Application of a nonparametric procedure for testing the hypothesis about the independence of random variables given a large amount of statistical data
The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing informa...
Saved in:
Published in | Measurement techniques Vol. 66; no. 10; pp. 744 - 754 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing information. A nonparametric procedure is proposed for testing the hypothesis about the independence of random variables in a sample containing a large amount of statistical data. The procedure involves the compression of initial statistical data by decomposing the range of values of random variables. The generated data array consists of the centers of sampling intervals and the corresponding frequencies of observations belonging to the original sample. The obtained data was used in the construction of a nonparametric pattern recognition algorithm, which corresponds to the maximum likelihood criterion. The distribution laws in the classes were evaluated assuming the independence and dependence of the compared random variables. When recovering the distribution laws of random variables in the classes, the regression estimates of probability densities were used. For these conditions, the probability of errors in recognizing patterns in the classes was estimated, and decisions about the independence or dependence of random variables were made according to their minimum value. The procedure was used in the analysis of remote sensing data on forest areas; linear and nonlinear relationships between the spectral features of the subject matter of the study were determined. |
---|---|
AbstractList | The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing information. A nonparametric procedure is proposed for testing the hypothesis about the independence of random variables in a sample containing a large amount of statistical data. The procedure involves the compression of initial statistical data by decomposing the range of values of random variables. The generated data array consists of the centers of sampling intervals and the corresponding frequencies of observations belonging to the original sample. The obtained data was used in the construction of a nonparametric pattern recognition algorithm, which corresponds to the maximum likelihood criterion. The distribution laws in the classes were evaluated assuming the independence and dependence of the compared random variables. When recovering the distribution laws of random variables in the classes, the regression estimates of probability densities were used. For these conditions, the probability of errors in recognizing patterns in the classes was estimated, and decisions about the independence or dependence of random variables were made according to their minimum value. The procedure was used in the analysis of remote sensing data on forest areas; linear and nonlinear relationships between the spectral features of the subject matter of the study were determined. The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The solution to this problem is necessary when estimating probability densities of random variables and synthesizing algorithms for processing information. A nonparametric procedure is proposed for testing the hypothesis about the independence of random variables in a sample containing a large amount of statistical data. The procedure involves the compression of initial statistical data by decomposing the range of values of random variables. The generated data array consists of the centers of sampling intervals and the corresponding frequencies of observations belonging to the original sample. The obtained data was used in the construction of a nonparametric pattern recognition algorithm, which corresponds to the maximum likelihood criterion. The