Synthesis and preparation of biobased benzoxazine/bismaleimide copolymers: Thermal, mechanical and dielectric properties
A low dielectric constant biobased benzoxazine/bismaleimide copolymer is developed with a green synthesis strategy. [Display omitted] •A unique benzoxazine monomers (E-dea) with active allyl terminations were synthesized using a green synthesis strategy.•Poly(E-dea/BMI) have outstanding thermal, mec...
Saved in:
Published in | European polymer journal Vol. 179; p. 111524 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
05.10.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A low dielectric constant biobased benzoxazine/bismaleimide copolymer is developed with a green synthesis strategy.
[Display omitted]
•A unique benzoxazine monomers (E-dea) with active allyl terminations were synthesized using a green synthesis strategy.•Poly(E-dea/BMI) have outstanding thermal, mechanical and low dielectric performances.•The nature behind these attractive performances of poly(E-dea/BMI) was intensively investigated.
Preparation of low dielectric thermosetting resins by green method is a challenging subject. Herein, unique bio-based benzoxazine monomer E-dea was prepared by a solvent-free method using eugenol as phenol source, and then E-dea and bismaleimide (BMI) were copolymerized to prepare poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1). The comprehensive properties including thermal, mechanical and dielectric properties of the copolymers were studied. Notably, poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1) exhibit low dielectric properties with dielectric constants of 2.85 and 2.79 at 1 MHz, respectively. Besides, the glass transition temperature (Tg), the initial thermal decomposition temperature (Tdi) and the flexural strength of poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1) are 167 °C and 169 °C, 333 °C and 321 °C and 115 ± 3.5 MPa and 123 ± 4.9 MPa, respectively. The excellent comprehensive performance is attributed to the interaction between flexible and low dielectric decane segments and rigid oxazine and BMI segments. |
---|---|
AbstractList | Preparation of low dielectric thermosetting resins by green method is a challenging subject. Herein, unique bio-based benzoxazine monomer E-dea was prepared by a solvent-free method using eugenol as phenol source, and then E-dea and bismaleimide (BMI) were copolymerized to prepare poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1). The comprehensive properties including thermal, mechanical and dielectric properties of the copolymers were studied. Notably, poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1) exhibit low dielectric properties with dielectric constants of 2.85 and 2.79 at 1 MHz, respectively. Besides, the glass transition temperature (Tg), the initial thermal decomposition temperature (Tdi) and the flexural strength of poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1) are 167 °C and 169 °C, 333 °C and 321 °C and 115 ± 3.5 MPa and 123 ± 4.9 MPa, respectively. The excellent comprehensive performance is attributed to the interaction between flexible and low dielectric decane segments and rigid oxazine and BMI segments. A low dielectric constant biobased benzoxazine/bismaleimide copolymer is developed with a green synthesis strategy. [Display omitted] •A unique benzoxazine monomers (E-dea) with active allyl terminations were synthesized using a green synthesis strategy.•Poly(E-dea/BMI) have outstanding thermal, mechanical and low dielectric performances.•The nature behind these attractive performances of poly(E-dea/BMI) was intensively investigated. Preparation of low dielectric thermosetting resins by green method is a challenging subject. Herein, unique bio-based benzoxazine monomer E-dea was prepared by a solvent-free method using eugenol as phenol source, and then E-dea and bismaleimide (BMI) were copolymerized to prepare poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1). The comprehensive properties including thermal, mechanical and dielectric properties of the copolymers were studied. Notably, poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1) exhibit low dielectric properties with dielectric constants of 2.85 and 2.79 at 1 MHz, respectively. Besides, the glass transition temperature (Tg), the initial thermal decomposition temperature (Tdi) and the flexural strength of poly(E-dea/BMI-0.86) and poly(E-dea/BMI-1) are 167 °C and 169 °C, 333 °C and 321 °C and 115 ± 3.5 MPa and 123 ± 4.9 MPa, respectively. The excellent comprehensive performance is attributed to the interaction between flexible and low dielectric decane segments and rigid oxazine and BMI segments. |
ArticleNumber | 111524 |
Author | Sha, Xin-Long Zhou, Jin Liu, Zongtang Tan, Lu Fei, Zhenghao Wang, Changze Miao, Jia-Tao |
