Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment

Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide da...

Full description

Saved in:
Bibliographic Details
Published inFuture oncology (London, England) Vol. 19; no. 38; pp. 2547 - 2564
Main Authors Pesapane, Filippo, Battaglia, Ottavia, Pellegrino, Giuseppe, Mangione, Elisa, Petitto, Salvatore, Fiol Manna, Eliza Del, Cazzaniga, Laura, Nicosia, Luca, Lazzeroni, Matteo, Corso, Giovanni, Fusco, Nicola, Cassano, Enrico
Format Journal Article
LanguageEnglish
Published England Future Medicine Ltd 01.12.2023
Subjects
Online AccessGet full text
ISSN1479-6694
1744-8301
1744-8301
DOI10.2217/fon-2023-0365

Cover

Loading…
Abstract Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence (AI) in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.
AbstractList Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence (AI) in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.
Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.
Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.
Author Battaglia, Ottavia
Lazzeroni, Matteo
Pesapane, Filippo
Fiol Manna, Eliza Del
Cassano, Enrico
Nicosia, Luca
Corso, Giovanni
Pellegrino, Giuseppe
Mangione, Elisa
Petitto, Salvatore
Fusco, Nicola
Cazzaniga, Laura
AuthorAffiliation 8Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
7Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy
9European Cancer Prevention Organization (ECP), Milan, 20141, Italy
6Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
2Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, 20141, Italy
3Division of Pathology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
4School of Pathology, University of Milan, Milan, 20141, Italy
5Division of Breast Surgery, IEO European Institute of Oncology, IRCCS, Milan, 20141, Italy
1Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
AuthorAffiliation_xml – name: 5Division of Breast Surgery, IEO European Institute of Oncology, IRCCS, Milan, 20141, Italy
– name: 3Division of Pathology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
– name: 6Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
– name: 1Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
– name: 8Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy
– name: 4School of Pathology, University of Milan, Milan, 20141, Italy
– name: 2Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, 20141, Italy
– name: 7Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy
– name: 9European Cancer Prevention Organization (ECP), Milan, 20141, Italy
Author_xml – sequence: 1
  givenname: Filippo
  orcidid: 0000-0002-0374-5054
  surname: Pesapane
  fullname: Pesapane, Filippo
– sequence: 2
  givenname: Ottavia
  surname: Battaglia
  fullname: Battaglia, Ottavia
– sequence: 3
  givenname: Giuseppe
  surname: Pellegrino
  fullname: Pellegrino, Giuseppe
– sequence: 4
  givenname: Elisa
  surname: Mangione
  fullname: Mangione, Elisa