distribution laws in the classes were evaluated assuming the independence and dependence of the compared random variables. When recovering the distribution laws of random variables in the classes, the regression estimates of probability densities were used. For these conditions, the probability of errors in recognizing patterns in the classes was estimated, and decisions about the independence or dependence of random variables were made according to their minimum value. The procedure was used in the analysis of remote sensing data on forest areas; linear and nonlinear relationships between the spectral features of the subject matter of the study were determined. |
Audience | Academic |
Author | Lapko, A. V. Bakhtina, A. V. Lapko, V. A. |
Author_xml | – sequence: 1 givenname: A. V. orcidid: 0000-0002-0664-3870 surname: Lapko fullname: Lapko, A. V. email: lapko@icm.krasn.ru organization: Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology – sequence: 2 givenname: V. A. orcidid: 0000-0001-6938-9323 surname: Lapko fullname: Lapko, V. A. organization: Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences, Reshetnev Siberian State University of Science and Technology – sequence: 3 givenname: A. V. surname: Bakhtina fullname: Bakhtina, A. V. organization: Reshetnev Siberian State University of Science and Technology |
BookMark | eNp9kc1q3TAQhUVJoTdpX6ArQVddOB1Zvpa1vIQ2DQQK_VmLsSw5CrbkSnJo8ibd9Vn6ZNWNCyWbIqQB8Z0zM5xTcuKDN4S8ZnDOAMS7xBiwroK6KbfuuurhGdmxveBVJ6E9ITvYN7xiUtQvyGlKtwDARSt35OdhWSanMbvgabAUf_8q1gtGnE2OTtMlBm2GNRpqQ6TZpOz8SPONoTf3Syg1uUSxD2t-_HR-MIspj9fm6BfRD2Gmdxgd9pNJdHR3xh_bTBhHQ3EOq89HMuUyRHHXONEBM74kzy1Oybz6W8_Itw_vv158rK4_XV5dHK4rzRueKxRy4NiD1JzpXkjZ1hb3RsPQgNVSIm9ti7avuz3wTgB2gouhbwyvewk942fkzeZbNv2-lv3UbVijLy0Vh4ZxkLyFQp1v1IiTUc7bkCPqcgYzO13CsK78H4QEwdumbYvg7RNBYbL5kUdcU1JXXz4_ZeuN1TGkFI1VS3QzxnvFQB3zVVu-quSrHvNVD0XEN1EqsB9N_Df3f1R_ANmBrt4 |
Cites_doi | 10.1080/03610918.2013.862275 10.1137/1114019 10.3103/S8756699021060078 10.1007/s11018-022-02043-2 10.1007/s11018-016-0928-y 10.3103/S875669901402006X 10.1214/aos/1176346329 10.1007/s10182-013-0216-y 10.1080/01621459.1926.10502161 10.1016/j.patrec.2012.02.022 10.1007/s11018-019-01579-0 10.1007/BF02603004 10.1214/aoms/1177704472 10.1093/BIOMET/71.2.353 10.1080/00949655.2012.721366 10.1007/s11018-013-0279-x |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
DBID | AAYXX CITATION ISR 7U5 8FD JQ2 L7M |
DOI | 10.1007/s11018-024-02288-z |
DatabaseName | CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-8906 |
EndPage | 754 |
ExternalDocumentID | A790736466 10_1007_s11018_024_02288_z |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 6TJ 7WY 88I 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPTSA GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT AEIIB 7U5 8FD ABRTQ JQ2 L7M |
ID | FETCH-LOGICAL-c343t-a79d3ab09c31cb79962fa5ec0d40fc99a36f6afb28503870a8737db4e32b90b13 |
IEDL.DBID | U2A |
ISSN | 0543-1972 |
IngestDate | Fri Jul 25 19:00:28 EDT 2025 Tue Jun 10 21:10:26 EDT 2025 Fri Jun 27 05:15:19 EDT 2025 Tue Jul 01 00:40:06 EDT 2025 Fri Feb 21 02:41:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Hypothesis testing Probability density Forest areas Regression estimate 519.7 + 004.93 Pattern recognition Independent random variables Hypothesis Remote sensing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-a79d3ab09c31cb79962fa5ec0d40fc99a36f6afb28503870a8737db4e32b90b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6938-9323 0000-0002-0664-3870 |
PQID | 3041309360 |
PQPubID | 54071 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3041309360 gale_infotracacademiconefile_A790736466 gale_incontextgauss_ISR_A790736466 crossref_primary_10_1007_s11018_024_02288_z springer_journals_10_1007_s11018_024_02288_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Measurement techniques |
PublicationTitleAbbrev | Meas Tech |
PublicationYear | 2024 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | EpanechnikovVATheor. Probab. Appl.196914115616125042210.1137/1114019 Hacine-GharbiARavierPHarbaRMohamadiTPattern Recogn. Lett.20123310130213082012PaReL..33.1302H10.1016/j.patrec.2012.02.022 Dvorkin, B.: European program GMES and the challenging constellation of Sentinel satellites. Geomatics (3), 14–26 (2011) LapkoAVLapkoVAMeas. Tech.201659212212610.1007/s11018-016-0928-y HeinholdIGaede Ingeniur-StatisticKWin German1964München, WienSpringer LapkoAVLapkoVAOptoelectron. Instrum. Data Process., 50No2014214815310.3103/S875669901402006X LapkoAVLapkoVAMeas. Tech.2019621162210.1007/s11018-019-01579-0 SharakshanehASZheleznovIGIvnitskij Slozhnye SistemyVAin Russian], Vysshaya shkola Publ1977 HallPAnn. Stat.19831141156117410.1214/aos/1176346329 RudemoMEmpirical choice of histograms and kernel density estimatorsScand. J. Stat.1982926578668683 ParzenEAnn. Math. Stat., 33Nо196231065107610.1214/aoms/1177704472 DevroyeLLugosiGTest, 13No2004112914510.1007/BF02603004 JiangMProvostSBJ. Stat. Comput. Sim.201484361462710.1080/00949655.2012.721366 LapkoAVLapkoVAMeas. Tech.201356776376710.1007/s11018-013-0279-x Lapko, A.V., Lapko, V.A., Bakhtina, A.V.: Comparison of the methodology for hypothesis testing of the independence of two-dimensional random variables based on a nonparametric classifier. Sci. Tech. Inf. Process. (1), 45–56 (2022) Multivariate Density EstimationDWSTheory, Practice, and Visualization20152NYJohn Wiley & Sons PugachevVSTeoriya Veroyatnostej i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics; in Russian], study guide2002MoscowFizmatlit Publ HeidenreichN-BSchindlerASperlichSAdv Stat Anal2013974403433310559010.1007/s10182-013-0216-y BowmanAWBiometrika198471235336076716310.1093/BIOMET/71.2.353 LapkoAVLapkoVABakhtinaAVMeas. Tech.2022651172310.1007/s11018-022-02043-2 YuBLemeshko and E. V. Chimitova, “On the selection of the number of intervals in the criteria of agreement of type χ2,”Ind. Lab. Diagn. Mat.20036916167 SturgessHAJ Am Stat Assoc192621656610.1080/01621459.1926.10502161 DuttaSCommun. Stat. B–Simul., 45No2016247249010.1080/03610918.2013.862275 LiQRacine Nonparametric EconometricsJSTheory and Practice2007PrincetonPrinceton University Press LapkoAVLapkoVABakhtinaAVOptoelectron. Instrum. Data Process., 57No2022663964810.3103/S8756699021060078 GoryainovVBPavlovIVTsvetkovaGMTeskin Matematicheskaya StatistikaOIin Russian], textbook for universities, MGTU im. N. E. Baumana Publ2001 AW Bowman (2288_CR19) 1984; 71 S Dutta (2288_CR21) 2016; 2 AV Lapko (2288_CR3) 2022; 65 VB Goryainov (2288_CR26) 2001 AV Lapko (2288_CR5) 2014; 2 2288_CR25 AS Sharakshaneh (2288_CR24) 1977 VS Pugachev (2288_CR1) 2002 M Jiang (2288_CR20) 2014; 84 AV Lapko (2288_CR15) 2016; 59 VA Epanechnikov (2288_CR7) 1969; 14 DWS Multivariate Density Estimation (2288_CR12) 2015 P Hall (2288_CR18) 1983; 11 I Heinhold (2288_CR9) 1964 2288_CR4 L Devroye (2288_CR13) 2004; 1 N-B Heidenreich (2288_CR22) 2013; 97 E Parzen (2288_CR6) 1962; 3 AV Lapko (2288_CR14) 2013; 56 AV Lapko (2288_CR16) 2019; 62 M Rudemo (2288_CR17) 1982; 9 AV Lapko (2288_CR2) 2022; 6 B Yu (2288_CR10) 2003; 69 Q Li (2288_CR23) 2007 HA Sturgess (2288_CR8) 1926; 21 A Hacine-Gharbi (2288_CR11) 2012; 33 |