Author_xml | – sequence: 1 givenname: Xin-Long surname: Sha fullname: Sha, Xin-Long email: shaxl@yctu.edu.cn organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China – sequence: 2 givenname: Changze surname: Wang fullname: Wang, Changze organization: Shangyu NHU BIO-chemical CO. LTD, Shangyu Economic and Technological Development Zone, Shaoxing 312300, China – sequence: 3 givenname: Lu surname: Tan fullname: Tan, Lu organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China – sequence: 4 givenname: Jin surname: Zhou fullname: Zhou, Jin organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China – sequence: 5 givenname: Zongtang surname: Liu fullname: Liu, Zongtang organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China – sequence: 6 givenname: Zhenghao surname: Fei fullname: Fei, Zhenghao organization: School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China – sequence: 7 givenname: Jia-Tao surname: Miao fullname: Miao, Jia-Tao email: jiataomiao@outlook.com organization: Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China |
BookMark | eNqNkMtqHDEQRUWwIWPH3-CGbNNjvVqaCWRhTF5gyCL2WuhRzVTTLXWknuDx10eeCVlkk6xqUXXupc4FOYspAiHXjK4ZZepmWMM-z2k8TMOaU87XjLGOy1dkxTZatGwruzOyopTJVtBOvyYXpQyUUi2UWJGn74e47KBgaWwMzZxhttkumGKT-sZhcrZAaBzE5_RknzHCjcMy2RFwwgCNT8dqyOV987CDXDfvmgn8zkb0djyGBoQR_JLR1_w0Q14Qyhty3tuxwNXveUkeP318uPvS3n_7_PXu9r71QoqldZ1nnFqlerrRXjobvOTbznGltHail2C91JvAA1Nq0wVPHTDlAtMdhfqvuCRvT7m1-sceymKGtM-xVhquBZNabbesXn04XfmcSsnQG4_LUcOSLY6GUfMi2wzmj2zzItucZFde_8XPGSebD_9B3p5IqBJ-ImRTPEL0EDBXaSYk_GfGL6IWpEs |
CitedBy_id | crossref_primary_10_1021_acs_macromol_3c02585 crossref_primary_10_1002_app_56379 crossref_primary_10_1016_j_polymer_2025_128190 crossref_primary_10_1016_j_eurpolymj_2023_112420 crossref_primary_10_1002_pol_20220744 crossref_primary_10_1016_j_porgcoat_2023_107801 crossref_primary_10_1021_acs_macromol_3c01515 crossref_primary_10_1016_j_polymer_2024_127278 crossref_primary_10_1016_j_reactfunctpolym_2023_105796 crossref_primary_10_1016_j_reactfunctpolym_2023_105570 crossref_primary_10_1177_07316844241273040 crossref_primary_10_1002_app_56976 crossref_primary_10_1016_j_tca_2022_179401 crossref_primary_10_1016_j_tca_2024_179768 crossref_primary_10_3390_polym15193933 crossref_primary_10_1002_app_55872 crossref_primary_10_1021_acs_biomac_3c00558 crossref_primary_10_1016_j_mtchem_2024_102073 crossref_primary_10_1016_j_polymer_2024_127742 crossref_primary_10_1016_j_polymer_2024_127962 crossref_primary_10_1002_pen_26830 crossref_primary_10_1002_pen_26973 crossref_primary_10_1016_j_cej_2024_158851 crossref_primary_10_1021_acsapm_4c00667 crossref_primary_10_1021_acsmacrolett_4c00545 crossref_primary_10_1016_j_polymer_2025_128306 crossref_primary_10_1016_j_porgcoat_2024_108291 crossref_primary_10_1002_pc_28014 crossref_primary_10_1021_acsapm_4c03086 crossref_primary_10_1002_macp_202300186 crossref_primary_10_1002_app_54547 |
Cites_doi | 10.1016/j.eurpolymj.2020.109805 10.1039/D0PY01446J 10.1021/acssuschemeng.0c02168 10.1002/app.52605 10.1007/s10965-015-0695-5 10.1016/j.cej.2022.137670 10.1016/j.eurpolymj.2018.03.015 10.3390/polym14071450 10.1016/j.eurpolymj.2019.07.020 10.1002/anie.200503957 10.1002/anie.201906008 10.1021/acssuschemeng.1c01266 10.1002/cssc.201600577 10.1016/j.polymer.2021.123827 10.1021/acssuschemeng.1c05408 10.1016/j.progpolymsci.2021.101473 10.1039/C9PY00464E 10.1016/j.progpolymsci.2007.07.002 10.1016/j.eurpolymj.2014.11.030 10.1021/acssuschemeng.8b00655 10.1016/j.conbuildmat.2021.126123 10.1021/acs.iecr.1c03846 10.3390/polym13244288 10.1021/acs.macromol.9b01581 10.1021/acsapm.8b00083 10.1016/j.progpolymsci.2019.101168 10.1021/acs.macromol.7b00887 10.1021/acs.macromol.1c01582 10.1039/D1PY00850A 10.1039/C8PY00407B 10.1021/acs.jpca.7b05249 10.1016/j.progpolymsci.2021.101435 10.1016/j.jclepro.2021.128527 10.1039/D0PY00983K 10.1021/acssuschemeng.8b02641 10.1002/mame.202100747 10.1039/C8QM00443A 10.1016/j.reactfunctpolym.2021.104958 10.1016/j.eurpolymj.2022.111320 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Oct 5, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Oct 5, 2022 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1016/j.eurpolymj.2022.111524 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-1945 |
ExternalDocumentID | 10_1016_j_eurpolymj_2022_111524 S0014305722005286 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K XPP ZMT ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SMS SSH T9H WUQ 7SR 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c343t-b5c120a66f087c4badc4295b26677b3f4eac478d2d16685dc0be16bd1750e3053 |
IEDL.DBID | .~1 |
ISSN | 0014-3057 |
IngestDate | Sun Jul 13 04:28:52 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 01:58:57 EDT 2025 Fri Feb 23 02:36:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Benzoxazine Low dielectric constant Biobased Bismaleimide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-b5c120a66f087c4badc4295b26677b3f4eac478d2d16685dc0be16bd1750e3053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2731476991 |
