advs.201800733
10.1021/jacs.5b10699
10.1038/s41598-018-23642-6
10.1002/smll.201901145
10.1039/C7CS00505A
10.1016/j.cej.2017.12.065
10.1016/j.electacta.2018.10.021
10.1002/aenm.202001460
10.1016/j.electacta.2017.07.133
10.1039/C9TA11517J
10.1002/chem.201804218
10.1016/j.jpowsour.2019.227590
10.1016/j.jpowsour.2014.12.085
10.1039/C9NR09083E
10.1021/acsami.7b16271
10.1016/j.nanoen.2018.12.011
10.1016/j.jpowsour.2019.226977
10.1016/j.electacta.2019.134710
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2020.137081
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2020_137081
S0013468620314742
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c343t-cb253054e9fa07fe7bee67fe7b34abceb715a0e8d580f1dc49c56e1b8c5a8f2e3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 07:07:52 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Tue Jul 01 03:02:16 EDT 2025
Tue Oct 01 07:16:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitor
High mass-loading
Areal capacitance
NiCo LDH
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-cb253054e9fa07fe7bee67fe7b34abceb715a0e8d580f1dc49c56e1b8c5a8f2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6106-4724
PQID 2468390489
PQPubID 2045485
ParticipantIDs proquest_journals_2468390489
crossref_citationtrail_10_1016_j_electacta_2020_137081
crossref_primary_10_1016_j_electacta_2020_137081
elsevier_sciencedirect_doi_10_1016_j_electacta_2020_137081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xuan, Qian, Han, Wan, Li, Lu, Pan, Niu, Gong (bib0028) 2019; 321
Dubal, Chodankar, Kim, Gomez-Romero (bib0002) 2018; 47
Balamurugan, Li, Thanh, Park, Kim, Lee (bib0023) 2017; 5
Yu, Zhang, Lou, Wu, Zhu, Chen, Shen, Fu, Bao, Wu (bib0047) 2018; 8
Chen, Wei, Mo, Wu, Li, Chen, Zhang, Hu (bib0058) 2020; 400
Tao, Wu, Chen, Chen, Wang, Tong, Pei, Shen, Guan (bib0022) 2020; 396
Li, Liu, Zhang, Cheng, Zhao, Dai, Wu, Zhang, Ding, Wu, Liu, Wang (bib0041) 2019; 57
Zhang, Zheng, Yuan, Tian, Yue, Zheng, Di, Liu (bib0011) 2020; 380
Chen, Yan, Luo, Gao, Huang, Han, Zeng, Zhu (bib0059) 2018; 10
Pan, Jiang, Yang, Wu, Tian, Liu, Song, Gu, Sun, Hu (bib0013) 2018; 12
Xie, Xu, Duan, Tian, Zhang, Xiang, Lin, Guo, Ding (bib0029) 2018; 11
Ouyang, Xia, Ye, Wang, Jiao, Lei, Hao (bib0021) 2018; 10
Yang, Ye, Liang, Wu, Long, Xu, Wang (bib0027) 2020; 449
Zou, Guo, Liu, Luo, Ye, Xu, Wang (bib0026) 2018; 24
Liang, Lin, Jia, Chen, Qi, Cao, Lin, Fei, Feng (bib0035) 2018; 378
Shao, Zheng, Zou, Luo, Cen, Ye, Xu, Wang (bib0025) 2017; 248
Zhao, Wang, Bian, Yu, Fan, Zhou, Wu, Tung, O’Hare, Zhang (bib0048) 2015; 7
Jiang, Sun, Chen, Zhou, Rong, Hu, Chen, Zhu, Han (bib0051) 2020; 342
Mishra, Shetti, Basu, Raghava Reddy, Aminabhavi (bib0020) 2019; 6
Chen, Dang, Liang, Bi, Gerken, Jin, Alp, Stahl (bib0038) 2015; 137
Li, Hu, Liu, Zhao, Li, Meng, Tian, Xu, Mai (bib0016) 2018; 24
Yang, Zhao, Meng, Wu, Yang, Pu, Gao (bib0008) 2019; 438
Ma, Zhu, Wang, Liu, Meng, Chen, Peng, Deng (bib0046) 2020; 217