– sequence: 5
  givenname: Salvatore
  surname: Petitto
  fullname: Petitto, Salvatore
– sequence: 6
  givenname: Eliza Del
  surname: Fiol Manna
  fullname: Fiol Manna, Eliza Del
– sequence: 7
  givenname: Laura
  surname: Cazzaniga
  fullname: Cazzaniga, Laura
– sequence: 8
  givenname: Luca
  surname: Nicosia
  fullname: Nicosia, Luca
– sequence: 9
  givenname: Matteo
  surname: Lazzeroni
  fullname: Lazzeroni, Matteo
– sequence: 10
  givenname: Giovanni
  orcidid: 0000-0002-9269-0146
  surname: Corso
  fullname: Corso, Giovanni
– sequence: 11
  givenname: Nicola
  surname: Fusco
  fullname: Fusco, Nicola
– sequence: 12
  givenname: Enrico
  surname: Cassano
  fullname: Cassano, Enrico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38084492$$D View this record in MEDLINE/PubMed
BookMark eNp1UUtv1jAQtFARfcCRK_KRQwN27MQOt6riJVXi0ru1n7MOhsT-sB2k9j_wn3FIe0Hqyd71zOx65pychBiQkNecvWtbrt67GJqWtaJhou-ekTOupGy0YPyk3qUamr4f5Ck5z_kHY1KJjr0gp0IzLeXQnpE_V-NvCBYz9YEeEkIu1G6NRJPPP-kSR5x9mD7U94JTglILamvL23xJ_QJTbVzSI5TvcY7THYUwUkjFO289zP9o8-wnrJrUxUSPmHIMMPt7HPcZkDPmvGAoL8lzB3PGVw_nBbn99PH2-ktz8-3z1-urm8YKKUpju86JjkuEUXTKCet65TgI7bSQreJW9YqNemADg4MGi9zh0HXgepRaH8QFebvLHlP8tWIuZvHZ1jUhYFyzaQfWDkJKzSv0zQN0PSw4mmOqX0535tHBChA7wKaYc0JnrC_VpRhKAj8bzsyWk6k5mS0ns-VUWc1_rEfhp_DDjndrWRNm6zc_zV7VvarXAZ_g_gUUcas5
CitedBy_id crossref_primary_10_3390_cancers16010130
crossref_primary_10_1016_j_ejrad_2024_111852
crossref_primary_10_3390_cancers16111981
crossref_primary_10_3390_genes16010082
crossref_primary_10_3390_life14040454
crossref_primary_10_1093_bjr_tqae196
crossref_primary_10_20517_2347_9264_2024_11
crossref_primary_10_3390_ijms25115717
crossref_primary_10_1515_oncologie_2024_0397
Cites_doi 10.3390/genes12111774
10.1016/j.breast.2017.03.010
10.2147/CMAR.S380390
10.1200/JCO.19.01472
10.1186/s13058-022-01509-z
10.1101/cshperspect.a036590
10.3390/cancers15092413
10.3389/fmolb.2022.1117323
10.1200/JCO.2007.15.5986
10.1214/19-STS729
10.1148/radiol.2019182716
10.1186/s12885-018-4263-3
10.1111/j.1365-2559.2010.03568.x
10.1016/j.breast.2022.04.003
10.37765/ajmc.2022.89216
10.1093/jbi/wbab001
10.1038/nature24284
10.1002/mp.12683
10.1016/j.clbc.2021.05.004
10.1016/j.ejrad.2020.109019
10.1200/JCO.2008.16.3691
10.1259/bjr.20220569
10.1038/gim.2015.30
10.1148/radiol.2302031277
10.1016/j.ejim.2016.03.010
10.1097/CEJ.0000000000000741
10.1148/radiol.2018180694
10.5858/arpa.2019-0205-RA
10.1001/jama.2018.13152
10.1186/s12935-021-01976-y
10.1002/cncr.31638
10.1053/j.seminoncol.2022.06.013
10.1245/s10434-019-08160-7
10.1016/j.ypmed.2022.107075
10.1016/j.breast.2020.06.005
10.1016/j.ajhg.2021.03.010
10.1016/j.semcancer.2020.06.002
10.3389/fonc.2021.644737
10.1038/gim.2017.254
10.1136/jmg.2007.056556
10.1093/jnci/81.24.1879
10.1148/rg.220086
10.1177/0272989X17729358
10.1088/0031-9155/39/10/008
10.1007/s00330-022-08617-6
10.1016/S1470-2045(18)30902-1
10.1148/rg.2016150178
10.1007/s10549-022-06772-4
10.3390/curroncol28040217