PQPubID | 2045478 |
ParticipantIDs | proquest_journals_2731476991 crossref_citationtrail_10_1016_j_eurpolymj_2022_111524 crossref_primary_10_1016_j_eurpolymj_2022_111524 elsevier_sciencedirect_doi_10_1016_j_eurpolymj_2022_111524 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-05 |
PublicationDateYYYYMMDD | 2022-10-05 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | European polymer journal |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | H. Ishida, S. Heights, Ohio, Process for preparation of benzoxazine compounds in solventless systems, US, US5543516 A (1996). Lee, Liu (b0085) 2022; 139 Zeng, Chen, Xu, Huang, Feng, Gu (b0095) 2018; 9 Zeng, Tan, Feng, Chen, Lu, Huang, Xu (b0005) 2022; 61 Lyu, Ishida (b0020) 2019; 99 Li, Sun, Zhao, Li, Xiang, Wu, Wei, Que (b0140) 2021; 13 Miao, Peng, Ge, Li, Zhong, Weng, Wu, Zheng (b0100) 2020; 8 Dumas, Bonnaud, Olivier, Poorteman, Dubois (b0170) 2015; 67 Machado, Shaer, Hurdle, Calado, Ishida (b0045) 2021; 121 Zhao, Yuan, Wang, Lu, Xin (b0090) 2021; 307 Zhang, Yu, Kuo (b0010) 2019; 10 Piao, Xie, Duan, Jin, Wang (b0115) 2022; 319 Gamal Mohamed, Shiuan Meng, Kuo (b0150) 2021; 226 P. Froimowicz, R.A. C, L. Han, H. Ishida, Smart, sustainable, and ecofriendly chemical design of fully bio-based thermally stable thermosets based on benzoxazine chemistry, ChemSusChem 9(15) (2016) 1921-1928. Ghosh, Kiskan, Yagci (b0015) 2007; 32 Miao, Yuan, Liang, Gu (b0175) 2019; 3 Zhang, Liu, Zhan, Zhuang, Zhang, Qian (b0155) 2019; 119 Lin, Zhu, Zhang, Wang, Yu (b0165) 2018; 102 Liu, Yuan, Liang, Gu (b0030) 2022; 173 Mukherjee, Amarnath, Lochab (b0130) 2021; 54 Han, Iguchi, Gil, Heyl, Sedwick, Arza, Ohashi, Lacks, Ishida (b0110) 2017; 121 Chen, Zeng, Feng, Pang, Huang, Xu (b0080) 2019; 1 Lu, Yu, Evans, Yang, Zhang (b0135) 2021; 12 Chen, Jian, Yang, Bai, Huang, Lin, Zheng, Wei, Lin, Xu (b0145) 2021; 318 Yang, Zhang (b0180) 2021; 165 Zhang, Liu, Ishida (b0050) 2019; 52 Miao, Ge, Wu, Chou, Wang, Zheng, Wu (b0185) 2020; 134 K. Zhang, F. Wang, B. Yang, L. Li, L. Gao, Y. Sun, F. Guo, Mechanical response and failure mechanisms of natural bamboo fiber reinforced poly-benzoxazine composite subjected to split-hopkinson tensile bar loading, Polymers (Basel) 14(7) (2022) 1450. Salum, Iguchi, Arza, Han, Ishida, Froimowicz (b0160) 2018; 6 Wang, Kou, Zhuo, Chen, Zhang, Wu (b0200) 2015; 22 Hao, Han, Liu, Zhang (b0055) 2020; 11 Zhou, Wang, Tao, Fang, Sun, Fang (b0190) 2018; 6 Amarnath, Mukherjee, Lochab (b0065) 2021; 9 Machado, Rachita, Fuller, Calado, Ishida (b0125) 2021; 9 Lu, Zhang, Zhang (b0040) 2022; 448 Higginson, Malollari, Xu, Kelleghan, Ricapito, Messersmith (b0060) 2019; 58 Zhang, Xue, Yang, Ke, Ou, Wang, Madbouly, Wang (b0025) 2022; 125 Wang, Su, Kuo, Huang, Sheen, Chang (b0070) 2006; 45 Huang, Fang, Wang, Dai, Sun, Fang (b0195) 2021; 12 Zhang, Han, Froimowicz, Ishida (b0075) 2017; 50 10.1016/j.eurpolymj.2022.111524_b0035 Huang (10.1016/j.eurpolymj.2022.111524_b0195) 2021; 12 Miao (10.1016/j.eurpolymj.2022.111524_b0175) 2019; 3 Li (10.1016/j.eurpolymj.2022.111524_b0140) 2021; 13 Gamal Mohamed (10.1016/j.eurpolymj.2022.111524_b0150) 2021; 226 Zhang (10.1016/j.eurpolymj.2022.111524_b0050) 2019; 52 Zhang (10.1016/j.eurpolymj.2022.111524_b0075) 2017; 50 Amarnath (10.1016/j.eurpolymj.2022.111524_b0065) 2021; 9 Ghosh (10.1016/j.eurpolymj.2022.111524_b0015) 2007; 32 Chen (10.1016/j.eurpolymj.2022.111524_b0145) 2021; 318 Zhang (10.1016/j.eurpolymj.2022.111524_b0155) 2019; 119 Lyu (10.1016/j.eurpolymj.2022.111524_b0020) 2019; 99 Dumas (10.1016/j.eurpolymj.2022.111524_b0170) 2015; 67 Lu (10.1016/j.eurpolymj.2022.111524_b0040) 2022; 448 Hao (10.1016/j.eurpolymj.2022.111524_b0055) 2020; 11 Miao (10.1016/j.eurpolymj.2022.111524_b0185) 2020; 134 Yang (10.1016/j.eurpolymj.2022.111524_b0180) 2021; 165 Han (10.1016/j.eurpolymj.2022.111524_b0110) 2017; 121 Lu (10.1016/j.eurpolymj.2022.111524_b0135) 2021; 12 Zeng (10.1016/j.eurpolymj.2022.111524_b0005) 2022; 61 Zhang (10.1016/j.eurpolymj.2022.111524_b0010) 2019; 10 Zhang (10.1016/j.eurpolymj.2022.111524_b0025) 2022; 125 Wang (10.1016/j.eurpolymj.2022.111524_b0070) 2006; 45 10.1016/j.eurpolymj.2022.111524_b0105 Piao (10.1016/j.eurpolymj.2022.111524_b0115) 2022; 319 Machado (10.1016/j.eurpolymj.2022.111524_b0045) 2021; 121 10.1016/j.eurpolymj.2022.111524_b0120 Lee (10.1016/j.eurpolymj.2022.111524_b0085) 2022; 139 Mukherjee (10.1016/j.eurpolymj.2022.111524_b0130) 2021; 54 Lin (10.1016/j.eurpolymj.2022.111524_b0165) 2018; 102 Higginson (10.1016/j.eurpolymj.2022.111524_b0060) 2019; 58 Machado (10.1016/j.eurpolymj.2022.111524_b0125) 2021; 9 Zeng (10.1016/j.eurpolymj.2022.111524_b0095) 2018; 9 Miao (10.1016/j.eurpolymj.2022.111524_b0100) 2020; 8 Liu (10.1016/j.eurpolymj.2022.111524_b0030) 2022; 173 Salum (10.1016/j.eurpolymj.2022.111524_b0160) 2018; 6 Wang (10.1016/j.eurpolymj.2022.111524_b0200) 2015; 22 Zhou (10.1016/j.eurpolymj.2022.111524_b0190) 2018; 6 Zhao (10.1016/j.eurpolymj.2022.111524_b0090) 2021; 307 Chen (10.1016/j.eurpolymj.2022.111524_b0080) 2019; 1 |
