An optical sensor for hydrogen sulfide detection in open path using WMS-2f/1f technique
An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length....
Saved in:
Published in | Optoelectronics letters Vol. 12; no. 6; pp. 465 - 468 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Tianjin
Tianjin University of Technology
01.11.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1673-1905 1993-5013 |
DOI | 10.1007/s11801-016-6170-7 |
Cover
Loading…
Abstract | An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm~(-1) in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields. |
---|---|
AbstractList | An optical hydrogen sulfide (H2S) sensor based on wavelength modulation spectroscopy with the second harmonic (2f) corrected by the first harmonic (1f) signal (WMS-2f/1f) is developed using a distributed feedback (DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm-1 in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s (in concentration range of 15.2—45.6 mg/m3), respectively. The maximum relative deviation for continuous detection (60 min) of 30.4 mg/m3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields. An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm~(-1) in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields. An optical hydrogen sulfide (H 2 S) sensor based on wavelength modulation spectroscopy with the second harmonic (2 f ) corrected by the first harmonic (1 f ) signal (WMS-2 f /1 f ) is developed using a distributed feedback (DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H 2 S line at 6 336.62 cm -1 in the fundamental absorption band of H 2 S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2 f /1 f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s (in concentration range of 15.2—45.6 mg/m 3 ), respectively. The maximum relative deviation for continuous detection (60 min) of 30.4 mg/m 3 H 2 S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m 3 with optimal integration time of 32 s. The optical H 2 S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields. |
Author | 宋丽梅 刘力文 杨燕罡 郭庆华 习江涛 |
AuthorAffiliation | Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China Tianjin University of Technology and Education, Tianjin 300222, China School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong 2500, Australia |
Author_xml | – sequence: 1 fullname: 宋丽梅 刘力文 杨燕罡 郭庆华 习江涛 |
BookMark | eNp9kE9LAzEQxYMoWLUfwFvQc2wm2d3sHkX8BxUPFnoM2WyyTalJTbYHv71ZWkQ8NDAkMO83b_Iu0KkP3iB0DfQOKBWzBFBTIBQqUoGgRJygCTQNJyUFfprfleAEGlqeo2lKa5oPZ6Iumgla3nsctoPTaoOT8SlEbHOtvrsYeuNx2m2s6wzuzGD04ILHbgRyZ6uGFd4l53u8fPsgzM7A4ixaefe1M1fozKpNMtPDfYkWT4-Lhxcyf39-fbifE80LPhDVWV7WhkFrO11XLVN1yYQoW1t0LP-tY1q0VVOJVnBdlApKRrnlHWtbyrThl-h2P3YbQ3ZNg1yHXfTZUUJd07oA2rCsgr1Kx5BSNFZuo_tU8VsClWOCcp-gzAnKMUEpMiP-MdoNakxgiMptjpJsT6bs4nsT_-x0BLo52K2C778y97tjJWjVAKMN_wHfQJE_ |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2022_108884 crossref_primary_10_1038_s41598_023_42398_2 crossref_primary_10_1016_j_infrared_2019_103153 crossref_primary_10_3390_catal10111358 crossref_primary_10_1088_1612_202X_ac72aa crossref_primary_10_1155_2018_1707252 |
Cites_doi | 10.1016/j.snb.2016.06.162 10.1016/j.snb.2013.10.070 10.1016/j.jqsrt.2013.09.026 10.1016/j.measurement.2015.05.001 10.1016/j.snb.2016.04.164 10.1016/j.fuel.2015.02.003 10.1016/j.optcom.2014.09.073 |
ContentType | Journal Article |
Copyright | Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION |
DOI | 10.1007/s11801-016-6170-7 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
DocumentTitleAlternate | An optical sensor for hydrogen sulfide detection in open path using WMS-2f/1f technique |