10.1038/s41598-022-05931-3
10.1007/s11547-022-01561-x
10.1001/jamainternmed.2014.981
10.1371/journal.pcbi.1009020
10.1200/JCO.2009.26.8847
10.1371/journal.pone.0226765
10.1177/10781552221119797
10.1038/s41416-020-0937-0
10.3233/BD-1998-103-412
10.1038/s41571-020-0388-9
10.1186/s13058-021-01399-7
10.1093/jncics/pkab021
10.1097/CEJ.0000000000000733
10.1016/j.ejca.2016.10.023
10.1016/j.annonc.2020.09.010
10.31083/j.ceog4911237
10.1007/s00330-014-3271-1
10.1001/jama.2017.19130
10.1002/sim.1668
10.3389/fmolb.2022.894247
10.3390/cells11223545
10.1177/0003134820956922
10.1200/JCO.22.01063
10.6004/jnccn.2020.0017
10.1016/j.bbcan.2015.06.002
10.14712/fb2019065050212
10.1038/s41436-018-0406-9
10.1002/mp.12763
10.3390/diagnostics11020339
10.3389/fmolb.2022.834651
10.1038/s41379-020-00697-3
10.3390/cancers15020470
10.2174/1871520621666210706144112
10.1097/PAS.0000000000000780
10.1038/s41436-019-0493-2
10.1159/000276543
10.1038/s41467-021-23271-0
10.31661/jbpe.v0i0.2109-1403
10.1186/s12967-020-02273-4
10.1200/JCO.2005.10.042
10.1136/bmj.f873
10.1016/j.jogoh.2018.03.003
10.1016/S0002-9610(03)00265-4
10.3390/biom12111552
10.1016/j.critrevonc.2022.103643
10.3390/cancers14081856
10.1186/s41747-018-0061-6
10.1002/cam4.5754
10.1007/s10549-020-05849-2
10.1038/s43018-020-0047-1
10.1200/JCO.2006.08.8013
10.1038/s41436-018-0063-z
10.1148/radiol.2392042121
10.1155/2021/6667201
ContentType Journal Article
Copyright 2023 Future Medicine Ltd
Copyright_xml – notice: 2023 Future Medicine Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2217/fon-2023-0365
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1744-8301
EndPage 2564
ExternalDocumentID 38084492
10_2217_fon_2023_0365
Genre Journal Article
Review
GroupedDBID ---
0R~
29H
4.4
53G
5GY
70G
AAWTL
ABJNI
ACGFS
ACWKX
ADBBV
AENEX
AFFYO
AHMBA
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
F5P
HZ~
IAO
IEA
IHR
K-O
MV1
NTCAX
O9-
P2P
RFM
TFL
7X7
88E
8AO
8FI
8FJ
AAWFG
AAYXX
ABUWG
AFKRA
ALIPV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
EHMNL
EJD
FYUFA
H13
HMCUK
ITC
M1P
M4Z
OVD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RPM
TDBHL
TEORI
TFMDE
TMEDX
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c343t-c55f3514ead357f3cf67f1a38f834271c7670d89090ab8ace1fe955af6e488b3
ISSN 1479-6694
1744-8301
IngestDate Fri Jul 11 06:17:57 EDT 2025
Wed Feb 19 02:06:22 EST 2025
Tue Jul 01 05:15:50 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Fri May 10 00:16:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords risk factors
screening
pathology
breast
imaging
women's health
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c343t-c55f3514ead357f3cf67f1a38f834271c7670d89090ab8ace1fe955af6e488b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0374-5054
0000-0002-9269-0146
PMID 38084492
PQID 2902934481
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2902934481
pubmed_primary_38084492
crossref_citationtrail_10_2217_fon_2023_0365
crossref_primary_10_2217_fon_2023_0365