Wang, Song, Xia (bib0040) 2016; 45
Xu, Du, Adekoya, Zhang, Zhang, Sun, Lei (bib0015) 2020; 10
Li, Wu, Guan, Elshahawy, Dong, Pennycook, Wang (bib0018) 2019; 15
Liu, Li, Batmunkh, Xiao, Sun, Zhao, Liu, Huang, Ma (bib0053) 2019; 7
Zhang, Yin, Liu, Gu, Gong, Wang (bib0006) 2019; 59
Dehghani-Sanij, Tharumalingam, Dusseault, Fraser (bib0003) 2019; 104
Choudhary, Li, Moore, Nagaiah, Zhai, Jung, Thomas (bib0005) 2017; 29
Wang, Zhang, Yan, Lyu, Wang, Bell, Wang (bib0033) 2017; 9
Zuo, Li, Zhou, Li, Xia, Liu (bib0004) 2017; 4
Chen, Chai, Cao, Zhou, Li, Yang (bib0010) 2020; 381
Yang, Zhu, Wen, Guan, Sun, Feng, Tian, Zheng, Cheng, Ya (bib0032) 2019; 7
Zhang, Ni, Li, Lin, Zhu, Wang, Wang (bib0034) 2017; 53
Li, Li, Zhao, Zhao, Zhou, Chen, Tao, Liu, Han (bib0056) 2019; 430
Chen, Zhou, Wang, Huang, Chen, Xu, Wong (bib0042) 2020; 8
Guan, Fu, Zhang, Lei, Peng (bib0017) 2020; 8
Xu, Li, Zhao (bib0007) 2018; 336
Ouyang, Huang, Xia, Ye, Jiao, Wang, Lei, Hao (bib0009) 2019; 355
Liu, Hou, Gao, Yang, Liu, Wang (bib0050) 2019; 295
Zheng, Quan, Li, He, Ye, Xu, Wang (bib0024) 2016; 8
Guo, Hong, Wang, Li, Meng, Dai, Liu, He, Mai (bib0019) 2019; 29
Wang, Zhang, Yang, Yan, Hong, Dong, Liu, Zhang, Wen (bib0031) 2019; 295
Zhang, Kong, Zhao, Jiang, Lei (bib0049) 2016; 4
Zhang, Xiao, Li, Ma, Yuan, Xie, Chen, Lu (bib0055) 2018; 27
Long, Wang, Xiao, An, Yang (bib0030) 2016; 19
Chen, Liu, Mou, Zhang, Jiang, Liu, Huang, Liu (bib0043) 2019; 63
Nagaraju, Sekhar, Ramulu, Yu (bib0054) 2019; 15
Liu, Yin, Hui, Hui, Lee, Jun (bib0045) 2018; 5
Li, Yuan, Wang, Cui, Jiang, Chen, Song, Guo (bib0037) 2019; 7
Jiang, Zhang, Li, Ai (bib0039) 2015; 278
Elkholy, Heakal, Allam (bib0012) 2019; 296
Wang, Lu, Zhao, Luo, Yang, Peng, Yan, Liu, Luo (bib0036) 2019; 13
Chodankar, Dubal, Ji, Kim (bib0052) 2019; 15
Xia, Jiang, Zhao, Beaujuge, Alshareef (bib0057) 2016; 24
Nguyen, Montemor (bib0001) 2019; 6
Zhao, Lei (bib0014) 2020; 10
Chen, Lu, Liu, Xu, Wang, Deng, Zeng, Deng (bib0044) 2020; 12
Mishra (10.1016/j.electacta.2020.137081_bib0020) 2019; 6
Xie (10.1016/j.electacta.2020.137081_bib0029) 2018; 11
Li (10.1016/j.electacta.2020.137081_bib0037) 2019; 7
Liu (10.1016/j.electacta.2020.137081_bib0053) 2019; 7
Balamurugan (10.1016/j.electacta.2020.137081_bib0023) 2017; 5
Jiang (10.1016/j.electacta.2020.137081_bib0039) 2015; 278
Nguyen (10.1016/j.electacta.2020.137081_bib0001) 2019; 6
Wang (10.1016/j.electacta.2020.137081_bib0036) 2019; 13
Ma (10.1016/j.electacta.2020.137081_bib0046) 2020; 217
Chen (10.1016/j.electacta.2020.137081_bib0043) 2019; 63
Chen (10.1016/j.electacta.2020.137081_bib0042) 2020; 8
Zhang (10.1016/j.electacta.2020.137081_bib0006) 2019; 59
Long (10.1016/j.electacta.2020.137081_bib0030) 2016; 19
Liu (10.1016/j.electacta.2020.137081_bib0045) 2018; 5
Yang (10.1016/j.electacta.2020.137081_bib0008) 2019; 438
Dehghani-Sanij (10.1016/j.electacta.2020.137081_bib0003) 2019; 104
Chodankar (10.1016/j.electacta.2020.137081_bib0052) 2019; 15