References_xml | – volume: 13 start-page: 4288 year: 2021 ident: b0140 article-title: Polybenzoxazine resins with cellulose phosphide: preparation, flame retardancy and mechanisms publication-title: Polymers (Basel) – volume: 11 start-page: 5800 year: 2020 end-page: 5809 ident: b0055 article-title: An apigenin-based bio-benzoxazine with three polymerizable functionalities: sustainable synthesis, thermal latent polymerization, and excellent thermal properties of its thermosets publication-title: Polym. Chem. – volume: 125 year: 2022 ident: b0025 article-title: From plant phenols to novel bio-based polymers publication-title: Prog. Polym. Sci. – volume: 165 year: 2021 ident: b0180 article-title: Strategies for improving the performance of diallyl bisphenol A-based benzoxazine resin: Chemical modification via acetylene and physical blending with bismaleimide publication-title: React. Funct. Polym. – volume: 1 start-page: 625 year: 2019 end-page: 630 ident: b0080 article-title: Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses publication-title: ACS Appl. Polym. Mater. – volume: 67 start-page: 494 year: 2015 end-page: 502 ident: b0170 article-title: Bio-based high performance thermosets: Stabilization and reinforcement of eugenol-based benzoxazine networks with BMI and CNT publication-title: Eur. Polym. J. – volume: 121 year: 2021 ident: b0045 article-title: Towards the development of green flame retardancy by polybenzoxazines publication-title: Prog. Polym. Sci. – volume: 6 start-page: 5620 year: 2018 end-page: 5626 ident: b0190 article-title: New triazine-based polymers with low dielectric constants and high thermostability derived from biorenewable anethole and thermocrosslinkable benzocyclobutene publication-title: ACS Sustain. Chem. Eng. – volume: 32 start-page: 1344 year: 2007 end-page: 1391 ident: b0015 article-title: Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties publication-title: Prog. Polym. Sci. – volume: 3 start-page: 78 year: 2019 end-page: 85 ident: b0175 article-title: Biobased bismaleimide resins with high renewable carbon content, heat resistance and flame retardancy via a multi-functional phosphate from clove oil publication-title: Mater. Chem. Front. – volume: 134 year: 2020 ident: b0185 article-title: Eugenol-derived reconfigurable high-performance epoxy resin for self-deployable smart 3D structures publication-title: Eur. Polym. J. – volume: 12 start-page: 402 year: 2021 end-page: 407 ident: b0195 article-title: A bio-based low dielectric material at a high frequency derived from resveratrol publication-title: Polym. Chem. – volume: 61 start-page: 115 year: 2022 end-page: 129 ident: b0005 article-title: Multistructural network design enables polybenzoxazine to achieve low-loss-grade super-high-frequency dielectric properties and high glass transition temperatures publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 12271 year: 2019 end-page: 12279 ident: b0060 article-title: bioinspired design provides high-strength benzoxazine structural adhesives publication-title: Angew. Chem. Int. Ed. – volume: 307 start-page: 2100747 year: 2021 ident: b0090 article-title: Preparation of bio-based polybenzoxazine/pyrogallol/polyhedral oligomeric silsesquioxane nanocomposites: low dielectric constant and low curing temperature publication-title: Macromol. Mater. Eng. – volume: 9 start-page: 7550 year: 2021 end-page: 7560 ident: b0065 article-title: Understanding the stereochemical effect on the properties of emerging thermosets: sustainable polybenzoxazines publication-title: ACS Sustain. Chem. Eng. – volume: 22 start-page: 51 year: 2015 ident: b0200 article-title: Thermal, mechanical and dielectric properties of BMI modified by the bis allyl benzoxazine publication-title: J. Polym. Res. – volume: 10 start-page: 2387 year: 2019 end-page: 2396 ident: b0010 article-title: Outstanding dielectric and thermal properties of main chain-type poly(benzoxazine-co-imide-co-siloxane)-based cross-linked networks publication-title: Polym. Chem. – volume: 119 start-page: 477 year: 2019 end-page: 486 ident: b0155 article-title: Study on the synergistic anticorrosion property of a fully bio-based polybenzoxazine copolymer resin publication-title: Eur. Polym. J. – volume: 54 start-page: 10001 year: 2021 end-page: 10016 ident: b0130 article-title: Oxazine ring-substituted 4th generation benzoxazine monomers & polymers: stereoelectronic effect of phenyl substituents on thermal properties publication-title: Macromolecules – reference: H. Ishida, S. Heights, Ohio, Process for preparation of benzoxazine compounds in solventless systems, US, US5543516 A (1996). – volume: 9 start-page: 2913 year: 2018 end-page: 2925 ident: b0095 article-title: A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants publication-title: Polym. Chem. – volume: 226 year: 2021 ident: b0150 article-title: Intrinsic water-soluble benzoxazine-functionalized cyclodextrin and its formation of inclusion complex with polymer publication-title: Polymer – volume: 173 year: 2022 ident: b0030 article-title: Developing thermally resistant and strong biobased resin from benzoxazine synthesized using green solvents publication-title: Eur. Polym. J. – volume: 12 start-page: 5059 year: 2021 end-page: 5068 ident: b0135 article-title: Elucidating the role of acetylene in ortho-phthalimide functional benzoxazines: design, synthesis, and structure–property investigations publication-title: Polym. Chem. – volume: 319 year: 2022 ident: b0115 article-title: Novel high-performance bamboo modification through nature rosin-based benzoxazine publication-title: Constr. Build. Mater. – volume: 50 start-page: 6552 year: 2017 end-page: 6560 ident: b0075 article-title: A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability publication-title: Macromolecules – volume: 9 start-page: 16637 year: 2021 end-page: 16650 ident: b0125 article-title: Very high-char-yielding elastomers based on the copolymers of a catechol/furfurylamine benzoxazine and polydimethylsiloxane oligomers publication-title: ACS Sustain. Chem. Eng. – volume: 448 year: 2022 ident: b0040 article-title: Renewable biomass resources to access halogen- and phosphorus-free flame retardant thermosets with ultra-low heat release capacity publication-title: Chem. Eng. J. – volume: 121 start-page: 6269 year: 2017 end-page: 6282 ident: b0110 article-title: Oxazine ring-related vibrational modes of benzoxazine monomers using fully aromatically substituted, deuterated, 15n isotope exchanged, and oxazine-ring-substituted compounds and theoretical calculations publication-title: J. Phys. Chem. A – volume: 6 start-page: 13096 year: 2018 end-page: 13106 ident: b0160 article-title: Making benzoxazines greener: design, synthesis, and polymerization of a biobased benzoxazine fulfilling two principles of green chemistry publication-title: ACS Sustain. Chem. Eng. – reference: K. Zhang, F. Wang, B. Yang, L. Li, L. Gao, Y. Sun, F. Guo, Mechanical response and failure mechanisms of natural bamboo fiber reinforced poly-benzoxazine composite subjected to split-hopkinson tensile bar loading, Polymers (Basel) 14(7) (2022) 1450. – volume: 139 year: 2022 ident: b0085 article-title: Thermally stable, flame retardant, low-dielectric constants, and flexible thermosetting resins based on a tetra-functional benzoxazine compound possessing a cyclic siloxane core publication-title: J. Appl. Polym. Sci. – volume: 102 start-page: 141 year: 2018 end-page: 150 ident: b0165 article-title: Pyrogallol-based benzoxazines with latent catalytic characteristics: The temperature-dependent effect of hydrogen bonds on ring-opening polymerization publication-title: Eur. Polym. J. – volume: 318 year: 2021 ident: b0145 article-title: Urushiol-based benzoxazine copper polymer with low surface energy, strong substrate adhesion and antibacterial for marine antifouling application publication-title: J. Clean. Prod. – reference: P. Froimowicz, R.A. C, L. Han, H. Ishida, Smart, sustainable, and ecofriendly chemical design of fully bio-based thermally stable thermosets based on benzoxazine chemistry, ChemSusChem 9(15) (2016) 1921-1928. – volume: 52 start-page: 7386 year: 2019 end-page: 7395 ident: b0050 article-title: Polymerization of an AB-type benzoxazine monomer toward different polybenzoxazine networks: when diels-alder reaction meets benzoxazine chemistry in a single-component resin publication-title: Macromolecules – volume: 99 year: 2019 ident: b0020 article-title: Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications publication-title: Prog. Polym. Sci. – volume: 45 start-page: 2248 year: 2006 end-page: 2251 ident: b0070 article-title: Low-surface-free-energy materials based on polybenzoxazines publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 9415 year: 2020 end-page: 9424 ident: b0100 article-title: Three-dimensional printing fully biobased heat-resistant photoactive acrylates from aliphatic biomass publication-title: ACS Sustain. Chem. Eng. – volume: 134 year: 2020 ident: 10.1016/j.eurpolymj.2022.111524_b0185 article-title: Eugenol-derived reconfigurable high-performance epoxy resin for self-deployable smart 3D structures publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109805 – volume: 12 start-page: 402 issue: 3 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0195 article-title: A bio-based low dielectric material at a high frequency derived from resveratrol publication-title: Polym. Chem. doi: 10.1039/D0PY01446J – volume: 8 start-page: 9415 issue: 25 year: 2020 ident: 10.1016/j.eurpolymj.2022.111524_b0100 article-title: Three-dimensional printing fully biobased heat-resistant photoactive acrylates from aliphatic biomass publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02168 – volume: 139 issue: 28 year: 2022 ident: 10.1016/j.eurpolymj.2022.111524_b0085 article-title: Thermally stable, flame retardant, low-dielectric constants, and flexible thermosetting resins based on a tetra-functional benzoxazine compound possessing a cyclic siloxane core publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.52605 – volume: 22 start-page: 51 issue: 4 year: 2015 ident: 10.1016/j.eurpolymj.2022.111524_b0200 article-title: Thermal, mechanical and dielectric properties of BMI modified by the bis allyl benzoxazine publication-title: J. Polym. Res. doi: 10.1007/s10965-015-0695-5 – volume: 448 year: 2022 ident: 10.1016/j.eurpolymj.2022.111524_b0040 article-title: Renewable biomass resources to access halogen- and phosphorus-free flame retardant thermosets with ultra-low heat release capacity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137670 – volume: 102 start-page: 141 year: 2018 ident: 10.1016/j.eurpolymj.2022.111524_b0165 article-title: Pyrogallol-based benzoxazines with latent catalytic characteristics: The temperature-dependent effect of hydrogen bonds on ring-opening polymerization publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.03.015 – ident: 10.1016/j.eurpolymj.2022.111524_b0120 doi: 10.3390/polym14071450 – volume: 119 start-page: 477 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0155 article-title: Study on the synergistic anticorrosion property of a fully bio-based polybenzoxazine copolymer resin publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.07.020 – volume: 45 start-page: 2248 issue: 14 year: 2006 ident: 10.1016/j.eurpolymj.2022.111524_b0070 article-title: Low-surface-free-energy materials based on polybenzoxazines publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503957 – volume: 58 start-page: 12271 issue: 35 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0060 article-title: bioinspired design provides high-strength benzoxazine structural adhesives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906008 – volume: 9 start-page: 7550 issue: 22 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0065 article-title: Understanding the stereochemical effect on the properties of emerging thermosets: sustainable polybenzoxazines publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c01266 – ident: 10.1016/j.eurpolymj.2022.111524_b0035 doi: 10.1002/cssc.201600577 – volume: 226 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0150 article-title: Intrinsic water-soluble benzoxazine-functionalized cyclodextrin and its formation of inclusion complex with polymer publication-title: Polymer doi: 10.1016/j.polymer.2021.123827 – volume: 9 start-page: 16637 issue: 49 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0125 article-title: Very high-char-yielding elastomers based on the copolymers of a catechol/furfurylamine benzoxazine and polydimethylsiloxane oligomers publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c05408 – volume: 125 year: 2022 ident: 10.1016/j.eurpolymj.2022.111524_b0025 article-title: From plant phenols to novel bio-based polymers publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101473 – ident: 10.1016/j.eurpolymj.2022.111524_b0105 – volume: 10 start-page: 2387 issue: 19 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0010 article-title: Outstanding dielectric and thermal properties of main chain-type poly(benzoxazine-co-imide-co-siloxane)-based cross-linked networks publication-title: Polym. Chem. doi: 10.1039/C9PY00464E – volume: 32 start-page: 1344 issue: 11 year: 2007 ident: 10.1016/j.eurpolymj.2022.111524_b0015 article-title: Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.07.002 – volume: 67 start-page: 494 year: 2015 ident: 10.1016/j.eurpolymj.2022.111524_b0170 article-title: Bio-based high performance thermosets: Stabilization and reinforcement of eugenol-based benzoxazine networks with BMI and CNT publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.11.030 – volume: 6 start-page: 5620 issue: 4 year: 2018 ident: 10.1016/j.eurpolymj.2022.111524_b0190 article-title: New triazine-based polymers with low dielectric constants and high thermostability derived from biorenewable anethole and thermocrosslinkable benzocyclobutene publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b00655 – volume: 319 year: 2022 ident: 10.1016/j.eurpolymj.2022.111524_b0115 article-title: Novel high-performance bamboo modification through nature rosin-based benzoxazine publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126123 – volume: 61 start-page: 115 issue: 1 year: 2022 ident: 10.1016/j.eurpolymj.2022.111524_b0005 article-title: Multistructural network design enables polybenzoxazine to achieve low-loss-grade super-high-frequency dielectric properties and high glass transition temperatures publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c03846 – volume: 13 