futurescience_futuremedicine_10_2217_fon_2023_0365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Future oncology (London, England)
PublicationTitleAlternate Future Oncol
PublicationYear 2023
Publisher Future Medicine Ltd
Publisher_xml – name: Future Medicine Ltd
References e_1_3_5_27_1
e_1_3_5_100_1
e_1_3_5_23_1
e_1_3_5_46_1
e_1_3_5_69_1
e_1_3_5_88_1
e_1_3_5_108_1
e_1_3_5_104_1
e_1_3_5_61_1
e_1_3_5_80_1
e_1_3_5_42_1
e_1_3_5_65_1
e_1_3_5_84_1
e_1_3_5_9_1
e_1_3_5_5_1
e_1_3_5_39_1
e_1_3_5_112_1
e_1_3_5_16_1
Paquin M (e_1_3_5_25_1) 2019; 23
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_77_1
e_1_3_5_58_1
e_1_3_5_50_1
de Faria Bessa J (e_1_3_5_76_1) 2022; 27
e_1_3_5_92_1
e_1_3_5_73_1
e_1_3_5_54_1
e_1_3_5_96_1
e_1_3_5_31_1
National Comprehensive Cancer Network (e_1_3_5_20_1) 2022
Vogel WH (e_1_3_5_91_1) 2020; 11
e_1_3_5_28_1
e_1_3_5_24_1
e_1_3_5_109_1
e_1_3_5_66_1
e_1_3_5_47_1
e_1_3_5_89_1
e_1_3_5_105_1
e_1_3_5_81_1
e_1_3_5_62_1
e_1_3_5_43_1
e_1_3_5_85_1
e_1_3_5_8_1
e_1_3_5_4_1
e_1_3_5_113_1
e_1_3_5_17_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_55_1
e_1_3_5_78_1
e_1_3_5_59_1
e_1_3_5_70_1
e_1_3_5_93_1
e_1_3_5_51_1
e_1_3_5_74_1
e_1_3_5_97_1
e_1_3_5_32_1
World Cancer Research Fund International (e_1_3_5_3_1) 2023
e_1_3_5_29_1
e_1_3_5_102_1
e_1_3_5_44_1
e_1_3_5_67_1
e_1_3_5_48_1
e_1_3_5_106_1
e_1_3_5_82_1
e_1_3_5_40_1
e_1_3_5_63_1
e_1_3_5_86_1
e_1_3_5_21_1
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_37_1
e_1_3_5_110_1
e_1_3_5_14_1
e_1_3_5_33_1
e_1_3_5_56_1
e_1_3_5_79_1
e_1_3_5_114_1
e_1_3_5_94_1
e_1_3_5_71_1
e_1_3_5_52_1
e_1_3_5_98_1
e_1_3_5_75_1
e_1_3_5_10_1
e_1_3_5_90_1
e_1_3_5_26_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_107_1
e_1_3_5_49_1
e_1_3_5_103_1
e_1_3_5_83_1
e_1_3_5_60_1
D’Orsi CJSE (e_1_3_5_41_1) 2013
e_1_3_5_87_1
Mazzola E (e_1_3_5_101_1) 2015; 14
e_1_3_5_64_1
e_1_3_5_6_1
e_1_3_5_38_1
e_1_3_5_111_1
e_1_3_5_15_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_57_1
e_1_3_5_99_1
e_1_3_5_115_1
e_1_3_5_19_1
e_1_3_5_72_1
e_1_3_5_53_1
e_1_3_5_95_1
Viale G (e_1_3_5_68_1) 2021; 62
e_1_3_5_30_1
References_xml – ident: e_1_3_5_115_1
  doi: 10.3390/genes12111774
– ident: e_1_3_5_80_1
  doi: 10.1016/j.breast.2017.03.010
– ident: e_1_3_5_67_1
  doi: 10.2147/CMAR.S380390
– ident: e_1_3_5_92_1
  doi: 10.1200/JCO.19.01472
– ident: e_1_3_5_14_1
  doi: 10.1186/s13058-022-01509-z
– ident: e_1_3_5_94_1
  doi: 10.1101/cshperspect.a036590
– ident: e_1_3_5_15_1
  doi: 10.3390/cancers15092413
– ident: e_1_3_5_53_1
  doi: 10.3389/fmolb.2022.1117323
– ident: e_1_3_5_81_1
  doi: 10.1200/JCO.2007.15.5986
– ident: e_1_3_5_21_1
  doi: 10.1214/19-STS729
– ident: e_1_3_5_109_1
  doi: 10.1148/radiol.2019182716
– ident: e_1_3_5_48_1
  doi: 10.1186/s12885-018-4263-3
– volume: 27
  start-page: 545
  issue: 3
  year: 2022
  ident: e_1_3_5_76_1
  article-title: Triple-negative breast cancer and radiation therapy
  publication-title: Rep. Pract. Oncol. Radiother.