Ouyang (10.1016/j.electacta.2020.137081_bib0009) 2019; 355
Nagaraju (10.1016/j.electacta.2020.137081_bib0054) 2019; 15
Yang (10.1016/j.electacta.2020.137081_bib0027) 2020; 449
Zou (10.1016/j.electacta.2020.137081_bib0026) 2018; 24
Yu (10.1016/j.electacta.2020.137081_bib0047) 2018; 8
Dubal (10.1016/j.electacta.2020.137081_bib0002) 2018; 47
Zhang (10.1016/j.electacta.2020.137081_bib0011) 2020; 380
Zhang (10.1016/j.electacta.2020.137081_bib0034) 2017; 53
Xu (10.1016/j.electacta.2020.137081_bib0007) 2018; 336
Tao (10.1016/j.electacta.2020.137081_bib0022) 2020; 396
Chen (10.1016/j.electacta.2020.137081_bib0058) 2020; 400
Liu (10.1016/j.electacta.2020.137081_bib0050) 2019; 295
Zhao (10.1016/j.electacta.2020.137081_bib0014) 2020; 10
Chen (10.1016/j.electacta.2020.137081_bib0059) 2018; 10
Wang (10.1016/j.electacta.2020.137081_bib0040) 2016; 45
Li (10.1016/j.electacta.2020.137081_bib0056) 2019; 430
Zuo (10.1016/j.electacta.2020.137081_bib0004) 2017; 4
Wang (10.1016/j.electacta.2020.137081_bib0031) 2019; 295
Xia (10.1016/j.electacta.2020.137081_bib0057) 2016; 24
Zhao (10.1016/j.electacta.2020.137081_bib0048) 2015; 7
Yang (10.1016/j.electacta.2020.137081_bib0032) 2019; 7
Li (10.1016/j.electacta.2020.137081_bib0041) 2019; 57
Chen (10.1016/j.electacta.2020.137081_bib0044) 2020; 12
Guo (10.1016/j.electacta.2020.137081_bib0019) 2019; 29
Ouyang (10.1016/j.electacta.2020.137081_bib0021) 2018; 10
Xu (10.1016/j.electacta.2020.137081_bib0015) 2020; 10
Chen (10.1016/j.electacta.2020.137081_bib0010) 2020; 381
Zhang (10.1016/j.electacta.2020.137081_bib0055) 2018; 27
Jiang (10.1016/j.electacta.2020.137081_bib0051) 2020; 342
Li (10.1016/j.electacta.2020.137081_bib0016) 2018; 24
Zheng (10.1016/j.electacta.2020.137081_bib0024) 2016; 8
Chen (10.1016/j.electacta.2020.137081_bib0038) 2015; 137
Shao (10.1016/j.electacta.2020.137081_bib0025) 2017; 248
Liang (10.1016/j.electacta.2020.137081_bib0035) 2018; 378
Li (10.1016/j.electacta.2020.137081_bib0018) 2019; 15
Xuan (10.1016/j.electacta.2020.137081_bib0028) 2019; 321
Choudhary (10.1016/j.electacta.2020.137081_bib0005) 2017; 29
Zhang (10.1016/j.electacta.2020.137081_bib0049) 2016; 4
Pan (10.1016/j.electacta.2020.137081_bib0013) 2018; 12
Wang (10.1016/j.electacta.2020.137081_bib0033) 2017; 9
Elkholy (10.1016/j.electacta.2020.137081_bib0012) 2019; 296
Guan (10.1016/j.electacta.2020.137081_bib0017) 2020; 8
References_xml – volume: 59
  start-page: 41
  year: 2019
  end-page: 49
  ident: bib0006
  article-title: A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches
  publication-title: Nano Energy
– volume: 8
  start-page: 6828
  year: 2020
  end-page: 6841
  ident: bib0042
  article-title: Anti-freezing flexible aqueous Zn-MnO
  publication-title: Mater. Chem. A
– volume: 45
  start-page: 5925
  year: 2016
  end-page: 5950
  ident: bib0040
  article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications
  publication-title: Chem. Soc. Rev.
