Application of a nonparametric procedure for testing the hypothesis about the independence of random variables given a large amount of statistical data

The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing informa...

Full description

Saved in:
Bibliographic Details
Published inMeasurement techniques Vol. 66; no. 10; pp. 744 - 754
Main Authors Lapko, A. V., Lapko, V. A., Bakhtina, A. V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing information. A nonparametric procedure is proposed for testing the hypothesis about the independence of random variables in a sample containing a large amount of statistical data. The procedure involves the compression of initial statistical data by decomposing the range of values of random variables. The generated data array consists of the centers of sampling intervals and the corresponding frequencies of observations belonging to the original sample. The obtained data was used in the construction of a nonparametric pattern recognition algorithm, which corresponds to the maximum likelihood criterion. The distribution laws in the classes were evaluated assuming the independence and dependence of the compared random variables. When recovering the distribution laws of random variables in the classes, the regression estimates of probability densities were used. For these conditions, the probability of errors in recognizing patterns in the classes was estimated, and decisions about the independence or dependence of random variables were made according to their minimum value. The procedure was used in the analysis of remote sensing data on forest areas; linear and nonlinear relationships between the spectral features of the subject matter of the study were determined.
AbstractList The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing information. A nonparametric procedure is proposed for testing the hypothesis about the independence of random variables in a sample containing a large amount of statistical data. The procedure involves the compression of initial statistical data by decomposing the range of values of random variables. The generated data array consists of the centers of sampling intervals and the corresponding frequencies of observations belonging to the original sample. The obtained data was used in the construction of a nonparametric pattern recognition algorithm, which corresponds to the maximum likelihood criterion. The distribution laws in the classes were evaluated assuming the independence and dependence of the compared random variables. When recovering the distribution laws of random variables in the classes, the regression estimates of probability densities were used. For these conditions, the probability of errors in recognizing patterns in the classes was estimated, and decisions about the independence or dependence of random variables were made according to their minimum value. The procedure was used in the analysis of remote sensing data on forest areas; linear and nonlinear relationships between the spectral features of the subject matter of the study were determined.
The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing information. A nonparametric procedure is proposed for testing the hypothesis about the independence of random variables in a sample containing a large amount of statistical data. The procedure involves the compression of initial statistical data by decomposing the range of values of random variables. The generated data array consists of the centers of sampling intervals and the corresponding frequencies of observations belonging to the original sample. The obtained data was used in the construction of a nonparametric pattern recognition algorithm, which corresponds to the maximum likelihood criterion. The distribution laws in the classes were evaluated assuming the independence and dependence of the compared random variables. When recovering the distribution laws of random variables in the classes, the regression estimates of probability densities were used. For these conditions, the probability of errors in recognizing patterns in the classes was estimated, and decisions about the independence or dependence of random variables were made according to their minimum value. The procedure was used in the analysis of remote sensing data on forest areas; linear and nonlinear relationships between the spectral features of the subject matter of the study were determined.
Audience Academic
Author Lapko, A. V.
Bakhtina, A. V.
Lapko, V. A.
Author_xml – sequence: 1
  givenname: A. V.
  orcidid: 0000-0002-0664-3870
  surname: Lapko
  fullname: Lapko, A. V.
  email: lapko@icm.krasn.ru
  organization: Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology
– sequence: 2
  givenname: V. A.
  orcidid: 0000-0001-6938-9323
  surname: Lapko
  fullname: Lapko, V. A.
  organization: Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology
– sequence: 3
  givenname: A. V.
  surname: Bakhtina
  fullname: Bakhtina, A. V.
