Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment
Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide da...
Saved in:
Published in | Future oncology (London, England) Vol. 19; no. 38; pp. 2547 - 2564 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Future Medicine Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1479-6694 1744-8301 1744-8301 |
DOI | 10.2217/fon-2023-0365 |
Cover
Loading…
Abstract | Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence (AI) in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes. |
---|---|
AbstractList | Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence (AI) in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes. Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes. Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes. |
Author | Battaglia, Ottavia Lazzeroni, Matteo Pesapane, Filippo Fiol Manna, Eliza Del Cassano, Enrico Nicosia, Luca Corso, Giovanni Pellegrino, Giuseppe Mangione, Elisa Petitto, Salvatore Fusco, Nicola Cazzaniga, Laura |
AuthorAffiliation | 8Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy 7Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy 9European Cancer Prevention Organization (ECP), Milan, 20141, Italy 6Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy 2Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, 20141, Italy 3Division of Pathology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy 4School of Pathology, University of Milan, Milan, 20141, Italy 5Division of Breast Surgery, IEO European Institute of Oncology, IRCCS, Milan, 20141, Italy 1Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy |
AuthorAffiliation_xml | – name: 5Division of Breast Surgery, IEO European Institute of Oncology, IRCCS, Milan, 20141, Italy – name: 3Division of Pathology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy – name: 6Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy – name: 1Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy – name: 8Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20141, Italy – name: 4School of Pathology, University of Milan, Milan, 20141, Italy – name: 2Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, 20141, Italy – name: 7Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy – name: 9European Cancer Prevention Organization (ECP), Milan, 20141, Italy |
Author_xml | – sequence: 1 givenname: Filippo orcidid: 0000-0002-0374-5054 surname: Pesapane fullname: Pesapane, Filippo – sequence: 2 givenname: Ottavia surname: Battaglia fullname: Battaglia, Ottavia – sequence: 3 givenname: Giuseppe surname: Pellegrino fullname: Pellegrino, Giuseppe – sequence: 4 givenname: Elisa surname: Mangione fullname: Mangione, Elisa – sequence: 5 givenname: Salvatore surname: Petitto fullname: Petitto, Salvatore – sequence: 6 givenname: Eliza Del surname: Fiol Manna fullname: Fiol Manna, Eliza Del – sequence: 7 givenname: Laura surname: Cazzaniga fullname: Cazzaniga, Laura – sequence: 8 givenname: Luca surname: Nicosia fullname: Nicosia, Luca – sequence: 9 givenname: Matteo surname: Lazzeroni fullname: Lazzeroni, Matteo – sequence: 10 givenname: Giovanni orcidid: 0000-0002-9269-0146 surname: Corso fullname: Corso, Giovanni – sequence: 11 givenname: Nicola surname: Fusco fullname: Fusco, Nicola – sequence: 12 givenname: Enrico surname: Cassano fullname: Cassano, Enrico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38084492$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUtv1jAQtFARfcCRK_KRQwN27MQOt6riJVXi0ru1n7MOhsT-sB2k9j_wn3FIe0Hqyd71zOx65pychBiQkNecvWtbrt67GJqWtaJhou-ekTOupGy0YPyk3qUamr4f5Ck5z_kHY1KJjr0gp0IzLeXQnpE_V-NvCBYz9YEeEkIu1G6NRJPPP-kSR5x9mD7U94JTglILamvL23xJ_QJTbVzSI5TvcY7THYUwUkjFO289zP9o8-wnrJrUxUSPmHIMMPt7HPcZkDPmvGAoL8lzB3PGVw_nBbn99PH2-ktz8-3z1-urm8YKKUpju86JjkuEUXTKCet65TgI7bSQreJW9YqNemADg4MGi9zh0HXgepRaH8QFebvLHlP8tWIuZvHZ1jUhYFyzaQfWDkJKzSv0zQN0PSw4mmOqX0535tHBChA7wKaYc0JnrC_VpRhKAj8bzsyWk6k5mS0ns-VUWc1_rEfhp_DDjndrWRNm6zc_zV7VvarXAZ_g_gUUcas5 |
CitedBy_id | crossref_primary_10_3390_cancers16010130 crossref_primary_10_1016_j_ejrad_2024_111852 crossref_primary_10_3390_cancers16111981 crossref_primary_10_3390_genes16010082 crossref_primary_10_3390_life14040454 crossref_primary_10_1093_bjr_tqae196 crossref_primary_10_20517_2347_9264_2024_11 crossref_primary_10_3390_ijms25115717 crossref_primary_10_1515_oncologie_2024_0397 |
Cites_doi | 10.3390/genes12111774 10.1016/j.breast.2017.03.010 10.2147/CMAR.S380390 10.1200/JCO.19.01472 10.1186/s13058-022-01509-z 10.1101/cshperspect.a036590 10.3390/cancers15092413 10.3389/fmolb.2022.1117323 10.1200/JCO.2007.15.5986 10.1214/19-STS729 10.1148/radiol.2019182716 10.1186/s12885-018-4263-3 10.1111/j.1365-2559.2010.03568.x 10.1016/j.breast.2022.04.003 10.37765/ajmc.2022.89216 10.1093/jbi/wbab001 10.1038/nature24284 10.1002/mp.12683 10.1016/j.clbc.2021.05.004 10.1016/j.ejrad.2020.109019 10.1200/JCO.2008.16.3691 10.1259/bjr.20220569 10.1038/gim.2015.30 10.1148/radiol.2302031277 10.1016/j.ejim.2016.03.010 10.1097/CEJ.0000000000000741 10.1148/radiol.2018180694 10.5858/arpa.2019-0205-RA 10.1001/jama.2018.13152 10.1186/s12935-021-01976-y 10.1002/cncr.31638 10.1053/j.seminoncol.2022.06.013 10.1245/s10434-019-08160-7 10.1016/j.ypmed.2022.107075 10.1016/j.breast.2020.06.005 10.1016/j.ajhg.2021.03.010 10.1016/j.semcancer.2020.06.002 10.3389/fonc.2021.644737 10.1038/gim.2017.254 10.1136/jmg.2007.056556 10.1093/jnci/81.24.1879 10.1148/rg.220086 10.1177/0272989X17729358 10.1088/0031-9155/39/10/008 10.1007/s00330-022-08617-6 10.1016/S1470-2045(18)30902-1 10.1148/rg.2016150178 10.1007/s10549-022-06772-4 10.3390/curroncol28040217 10.1038/s41598-022-05931-3 