– volume: 63
  year: 2019
  ident: bib0043
  article-title: Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors
  publication-title: Nano Energy
– volume: 380
  year: 2020
  ident: bib0011
  article-title: Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)
  publication-title: Chem. Eng. J
– volume: 19
  start-page: 213
  year: 2016
  end-page: 226
  ident: bib0030
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today
– volume: 296
  start-page: 59
  year: 2019
  end-page: 68
  ident: bib0012
  article-title: A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 5246
  year: 2018
  ident: bib0047
  article-title: Synthesis of NiMn-LDH Nanosheet@Ni
  publication-title: Sci. Rep.
– volume: 336
  start-page: 602
  year: 2018
  end-page: 611
  ident: bib0007
  article-title: Ni-Co-S/Co(OH)
  publication-title: Chem. Eng. J
– volume: 13
  start-page: 12206
  year: 2019
  end-page: 12218
  ident: bib0036
  article-title: Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction
  publication-title: ACS Nano
– volume: 321
  year: 2019
  ident: bib0028
  article-title: In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 8010
  year: 2017
  end-page: 8013
  ident: bib0034
  article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions
  publication-title: Chem. Commun.
– volume: 295
  start-page: 340
  year: 2019
  end-page: 346
  ident: bib0050
  article-title: Co doped α-Ni(OH)
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 3549
  year: 2018
  end-page: 3561
  ident: bib0021
  article-title: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  ident: bib0014
  article-title: 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage
  publication-title: Adv. Energy Mater
– volume: 15
  year: 2019
  ident: bib0018
  article-title: (Ni,Co)Se
  publication-title: Small
– volume: 24
  start-page: 19309
  year: 2018
  end-page: 19316
  ident: bib0026
  article-title: Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: a Comparison of Alkali Anion Exchange and Sulfuration
  publication-title: Chem. Eur. J
– volume: 438
  year: 2019
  ident: bib0008
  article-title: Facile synthesis of yolk-shelled NiO/Ni composites as cathode material for high-performance hybrid supercapacitors
  publication-title: J. Power Sources
– volume: 57
  start-page: 22
  year: 2019
  end-page: 33
  ident: bib0041
  article-title: Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors
  publication-title: Nano Energy
– volume: 4
  start-page: 12833
  year: 2016
  end-page: 12840
  ident: bib0049
  article-title: CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices
  publication-title: J. Mater. Chem. A
– volume: 278
  start-page: 445
  year: 2015
  end-page: 451
  ident: bib0039
  article-title: Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction
  publication-title: J. Power Sources
– volume: 381
  year: 2020
  ident: bib0010
  article-title: Hierarchical CoGa layered double hydroxides grown on nickel foam as high energy density hybrid supercapacitor
  publication-title: Chem. Eng. J
– volume: 6
  year: 2019
  ident: bib0001
  article-title: metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices
  publication-title: Adv. Sci.
– volume: 10
  year: 2020
  ident: bib0015
  article-title: Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage
  publication-title: Adv. Energy Mater
– volume: 104
  start-page: 192
  year: 2019
  end-page: 208
  ident: bib0003
  article-title: Study of energy storage systems and environmental challenges of batteries
  publication-title: Renewable Sustainable Energy Rev.
– volume: 217
  year: 2020
  ident: bib0046
  article-title: Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage
  publication-title: Chem. Eng. Sci.
– volume: 396
  year: 2020
  ident: bib0022
  article-title: Synthesis of amorphous hydroxyl-rich Co
  publication-title: Chem. Eng. J
– volume: 11
  start-page: 216
  year: 2018
  end-page: 224
  ident: bib0029
  article-title: Facile growth of homogeneous Ni(OH)
  publication-title: Nano Res
– volume: 7
  start-page: 17325
  year: 2019
  end-page: 17334
  ident: bib0037
  article-title: Two-dimensional Cobalt Oxy-hydrate Sulfide Nanosheets with Modified t
  publication-title: ACS Sustain. Chem. Eng.
– volume: 449
  year: 2020
  ident: bib0027
  article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors
  publication-title: J. Power Sources
– volume: 400
  year: 2020
  ident: bib0058
  article-title: CoS
  publication-title: Chem. Eng. J
– volume: 15
  year: 2019
  ident: bib0054
  article-title: An Integrated Approach Toward Renewable Energy Storage Using Rechargeable Ag@NiCoS-Based Hybrid Supercapacitors
  publication-title: Small
– volume: 12
  start-page: 2968
  year: 2018
  end-page: 2979
  ident: bib0013
  article-title: In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor
  publication-title: ACS Nano
– volume: 430
  start-page: 51
  year: 2019
  end-page: 59
  ident: bib0056
  article-title: Ultrathin nanosheet-assembled hollow microplate CoMoO
  publication-title: J. Power Sources
– volume: 24
  start-page: 78
  year: 2016
  end-page: 86
  ident: bib0057
  article-title: Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes
  publication-title: Nano Energy
– volume: 24
  start-page: 18307
  year: 2018
  end-page: 18321
  ident: bib0016
  article-title: Recent Advances in Nanowire-Based, Flexible, Freestanding Electrodes for Energy Storage
  publication-title: Chem. Eur. J
– volume: 5
  year: 2018
  ident: bib0045
  article-title: High-Performance Flexible Quasi-Solid-State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen-Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures
  publication-title: Adv. Sci.