start-page: 4288 issue: 24 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0140 article-title: Polybenzoxazine resins with cellulose phosphide: preparation, flame retardancy and mechanisms publication-title: Polymers (Basel) doi: 10.3390/polym13244288 – volume: 52 start-page: 7386 issue: 19 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0050 article-title: Polymerization of an AB-type benzoxazine monomer toward different polybenzoxazine networks: when diels-alder reaction meets benzoxazine chemistry in a single-component resin publication-title: Macromolecules doi: 10.1021/acs.macromol.9b01581 – volume: 1 start-page: 625 issue: 4 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0080 article-title: Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.8b00083 – volume: 99 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0020 article-title: Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.101168 – volume: 50 start-page: 6552 issue: 17 year: 2017 ident: 10.1016/j.eurpolymj.2022.111524_b0075 article-title: A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00887 – volume: 54 start-page: 10001 issue: 21 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0130 article-title: Oxazine ring-substituted 4th generation benzoxazine monomers & polymers: stereoelectronic effect of phenyl substituents on thermal properties publication-title: Macromolecules doi: 10.1021/acs.macromol.1c01582 – volume: 12 start-page: 5059 issue: 35 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0135 article-title: Elucidating the role of acetylene in ortho-phthalimide functional benzoxazines: design, synthesis, and structure–property investigations publication-title: Polym. Chem. doi: 10.1039/D1PY00850A – volume: 9 start-page: 2913 issue: 21 year: 2018 ident: 10.1016/j.eurpolymj.2022.111524_b0095 article-title: A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants publication-title: Polym. Chem. doi: 10.1039/C8PY00407B – volume: 121 start-page: 6269 issue: 33 year: 2017 ident: 10.1016/j.eurpolymj.2022.111524_b0110 article-title: Oxazine ring-related vibrational modes of benzoxazine monomers using fully aromatically substituted, deuterated, 15n isotope exchanged, and oxazine-ring-substituted compounds and theoretical calculations publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b05249 – volume: 121 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0045 article-title: Towards the development of green flame retardancy by polybenzoxazines publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101435 – volume: 318 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0145 article-title: Urushiol-based benzoxazine copper polymer with low surface energy, strong substrate adhesion and antibacterial for marine antifouling application publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128527 – volume: 11 start-page: 5800 issue: 36 year: 2020 ident: 10.1016/j.eurpolymj.2022.111524_b0055 article-title: An apigenin-based bio-benzoxazine with three polymerizable functionalities: sustainable synthesis, thermal latent polymerization, and excellent thermal properties of its thermosets publication-title: Polym. Chem. doi: 10.1039/D0PY00983K – volume: 6 start-page: 13096 issue: 10 year: 2018 ident: 10.1016/j.eurpolymj.2022.111524_b0160 article-title: Making benzoxazines greener: design, synthesis, and polymerization of a biobased benzoxazine fulfilling two principles of green chemistry publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02641 – volume: 307 start-page: 2100747 issue: 3 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0090 article-title: Preparation of bio-based polybenzoxazine/pyrogallol/polyhedral oligomeric silsesquioxane nanocomposites: low dielectric constant and low curing temperature publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.202100747 – volume: 3 start-page: 78 issue: 1 year: 2019 ident: 10.1016/j.eurpolymj.2022.111524_b0175 article-title: Biobased bismaleimide resins with high renewable carbon content, heat resistance and flame retardancy via a multi-functional phosphate from clove oil publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00443A – volume: 165 year: 2021 ident: 10.1016/j.eurpolymj.2022.111524_b0180 article-title: Strategies for improving the performance of diallyl bisphenol A-based benzoxazine resin: Chemical modification via acetylene and physical blending with bismaleimide publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2021.104958 – volume: 173 year: 2022 ident: 10.1016/j.eurpolymj.2022.111524_b0030 article-title: Developing thermally resistant and strong biobased resin from benzoxazine synthesized using green solvents publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2022.111320 |
SSID | ssj0007363 |
Score | 2.5266562 |
Snippet | A low dielectric constant biobased benzoxazine/bismaleimide copolymer is developed with a green synthesis strategy.
[Display omitted]
•A unique benzoxazine... Preparation of low dielectric thermosetting resins by green method is a challenging subject. Herein, unique bio-based benzoxazine monomer E-dea was prepared by... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111524 |
SubjectTerms | Benzoxazine Benzoxazines Biobased Bismaleimide Bismaleimides Copolymerization Copolymers Data envelopment analysis Dielectric properties Flexural strength Glass transition temperature Low dielectric constant Mechanical properties Segments Temperature Thermal decomposition Thermosetting resins |
Title | Synthesis and preparation of biobased benzoxazine/bismaleimide copolymers: Thermal, mechanical and dielectric properties |
URI | https://dx.doi.org/10.1016/j.eurpolymj.2022.111524 https://www.proquest.com/docview/2731476991 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhPSSXkOZBXg069BhnbUmWvHsLS8OmpbmkgdyE9TAo7NpLvIHdHPLbO-PHli2UHAq-2CAha8bffEYz3xDyNZNxLoSzUVFkLhJASKOccRWhuCUYpcgVx2rkn_dy8ii-P6VPW2Tc18JgWmWH_S2mN2jdPRl0uzmYh4A1vgnqVSnWiAdlKLsthEIvv37_k-aheNdNLcETgFRt5Hh5eJlqupo9w48iYwgfKRP_ilB_YXUTgG73yV7HHOlNu7jPZMuXB2Rn3DdsOyTLh1UJdK4ONc1LR-cvvtX1rkpaFdSECiOWo8aXb9WyUZUemFDPIEKEWXCe2qpZJfDBEQXvAcSeXtGZx9JgtGQzqQtt35xgYf5qjknZvj4ij7fffo0nUddYIbJc8EVkUpuwOJeyiDNlhcmdhbCUGgjWShleCEBjoTLHXCJlljobG59I44BqxB42kR-T7bIq_QmhnMXS4dmmEEO4eM6yRBn4Z0y5yxI7PCWy30xtO9VxbH4x1X162bNeW0GjFXRrhVMSrwfOW-GNj4eMemvpDR_SEB4-HnzR21d3n3Gtgdsl4FLAoc_-Z-5zsot3TQ5gekG2Fy-v_gtwmYW5bJz1kny6ufsxuf8N8G316Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzSG9lD5pmrTVoceatfV0cgtLw6ZJ9tIEchPWw6Cway_xFpL--oxseSGFkkPBJxsJWSN98wnNfAPwrZR5xbmzWV2XLuNISLOKMpVFcUs0Sl0pFrORLxdyfs1_3oibHZiNuTAxrDJh_4DpPVqnN9M0m9N1CDHHt4h6VYr24kGlfAG7UZ1KTGD35Ox8vtgCsmKpoFoRLwGEehLm5fF_2uXD6hbPipRGBBGU_8tJ_QXXvQ86fQ2vEnkkJ8P43sCOb97C3mys2fYO7n89NMjoutCRqnFkfecHae-2IW1NTGij03LE-OZPe98LS09N6FboJMIqOE9s248SKeExwQWEoL38TlY-ZgdHY_adujCUzgkW-2_XMS7bd-_h-vTH1WyepdoKmWWcbTIjbEHzSso6L5XlpnIWPZMw6K-VMqzmCMhclY66QspSOJsbX0jjkG3kHieRfYBJ0zb-IxBGc-ni9SbnR_iwipaFMnhsFMyVhT3aBzlOprZJeDzWv1jqMcLsVm-toKMV9GCFfci3DdeD9sbzTY5Ha-kny0ijh3i-8eFoX512cqeR3hVcSaTRn_6n76-wN7-6vNAXZ4vzA3gZv_QhgeIQJpu73_4zUpuN-ZKW7iNWYPia |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+preparation+of+biobased+benzoxazine%2Fbismaleimide+copolymers%3A+Thermal%2C+mechanical+and+dielectric+properties&rft.jtitle=European+polymer+journal&rft.au=Sha%2C+Xin-Long&rft.au=Wang%2C+Changze&rft.au=Tan%2C+Lu&rft.au=Zhou%2C+Jin&rft.date=2022-10-05&rft.issn=0014-3057&rft.volume=179&rft.spage=111524&rft_id=info:doi/10.1016%2Fj.eurpolymj.2022.111524&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eurpolymj_2022_111524 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3057&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3057&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3057&client=summon |