  organization: Reshetnev Siberian State University of Science and Technology
BookMark eNp9kc1q3TAQhUVJoTdpX6ArQVddOB1Zvpa1vIQ2DQQK_VmLsSw5CrbkSnJo8ibd9Vn6ZNWNCyWbIqQB8Z0zM5xTcuKDN4S8ZnDOAMS7xBiwroK6KbfuuurhGdmxveBVJ6E9ITvYN7xiUtQvyGlKtwDARSt35OdhWSanMbvgabAUf_8q1gtGnE2OTtMlBm2GNRpqQ6TZpOz8SPONoTf3Syg1uUSxD2t-_HR-MIspj9fm6BfRD2Gmdxgd9pNJdHR3xh_bTBhHQ3EOq89HMuUyRHHXONEBM74kzy1Oybz6W8_Itw_vv158rK4_XV5dHK4rzRueKxRy4NiD1JzpXkjZ1hb3RsPQgNVSIm9ti7avuz3wTgB2gouhbwyvewk942fkzeZbNv2-lv3UbVijLy0Vh4ZxkLyFQp1v1IiTUc7bkCPqcgYzO13CsK78H4QEwdumbYvg7RNBYbL5kUdcU1JXXz4_ZeuN1TGkFI1VS3QzxnvFQB3zVVu-quSrHvNVD0XEN1EqsB9N_Df3f1R_ANmBrt4
Cites_doi 10.1080/03610918.2013.862275
10.1137/1114019
10.3103/S8756699021060078
10.1007/s11018-022-02043-2
10.1007/s11018-016-0928-y
10.3103/S875669901402006X
10.1214/aos/1176346329
10.1007/s10182-013-0216-y
10.1080/01621459.1926.10502161
10.1016/j.patrec.2012.02.022
10.1007/s11018-019-01579-0
10.1007/BF02603004
10.1214/aoms/1177704472
10.1093/BIOMET/71.2.353
10.1080/00949655.2012.721366
10.1007/s11018-013-0279-x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
ISR
7U5
8FD
JQ2
L7M
DOI 10.1007/s11018-024-02288-z
DatabaseName CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
DatabaseTitleList
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-8906
EndPage 754
ExternalDocumentID A790736466
10_1007_s11018_024_02288_z
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
6TJ
7WY
88I
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPTSA
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
AEIIB
7U5
8FD
ABRTQ
JQ2
L7M
ID FETCH-LOGICAL-c343t-a79d3ab09c31cb79962fa5ec0d40fc99a36f6afb28503870a8737db4e32b90b13
IEDL.DBID U2A
ISSN 0543-1972
IngestDate Fri Jul 25 19:00:28 EDT 2025
Tue Jun 10 21:10:26 EDT 2025
Fri Jun 27 05:15:19 EDT 2025
Tue Jul 01 00:40:06 EDT 2025
Fri Feb 21 02:41:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Hypothesis testing
Probability density
Forest areas
Regression estimate
519.7 + 004.93
Pattern recognition
Independent random variables
Hypothesis
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-a79d3ab09c31cb79962fa5ec0d40fc99a36f6afb28503870a8737db4e32b90b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6938-9323
0000-0002-0664-3870
PQID 3041309360
PQPubID 54071
PageCount 11
ParticipantIDs proquest_journals_3041309360
gale_infotracacademiconefile_A790736466
gale_incontextgauss_ISR_A790736466
crossref_primary_10_1007_s11018_024_02288_z
springer_journals_10_1007_s11018_024_02288_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Measurement techniques
PublicationTitleAbbrev Meas Tech
PublicationYear 2024
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References EpanechnikovVATheor. Probab. Appl.196914115616125042210.1137/1114019
Hacine-GharbiARavierPHarbaRMohamadiTPattern Recogn. Lett.20123310130213082012PaReL..33.1302H10.1016/j.patrec.2012.02.022
Dvorkin, B.: European program GMES and the challenging constellation of Sentinel satellites. Geomatics (3), 14–26 (2011)
LapkoAVLapkoVAMeas. Tech.201659212212610.1007/s11018-016-0928-y
HeinholdIGaede Ingeniur-StatisticKWin German1964München, WienSpringer
LapkoAVLapkoVAOptoelectron. Instrum. Data Process., 50No2014214815310.3103/S875669901402006X
LapkoAVLapkoVAMeas. Tech.2019621162210.1007/s11018-019-01579-0
SharakshanehASZheleznovIGIvnitskij Slozhnye SistemyVAin Russian], Vysshaya shkola Publ1977
HallPAnn. Stat.19831141156117410.1214/aos/1176346329
RudemoMEmpirical choice of histograms and kernel density estimatorsScand. J. Stat.1982926578668683
ParzenEAnn. Math. Stat., 33Nо196231065107610.1214/aoms/1177704472
DevroyeLLugosiGTest, 13No2004112914510.1007/BF02603004
JiangMProvostSBJ. Stat. Comput. Sim.201484361462710.1080/00949655.2012.721366
LapkoAVLapkoVAMeas. Tech.201356776376710.1007/s11018-013-0279-x
Lapko, A.V., Lapko, V.A., Bakhtina, A.V.: Comparison of the methodology for hypothesis testing of the independence of two-dimensional random variables based on a nonparametric classifier. Sci. Tech. Inf. Process. (1), 45–56 (2022)
Multivariate Density EstimationDWSTheory, Practice, and Visualization20152NYJohn Wiley & Sons
PugachevVSTeoriya Veroyatnostej i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics; in Russian], study guide2002MoscowFizmatlit Publ
HeidenreichN-BSchindlerASperlichSAdv Stat Anal2013974403433310559010.1007/s10182-013-0216-y
BowmanAWBiometrika198471235336076716310.1093/BIOMET/71.2.353
LapkoAVLapkoVABakhtinaAVMeas. Tech.2022651172310.1007/s11018-022-02043-2
YuBLemeshko and E. V. Chimitova, “On the selection of the number of intervals in the criteria of agreement of type χ2,”Ind. Lab. Diagn. Mat.20036916167
SturgessHAJ Am Stat Assoc192621656610.1080/01621459.1926.10502161
DuttaSCommun. Stat. B–Simul., 45No2016247249010.1080/03610918.2013.862275
LiQRacine Nonparametric EconometricsJSTheory and Practice2007PrincetonPrinceton University Press
LapkoAVLapkoVABakhtinaAVOptoelectron. Instrum. Data Process., 57No2022663964810.3103/S8756699021060078
GoryainovVBPavlovIVTsvetkovaGMTeskin Matematicheskaya StatistikaOIin Russian], textbook for universities, MGTU im. N. E. Baumana Publ2001
AW Bowman (2288_CR19) 1984; 71
S Dutta (2288_CR21) 2016; 2
AV Lapko (2288_CR3) 2022; 65
VB Goryainov (2288_CR26) 2001
AV Lapko (2288_CR5) 2014; 2
2288_CR25
AS Sharakshaneh (2288_CR24) 1977
VS Pugachev (2288_CR1) 2002
M Jiang (2288_CR20) 2014; 84
AV Lapko (2288_CR15) 2016; 59
VA Epanechnikov (2288_CR7) 1969; 14
DWS Multivariate Density Estimation (2288_CR12) 2015
P Hall (2288_CR18) 1983; 11
I Heinhold (2288_CR9) 1964
2288_CR4
L Devroye (2288_CR13) 2004; 1
N-B Heidenreich (2288_CR22) 2013; 97
E Parzen (2288_CR6) 1962; 3
AV Lapko (2288_CR14) 2013; 56
AV Lapko (2288_CR16) 2019; 62
M Rudemo (2288_CR17) 1982; 9
AV Lapko (2288_CR2) 2022; 6
B Yu (2288_CR10) 2003; 69
Q Li (2288_CR23) 2007
HA Sturgess (2288_CR8) 1926; 21
A Hacine-Gharbi (2288_CR11) 2012; 33
References_xml – reference: DevroyeLLugosiGTest, 13No2004112914510.1007/BF02603004
– reference: LapkoAVLapkoVAMeas. Tech.201659212212610.1007/s11018-016-0928-y
– reference: SturgessHAJ Am Stat Assoc192621656610.1080/01621459.1926.10502161
– reference: Multivariate Density EstimationDWSTheory, Practice, and Visualization20152NYJohn Wiley & Sons
– reference: LapkoAVLapkoVAOptoelectron. Instrum. Data Process., 50No2014214815310.3103/S875669901402006X
– reference: LapkoAVLapkoVABakhtinaAVOptoelectron. Instrum. Data Process., 57No2022663964810.3103/S8756699021060078
– reference: LapkoAVLapkoVAMeas. Tech.2019621162210.1007/s11018-019-01579-0
– reference: GoryainovVBPavlovIVTsvetkovaGMTeskin Matematicheskaya StatistikaOIin Russian], textbook for universities, MGTU im. N. E. Baumana Publ2001
– reference: Hacine-GharbiARavierPHarbaRMohamadiTPattern Recogn. Lett.20123310130213082012PaReL..33.1302H10.1016/j.patrec.2012.02.022
– reference: SharakshanehASZheleznovIGIvnitskij Slozhnye SistemyVAin Russian], Vysshaya shkola Publ1977
– reference: LapkoAVLapkoVAMeas. Tech.201356776376710.1007/s11018-013-0279-x
– reference: Dvorkin, B.: European program GMES and the challenging constellation of Sentinel satellites. Geomatics (3), 14–26 (2011)
– reference: DuttaSCommun. Stat. B–Simul., 45No2016247249010.1080/03610918.2013.862275
– reference: HeinholdIGaede Ingeniur-StatisticKWin German1964München, WienSpringer
– reference: JiangMProvostSBJ. Stat. Comput. Sim.201484361462710.1080/00949655.2012.721366
– reference: PugachevVSTeoriya Veroyatnostej i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics; in Russian], study guide2002MoscowFizmatlit Publ
– reference: ParzenEAnn. Math. Stat., 33Nо196231065107610.1214/aoms/1177704472
– reference: LapkoAVLapkoVABakhtinaAVMeas. Tech.2022651172310.1007/s11018-022-02043-2
– reference: RudemoMEmpirical choice of histograms and kernel density estimatorsScand. J. Stat.1982926578668683
– reference: YuBLemeshko and E. V. Chimitova, “On the selection of the number of intervals in the criteria of agreement of type χ2,”Ind. Lab. Diagn. Mat.20036916167
– reference: EpanechnikovVATheor. Probab. Appl.196914115616125042210.1137/1114019
– reference: HeidenreichN-BSchindlerASperlichSAdv Stat Anal2013974403433310559010.1007/s10182-013-0216-y
– reference: LiQRacine Nonparametric EconometricsJSTheory and Practice2007PrincetonPrinceton University Press
– reference: HallPAnn. Stat.19831141156117410.1214/aos/1176346329
– reference: Lapko, A.V., Lapko, V.A., Bakhtina, A.V.: Comparison of the methodology for hypothesis testing of the independence of two-dimensional random variables based on a nonparametric classifier. Sci. Tech. Inf. Process. (1), 45–56 (2022)
– reference: BowmanAWBiometrika198471235336076716310.1093/BIOMET/71.2.353
– volume: 2
  start-page: 472
  year: 2016
  ident: 2288_CR21
  publication-title: No
  doi: 10.1080/03610918.2013.862275
– volume: 14
  start-page: 156
  issue: 1
  year: 1969
  ident: 2288_CR7
  publication-title: Theor. Probab. Appl.
  doi: 10.1137/1114019
– volume: 6
  start-page: 639
  year: 2022
  ident: 2288_CR2
  publication-title: No
  doi: 10.3103/S8756699021060078
– volume: 65
  start-page: 17
  issue: 1
  year: 2022
  ident: 2288_CR3
  publication-title: Meas. Tech.
  doi: 10.1007/s11018-022-02043-2
– volume: 59
  start-page: 122
  issue: 2
  year: 2016
  ident: 2288_CR15
  publication-title: Meas. Tech.
  doi: 10.1007/s11018-016-0928-y
– volume: 2
  start-page: 148
  year: 2014
  ident: 2288_CR5
  publication-title: No
  doi: 10.3103/S875669901402006X
– volume: 11
  start-page: 1156
  issue: 4
  year: 1983
  ident: 2288_CR18
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346329
– ident: 2288_CR25
– volume-title: Theory, Practice, and Visualization
  year: 2015
  ident: 2288_CR12
– volume: 97
  start-page: 403
  issue: 4
  year: 2013
  ident: 2288_CR22
  publication-title: Adv Stat Anal
  doi: 10.1007/s10182-013-0216-y
– volume: 21
  start-page: 65
  year: 1926
  ident: 2288_CR8
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1926.10502161
– volume: 33
  start-page: 1302
  issue: 10
  year: 2012
  ident: 2288_CR11
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2012.02.022
– volume-title: Teoriya Veroyatnostej i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics; in Russian], study guide
  year: 2002
  ident: 2288_CR1
– volume: 62
  start-page: 16
  issue: 1
  year: 2019
  ident: 2288_CR16
  publication-title: Meas. Tech.
  doi: 10.1007/s11018-019-01579-0
– volume-title: in Russian], Vysshaya shkola Publ
  year: 1977
  ident: 2288_CR24
– volume: 1
  start-page: 129
  year: 2004
  ident: 2288_CR13
  publication-title: No
  doi: 10.1007/BF02603004
– volume: 69
  start-page: 61
  issue: 1
  year: 2003
  ident: 2288_CR10
  publication-title: Ind. Lab. Diagn. Mat.
– ident: 2288_CR4
– volume: 3
  start-page: 1065
  year: 1962
  ident: 2288_CR6
  publication-title:
  doi: 10.1214/aoms/1177704472
– volume-title: in Russian], textbook for universities, MGTU im. N. E. Baumana Publ
  year: 2001
  ident: 2288_CR26
– volume: 71
  start-page: 353
  issue: 2
  year: 1984
  ident: 2288_CR19
  publication-title: Biometrika
  doi: 10.1093/BIOMET/71.2.353
– volume: 84
  start-page: 614
  issue: 3
  year: 2014
  ident: 2288_CR20
  publication-title: J. Stat. Comput. Sim.
  doi: 10.1080/00949655.2012.721366
– volume-title: in German
  year: 1964
  ident: 2288_CR9
– volume: 9
  start-page: 65
  issue: 2
  year: 1982
  ident: 2288_CR17
  publication-title: Scand. J. Stat.
– volume-title: Theory and Practice
  year: 2007
  ident: 2288_CR23
– volume: 56
  start-page: 763
  issue: 7
  year: 2013
  ident: 2288_CR14
  publication-title: Meas. Tech.
  doi: 10.1007/s11018-013-0279-x
SSID ssj0003769
Score 2.2686834
Snippet The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The...
The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 744
SubjectTerms Algorithms
Analytical Chemistry
Characterization and Evaluation of Materials
Distribution (Probability theory)
Forests
Hypotheses
Maximum likelihood method
Measurement Science and Instrumentation
Nonparametric statistics
Pattern recognition
Physical Chemistry
Physics
Physics and Astronomy
Probability density functions
Random variables
Remote sensing
Specific gravity
Statistical analysis
Title Application of a nonparametric procedure for testing the hypothesis about the independence of random variables given a large amount of statistical data
URI https://link.springer.com/article/10.1007/s11018-024-02288-z
https://www.proquest.com/docview/3041309360
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFRIcEBQQC6WyEBIHsORHEq-PKepSQOoBWKmcLL-yrcTuVpssEv0n3Pgt_DJm3KRLeRw4RUpGjqOx5xF_8w0hz4QWqShNwZJwnqGHQhCAYNKD7y5V5CJmtMVRdTgt3h6Xx31RWDug3YcjyWypN8VuSC7FwKcw5GwZs_PrZLvE3B1W8VTWl_YXtkwOeksk3zRa9qUyfx_jijv63Sj_cTqanc7kDrndR4u0vlDvXXItLXbIrV84BHfIjYzhDO098q3eHEbTZUPdj--Q2yO39xzbZgWanVVcrxKFSJV2yK-xmFGIAOnJ1zOsxGpPW5qRyvnm6WWH3JBwPPBqcTmnXyC7xnqrls7QUuJrPiOcnLo59p1ASaxSygTQMHeEoN4n08nBx1eHrO-8wIIqVMecNlE5z01QIngNOZFsXJkCjwVvgjFOVU3lGi_HyCajuRtrpaMvkpLecC_UA7IFX5geEsrHMFgjRBUhcJEhmUK6BEFP0mWpjYsj8mJQgD27INiwGyplVJcFddmsLns-Ik9RRxaZKxYIjZm5ddvaNx_e21pDnq-qoqpG5Hkv1Cy7lQuurzSACSHZ1RXJ3UHXtt-7rVUcHbtRFR-Rl4P-N4__PblH_yf-mNyUeSXi_5xdstWt1ukJRDid3yPb9WR__wivrz-9O9jLC_wnxQf4gQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHBAXEQgELIXEAS34kcXxcIaotlB6gK_Vm-ZVtJXa32mSR6D_hxm_hlzHjJl3K48A1GU0cjTOP-JtvCHkhtEhFaQqWhPMMIxSCAASTHmJ3qSIXMaMtDqrJtHh3VB71TWHtgHYfjiSzp940uyG5FIOYwpCzpWZnV8k1UFgjkGsqxxf-Fz6ZnPSWSL5ptOxbZf6u41I4-t0p_3E6moPO7h1yu88W6fjcvHfJlbTYJrd-4RDcJtczhjO098i38eYwmi4b6n58h9oeub3nODYr0Bys4nqVKGSqtEN-jcWMQgZIj7-eYidWe9LSjFTOF08uJuSGhPogqsXlnH6B6hr7rVo6Q0-Jj_mMcHLq5jh3AiWxSykTQMPaEYJ6n0x33x6-mbB-8gILqlAdc9pE5Tw3QYngNdREsnFlCjwWvAnGOFU1lWu8rJFNRnNXa6WjL5KS3nAv1AOyBW-YHhLKa1DWCFFFSFxkSKaQLkHSk3RZauPiiLwaDGBPzwk27IZKGc1lwVw2m8uejchztJFF5ooFQmNmbt22du_TRzvWUOerqqiqEXnZCzXLbuWC6zsNYEFIdnVJcmewte2_3dYqjoHdqIqPyOvB_pvb_17co_8Tf0ZuTA4_7Nv9vYP3j8lNmXcl_tvZIVvdap2eQLbT-ad5c_8EEST4ZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAQHBIWKLQUshMQBrPqRxOvjCli1gCoErNSb5VeWSuxDm2wl-k-48Vv4Zcx4s92Wx4FrMnIcjTPfTDzfZ0KeCS1SUZqCJeE8Q4TCJgDBpAfsLlXkIuZui6PqYFS8PS6PL7D4c7f7ektyxWlAlaZpuz-P9f6G-IZCUwzwhaF-S5-dXSXXIBwLXNcjOTiPxfD55AS4RCFOo2VHm_n7GJeg6fcA_cdOaQag4R1yu8sc6WDl6rvkSppuk1sX9AS3yfXczxmae-T7YLMxTWc1dT9_QJ2POt8TPEIr0AxccblIFLJW2qLWxnRMIRukX77NkZXVnDQ0dy3niyfnp-WGhOMBwsXZhJ5CpY3cq4aOMWriY75iazl1EzyDAi2RsZTFoGHu2I56n4yGbz6_OmDdKQwsqEK1zGkTlfPcBCWC11AfydqVKfBY8DoY41RVV672so_KMpq7vlY6-iIp6Q33Qu2QLXjD9IBQ3ofBaiGqCEmMDMkU0iVIgJIuS21c7JEXawfY-Upsw25kldFdFtxls7vsWY88RR9ZVLGYYpvM2C2bxh5--mgHGmp-VRVV1SPPO6N61i5ccB3rACaEwleXLPfWvrbdd9xYxRHkjap4j7xc-39z-9-T2_0_8yfkxofXQ_v-8OjdQ3JT5kWJv3n2yFa7WKZHkPi0_nFe278AECf8oA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a%C2%A0nonparametric+procedure+for+testing+the+hypothesis+about+the+independence+of+random+variables+given+a%C2%A0large+amount+of+statistical+data&rft.jtitle=Measurement+techniques&rft.au=Lapko%2C+A.+V.&rft.au=Lapko%2C+V.+A.&rft.au=Bakhtina%2C+A.+V.&rft.date=2024-01-01&rft.issn=0543-1972&rft.eissn=1573-8906&rft.volume=66&rft.issue=10&rft.spage=744&rft.epage=754&rft_id=info:doi/10.1007%2Fs11018-024-02288-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11018_024_02288_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0543-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0543-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0543-1972&client=summon