– volume: 248
  start-page: 322
  year: 2017
  end-page: 332
  ident: bib0025
  article-title: Alkali conversion of Ni-Co nanoarrays on carbon cloth for a high-capacity supercapacitor electrode
  publication-title: Electrochim. Acta
– volume: 355
  start-page: 416
  year: 2019
  end-page: 427
  ident: bib0009
  article-title: Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo
  publication-title: Chem. Eng. J
– volume: 137
  start-page: 15090
  year: 2015
  end-page: 15093
  ident: bib0038
  article-title: Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: detection of Fe
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 5771
  year: 2019
  end-page: 5786
  ident: bib0020
  article-title: Carbon cloth‐based hybrid materials as flexible electrochemical supercapacitors
  publication-title: ChemElectroChem
– volume: 15
  year: 2019
  ident: bib0052
  article-title: Self-Assembled Nickel Pyrophosphate-Decorated Amorphous Bimetal Hydroxides 2D-on-2D Nanostructure for High-Energy Solid-State Asymmetric Supercapacitor
  publication-title: Small
– volume: 7
  start-page: 7168
  year: 2015
  end-page: 7173
  ident: bib0048
  article-title: Ni
  publication-title: Nanoscale
– volume: 8
  start-page: 17055
  year: 2016
  end-page: 17063
  ident: bib0024
  article-title: In situ fabrication of Ni–Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors
  publication-title: Nanoscale
– volume: 27
  start-page: 195
  year: 2018
  end-page: 202
  ident: bib0055
  article-title: Porous NiCo
  publication-title: J. Energy Chem
– volume: 12
  start-page: 1852
  year: 2020
  end-page: 1863
  ident: bib0044
  article-title: A hierarchical glucose-intercalated NiMn-G-LDH@NiCo
  publication-title: Nanoscale
– volume: 5
  start-page: 19760
  year: 2017
  end-page: 19772
  ident: bib0023
  article-title: Hierarchical design of Cu
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 23941
  year: 2019
  end-page: 23948
  ident: bib0053
  article-title: Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 15510
  year: 2017
  end-page: 15524
  ident: bib0033
  article-title: 2–Methylimidazole-Derived Ni−Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 342
  year: 2020
  ident: bib0051
  article-title: Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors
  publication-title: Electrochim. Acta
– volume: 295
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib0031
  article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time
  publication-title: Electrochim. Acta
– volume: 378
  start-page: 248
  year: 2018
  end-page: 254
  ident: bib0035
  article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor
  publication-title: J. Power Source
– volume: 29
  year: 2019
  ident: bib0019
  article-title: Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor
  publication-title: Adv. Funct. Mater
– volume: 10
  start-page: 4662
  year: 2018
  end-page: 4671
  ident: bib0059
  article-title: Construction of Core-Shell NiMoO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2017
  ident: bib0004
  article-title: Battery-supercapacitor hybrid devices: recent progress and future prospects
  publication-title: Adv. Sci.
– volume: 29
  year: 2017
  ident: bib0005
  article-title: Asymmetric supercapacitor electrodes and devices
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3300
  year: 2020
  end-page: 3310
  ident: bib0017
  article-title: Cation-exchange-assisted formation of NiS/SnS
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 8771
  year: 2019
  end-page: 8776
  ident: bib0032
  article-title: Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 2065
  year: 2018
  end-page: 2129
  ident: bib0002
  article-title: Towards flexible solid-state supercapacitors for smart and wearable electronics
  publication-title: Chem. Soc. Rev.
