Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate
An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing...
Saved in:
Published in | Science China. Mathematics Vol. 60; no. 8; pp. 1371 - 1398 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper. |
---|---|
AbstractList | An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper. An infection-age structured epidemic model with a nonlinear incidence rate is investigated. We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model. By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations, we show that the SIR (susceptible-infected-recovered) epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper. |
Author | LIU ZhiHua YUAN Rong |
AuthorAffiliation | School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
Author_xml | – sequence: 1 givenname: ZhiHua surname: Liu fullname: Liu, ZhiHua email: zhihualiu@bnu.edu.cn organization: School of Mathematical Sciences, Beijing Normal University – sequence: 2 givenname: Rong surname: Yuan fullname: Yuan, Rong organization: School of Mathematical Sciences, Beijing Normal University |
BookMark | eNp9kE1rXCEYhSWkkDTJD-hO2rWNX1evyxLaphDIpt1kI-p9nRhmdKJeSv99nU4opYsoqMh5PMfzFp3mkgGhd4x-ZJTq68aY5BOhTBEqNCPzCTpnszJkLPx0nJWWRPNZnKGr1p7oGMJQqcU5Wh6gFnJb9hH7FNcaXE8l41gqdhmnHCEcLojbAG69rqGvFRYM-7TALgW8Kwts8c_UH7HDI9Y2ZXB1gGEIcgBcXYdL9Ca6bYOrl_0C_fjy-fvNLbm7__rt5tMdCUKKTrwMs5OK6clPkw9e-xBHTIjOS20CFbPSXjDNQ_QqAki6SG5M5IarOUwgLtCH47v7Wp5XaN0-lbXmYWmZGZMbaaah0kdVqKW1CtGG1P98u1eXtpZRe2jVHlu1o1V7aNXOg2T_kfuadq7-epXhR6YNbd5A_SfTK9D7F6PHkjfPg_vrpDTXihphxG9cB5fA |
CitedBy_id | crossref_primary_10_1142_S0218127421501832 crossref_primary_10_1016_j_jfranklin_2023_12_032 crossref_primary_10_1016_j_rinp_2021_104181 crossref_primary_10_1016_j_chaos_2023_113206 crossref_primary_10_1016_j_nonrwa_2024_104303 crossref_primary_10_1186_s13662_018_1894_2 crossref_primary_10_3934_dcdsb_2022082 crossref_primary_10_1155_2018_9613807 |
Cites_doi | 10.1016/0022-1236(89)90116-X 10.1007/s00033-010-0088-x 10.1016/S0022-0396(02)00089-X 10.1016/j.jmaa.2006.09.061 10.1007/BF00277162 10.1007/s00028-007-0355-2 10.1016/j.jmaa.2007.09.074 10.1016/j.jde.2014.04.018 10.1016/0022-247X(90)90074-P 10.1016/0025-5564(78)90006-8 10.1016/j.mbs.2004.02.004 10.1007/BF00276956 10.1016/0895-7177(95)00029-2 10.57262/ade/1355854784 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION |
DOI | 10.1007/s11425-016-0371-8 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate |
EISSN | 1869-1862 |
EndPage | 1398 |
ExternalDocumentID | 10_1007_s11425_016_0371_8 672760939 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA CAG CCEZO CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~WA -SA -S~ 0R~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c343t-b4c8a46175b55bcb7bcf904efab479c03867b3172cfb6fee40d4299f29268c5e3 |
IEDL.DBID | U2A |
ISSN | 1674-7283 |
IngestDate | Fri Jul 25 11:06:56 EDT 2025 Tue Jul 01 03:54:53 EDT 2025 Thu Apr 24 23:06:13 EDT 2025 Fri Feb 21 02:33:42 EST 2025 Wed Feb 14 09:59:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | non-densely defined 92D30 zero-Hopf bifurcation epidemic 34K18 35K90 37G10 infection-age structured normal form stability 35K55 37L10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-b4c8a46175b55bcb7bcf904efab479c03867b3172cfb6fee40d4299f29268c5e3 |
Notes | infection-age structured, epidemic, non-densely defined, stability, normal form, zero-Hopf bifurcation 11-5837/O1 An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy problem and derive the condition which guarantees the existence and uniqueness for positive age-dependent equilibrium of the model.By analyzing the associated characteristic transcendental equation and applying the normal form theory presented recently for non-densely defined semilinear equations,we show that the SIR(susceptible-infected-recovered)epidemic model undergoes Zero-Hopf bifurcation at the positive equilibrium which is the main result of this paper. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1919129495 |
PQPubID | 2043629 |
PageCount | 28 |
ParticipantIDs | proquest_journals_1919129495 crossref_citationtrail_10_1007_s11425_016_0371_8 crossref_primary_10_1007_s11425_016_0371_8 springer_journals_10_1007_s11425_016_0371_8 chongqing_primary_672760939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationTitleAlternate | SCIENCE CHINA Mathematics |
PublicationYear | 2017 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Ducrot, Liu, Magal (CR2) 2008; 341 Thieme (CR16) 1990; 3 Thieme (CR17) 1990; 152 Thieme (CR18) 1997 Zhang, Peng (CR20) 2007; 331 Kim (CR5) 1996; 74 Liu, Magal, Ruan (CR9) 2011; 62 Ruan, Wang (CR15) 2003; 188 Liu, Hethcote, Levin (CR7) 1987; 25 Liu, Levin, Iwasa (CR8) 1986; 23 Capasso, Serio (CR1) 1978; 42 Magal, Ruan (CR14) 2009; 202 Magal (CR11) 2001; 2001 Magal, Ruan (CR12) 2007; 20 Thieme (CR19) 2008; 8 Kellermann, Hieber (CR4) 1989; 84 Magal, Ruan (CR13) 2009; 14 Liu, Magal, Ruan (CR10) 2014; 257 Inaba, Sekine (CR3) 2004; 190 Kim, Milner (CR6) 1995; 21 P Magal (371_CR12) 2007; 20 H R Thieme (371_CR16) 1990; 3 Z Zhang (371_CR20) 2007; 331 M Y Kim (371_CR6) 1995; 21 W M Liu (371_CR7) 1987; 25 W M Liu (371_CR8) 1986; 23 P Magal (371_CR11) 2001; 2001 P Magal (371_CR13) 2009; 14 P Magal (371_CR14) 2009; 202 H Kellermann (371_CR4) 1989; 84 A Ducrot (371_CR2) 2008; 341 Z Liu (371_CR9) 2011; 62 M Y Kim (371_CR5) 1996; 74 V Capasso (371_CR1) 1978; 42 Z Liu (371_CR10) 2014; 257 S Ruan (371_CR15) 2003; 188 H R Thieme (371_CR18) 1997 H Inaba (371_CR3) 2004; 190 H R Thieme (371_CR17) 1990; 152 H R Thieme (371_CR19) 2008; 8 |
References_xml | – start-page: 691 year: 1997 end-page: 713 ident: CR18 article-title: Quasi-compact semigroups via bounded perturbation publication-title: Advances in Mathematical Population Dynamics: Molecules, Cells and Man – volume: 84 start-page: 160 year: 1989 end-page: 180 ident: CR4 article-title: Integrated semigroups publication-title: J Funct Anal doi: 10.1016/0022-1236(89)90116-X – volume: 62 start-page: 191 year: 2011 end-page: 222 ident: CR9 article-title: Hopf bifurcation for non-densely defined Cauchy problems publication-title: Z Angew Math Phys doi: 10.1007/s00033-010-0088-x – volume: 188 start-page: 135 year: 2003 end-page: 163 ident: CR15 article-title: Dynamical behavior of an epidemic model with a nonlinear incidence rate publication-title: J Differential Equations doi: 10.1016/S0022-0396(02)00089-X – volume: 331 start-page: 1396 year: 2007 end-page: 1414 ident: CR20 article-title: A SIRS epidemic model with infection-age dependence publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2006.09.061 – volume: 3 start-page: 1035 year: 1990 end-page: 1066 ident: CR16 article-title: Semiflows generated by Lipschitz perturbations of non-densely defined operators publication-title: Differ Integral Equ – volume: 25 start-page: 359 year: 1987 end-page: 380 ident: CR7 article-title: Dynamical behavior of epidemiological models with nonlinear incidence rates publication-title: J Math Biol doi: 10.1007/BF00277162 – volume: 8 start-page: 283 year: 2008 end-page: 305 ident: CR19 article-title: Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem publication-title: J Evol Equ doi: 10.1007/s00028-007-0355-2 – volume: 341 start-page: 501 year: 2008 end-page: 518 ident: CR2 article-title: Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2007.09.074 – volume: 14 start-page: 1041 year: 2009 end-page: 1084 ident: CR13 article-title: On semilinear Cauchy problems with non-dense domain publication-title: Adv Differential Equations – volume: 257 start-page: 921 year: 2014 end-page: 1011 ident: CR10 article-title: Normal forms for semilinear equations with non-dense domain publication-title: J Differential Equations doi: 10.1016/j.jde.2014.04.018 – volume: 20 start-page: 197 year: 2007 end-page: 239 ident: CR12 article-title: On integrated semigroups and age structured models in spaces publication-title: Differ Integral Equ – volume: 152 start-page: 416 year: 1990 end-page: 447 ident: CR17 article-title: Integrated semigroups and integrated solutions to abstract Cauchy problems publication-title: J Math Anal Appl doi: 10.1016/0022-247X(90)90074-P – volume: 42 start-page: 43 year: 1978 end-page: 61 ident: CR1 article-title: A generalization of the Kermack-Mckendrick deterministic epidemic model publication-title: Math Biosci doi: 10.1016/0025-5564(78)90006-8 – volume: 2001 start-page: 1 year: 2001 end-page: 35 ident: CR11 article-title: Compact attractors for time-periodic age structured population models publication-title: Electron J Differ Equ Conf – volume: 74 start-page: 37 year: 1996 end-page: 58 ident: CR5 article-title: Existence of steady state solutions to an epidemic model with screening and their asymptotic stability publication-title: Appl Math Comput – volume: 190 start-page: 39 year: 2004 end-page: 69 ident: CR3 article-title: A mathematical model for Chagas disease with infection-age-dependent infectivity publication-title: Math Biosci doi: 10.1016/j.mbs.2004.02.004 – volume: 23 start-page: 187 year: 1986 end-page: 204 ident: CR8 article-title: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models publication-title: J Math Biol doi: 10.1007/BF00276956 – volume: 202 start-page: 2559965 year: 2009 ident: CR14 article-title: Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models publication-title: Mem Amer Math Soc – volume: 21 start-page: 29 year: 1995 end-page: 42 ident: CR6 article-title: A mathematical model of epidemics with screening and variable infectivity publication-title: Math Comput Modelling doi: 10.1016/0895-7177(95)00029-2 – volume: 23 start-page: 187 year: 1986 ident: 371_CR8 publication-title: J Math Biol doi: 10.1007/BF00276956 – start-page: 691 volume-title: Advances in Mathematical Population Dynamics: Molecules, Cells and Man year: 1997 ident: 371_CR18 – volume: 152 start-page: 416 year: 1990 ident: 371_CR17 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(90)90074-P – volume: 331 start-page: 1396 year: 2007 ident: 371_CR20 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2006.09.061 – volume: 190 start-page: 39 year: 2004 ident: 371_CR3 publication-title: Math Biosci doi: 10.1016/j.mbs.2004.02.004 – volume: 188 start-page: 135 year: 2003 ident: 371_CR15 publication-title: J Differential Equations doi: 10.1016/S0022-0396(02)00089-X – volume: 2001 start-page: 1 year: 2001 ident: 371_CR11 publication-title: Electron J Differ Equ Conf – volume: 42 start-page: 43 year: 1978 ident: 371_CR1 publication-title: Math Biosci doi: 10.1016/0025-5564(78)90006-8 – volume: 84 start-page: 160 year: 1989 ident: 371_CR4 publication-title: J Funct Anal doi: 10.1016/0022-1236(89)90116-X – volume: 20 start-page: 197 year: 2007 ident: 371_CR12 publication-title: Differ Integral Equ – volume: 62 start-page: 191 year: 2011 ident: 371_CR9 publication-title: Z Angew Math Phys doi: 10.1007/s00033-010-0088-x – volume: 202 start-page: 2559965 year: 2009 ident: 371_CR14 publication-title: Mem Amer Math Soc – volume: 74 start-page: 37 year: 1996 ident: 371_CR5 publication-title: Appl Math Comput – volume: 257 start-page: 921 year: 2014 ident: 371_CR10 publication-title: J Differential Equations doi: 10.1016/j.jde.2014.04.018 – volume: 8 start-page: 283 year: 2008 ident: 371_CR19 publication-title: J Evol Equ doi: 10.1007/s00028-007-0355-2 – volume: 21 start-page: 29 year: 1995 ident: 371_CR6 publication-title: Math Comput Modelling doi: 10.1016/0895-7177(95)00029-2 – volume: 341 start-page: 501 year: 2008 ident: 371_CR2 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2007.09.074 – volume: 25 start-page: 359 year: 1987 ident: 371_CR7 publication-title: J Math Biol doi: 10.1007/BF00277162 – volume: 14 start-page: 1041 year: 2009 ident: 371_CR13 publication-title: Adv Differential Equations doi: 10.57262/ade/1355854784 – volume: 3 start-page: 1035 year: 1990 ident: 371_CR16 publication-title: Differ Integral Equ |
SSID | ssj0000390473 |
Score | 2.1301222 |
Snippet | An infection-age structured epidemic model with a nonlinear incidence rate is investigated.We formulate the model as an abstract non-densely defined Cauchy... An infection-age structured epidemic model with a nonlinear incidence rate is investigated. We formulate the model as an abstract non-densely defined Cauchy... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1371 |