– ident: e_1_3_5_70_1
  doi: 10.1111/j.1365-2559.2010.03568.x
– volume-title: BreastCancer Statistics
  year: 2023
  ident: e_1_3_5_3_1
– ident: e_1_3_5_10_1
  doi: 10.1016/j.breast.2022.04.003
– ident: e_1_3_5_7_1
  doi: 10.37765/ajmc.2022.89216
– ident: e_1_3_5_24_1
  doi: 10.1093/jbi/wbab001
– ident: e_1_3_5_34_1
  doi: 10.1038/nature24284
– ident: e_1_3_5_45_1
  doi: 10.1002/mp.12683
– ident: e_1_3_5_83_1
  doi: 10.1016/j.clbc.2021.05.004
– ident: e_1_3_5_23_1
  doi: 10.1016/j.ejrad.2020.109019
– ident: e_1_3_5_90_1
  doi: 10.1200/JCO.2008.16.3691
– ident: e_1_3_5_36_1
  doi: 10.1259/bjr.20220569
– ident: e_1_3_5_111_1
  doi: 10.1038/gim.2015.30
– volume: 62
  start-page: S25
  issue: 1
  year: 2021
  ident: e_1_3_5_68_1
  article-title: Pathology after neoadjuvant treatment – how to assess residual disease
  publication-title: Breast
– ident: e_1_3_5_4_1
  doi: 10.1148/radiol.2302031277
– ident: e_1_3_5_98_1
  doi: 10.1016/j.ejim.2016.03.010
– ident: e_1_3_5_85_1
  doi: 10.1097/CEJ.0000000000000741
– ident: e_1_3_5_46_1
  doi: 10.1148/radiol.2018180694
– ident: e_1_3_5_84_1
  doi: 10.5858/arpa.2019-0205-RA
– ident: e_1_3_5_104_1
  doi: 10.1001/jama.2018.13152
– ident: e_1_3_5_61_1
  doi: 10.1186/s12935-021-01976-y
– ident: e_1_3_5_5_1
  doi: 10.1002/cncr.31638
– ident: e_1_3_5_6_1
  doi: 10.1053/j.seminoncol.2022.06.013
– ident: e_1_3_5_86_1
  doi: 10.1245/s10434-019-08160-7
– ident: e_1_3_5_38_1
  doi: 10.1016/j.ypmed.2022.107075
– ident: e_1_3_5_16_1
  doi: 10.1016/j.breast.2020.06.005
– ident: e_1_3_5_112_1
  doi: 10.1016/j.ajhg.2021.03.010
– ident: e_1_3_5_13_1
  doi: 10.1016/j.semcancer.2020.06.002
– ident: e_1_3_5_58_1
  doi: 10.3389/fonc.2021.644737
– ident: e_1_3_5_63_1
  doi: 10.1038/gim.2017.254
– ident: e_1_3_5_100_1
  doi: 10.1136/jmg.2007.056556
– ident: e_1_3_5_18_1
  doi: 10.1093/jnci/81.24.1879
– ident: e_1_3_5_66_1
  doi: 10.1148/rg.220086
– ident: e_1_3_5_31_1
  doi: 10.1177/0272989X17729358
– ident: e_1_3_5_44_1
  doi: 10.1088/0031-9155/39/10/008
– ident: e_1_3_5_39_1
  doi: 10.1007/s00330-022-08617-6
– ident: e_1_3_5_26_1
  doi: 10.1016/S1470-2045(18)30902-1
– ident: e_1_3_5_42_1
  doi: 10.1148/rg.2016150178
– ident: e_1_3_5_72_1
  doi: 10.1007/s10549-022-06772-4
– ident: e_1_3_5_33_1
  doi: 10.3390/curroncol28040217
– ident: e_1_3_5_95_1
  doi: 10.1038/s41598-022-05931-3
– ident: e_1_3_5_50_1
  doi: 10.1007/s11547-022-01561-x
– ident: e_1_3_5_9_1
  doi: 10.1001/jamainternmed.2014.981
– ident: e_1_3_5_29_1
  doi: 10.1371/journal.pcbi.1009020
– ident: e_1_3_5_89_1
  doi: 10.1200/JCO.2009.26.8847
– ident: e_1_3_5_108_1
  doi: 10.1371/journal.pone.0226765
– ident: e_1_3_5_55_1
  doi: 10.1177/10781552221119797
– ident: e_1_3_5_110_1
  doi: 10.1038/s41416-020-0937-0
– ident: e_1_3_5_40_1
  doi: 10.3233/BD-1998-103-412
– ident: e_1_3_5_11_1
  doi: 10.1038/s41571-020-0388-9
– ident: e_1_3_5_28_1
  doi: 10.1186/s13058-021-01399-7
– ident: e_1_3_5_27_1
  doi: 10.1093/jncics/pkab021
– ident: e_1_3_5_75_1
  doi: 10.1097/CEJ.0000000000000733
– ident: e_1_3_5_65_1
  doi: 10.1016/j.ejca.2016.10.023
– ident: e_1_3_5_64_1
  doi: 10.1016/j.annonc.2020.09.010
– volume: 14
  start-page: 147
  issue: 2
  year: 2015
  ident: e_1_3_5_101_1
  article-title: Recent enhancements to the genetic risk prediction model BRCAPRO
  publication-title: Cancer Inform.