– volume: 378
  start-page: 248
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0035
  article-title: Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2017.12.046
– volume: 5
  start-page: 19760
  year: 2017
  ident: 10.1016/j.electacta.2020.137081_bib0023
  article-title: Hierarchical design of Cu1-xNixS nanosheets for high-performance asymmetric solid-state supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04071G
– volume: 355
  start-page: 416
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0009
  article-title: Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2018.08.142
– volume: 6
  start-page: 5771
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0020
  article-title: Carbon cloth‐based hybrid materials as flexible electrochemical supercapacitors
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901122
– volume: 7
  start-page: 8771
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0032
  article-title: Constructing a highly oriented layered MOF nanoarray from a layered double hydroxide for efficient and long-lasting alkaline water oxidation electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00819E
– volume: 295
  start-page: 340
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0050
  article-title: Co doped α-Ni(OH)2 multiple-dimensional structure electrode material
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.137
– volume: 63
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0043
  article-title: Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.032
– volume: 9
  start-page: 15510
  year: 2017
  ident: 10.1016/j.electacta.2020.137081_bib0033
  article-title: 2–Methylimidazole-Derived Ni−Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02987
– volume: 29
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0019
  article-title: Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.201809004
– volume: 6
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0001
  article-title: metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801797
– volume: 27
  start-page: 195
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0055
  article-title: Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density
  publication-title: J. Energy Chem
  doi: 10.1016/j.jechem.2017.10.034
– volume: 59
  start-page: 41
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0006
  article-title: A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.001
– volume: 8
  start-page: 17055
  year: 2016
  ident: 10.1016/j.electacta.2020.137081_bib0024
  article-title: In situ fabrication of Ni–Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors
  publication-title: Nanoscale
  doi: 10.1039/C6NR04578B
– volume: 45
  start-page: 5925
  year: 2016
  ident: 10.1016/j.electacta.2020.137081_bib0040
  article-title: Electrochemical capacitors: mechanism, materials, systems, characterization and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00580A
– volume: 24
  start-page: 18307
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0016
  article-title: Recent Advances in Nanowire-Based, Flexible, Freestanding Electrodes for Energy Storage
  publication-title: Chem. Eur. J
  doi: 10.1002/chem.201803658
– volume: 13
  start-page: 12206
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0036
  article-title: Controllable tuning of cobalt nickel-layered double hydroxide arrays as multifunctional electrodes for flexible supercapattery device and oxygen evolution reaction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06910
– volume: 396
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0022
  article-title: Synthesis of amorphous hydroxyl-rich Co3O4 for flexible high-rate supercapacitor
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2020.125364
– volume: 217
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0046
  article-title: Sacrificial template synthesis of hierarchical nickel hydroxidenitrate hollow colloidal particles for electrochemical energy storage
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115548
– volume: 15
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0054
  article-title: An Integrated Approach Toward Renewable Energy Storage Using Rechargeable Ag@NiCoS-Based Hybrid Supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201805418
– volume: 29
  year: 2017
  ident: 10.1016/j.electacta.2020.137081_bib0005
  article-title: Asymmetric supercapacitor electrodes and devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605336
– volume: 296
  start-page: 59
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0012
  article-title: A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.038
– volume: 53
  start-page: 8010
  year: 2017
  ident: 10.1016/j.electacta.2020.137081_bib0034
  article-title: Cobalt carbonate hydroxide superstructures for oxygen evolution reactions
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04604A
– volume: 8
  start-page: 6828
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0042
  article-title: Anti-freezing flexible aqueous Zn-MnO2 battery working at –35 C enabled by borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte, J
  publication-title: Mater. Chem. A
  doi: 10.1039/D0TA01553A
– volume: 430
  start-page: 51
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0056
  article-title: Ultrathin nanosheet-assembled hollow microplate CoMoO4 array derived from metal-organic framework for supercapacitor with ultrahigh areal capacitance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.05.011
– volume: 11
  start-page: 216
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0029
  article-title: Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1621-4
– volume: 342
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0051
  article-title: Design and fabrication of metal-organic frameworks nanosheet arrays constructed by interconnected nanohoneycomb-like nickel-cobalt oxide for high energy density asymmetric supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136077
– volume: 380
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0011
  article-title: Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2019.122486
– volume: 381
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0010
  article-title: Hierarchical CoGa layered double hydroxides grown on nickel foam as high energy density hybrid supercapacitor
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2019.122620
– volume: 12
  start-page: 2968
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0013
  article-title: In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00653
– volume: 7
  start-page: 23941
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0053