SubjectTerms | Age Applications of Mathematics Cauchy problems Epidemics Externality Hopf bifurcation Hopf分岔 Hopf分支 Incidence Mathematics Mathematics and Statistics Uniqueness 传染率 传染病模型 半线性方程 年龄结构 流行病模型 非线性 |
Title | Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate |
URI | http://lib.cqvip.com/qk/60114X/201708/672760939.html https://link.springer.com/article/10.1007/s11425-016-0371-8 https://www.proquest.com/docview/1919129495 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XPQgPrG6Ljl4UgLdJmnT4yK7LoqeXFAvJUkTFaSrXf3_TvpaFRU8N00h3zQzX2byDcCx5DnTyLtoPkAL5mHOqMY9kSYi5QaNJrXM30a-uo4nU35xK26be9zzttq9TUlWO_XistsA7QupLzJglgyoXIZVgdTd13FNo2F3sBIii-dVZtkX2NME_WebzfxpFq-p8DgrHl7xi1990yLg_JYjrVzPeBM2mpiRDGuQt2DJFtuwftUJrs53IL-35YxOZi-O6Cf3XtYHcQQjUqIK0lZcFRR3D1JLxr6XNie27g9rSNUQh_hDWaJIUctnqJL4g_iq6SjxihK7MB2Pbs4mtGmgQA3j7I1qbqTiGKMILYQ2OtHG4eJYpzRPUhMyGScaA4jIOB07axEq755clEaxNMKyPVjBT9p9IFIIpaxWWimkZJGQsZIpAp07GRrreACH3TJmL7VQRuazvHGYsjSAsF3YzDTa474FxnO2UE32uGS-3szjkskATrpX2vn-GNxr0cqaf3CeIRNNMZpBBhjAaYvgp8e_TXbwr9GHsBZ5T1_VBPZgBSG0RxinvOk-rA7P7y5H_co-PwB3599d |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOVXmJBVp8gAuVpWxsJ_aBA2qLlsdyYiXUi2s7NiChLOyCqv6e_lHGeexCRZE4cI4zcTxjz9PfAOxIXjCLfhctuijBPCkYtXgm0lwo7lBolGfxNnL_LOsN-PGFuJiBv-1dmKravU1JVif19LJbF-ULXV_0gFnepbKppDzxf36jnzbeP_qOTN1N08Mf5996tGklQB3j7J5a7qThqK2FFcI6m1sXVMJ9MJbnyiVMZrlFVZq6YLPgPU46HtQhVWkmnfAM6c7CPNoeMm6dQXowCeQkDAlVmexY0E9z1Ndt9vSlWUcMh6theXmHf_hcF04N3H9yspWqO_wEHxsblRzUQrUEM75chsX-BOB1vALFTz8a0t7wNhB7HR5GdeCPoAVMTEnaCq-S4mlFaojah5EviK_70TpSNeAhMQhMDClruA4zIjHwXzU5JRHBYhUG77LKazCHn_TrQKQQxnhrrDHoAqZCZkYqFKwiyMT5wDuwOVlGfVsDc-iYVc4SxVQHknZhtWuwzmPLjRs9RWmOfNGxvi3yRcsO7E1eaem9Mnir5ZZu9vxYo-er0HpCj7MDX1sOPnn8P2Ibbxq9DR965_1TfXp0drIJC2m0Mqp6xC2YQ3b6z2gj3dsvlYwS-PXem-IRltsbgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB5RKqFyQAVaNUDBB7i0stis7V37wAGVRqEU1EMjoV5c22sXJLQJSRDiqXhFxvuTUNRW6oHzemfXnrFnxjPzDcCu5AWz6HfRoosSzJOCUYtnIs2F4g6FRnkWq5FPz7L-gH85F-cLcN_WwlTZ7m1Isq5piChN5XR_VIT9eeFbF2UN3WD0hlnepbLJqjzxd7fos00Ojo-QwXtp2vv8_VOfNm0FqGOcTanlThqOmltYIayzuXVBJdwHY3muXMJklltUq6kLNgve4wTioR1SlWbSCc-Q7gt4yWPxMW6gQXo4u9RJGBKqotoxuZ_mqLvbSOqf_jriOVwMy1_XONvf9eLc2H0Sn63UXu81rDT2KjmsBWwVFny5BsunM7DXyToUP_x4SPvDUSD2MtyM60tAgtYwMSVps71KiicXqeFqb8a-IL7uTetI1YyHxAthYkhZQ3eYMYlBgKrhKYloFm9g8Cyr_BYW8ZP-HRAphDHeGmsMuoOpkJmRCoWsCDJxPvAObM6WUY9qkA4dI8xZopjqQNIurHYN7nlsv3Gl54jNkS865rpFvmjZgQ-zV1p6_xi81XJLN_t_otELVmhJoffZgY8tBx89_huxjf8avQNL3456-uvx2ckmvEqjwVGlJm7BInLTv0dzaWq3KxEl8PO598QDGTUftA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-Hopf+bifurcation+for+an+infection-age+structured+epidemic+model+with+a+nonlinear+incidence+rate&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E6%95%B0%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=LIU+ZhiHua+YUAN+Rong&rft.date=2017-08-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=60&rft.issue=8&rft.spage=1371&rft.epage=1398&rft_id=info:doi/10.1007%2Fs11425-016-0371-8&rft.externalDocID=672760939 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60114X%2F60114X.jpg |