EISSN | 1993-5013 |
EndPage | 468 |
ExternalDocumentID | 10_1007_s11801_016_6170_7 670691209 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29N 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 6NX 8TC 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9T PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W92 WK8 YLTOR Z7R Z7X Z88 ZMTXR ~A9 ~WA -SI -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEI H13 Q-- SJYHP U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c343t-adf358e21bfdc86b2a852775bf4d2100d2c7b6967b73c45a15203f3d2bb02ce3 |
IEDL.DBID | AGYKE |
ISSN | 1673-1905 |
IngestDate | Fri Jul 25 20:16:09 EDT 2025 Tue Jul 01 02:10:29 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 Fri Feb 21 02:37:01 EST 2025 Wed Feb 14 10:03:58 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-adf358e21bfdc86b2a852775bf4d2100d2c7b6967b73c45a15203f3d2bb02ce3 |
Notes | SONG Li-mei1, LIU Li-wen1, YANG Yan-gang2, GUO Qing-hua1, XI Jiang-tao3( 1. Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China ;2. Tianjin University of Technology and Education, Tianjin 300222, China ;3. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong 2500, Australia) An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f) signal(WMS-2f/1f) is developed using a distributed feedback(DFB) laser emitting at 1.578 μm and a homemade gas cell with 1-m-long optical path length. The novel sensor is constructed by an electrical cabinet and an optical reflecting and receiving end. The DFB laser is employed for targeting a strong H2S line at 6 336.62 cm~(-1) in the fundamental absorption band of H2S. The sensor performance, including the minimum detection limit and the stability, can be improved by reducing the laser intensity drift and common mode noise by means of the WMS-2f/1f technique. The experimental results indicate that the linearity and response time of the sensor are 0.999 26 and 6 s(in concentration range of 15.2—45.6 mg/m^3), respectively. The maximum relative deviation for continuous detection(60 min) of 30.4 mg/m^3 H2S is 0.48% and the minimum detection limit obtained by Allan variance is 79 μg/m^3 with optimal integration time of 32 s. The optical H2S sensor can be applied to environmental monitoring and industrial production, and it has significance for real-time online detection in many fields. 12-1370/TN corrected sulfide deviation Allan reflecting harmonic targeting drift linearity length ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880841092 |
PQPubID | 2044109 |
PageCount | 4 |
ParticipantIDs | proquest_journals_1880841092 crossref_primary_10_1007_s11801_016_6170_7 crossref_citationtrail_10_1007_s11801_016_6170_7 springer_journals_10_1007_s11801_016_6170_7 chongqing_primary_670691209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tianjin |
PublicationPlace_xml | – name: Tianjin – name: Heidelberg |
PublicationTitle | Optoelectronics letters |
PublicationTitleAbbrev | Optoelectron. Lett |
PublicationTitleAlternate | Opto-electronics Letters |
PublicationYear | 2016 |
Publisher | Tianjin University of Technology Springer Nature B.V |
Publisher_xml | – name: Tianjin University of Technology – name: Springer Nature B.V |
References | ZhangQ.LiuW.Chemical Engineering & Equipment20115151 ShaoJ.JieJ.WangL. M.YingC. F.ZhouZ.Optics Communications2015336672015OptCo.336...67S10.1016/j.optcom.2014.09.073 http://hitran.iao.ru/molecule/simlaunch. ChenX.KanR.-fYangC.-gXuZ.-yZhangG.-lChenF.-dLiuJ.-gJournal of Optoelectronics·Laser201526719 TangG.ZhaoC.GaoJ.TanH.Sensors and Actuators B: Chemical201623779510.1016/j.snb.2016.06.162 NeethuS.VermaR.KambleS. S.RadhakrishnanJ. K.KrishnapurP. P.PadakiV. C.Sensors and Actuators B: Chemical20141927010.1016/j.snb.2013.10.070 SurR.SunK.JeffriesJ. B.SochaJ. G.HansonR. K.Fuel201515010210.1016/j.fuel.2015.02.003 Dong-PengL.Jin-FengZ.JieC.Xiao-FengM.Jin-TingL.Jun-YingM.Bao-XiangZ.Sensors and Actuators B: Chemical201623423110.1016/j.snb.2016.04.164 WangL.ZhangC.LinT.LiX.WangT.Measurement20157526310.1016/j.measurement.2015.05.001 PengY.-jLiuM.-hZhaoJ.-hLiY.TaoJ.-jGuoH.-qJournal of Optoelectronics ·Laser201627845 HartmannA.StrzodaR.SchrobenhauserR.WeigelR.Journal of Quantitative Spectroscopy and Radiative Transfer20141336192014JQSRT.133..619H10.1016/j.jqsrt.2013.09.026 X. Chen (6170_CR5) 2015; 26 Q. Zhang (6170_CR1) 2011; 5 S. Neethu (6170_CR6) 2014; 192 Y.-j Peng (6170_CR4) 2016; 27 G. Tang (6170_CR3) 2016; 237 R. Sur (6170_CR7) 2015; 150 A. Hartmann (6170_CR9) 2014; 133 L. Dong-Peng (6170_CR2) 2016; 234 J. Shao (6170_CR8) 2015; 336 L. Wang (6170_CR11) 2015; 75 6170_CR10 |
References_xml | – reference: ChenX.KanR.-fYangC.-gXuZ.-yZhangG.-lChenF.-dLiuJ.-gJournal of Optoelectronics·Laser201526719 – reference: TangG.ZhaoC.GaoJ.TanH.Sensors and Actuators B: Chemical201623779510.1016/j.snb.2016.06.162 – reference: NeethuS.VermaR.KambleS. S.RadhakrishnanJ. K.KrishnapurP. P.PadakiV. C.Sensors and Actuators B: Chemical20141927010.1016/j.snb.2013.10.070 – reference: HartmannA.StrzodaR.SchrobenhauserR.WeigelR.Journal of Quantitative Spectroscopy and Radiative Transfer20141336192014JQSRT.133..619H10.1016/j.jqsrt.2013.09.026 – reference: SurR.SunK.JeffriesJ. B.SochaJ. G.HansonR. K.Fuel201515010210.1016/j.fuel.2015.02.003 – reference: http://hitran.iao.ru/molecule/simlaunch. – reference: ZhangQ.LiuW.Chemical Engineering & Equipment20115151 – reference: PengY.-jLiuM.-hZhaoJ.-hLiY.TaoJ.-jGuoH.-qJournal of Optoelectronics ·Laser201627845 – reference: Dong-PengL.Jin-FengZ.JieC.Xiao-FengM.Jin-TingL.Jun-YingM.Bao-XiangZ.Sensors and Actuators B: Chemical201623423110.1016/j.snb.2016.04.164 – reference: ShaoJ.JieJ.WangL. M.YingC. F.ZhouZ.Optics Communications2015336672015OptCo.336...67S10.1016/j.optcom.2014.09.073 – reference: WangL.ZhangC.LinT.LiX.WangT.Measurement20157526310.1016/j.measurement.2015.05.001 – volume: 237 start-page: 795 year: 2016 ident: 6170_CR3 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2016.06.162 – volume: 192 start-page: 70 year: 2014 ident: 6170_CR6 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2013.10.070 – volume: 133 start-page: 619 year: 2014 ident: 6170_CR9 publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer doi: 10.1016/j.jqsrt.2013.09.026 – volume: 75 start-page: 263 year: 2015 ident: 6170_CR11 publication-title: Measurement doi: 10.1016/j.measurement.2015.05.001 – volume: 5 start-page: 151 year: 2011 ident: 6170_CR1 publication-title: Chemical Engineering & Equipment – volume: 234 start-page: 231 year: 2016 ident: 6170_CR2 publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2016.04.164 – volume: 150 start-page: 102 year: 2015 ident: 6170_CR7 publication-title: Fuel doi: 10.1016/j.fuel.2015.02.003 – volume: 336 start-page: 67 year: 2015 ident: 6170_CR8 publication-title: Optics Communications doi: 10.1016/j.optcom.2014.09.073 – volume: 27 start-page: 845 year: 2016 ident: 6170_CR4 publication-title: Journal of Optoelectronics ·Laser – ident: 6170_CR10 – volume: 26 start-page: 719 year: 2015 ident: 6170_CR5 publication-title: Journal of Optoelectronics·Laser |
SSID | ssj0000327849 |
Score | 2.0588493 |
Snippet | An optical hydrogen sulfide(H2S) sensor based on wavelength modulation spectroscopy with the second harmonic(2f) corrected by the first harmonic(1f)... An optical hydrogen sulfide (H 2 S) sensor based on wavelength modulation spectroscopy with the second harmonic (2 f ) corrected by the first harmonic (1 f )... An optical hydrogen sulfide (H2S) sensor based on wavelength modulation spectroscopy with the second harmonic (2f) corrected by the first harmonic (1f) signal... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 465 |
SubjectTerms | Absorption spectra Distributed feedback lasers Environmental monitoring Hydrogen sulfide Lasers Optical Devices Optical measuring instruments Optics Photonics Physics Physics and Astronomy Real time Wavelength modulation |
Title | An optical sensor for hydrogen sulfide detection in open path using WMS-2f/1f technique |
URI | http://lib.cqvip.com/qk/88368X/201606/670691209.html https://link.springer.com/article/10.1007/s11801-016-6170-7 https://www.proquest.com/docview/1880841092 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4aRZN2GRtjWmmHfODEZHDs2E6O1TSGNrELRbBTFP8IRUMJa9ID_PX4pUk70DaJsx0nsZ_t7_l97zPAPuPWBhSc04AFHI19zKiRhaNSh7Uw-LjWtfkVpz_UyXn87VJednncdc9270OS7Uq9TnaLktb1VZjWxqjegE0ZJWkygM3J15_f10crTGA0DYFvpLSgYcuTfTzzb-2gqsKsKq9-h3c-3p3WkPNJlLTdfI63YNp_9pJz8utw0ZhDe_9E0fGZ__UGXndglEyW1vMWXvhyG7Y6YEq6aV9vw8uWJ2rrd3AxKUl1255_kzp4wNWcBNRLZnduXgVTJPXiprh2njjftByvklzjA6EErz4myLK_IhenZ5QXR1FBVgqyOzA9_jL9fEK7uxmoFbFoaO4KIRPPI1M4myjD80RyrSXy_oIXyRy32qhUaaOFjWUeYAIThXDcmGAeXryHQVmV_gOQPFY-xaqeo7ZckccRdz5PA3S1KtdsCKPV8GS3SwmOTGmmUkz7HQLrByyznao5Xq5xk631mLF_M2SyYf9meggHq0f69v5TedxbQdbN7jpDDbskjljKh_CpH9Q_iv_V2O6zao_gFUeraBMfxzBo5gv_MSCgxux1Fr8HG-d88gDL-PlG |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUAWXQimILY_6wInKwrETOzmuEGh5LBcWwc1KbAeQUAKb5dB_X49JdqECJM5-SR7b841n5huAPcaN8Sg4px4LWBq7mNEiKS1NlH8LvY1rbMivGF7IwVV8epPctHncTRft3rkkw0s9S3aL0mD6SkxrY1TNw6LHAimWLbji_enHChPoS0PYG0klqFd4SefNfG8W5FS4q6vbJ7_iW900A5z_-UiD6jlehe8tZiT9FyH_gDlXrcFKix9JezubNfgWwjlN8xOu-xWpH8M3NWm8oVqPiQen5O6vHdf-xJDm-aG8t45YNwmhWBW5xwG-BSsUEwyGvyXXw0vKy4OoJFOi13UYHR-NDge0LaFAjYjFhOa2FEnqeFSU1qSy4HmacKUSDM_zxh6z3KhCZlIVSpg4yb02Z6IUlheFl6ITG7BQ1ZXbBJLH0mXY1XGkgCvzOOLW5ZlHmEbmivVga7qP-vGFKUNLxWSG2bk9YN3OatOSj2MNjAc9o01GwWgMOEPBaNWD_emQbr5POm934tLtJWw0Us2lccQy3oM_nQhfNX802a8v9f4NS4PR8Fyfn1ycbcEyx6MVchW3YWEyfnY7HrRMit1wSP8BVvDefA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYYaBMvsLFNO2BbHva0KSJN2qR9PAEnBgNNGgjeojZJAQm1x7U88O-xe-3dNm2T9pw0lWIn_hzbnwE-CekcouCcIxbwPA6x4EVSep4YvAvRx3W-q684PdNHF_HxVXLV9zlthmz3ISQ5r2kglqaq3Zv6cm9Z-BalnRusqcRNcPMM1vA2jkjRL-R48cgiFMXVCAJH2iiOxi8ZIpt_WoX4FW7q6voe__6rnVqCz9_ipZ0ZmryEjR4_svFc4K9gJVRbsNljSdaf1GYLnnepna55DZfjitXT7smaNei01jOGQJXdPPpZjdrDmoe78tYH5kPbpWVV7JY-wBHqVswoMf6aXZ7-4BJ3pmQL0tc3cD45PN8_4n07Be5UrFqe-1IlaZBRUXqX6kLmaSKNSShVDx0_4aUzhc60KYxycZKjZReqVF4WBUo0qLewWtVVeAcsj3XIaGqQRAdX5nEkfcgzRJtO50aMYGexj3Y6Z82w2gidUaXuCMSws9b1ROTUD-POLimUSTCWks9IMNaM4PPik2G9f0zeHcRl-wPZWKKdS-NIZHIEXwYR_jT8t8W2_2v2R3jx_WBiv309O9mBdUma1ZUt7sJqO3sI7xG_tMWHTkefAHIL4rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optical+sensor+for+hydrogen+sulfide+detection+in+open+path+using+WMS-2f%2F1f+technique&rft.jtitle=Optoelectronics+letters&rft.au=Song%2C+Li-mei&rft.au=Liu%2C+Li-wen&rft.au=Yang%2C+Yan-gang&rft.au=Guo%2C+Qing-hua&rft.date=2016-11-01&rft.pub=Tianjin+University+of+Technology&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=12&rft.issue=6&rft.spage=465&rft.epage=468&rft_id=info:doi/10.1007%2Fs11801-016-6170-7&rft.externalDocID=10_1007_s11801_016_6170_7 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88368X%2F88368X.jpg |