  article-title: Structural engineering to maintain the superior capacitance of molybdenum oxides at ultrahigh mass loadings
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04835A
– volume: 10
  start-page: 3549
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0021
  article-title: Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16021
– volume: 7
  start-page: 17325
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0037
  article-title: Two-dimensional Cobalt Oxy-hydrate Sulfide Nanosheets with Modified t2g Orbital State of CoO6−x Octahedron for Efficient Overall Water Splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04256
– volume: 19
  start-page: 213
  year: 2016
  ident: 10.1016/j.electacta.2020.137081_bib0030
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 104
  start-page: 192
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0003
  article-title: Study of energy storage systems and environmental challenges of batteries
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.01.023
– volume: 4
  year: 2017
  ident: 10.1016/j.electacta.2020.137081_bib0004
  article-title: Battery-supercapacitor hybrid devices: recent progress and future prospects
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600539
– volume: 7
  start-page: 7168
  year: 2015
  ident: 10.1016/j.electacta.2020.137081_bib0048
  article-title: Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors
  publication-title: Nanoscale
  doi: 10.1039/C5NR01320H
– volume: 400
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0058
  article-title: CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2020.125856
– volume: 4
  start-page: 12833
  year: 2016
  ident: 10.1016/j.electacta.2020.137081_bib0049
  article-title: CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04413A
– volume: 24
  start-page: 78
  year: 2016
  ident: 10.1016/j.electacta.2020.137081_bib0057
  article-title: Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.012
– volume: 5
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0045
  article-title: High-Performance Flexible Quasi-Solid-State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen-Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800733
– volume: 137
  start-page: 15090
  year: 2015
  ident: 10.1016/j.electacta.2020.137081_bib0038
  article-title: Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: detection of Fe4+ by Mossbauer Spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10699
– volume: 8
  start-page: 5246
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0047
  article-title: Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23642-6
– volume: 15
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0052
  article-title: Self-Assembled Nickel Pyrophosphate-Decorated Amorphous Bimetal Hydroxides 2D-on-2D Nanostructure for High-Energy Solid-State Asymmetric Supercapacitor
  publication-title: Small
  doi: 10.1002/smll.201901145
– volume: 47
  start-page: 2065
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0002
  article-title: Towards flexible solid-state supercapacitors for smart and wearable electronics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00505A
– volume: 336
  start-page: 602
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0007
  article-title: Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors
  publication-title: Chem. Eng. J
  doi: 10.1016/j.cej.2017.12.065
– volume: 295
  start-page: 1
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0031
  article-title: Interlayer space regulating of NiMn layered double hydroxides for supercapacitors by controlling hydrothermal reaction time
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.021
– volume: 10
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0014
  article-title: 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.202001460
– volume: 15
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0018
  article-title: (Ni,Co)Se2/NiCo-LDH Core/Shell Structural Electrode with the Cactus-Like (Ni,Co)Se2 Core for Asymmetric Supercapacitors
  publication-title: Small
– volume: 248
  start-page: 322
  year: 2017
  ident: 10.1016/j.electacta.2020.137081_bib0025
  article-title: Alkali conversion of Ni-Co nanoarrays on carbon cloth for a high-capacity supercapacitor electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.133
– volume: 8
  start-page: 3300
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0017
  article-title: Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11517J
– volume: 24
  start-page: 19309
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0026
  article-title: Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: a Comparison of Alkali Anion Exchange and Sulfuration
  publication-title: Chem. Eur. J
  doi: 10.1002/chem.201804218
– volume: 449
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0027
  article-title: Graded holey Nickel Cobalt layered double hydroxide nanosheet array electrode with high mass loading for high-energy-density all-solid-state supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227590
– volume: 278
  start-page: 445
  year: 2015
  ident: 10.1016/j.electacta.2020.137081_bib0039
  article-title: Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.085
– volume: 12
  start-page: 1852
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0044
  article-title: A hierarchical glucose-intercalated NiMn-G-LDH@NiCo2S4 core–shell structure as a binder-free electrode for flexible all-solid-state asymmetric supercapacitors
  publication-title: Nanoscale
  doi: 10.1039/C9NR09083E
– volume: 10
  year: 2020
  ident: 10.1016/j.electacta.2020.137081_bib0015
  article-title: Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage
  publication-title: Adv. Energy Mater
– volume: 10
  start-page: 4662
  year: 2018
  ident: 10.1016/j.electacta.2020.137081_bib0059
  article-title: Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16271
– volume: 57
  start-page: 22
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0041
  article-title: Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.011
– volume: 438
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0008
  article-title: Facile synthesis of yolk-shelled NiO/Ni composites as cathode material for high-performance hybrid supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226977
– volume: 321
  year: 2019
  ident: 10.1016/j.electacta.2020.137081_bib0028
  article-title: In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134710
SSID ssj0007670
Score 2.5850785
Snippet •Nanowall-supported-nanorod nico LDH arrays with open holey framework are obtained.•Electrode with high loading of 5.85 mg cm−2 shows the capacitance of 7.73 F...