10.1007/s11547-022-01561-x 10.1001/jamainternmed.2014.981 10.1371/journal.pcbi.1009020 10.1200/JCO.2009.26.8847 10.1371/journal.pone.0226765 10.1177/10781552221119797 10.1038/s41416-020-0937-0 10.3233/BD-1998-103-412 10.1038/s41571-020-0388-9 10.1186/s13058-021-01399-7 10.1093/jncics/pkab021 10.1097/CEJ.0000000000000733 10.1016/j.ejca.2016.10.023 10.1016/j.annonc.2020.09.010 10.31083/j.ceog4911237 10.1007/s00330-014-3271-1 10.1001/jama.2017.19130 10.1002/sim.1668 10.3389/fmolb.2022.894247 10.3390/cells11223545 10.1177/0003134820956922 10.1200/JCO.22.01063 10.6004/jnccn.2020.0017 10.1016/j.bbcan.2015.06.002 10.14712/fb2019065050212 10.1038/s41436-018-0406-9 10.1002/mp.12763 10.3390/diagnostics11020339 10.3389/fmolb.2022.834651 10.1038/s41379-020-00697-3 10.3390/cancers15020470 10.2174/1871520621666210706144112 10.1097/PAS.0000000000000780 10.1038/s41436-019-0493-2 10.1159/000276543 10.1038/s41467-021-23271-0 10.31661/jbpe.v0i0.2109-1403 10.1186/s12967-020-02273-4 10.1200/JCO.2005.10.042 10.1136/bmj.f873 10.1016/j.jogoh.2018.03.003 10.1016/S0002-9610(03)00265-4 10.3390/biom12111552 10.1016/j.critrevonc.2022.103643 10.3390/cancers14081856 10.1186/s41747-018-0061-6 10.1002/cam4.5754 10.1007/s10549-020-05849-2 10.1038/s43018-020-0047-1 10.1200/JCO.2006.08.8013 10.1038/s41436-018-0063-z 10.1148/radiol.2392042121 10.1155/2021/6667201 |
ContentType | Journal Article |
Copyright | 2023 Future Medicine Ltd |
Copyright_xml | – notice: 2023 Future Medicine Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.2217/fon-2023-0365 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1744-8301 |
EndPage | 2564 |
ExternalDocumentID | 38084492 10_2217_fon_2023_0365 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 70G AAWTL ABJNI ACGFS ACWKX ADBBV AENEX AFFYO AHMBA ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS F5P HZ~ IAO IEA IHR K-O MV1 NTCAX O9- P2P RFM TFL 7X7 88E 8AO 8FI 8FJ AAWFG AAYXX ABUWG AFKRA ALIPV BENPR BPHCQ BVXVI CCPQU CITATION EHMNL EJD FYUFA H13 HMCUK ITC M1P M4Z OVD PHGZM PHGZT PQQKQ PROAC PSQYO RPM TDBHL TEORI TFMDE TMEDX UKHRP 3V. CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c343t-c55f3514ead357f3cf67f1a38f834271c7670d89090ab8ace1fe955af6e488b3 |
ISSN | 1479-6694 1744-8301 |
IngestDate | Fri Jul 11 06:17:57 EDT 2025 Wed Feb 19 02:06:22 EST 2025 Tue Jul 01 05:15:50 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Fri May 10 00:16:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | risk factors screening pathology breast imaging women's health |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-c55f3514ead357f3cf67f1a38f834271c7670d89090ab8ace1fe955af6e488b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0374-5054 0000-0002-9269-0146 |
PMID | 38084492 |