– ident: e_1_3_5_17_1
  doi: 10.31083/j.ceog4911237
– ident: e_1_3_5_49_1
  doi: 10.1007/s00330-014-3271-1
– year: 2013
  ident: e_1_3_5_41_1
  article-title: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System
  publication-title: American College of Radiology
– ident: e_1_3_5_30_1
  doi: 10.1001/jama.2017.19130
– ident: e_1_3_5_19_1
  doi: 10.1002/sim.1668
– ident: e_1_3_5_79_1
  doi: 10.3389/fmolb.2022.894247
– ident: e_1_3_5_74_1
– ident: e_1_3_5_57_1
  doi: 10.3390/cells11223545
– ident: e_1_3_5_22_1
  doi: 10.1177/0003134820956922
– ident: e_1_3_5_52_1
  doi: 10.1200/JCO.22.01063
– ident: e_1_3_5_96_1
  doi: 10.6004/jnccn.2020.0017
– ident: e_1_3_5_32_1
  doi: 10.1016/j.bbcan.2015.06.002
– ident: e_1_3_5_97_1
– ident: e_1_3_5_107_1
  doi: 10.14712/fb2019065050212
– ident: e_1_3_5_99_1
  doi: 10.1038/s41436-018-0406-9
– ident: e_1_3_5_43_1
  doi: 10.1002/mp.12763
– ident: e_1_3_5_51_1
  doi: 10.3390/diagnostics11020339
– ident: e_1_3_5_82_1
  doi: 10.3389/fmolb.2022.834651
– ident: e_1_3_5_54_1
  doi: 10.1038/s41379-020-00697-3
– ident: e_1_3_5_37_1
  doi: 10.3390/cancers15020470
– ident: e_1_3_5_60_1
  doi: 10.2174/1871520621666210706144112
– ident: e_1_3_5_78_1
  doi: 10.1097/PAS.0000000000000780
– ident: e_1_3_5_105_1
  doi: 10.1038/s41436-019-0493-2
– ident: e_1_3_5_35_1
  doi: 10.1159/000276543
– ident: e_1_3_5_62_1
  doi: 10.1038/s41467-021-23271-0
– ident: e_1_3_5_106_1
  doi: 10.31661/jbpe.v0i0.2109-1403
– ident: e_1_3_5_93_1
  doi: 10.1186/s12967-020-02273-4
– ident: e_1_3_5_102_1
  doi: 10.1200/JCO.2005.10.042
– ident: e_1_3_5_8_1
  doi: 10.1136/bmj.f873
– ident: e_1_3_5_69_1
  doi: 10.1016/j.jogoh.2018.03.003
– ident: e_1_3_5_88_1
  doi: 10.1016/S0002-9610(03)00265-4
– ident: e_1_3_5_114_1
  doi: 10.3390/biom12111552
– ident: e_1_3_5_71_1
  doi: 10.1016/j.critrevonc.2022.103643
– ident: e_1_3_5_73_1
  doi: 10.3390/cancers14081856
– ident: e_1_3_5_12_1
  doi: 10.1186/s41747-018-0061-6
– ident: e_1_3_5_77_1
  doi: 10.1002/cam4.5754
– ident: e_1_3_5_56_1
  doi: 10.1007/s10549-020-05849-2
– ident: e_1_3_5_59_1
  doi: 10.1038/s43018-020-0047-1
– ident: e_1_3_5_87_1
  doi: 10.1200/JCO.2006.08.8013
– volume: 23
  start-page: 256
  issue: 3
  year: 2019
  ident: e_1_3_5_25_1
  article-title: Breast cancer risk prediction models: challenges in clinical application
  publication-title: Clin. J. Oncol. Nurs.
– ident: e_1_3_5_103_1
  doi: 10.1038/s41436-018-0063-z
– ident: e_1_3_5_47_1
  doi: 10.1148/radiol.2392042121
– ident: e_1_3_5_113_1
  doi: 10.1155/2021/6667201
– volume: 11
  start-page: 863
  issue: 8
  year: 2020
  ident: e_1_3_5_91_1
  article-title: Oncology advanced practitioners and breast cancer prevention
  publication-title: J. Adv. Pract. Oncol.
– volume-title: Breast Cancer RiskReduction (Version 1.2023)
  year: 2022
  ident: e_1_3_5_20_1
SSID ssj0047350
Score 2.4065633
SecondaryResourceType review_article
Snippet Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve...
SourceID proquest
pubmed
crossref
futurescience
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2547
SubjectTerms Artificial Intelligence
breast
Breast - diagnostic imaging
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - genetics
Early Detection of Cancer - methods
Female
Humans
imaging
Mammography - methods
pathology
Risk Assessment
Risk Factors
screening
women's health
Title Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment
URI http://dx.doi.org/10.2217/fon-2023-0365
https://www.ncbi.nlm.nih.gov/pubmed/38084492
https://www.proquest.com/docview/2902934481
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swGBVZB6Uwxu7Lbmgw9tJ4c3SJ7b2Vsa4Muu0hg74ZWZGGYXVM4vSh_6F_Z79vn262UhrY9mIU-SLIOZY-yUfnQ-iNkERAjwiTnIUiCeNEJjAq5kkmgMysSiW3u95Pv85OfrAvZ_xsNPodqZY2XfVOXt64r-R_UIU6wNXskv0HZPuHQgWUAV84AsJw_CuMj9wHfCtprYy6vDMiLqlWTjFus9z4Dc3BFsLusbW7IS2A9bnNUmSKJjfxYMhkWvPmEnXs2mlUiW0I4C-V16aL3t8zDnaPrV_J4bKR7rk3ZQ-JViK-qzWM3F5vbJZ52mW0ztqJn17Y-w3KF7UYbjNLH6va5hA__Fxv1qptI0VvYxTXykvY1iJe5iA0kowo1zVnjCU59XWh7y4ijjqbmNATc-fkeX2IIMT6Sullk9hmYATn8XUASXtu-ULzNGfMZeq75skdTt1CtwlMT0hYJXIRgMnmnDo_V9Pa-622DtB-uHsrFLrjPGR83LN7vmPjnvk9dNdPWPCRY999NFLNA7R_6iUZD9FVICGuG-xIiB0JsaEGDiT8gCMKYk_BCfYEnOCefhhYgQf64Zh-GOiHY_q5Ngb6PULz40_zjyeJz_GRSMpol0jOtdlMAh0a5ZmmUs8yPRU01zllJJvKbJali7xIi1RUuZBqqlXBudAzBUNPRR-jvQZI9BRhQrQJhwuoVIySSghdqByGcsWVpotijCbh3y6l9783aVh-lTAPNjiVgFNpcCoNTmP0tr-8dcYvuy4kW9CV7leQxuy66XXAt4T-3Hykg_druVmXpEghAmcsn47REwd8334gzrOdZ56jg-HleYH2utVGvYSouateWYr-AVbPyP0
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+breast+cancer+risk+modeling%3A+integrating+clinics%2C+imaging%2C+pathology+and+artificial+intelligence+for+personalized+risk+assessment&rft.jtitle=Future+oncology+%28London%2C+England%29&rft.au=Pesapane%2C+Filippo&rft.au=Battaglia%2C+Ottavia&rft.au=Pellegrino%2C+Giuseppe&rft.au=Mangione%2C+Elisa&rft.date=2023-12-01&rft.eissn=1744-8301&rft.volume=19&rft.issue=38&rft.spage=2547&rft_id=info:doi/10.2217%2Ffon-2023-0365&rft_id=info%3Apmid%2F38084492&rft.externalDocID=38084492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-6694&client=summon