Carbon cloth is regarded as a promising substrate for supercapacitors due to its good electrical conductivity, light weight and flexibility. However, its...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137081
SubjectTerms Adhesive strength
Areal capacitance
Arrays
Carbon
Cloth
Data integration
Electrical resistivity
Electrodes
Electron transfer
Flux density
High mass-loading
Intermetallic compounds
Nanorods
NiCo LDH
Substrates
Supercapacitor
Supercapacitors
Weight reduction
Title Construction of nanowall-supported-nanorod nico ldh array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors
URI https://dx.doi.org/10.1016/j.electacta.2020.137081
https://www.proquest.com/docview/2468390489
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQPRQOVQtU0NKVD1wN-XBimxtaFW1bwakrcbNsx1YXZbOrXRDiwg_h1zLjJGwXCXFAimTFsp3IM5kZRzPvEXKkgrMIw8I8hBuMCxuYKi3Ca0M0mzslskjTeXFZjsb891VxtUGGfS0MplV2tr-16dFadz0n3W6ezCcTrPFNc44FDojADic8rGDnArX8-GGV5iFKkfQsBjh6LccrUs0YuOCgmCEHhEhk-pqHemGrowM6_0w-dZEjPWtf7gvZ8M0O-TjsCdt2yPZ_2IK75BGpOHtwWDoLtDHN7M7UNVveziOaecWwCwwobUAdaF39o2axMPe0o8apPMW_tBQRjekUgmxWz2LGPYUFnVlYbGqQNIXAN45i81UZAjXL--kU-bochSf6hQO37CZI7rNHxuc__w5HrCNiYC7n-Q1zNivALnCvgklE8MJ6X8Y258Y6b0VamMTLqpBJSCvHlStKn1rpCiND5vOvZLOZNX6f0DIL1kuVOukELw03sE4RchcSJWXq-QEp-83XrkMpR7KMWvfpaNf6WWoapaZbqR2Q5HnivAXqeHvKaS9dvaZzGtzJ25MPe33Q3We_1BloWK7AKKpv71n7O9nCuzZr5pBsgrL4HxD73NhBVO4B-XD268_o8gmR9Qjs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VcigcKiiglhbwgatpPpzY5latWi3Q9tRKvVm2Y4tF2exqtwj1wg_h1zLjJC1FQj0gRbKU2E7kGc-Mo5n3AN7r6B3BsPCA4QYX0kWua0fw2hjNll7LItF0np3X00vx-aq62oDJWAtDaZWD7e9terLWw53DYTUPl7MZ1fjmpaACB0JgxxPeI3gscPsSjcGHn3d5HrKW2UhjQN3vJXklrhmLF54UCyKBkJnK_-Wi_jLWyQOdPIPtIXRkR_3XPYeN0O3A1mRkbNuBp3-AC76AX8TFOaLDskVkne0WP2zb8vX3ZYIzbzjdQgvKOtQH1jZfmV2t7A0buHGawOg3LSNIYzbHKJu3i5Ryz3BCb1eOmhZFzTDyTb348q4Ogdn1zXxOhF2e4RvDyqNf9jNi93kJlyfHF5MpH5gYuC9Fec29Kyo0DCLoaDMZg3Qh1KkthXU-OJlXNguqqVQW88YL7as65E75yqpYhPIVbHaLLuwCq4vogtK5V16K2gqL81Sx9DHTSuVB7EE9Lr7xA0w5sWW0ZsxH-2ZupWZIaqaX2h5ktwOXPVLHw0M-jtI195TOoD95ePDBqA9m2PdrU6CGlRqton79P3O_g63pxdmpOf10_mUfntCTPoXmADZRccIbDISu3duk6L8BgYwKeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+nanowall-supported-nanorod+nico+ldh+array+electrode+with+high+mass-loading+on+carbon+cloth+for+high-performance+asymmetric+supercapacitors&rft.jtitle=Electrochimica+acta&rft.au=Yang%2C+Tianyi&rft.au=Ye%2C+Jing&rft.au=Chen%2C+Shihuan&rft.au=Liao%2C+Shuqing&rft.date=2020-12-01&rft.issn=0013-4686&rft.volume=362&rft.spage=137081&rft_id=info:doi/10.1016%2Fj.electacta.2020.137081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2020_137081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon