An optical sensor for hydrogen sulfide detection in open path using WMS-2f/1f technique

An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length....

Full description

Saved in:
Bibliographic Details
Published inOptoelectronics letters Vol. 12; no. 6; pp. 465 - 468
Main Author 宋丽梅 刘力文 杨燕罡 郭庆华 习江涛
Format Journal Article
LanguageEnglish
Published Tianjin Tianjin University of Technology 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-1905
1993-5013
DOI10.1007/s11801-016-6170-7

Cover

Loading…
Abstract An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm~(-1) in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.
AbstractList An optical hydrogen sulfide (H2S) sensor based on wavelength modulation spectroscopy with the second harmonic (2f) corrected by the first harmonic (1f) signal (WMS-2f/1f) is developed using a distributed feedback (DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm-1 in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s (in concentration range of 15.2—45.6 mg/m3), respectively. The maximum relative deviation for continuous detection (60 min) of 30.4 mg/m3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.
An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm~(-1) in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.
An optical hydrogen sulfide (H 2 S) sensor based on wavelength modulation spectroscopy with the second harmonic (2 f ) corrected by the first harmonic (1 f ) signal (WMS-2 f /1 f ) is developed using a distributed feedback (DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H 2 S line at 6 336.62 cm -1 in the fundamental absorption band of H 2 S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2 f /1 f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s (in concentration range of 15.2—45.6 mg/m 3 ), respectively. The maximum relative deviation for continuous detection (60 min) of 30.4 mg/m 3 H 2 S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m 3 with optimal integration time of 32 s. The optical H 2 S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.
Author 宋丽梅 刘力文 杨燕罡 郭庆华 习江涛
AuthorAffiliation Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China Tianjin University of Technology and Education, Tianjin 300222, China School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong 2500, Australia
Author_xml – sequence: 1
  fullname: 宋丽梅 刘力文 杨燕罡 郭庆华 习江涛
BookMark eNp9kE9LAzEQxYMoWLUfwFvQc2wm2d3sHkX8BxUPFnoM2WyyTalJTbYHv71ZWkQ8NDAkMO83b_Iu0KkP3iB0DfQOKBWzBFBTIBQqUoGgRJygCTQNJyUFfprfleAEGlqeo2lKa5oPZ6Iumgla3nsctoPTaoOT8SlEbHOtvrsYeuNx2m2s6wzuzGD04ILHbgRyZ6uGFd4l53u8fPsgzM7A4ixaefe1M1fozKpNMtPDfYkWT4-Lhxcyf39-fbifE80LPhDVWV7WhkFrO11XLVN1yYQoW1t0LP-tY1q0VVOJVnBdlApKRrnlHWtbyrThl-h2P3YbQ3ZNg1yHXfTZUUJd07oA2rCsgr1Kx5BSNFZuo_tU8VsClWOCcp-gzAnKMUEpMiP-MdoNakxgiMptjpJsT6bs4nsT_-x0BLo52K2C778y97tjJWjVAKMN_wHfQJE_
CitedBy_id crossref_primary_10_1016_j_optlastec_2022_108884
crossref_primary_10_1038_s41598_023_42398_2
crossref_primary_10_1016_j_infrared_2019_103153
crossref_primary_10_3390_catal10111358
crossref_primary_10_1088_1612_202X_ac72aa
crossref_primary_10_1155_2018_1707252
Cites_doi 10.1016/j.snb.2016.06.162
10.1016/j.snb.2013.10.070
10.1016/j.jqsrt.2013.09.026
10.1016/j.measurement.2015.05.001
10.1016/j.snb.2016.04.164
10.1016/j.fuel.2015.02.003
10.1016/j.optcom.2014.09.073
ContentType Journal Article
Copyright Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
DOI 10.1007/s11801-016-6170-7
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate An optical sensor for hydrogen sulfide detection in open path using WMS-2f/1f technique
EISSN 1993-5013
EndPage 468
ExternalDocumentID 10_1007_s11801_016_6170_7
670691209
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29N
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9T
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W92
WK8
YLTOR
Z7R
Z7X
Z88
ZMTXR
~A9
~WA
-SI
-S~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEI
H13
Q--
SJYHP
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c343t-adf358e21bfdc86b2a852775bf4d2100d2c7b6967b73c45a15203f3d2bb02ce3
IEDL.DBID AGYKE
ISSN 1673-1905
IngestDate Fri Jul 25 20:16:09 EDT 2025
Tue Jul 01 02:10:29 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Fri Feb 21 02:37:01 EST 2025
Wed Feb 14 10:03:58 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-adf358e21bfdc86b2a852775bf4d2100d2c7b6967b73c45a15203f3d2bb02ce3
Notes SONG Li-mei1, LIU Li-wen1, YANG Yan-gang2, GUO Qing-hua1, XI Jiang-tao3( 1. Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China ;2. Tianjin University of Technology and Education, Tianjin 300222, China ;3. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong 2500, Australia)
An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm~(-1) in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields.