PQID | 2902934481 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2902934481 pubmed_primary_38084492 crossref_citationtrail_10_2217_fon_2023_0365 crossref_primary_10_2217_fon_2023_0365 futurescience_futuremedicine_10_2217_fon_2023_0365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Future oncology (London, England) |
PublicationTitleAlternate | Future Oncol |
PublicationYear | 2023 |
Publisher | Future Medicine Ltd |
Publisher_xml | – name: Future Medicine Ltd |
References | e_1_3_5_27_1 e_1_3_5_100_1 e_1_3_5_23_1 e_1_3_5_46_1 e_1_3_5_69_1 e_1_3_5_88_1 e_1_3_5_108_1 e_1_3_5_104_1 e_1_3_5_61_1 e_1_3_5_80_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_84_1 e_1_3_5_9_1 e_1_3_5_5_1 e_1_3_5_39_1 e_1_3_5_112_1 e_1_3_5_16_1 Paquin M (e_1_3_5_25_1) 2019; 23 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_77_1 e_1_3_5_58_1 e_1_3_5_50_1 de Faria Bessa J (e_1_3_5_76_1) 2022; 27 e_1_3_5_92_1 e_1_3_5_73_1 e_1_3_5_54_1 e_1_3_5_96_1 e_1_3_5_31_1 National Comprehensive Cancer Network (e_1_3_5_20_1) 2022 Vogel WH (e_1_3_5_91_1) 2020; 11 e_1_3_5_28_1 e_1_3_5_24_1 e_1_3_5_109_1 e_1_3_5_66_1 e_1_3_5_47_1 e_1_3_5_89_1 e_1_3_5_105_1 e_1_3_5_81_1 e_1_3_5_62_1 e_1_3_5_43_1 e_1_3_5_85_1 e_1_3_5_8_1 e_1_3_5_4_1 e_1_3_5_113_1 e_1_3_5_17_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_55_1 e_1_3_5_78_1 e_1_3_5_59_1 e_1_3_5_70_1 e_1_3_5_93_1 e_1_3_5_51_1 e_1_3_5_74_1 e_1_3_5_97_1 e_1_3_5_32_1 World Cancer Research Fund International (e_1_3_5_3_1) 2023 e_1_3_5_29_1 e_1_3_5_102_1 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_48_1 e_1_3_5_106_1 e_1_3_5_82_1 e_1_3_5_40_1 e_1_3_5_63_1 e_1_3_5_86_1 e_1_3_5_21_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_37_1 e_1_3_5_110_1 e_1_3_5_14_1 e_1_3_5_33_1 e_1_3_5_56_1 e_1_3_5_79_1 e_1_3_5_114_1 e_1_3_5_94_1 e_1_3_5_71_1 e_1_3_5_52_1 e_1_3_5_98_1 e_1_3_5_75_1 e_1_3_5_10_1 e_1_3_5_90_1 e_1_3_5_26_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_107_1 e_1_3_5_49_1 e_1_3_5_103_1 e_1_3_5_83_1 e_1_3_5_60_1 D’Orsi CJSE (e_1_3_5_41_1) 2013 e_1_3_5_87_1 Mazzola E (e_1_3_5_101_1) 2015; 14 e_1_3_5_64_1 e_1_3_5_6_1 e_1_3_5_38_1 e_1_3_5_111_1 e_1_3_5_15_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_57_1 e_1_3_5_99_1 e_1_3_5_115_1 e_1_3_5_19_1 e_1_3_5_72_1 e_1_3_5_53_1 e_1_3_5_95_1 Viale G (e_1_3_5_68_1) 2021; 62 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_115_1 doi: 10.3390/genes12111774 – ident: e_1_3_5_80_1 doi: 10.1016/j.breast.2017.03.010 – ident: e_1_3_5_67_1 doi: 10.2147/CMAR.S380390 – ident: e_1_3_5_92_1 doi: 10.1200/JCO.19.01472 – ident: e_1_3_5_14_1 doi: 10.1186/s13058-022-01509-z – ident: e_1_3_5_94_1 doi: 10.1101/cshperspect.a036590 – ident: e_1_3_5_15_1 doi: 10.3390/cancers15092413 – ident: e_1_3_5_53_1 doi: 10.3389/fmolb.2022.1117323 – ident: e_1_3_5_81_1 doi: 10.1200/JCO.2007.15.5986 – ident: e_1_3_5_21_1 doi: 10.1214/19-STS729 – ident: e_1_3_5_109_1 doi: 10.1148/radiol.2019182716 – ident: e_1_3_5_48_1 doi: 10.1186/s12885-018-4263-3 – volume: 27 start-page: 545 issue: 3 year: 2022 ident: e_1_3_5_76_1 article-title: Triple-negative breast cancer and radiation therapy publication-title: Rep. Pract. Oncol. Radiother. – ident: e_1_3_5_70_1 doi: 10.1111/j.1365-2559.2010.03568.x – volume-title: BreastCancer Statistics year: 2023 ident: e_1_3_5_3_1 – ident: e_1_3_5_10_1 doi: 10.1016/j.breast.2022.04.003 – ident: e_1_3_5_7_1 doi: 10.37765/ajmc.2022.89216 – ident: e_1_3_5_24_1 doi: 10.1093/jbi/wbab001 – ident: e_1_3_5_34_1 doi: 10.1038/nature24284 – ident: e_1_3_5_45_1 doi: 10.1002/mp.12683 – ident: e_1_3_5_83_1 doi: 10.1016/j.clbc.2021.05.004 – ident: e_1_3_5_23_1 doi: 10.1016/j.ejrad.2020.109019 – ident: e_1_3_5_90_1 doi: 10.1200/JCO.2008.16.3691 – ident: e_1_3_5_36_1 doi: 10.1259/bjr.20220569 – ident: e_1_3_5_111_1 doi: 10.1038/gim.2015.30 – volume: 62 start-page: S25 issue: 1 year: 2021 ident: e_1_3_5_68_1 article-title: Pathology after neoadjuvant treatment – how to assess residual disease publication-title: Breast – ident: e_1_3_5_4_1 doi: 10.1148/radiol.2302031277 – ident: e_1_3_5_98_1 doi: 10.1016/j.ejim.2016.03.010 – ident: e_1_3_5_85_1 doi: 10.1097/CEJ.0000000000000741 – ident: e_1_3_5_46_1 doi: 10.1148/radiol.2018180694 – ident: e_1_3_5_84_1 doi: 10.5858/arpa.2019-0205-RA – ident: e_1_3_5_104_1 doi: 10.1001/jama.2018.13152 – ident: e_1_3_5_61_1 doi: 10.1186/s12935-021-01976-y – ident: e_1_3_5_5_1 doi: 10.1002/cncr.31638 – ident: e_1_3_5_6_1 doi: 10.1053/j.seminoncol.2022.06.013 – ident: e_1_3_5_86_1 doi: 10.1245/s10434-019-08160-7 – ident: e_1_3_5_38_1 doi: 10.1016/j.ypmed.2022.107075 – ident: e_1_3_5_16_1 doi: 10.1016/j.breast.2020.06.005 – ident: e_1_3_5_112_1 doi: 10.1016/j.ajhg.2021.03.010 – ident: e_1_3_5_13_1 doi: 10.1016/j.semcancer.2020.06.002 – ident: e_1_3_5_58_1 doi: 10.3389/fonc.2021.644737 – ident: e_1_3_5_63_1 doi: 10.1038/gim.2017.254 – ident: e_1_3_5_100_1 doi: 10.1136/jmg.2007.056556 – ident: e_1_3_5_18_1 doi: 10.1093/jnci/81.24.1879 – ident: e_1_3_5_66_1 doi: 10.1148/rg.220086 – ident: e_1_3_5_31_1 doi: 10.1177/0272989X17729358 – ident: e_1_3_5_44_1 doi: 10.1088/0031-9155/39/10/008 – ident: e_1_3_5_39_1 doi: 10.1007/s00330-022-08617-6 – ident: e_1_3_5_26_1 doi: 10.1016/S1470-2045(18)30902-1 – ident: e_1_3_5_42_1 doi: 10.1148/rg.2016150178 – ident: e_1_3_5_72_1 doi: 10.1007/s10549-022-06772-4 – ident: e_1_3_5_33_1 doi: 10.3390/curroncol28040217 – ident: e_1_3_5_95_1 doi: 10.1038/s41598-022-05931-3 – ident: e_1_3_5_50_1 doi: 10.1007/s11547-022-01561-x – ident: e_1_3_5_9_1 doi: 10.1001/jamainternmed.2014.981 – ident: e_1_3_5_29_1 doi: 10.1371/journal.pcbi.1009020 – ident: e_1_3_5_89_1 doi: 10.1200/JCO.2009.26.8847 – ident: e_1_3_5_108_1 doi: 10.1371/journal.pone.0226765 – ident: e_1_3_5_55_1 doi: 10.1177/10781552221119797 – ident: e_1_3_5_110_1 doi: 10.1038/s41416-020-0937-0 – ident: e_1_3_5_40_1 doi: 10.3233/BD-1998-103-412 – ident: e_1_3_5_11_1 doi: 10.1038/s41571-020-0388-9 – ident: e_1_3_5_28_1 doi: 10.1186/s13058-021-01399-7 – ident: e_1_3_5_27_1 doi: 10.1093/jncics/pkab021 – ident: e_1_3_5_75_1 doi: 10.1097/CEJ.0000000000000733 – ident: e_1_3_5_65_1 doi: 10.1016/j.ejca.2016.10.023 – ident: e_1_3_5_64_1 doi: 10.1016/j.annonc.2020.09.010 – volume: 14 start-page: 147 issue: 2 year: 2015 ident: e_1_3_5_101_1 article-title: Recent enhancements to the genetic risk prediction model BRCAPRO publication-title: Cancer Inform. – ident: e_1_3_5_17_1 doi: 10.31083/j.ceog4911237 – ident: e_1_3_5_49_1 doi: 10.1007/s00330-014-3271-1 – year: 2013 ident: e_1_3_5_41_1 article-title: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System publication-title: American College of Radiology – ident: e_1_3_5_30_1 doi: 10.1001/jama.2017.19130 – ident: e_1_3_5_19_1 doi: 10.1002/sim.1668 – ident: e_1_3_5_79_1 doi: 10.3389/fmolb.2022.894247 – ident: e_1_3_5_74_1 – ident: e_1_3_5_57_1 doi: 10.3390/cells11223545 – ident: e_1_3_5_22_1 doi: 10.1177/0003134820956922 – ident: e_1_3_5_52_1 doi: 10.1200/JCO.22.01063 – ident: e_1_3_5_96_1 doi: 10.6004/jnccn.2020.0017 – ident: e_1_3_5_32_1 doi: 10.1016/j.bbcan.2015.06.002 – ident: e_1_3_5_97_1 – ident: e_1_3_5_107_1 doi: 10.14712/fb2019065050212 – ident: e_1_3_5_99_1 doi: 10.1038/s41436-018-0406-9 – ident: e_1_3_5_43_1 doi: 10.1002/mp.12763 – ident: e_1_3_5_51_1 doi: 10.3390/diagnostics11020339 – ident: e_1_3_5_82_1 doi: 10.3389/fmolb.2022.834651 – ident: e_1_3_5_54_1 doi: 10.1038/s41379-020-00697-3 – ident: e_1_3_5_37_1 doi: 10.3390/cancers15020470 – ident: e_1_3_5_60_1 doi: 10.2174/1871520621666210706144112 – ident: e_1_3_5_78_1 doi: 10.1097/PAS.0000000000000780 – ident: e_1_3_5_105_1 doi: 10.1038/s41436-019-0493-2 – ident: e_1_3_5_35_1 doi: 10.1159/000276543 – ident: e_1_3_5_62_1 doi: 10.1038/s41467-021-23271-0 – ident: e_1_3_5_106_1 doi: 10.31661/jbpe.v0i0.2109-1403 – ident: e_1_3_5_93_1 doi: 10.1186/s12967-020-02273-4 – ident: e_1_3_5_102_1 doi: 10.1200/JCO.2005.10.042 – ident: e_1_3_5_8_1 doi: 10.1136/bmj.f873 – ident: e_1_3_5_69_1 doi: 10.1016/j.jogoh.2018.03.003 – ident: e_1_3_5_88_1 doi: 10.1016/S0002-9610(03)00265-4 – ident: e_1_3_5_114_1 doi: 10.3390/biom12111552 – ident: e_1_3_5_71_1 doi: 10.1016/j.critrevonc.2022.103643 – ident: e_1_3_5_73_1 doi: 10.3390/cancers14081856 – ident: e_1_3_5_12_1 doi: 10.1186/s41747-018-0061-6 – ident: e_1_3_5_77_1 doi: 10.1002/cam4.5754 – ident: e_1_3_5_56_1 doi: 10.1007/s10549-020-05849-2 – ident: e_1_3_5_59_1 doi: 10.1038/s43018-020-0047-1 – ident: e_1_3_5_87_1 doi: 10.1200/JCO.2006.08.8013 – volume: 23 start-page: 256 issue: 3 year: 2019 ident: e_1_3_5_25_1 article-title: Breast cancer risk prediction models: challenges in clinical application publication-title: Clin. J. Oncol. Nurs. – ident: e_1_3_5_103_1 doi: 10.1038/s41436-018-0063-z – ident: e_1_3_5_47_1 doi: 10.1148/radiol.2392042121 – ident: e_1_3_5_113_1 doi: 10.1155/2021/6667201 – volume: 11 start-page: 863 issue: 8 year: 2020 ident: e_1_3_5_91_1 article-title: Oncology advanced practitioners and breast cancer prevention publication-title: J. Adv. Pract. Oncol. – volume-title: Breast Cancer RiskReduction (Version 1.2023) year: 2022 ident: e_1_3_5_20_1 |
SSID | ssj0047350 |
Score | 2.4065633 |
SecondaryResourceType | review_article |
Snippet | Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve... |
SourceID | proquest pubmed crossref futurescience |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2547 |
SubjectTerms | Artificial Intelligence breast Breast - diagnostic imaging Breast Neoplasms - diagnostic imaging Breast Neoplasms - genetics Early Detection of Cancer - methods Female Humans imaging Mammography - methods pathology Risk Assessment Risk Factors screening women's health |
Title | Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment |
URI | http://dx.doi.org/10.2217/fon-2023-0365 https://www.ncbi.nlm.nih.gov/pubmed/38084492 https://www.proquest.com/docview/2902934481 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swGBVZB6Uwxu7Lbmgw9tJ4c3SJ7b2Vsa4Muu0hg74ZWZGGYXVM4vSh_6F_Z79vn262UhrY9mIU-SLIOZY-yUfnQ-iNkERAjwiTnIUiCeNEJjAq5kkmgMysSiW3u95Pv85OfrAvZ_xsNPodqZY2XfVOXt64r-R_UIU6wNXskv0HZPuHQgWUAV84AsJw_CuMj9wHfCtprYy6vDMiLqlWTjFus9z4Dc3BFsLusbW7IS2A9bnNUmSKJjfxYMhkWvPmEnXs2mlUiW0I4C-V16aL3t8zDnaPrV_J4bKR7rk3ZQ-JViK-qzWM3F5vbJZ52mW0ztqJn17Y-w3KF7UYbjNLH6va5hA__Fxv1qptI0VvYxTXykvY1iJe5iA0kowo1zVnjCU59XWh7y4ijjqbmNATc-fkeX2IIMT6Sullk9hmYATn8XUASXtu-ULzNGfMZeq75skdTt1CtwlMT0hYJXIRgMnmnDo_V9Pa-622DtB-uHsrFLrjPGR83LN7vmPjnvk9dNdPWPCRY999NFLNA7R_6iUZD9FVICGuG-xIiB0JsaEGDiT8gCMKYk_BCfYEnOCefhhYgQf64Zh-GOiHY_q5Ngb6PULz40_zjyeJz_GRSMpol0jOtdlMAh0a5ZmmUs8yPRU01zllJJvKbJali7xIi1RUuZBqqlXBudAzBUNPRR-jvQZI9BRhQrQJhwuoVIySSghdqByGcsWVpotijCbh3y6l9783aVh-lTAPNjiVgFNpcCoNTmP0tr-8dcYvuy4kW9CV7leQxuy66XXAt4T-3Hykg_druVmXpEghAmcsn47REwd8334gzrOdZ56jg-HleYH2utVGvYSouateWYr-AVbPyP0 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+breast+cancer+risk+modeling%3A+integrating+clinics%2C+imaging%2C+pathology+and+artificial+intelligence+for+personalized+risk+assessment&rft.jtitle=Future+oncology+%28London%2C+England%29&rft.au=Pesapane%2C+Filippo&rft.au=Battaglia%2C+Ottavia&rft.au=Pellegrino%2C+Giuseppe&rft.au=Mangione%2C+Elisa&rft.date=2023-12-01&rft.eissn=1744-8301&rft.volume=19&rft.issue=38&rft.spage=2547&rft_id=info:doi/10.2217%2Ffon-2023-0365&rft_id=info%3Apmid%2F38084492&rft.externalDocID=38084492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-6694&client=summon |