12-1370/TN
corrected sulfide deviation Allan reflecting harmonic targeting drift linearity length
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880841092
PQPubID 2044109
PageCount 4
ParticipantIDs proquest_journals_1880841092
crossref_primary_10_1007_s11801_016_6170_7
crossref_citationtrail_10_1007_s11801_016_6170_7
springer_journals_10_1007_s11801_016_6170_7
chongqing_primary_670691209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Tianjin
PublicationPlace_xml – name: Tianjin
– name: Heidelberg
PublicationTitle Optoelectronics letters
PublicationTitleAbbrev Optoelectron. Lett
PublicationTitleAlternate Opto-electronics Letters
PublicationYear 2016
Publisher Tianjin University of Technology
Springer Nature B.V
Publisher_xml – name: Tianjin University of Technology
– name: Springer Nature B.V
References ZhangQ.LiuW.Chemical Engineering & Equipment20115151
ShaoJ.JieJ.WangL. M.YingC. F.ZhouZ.Optics Communications2015336672015OptCo.336...67S10.1016/j.optcom.2014.09.073
http://hitran.iao.ru/molecule/simlaunch.
ChenX.KanR.-fYangC.-gXuZ.-yZhangG.-lChenF.-dLiuJ.-gJournal of Optoelectronics·Laser201526719
TangG.ZhaoC.GaoJ.TanH.Sensors and Actuators B: Chemical201623779510.1016/j.snb.2016.06.162
NeethuS.VermaR.KambleS. S.RadhakrishnanJ. K.KrishnapurP. P.PadakiV. C.Sensors and Actuators B: Chemical20141927010.1016/j.snb.2013.10.070
SurR.SunK.JeffriesJ. B.SochaJ. G.HansonR. K.Fuel201515010210.1016/j.fuel.2015.02.003
Dong-PengL.Jin-FengZ.JieC.Xiao-FengM.Jin-TingL.Jun-YingM.Bao-XiangZ.Sensors and Actuators B: Chemical201623423110.1016/j.snb.2016.04.164
WangL.ZhangC.LinT.LiX.WangT.Measurement20157526310.1016/j.measurement.2015.05.001
PengY.-jLiuM.-hZhaoJ.-hLiY.TaoJ.-jGuoH.-qJournal of Optoelectronics ·Laser201627845
HartmannA.StrzodaR.SchrobenhauserR.WeigelR.Journal of Quantitative Spectroscopy and Radiative Transfer20141336192014JQSRT.133..619H10.1016/j.jqsrt.2013.09.026
X. Chen (6170_CR5) 2015; 26
Q. Zhang (6170_CR1) 2011; 5
S. Neethu (6170_CR6) 2014; 192
Y.-j Peng (6170_CR4) 2016; 27
G. Tang (6170_CR3) 2016; 237
R. Sur (6170_CR7) 2015; 150
A. Hartmann (6170_CR9) 2014; 133
L. Dong-Peng (6170_CR2) 2016; 234
J. Shao (6170_CR8) 2015; 336
L. Wang (6170_CR11) 2015; 75
6170_CR10
References_xml – reference: ChenX.KanR.-fYangC.-gXuZ.-yZhangG.-lChenF.-dLiuJ.-gJournal of Optoelectronics·Laser201526719
– reference: TangG.ZhaoC.GaoJ.TanH.Sensors and Actuators B: Chemical201623779510.1016/j.snb.2016.06.162
– reference: NeethuS.VermaR.KambleS. S.RadhakrishnanJ. K.KrishnapurP. P.PadakiV. C.Sensors and Actuators B: Chemical20141927010.1016/j.snb.2013.10.070
– reference: HartmannA.StrzodaR.SchrobenhauserR.WeigelR.Journal of Quantitative Spectroscopy and Radiative Transfer20141336192014JQSRT.133..619H10.1016/j.jqsrt.2013.09.026
– reference: SurR.SunK.JeffriesJ. B.SochaJ. G.HansonR. K.Fuel201515010210.1016/j.fuel.2015.02.003
– reference: http://hitran.iao.ru/molecule/simlaunch.
– reference: ZhangQ.LiuW.Chemical Engineering & Equipment20115151
– reference: PengY.-jLiuM.-hZhaoJ.-hLiY.TaoJ.-jGuoH.-qJournal of Optoelectronics ·Laser201627845
– reference: Dong-PengL.Jin-FengZ.JieC.Xiao-FengM.Jin-TingL.Jun-YingM.Bao-XiangZ.Sensors and Actuators B: Chemical201623423110.1016/j.snb.2016.04.164
– reference: ShaoJ.JieJ.WangL. M.YingC. F.ZhouZ.Optics Communications2015336672015OptCo.336...67S10.1016/j.optcom.2014.09.073
– reference: WangL.ZhangC.LinT.LiX.WangT.Measurement20157526310.1016/j.measurement.2015.05.001
– volume: 237
  start-page: 795
  year: 2016
  ident: 6170_CR3
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2016.06.162
– volume: 192
  start-page: 70
  year: 2014
  ident: 6170_CR6
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2013.10.070
– volume: 133
  start-page: 619
  year: 2014
  ident: 6170_CR9
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
  doi: 10.1016/j.jqsrt.2013.09.026
– volume: 75
  start-page: 263
  year: 2015
  ident: 6170_CR11
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.05.001
– volume: 5
  start-page: 151
  year: 2011
  ident: 6170_CR1
  publication-title: Chemical Engineering & Equipment
– volume: 234
  start-page: 231
  year: 2016
  ident: 6170_CR2
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2016.04.164
– volume: 150
  start-page: 102
  year: 2015
  ident: 6170_CR7
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.02.003
– volume: 336
  start-page: 67
  year: 2015
  ident: 6170_CR8
  publication-title: Optics Communications
  doi: 10.1016/j.optcom.2014.09.073
– volume: 27
  start-page: 845
  year: 2016
  ident: 6170_CR4
  publication-title: Journal of Optoelectronics ·Laser
– ident: 6170_CR10
– volume: 26
  start-page: 719
  year: 2015
  ident: 6170_CR5
  publication-title: Journal of Optoelectronics·Laser
SSID ssj0000327849
Score 2.0588493
Snippet An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f)...
An optical hydrogen sulfide (H 2 S) sensor based on wavelength modulation spectroscopy with the second harmonic (2 f ) corrected by the first harmonic (1 f )...
An optical hydrogen sulfide (H2S) sensor based on wavelength modulation spectroscopy with the second harmonic (2f) corrected by the first harmonic (1f) signal...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 465
SubjectTerms Absorption spectra
Distributed feedback lasers
Environmental monitoring
Hydrogen sulfide
Lasers
Optical Devices
Optical measuring instruments
Optics
Photonics
Physics
Physics and Astronomy
Real time
Wavelength modulation
Title An optical sensor for hydrogen sulfide detection in open path using WMS-2f/1f technique
URI http://lib.cqvip.com/qk/88368X/201606/670691209.html
https://link.springer.com/article/10.1007/s11801-016-6170-7
https://www.proquest.com/docview/1880841092
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4aRZN2GRtjWmmHfODEZHDs2E6O1TSGNrELRbBTFP8IRUMJa9ID_PX4pUk70DaJsx0nsZ_t7_l97zPAPuPWBhSc04AFHI19zKiRhaNSh7Uw-LjWtfkVpz_UyXn87VJednncdc9270OS7Uq9TnaLktb1VZjWxqjegE0ZJWkygM3J15_f10crTGA0DYFvpLSgYcuTfTzzb-2gqsKsKq9-h3c-3p3WkPNJlLTdfI63YNp_9pJz8utw0ZhDe_9E0fGZ__UGXndglEyW1vMWXvhyG7Y6YEq6aV9vw8uWJ2rrd3AxKUl1255_kzp4wNWcBNRLZnduXgVTJPXiprh2njjftByvklzjA6EErz4myLK_IhenZ5QXR1FBVgqyOzA9_jL9fEK7uxmoFbFoaO4KIRPPI1M4myjD80RyrSXy_oIXyRy32qhUaaOFjWUeYAIThXDcmGAeXryHQVmV_gOQPFY-xaqeo7ZckccRdz5PA3S1KtdsCKPV8GS3SwmOTGmmUkz7HQLrByyznao5Xq5xk631mLF_M2SyYf9meggHq0f69v5TedxbQdbN7jpDDbskjljKh_CpH9Q_iv_V2O6zao_gFUeraBMfxzBo5gv_MSCgxux1Fr8HG-d88gDL-PlG
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUAWXQimILY_6wInKwrETOzmuEGh5LBcWwc1KbAeQUAKb5dB_X49JdqECJM5-SR7b841n5huAPcaN8Sg4px4LWBq7mNEiKS1NlH8LvY1rbMivGF7IwVV8epPctHncTRft3rkkw0s9S3aL0mD6SkxrY1TNw6LHAimWLbji_enHChPoS0PYG0klqFd4SefNfG8W5FS4q6vbJ7_iW900A5z_-UiD6jlehe8tZiT9FyH_gDlXrcFKix9JezubNfgWwjlN8xOu-xWpH8M3NWm8oVqPiQen5O6vHdf-xJDm-aG8t45YNwmhWBW5xwG-BSsUEwyGvyXXw0vKy4OoJFOi13UYHR-NDge0LaFAjYjFhOa2FEnqeFSU1qSy4HmacKUSDM_zxh6z3KhCZlIVSpg4yb02Z6IUlheFl6ITG7BQ1ZXbBJLH0mXY1XGkgCvzOOLW5ZlHmEbmivVga7qP-vGFKUNLxWSG2bk9YN3OatOSj2MNjAc9o01GwWgMOEPBaNWD_emQbr5POm934tLtJWw0Us2lccQy3oM_nQhfNX802a8v9f4NS4PR8Fyfn1ycbcEyx6MVchW3YWEyfnY7HrRMit1wSP8BVvDefA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYYaBMvsLFNO2BbHva0KSJN2qR9PAEnBgNNGgjeojZJAQm1x7U88O-xe-3dNm2T9pw0lWIn_hzbnwE-CekcouCcIxbwPA6x4EVSep4YvAvRx3W-q684PdNHF_HxVXLV9zlthmz3ISQ5r2kglqaq3Zv6cm9Z-BalnRusqcRNcPMM1vA2jkjRL-R48cgiFMXVCAJH2iiOxi8ZIpt_WoX4FW7q6voe__6rnVqCz9_ipZ0ZmryEjR4_svFc4K9gJVRbsNljSdaf1GYLnnepna55DZfjitXT7smaNei01jOGQJXdPPpZjdrDmoe78tYH5kPbpWVV7JY-wBHqVswoMf6aXZ7-4BJ3pmQL0tc3cD45PN8_4n07Be5UrFqe-1IlaZBRUXqX6kLmaSKNSShVDx0_4aUzhc60KYxycZKjZReqVF4WBUo0qLewWtVVeAcsj3XIaGqQRAdX5nEkfcgzRJtO50aMYGexj3Y6Z82w2gidUaXuCMSws9b1ROTUD-POLimUSTCWks9IMNaM4PPik2G9f0zeHcRl-wPZWKKdS-NIZHIEXwYR_jT8t8W2_2v2R3jx_WBiv309O9mBdUma1ZUt7sJqO3sI7xG_tMWHTkefAHIL4rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optical+sensor+for+hydrogen+sulfide+detection+in+open+path+using+WMS-2f%2F1f+technique&rft.jtitle=Optoelectronics+letters&rft.au=Song%2C+Li-mei&rft.au=Liu%2C+Li-wen&rft.au=Yang%2C+Yan-gang&rft.au=Guo%2C+Qing-hua&rft.date=2016-11-01&rft.pub=Tianjin+University+of+Technology&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=12&rft.issue=6&rft.spage=465&rft.epage=468&rft_id=info:doi/10.1007%2Fs11801-016-6170-7&rft.externalDocID=10_1007_s11801_016_6170_7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88368X%2F88368X.jpg