References_xml | – reference: DevroyeLLugosiGTest, 13No2004112914510.1007/BF02603004 – reference: LapkoAVLapkoVAMeas. Tech.201659212212610.1007/s11018-016-0928-y – reference: SturgessHAJ Am Stat Assoc192621656610.1080/01621459.1926.10502161 – reference: Multivariate Density EstimationDWSTheory, Practice, and Visualization20152NYJohn Wiley & Sons – reference: LapkoAVLapkoVAOptoelectron. Instrum. Data Process., 50No2014214815310.3103/S875669901402006X – reference: LapkoAVLapkoVABakhtinaAVOptoelectron. Instrum. Data Process., 57No2022663964810.3103/S8756699021060078 – reference: LapkoAVLapkoVAMeas. Tech.2019621162210.1007/s11018-019-01579-0 – reference: GoryainovVBPavlovIVTsvetkovaGMTeskin Matematicheskaya StatistikaOIin Russian], textbook for universities, MGTU im. N. E. Baumana Publ2001 – reference: Hacine-GharbiARavierPHarbaRMohamadiTPattern Recogn. Lett.20123310130213082012PaReL..33.1302H10.1016/j.patrec.2012.02.022 – reference: SharakshanehASZheleznovIGIvnitskij Slozhnye SistemyVAin Russian], Vysshaya shkola Publ1977 – reference: LapkoAVLapkoVAMeas. Tech.201356776376710.1007/s11018-013-0279-x – reference: Dvorkin, B.: European program GMES and the challenging constellation of Sentinel satellites. Geomatics (3), 14–26 (2011) – reference: DuttaSCommun. Stat. B–Simul., 45No2016247249010.1080/03610918.2013.862275 – reference: HeinholdIGaede Ingeniur-StatisticKWin German1964München, WienSpringer – reference: JiangMProvostSBJ. Stat. Comput. Sim.201484361462710.1080/00949655.2012.721366 – reference: PugachevVSTeoriya Veroyatnostej i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics; in Russian], study guide2002MoscowFizmatlit Publ – reference: ParzenEAnn. Math. Stat., 33Nо196231065107610.1214/aoms/1177704472 – reference: LapkoAVLapkoVABakhtinaAVMeas. Tech.2022651172310.1007/s11018-022-02043-2 – reference: RudemoMEmpirical choice of histograms and kernel density estimatorsScand. J. Stat.1982926578668683 – reference: YuBLemeshko and E. V. Chimitova, “On the selection of the number of intervals in the criteria of agreement of type χ2,”Ind. Lab. Diagn. Mat.20036916167 – reference: EpanechnikovVATheor. Probab. Appl.196914115616125042210.1137/1114019 – reference: HeidenreichN-BSchindlerASperlichSAdv Stat Anal2013974403433310559010.1007/s10182-013-0216-y – reference: LiQRacine Nonparametric EconometricsJSTheory and Practice2007PrincetonPrinceton University Press – reference: HallPAnn. Stat.19831141156117410.1214/aos/1176346329 – reference: Lapko, A.V., Lapko, V.A., Bakhtina, A.V.: Comparison of the methodology for hypothesis testing of the independence of two-dimensional random variables based on a nonparametric classifier. Sci. Tech. Inf. Process. (1), 45–56 (2022) – reference: BowmanAWBiometrika198471235336076716310.1093/BIOMET/71.2.353 – volume: 2 start-page: 472 year: 2016 ident: 2288_CR21 publication-title: No doi: 10.1080/03610918.2013.862275 – volume: 14 start-page: 156 issue: 1 year: 1969 ident: 2288_CR7 publication-title: Theor. Probab. Appl. doi: 10.1137/1114019 – volume: 6 start-page: 639 year: 2022 ident: 2288_CR2 publication-title: No doi: 10.3103/S8756699021060078 – volume: 65 start-page: 17 issue: 1 year: 2022 ident: 2288_CR3 publication-title: Meas. Tech. doi: 10.1007/s11018-022-02043-2 – volume: 59 start-page: 122 issue: 2 year: 2016 ident: 2288_CR15 publication-title: Meas. Tech. doi: 10.1007/s11018-016-0928-y – volume: 2 start-page: 148 year: 2014 ident: 2288_CR5 publication-title: No doi: 10.3103/S875669901402006X – volume: 11 start-page: 1156 issue: 4 year: 1983 ident: 2288_CR18 publication-title: Ann. Stat. doi: 10.1214/aos/1176346329 – ident: 2288_CR25 – volume-title: Theory, Practice, and Visualization year: 2015 ident: 2288_CR12 – volume: 97 start-page: 403 issue: 4 year: 2013 ident: 2288_CR22 publication-title: Adv Stat Anal doi: 10.1007/s10182-013-0216-y – volume: 21 start-page: 65 year: 1926 ident: 2288_CR8 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1926.10502161 – volume: 33 start-page: 1302 issue: 10 year: 2012 ident: 2288_CR11 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2012.02.022 – volume-title: Teoriya Veroyatnostej i Matematicheskaya Statistika [Probability Theory and Mathematical Statistics; in Russian], study guide year: 2002 ident: 2288_CR1 – volume: 62 start-page: 16 issue: 1 year: 2019 ident: 2288_CR16 publication-title: Meas. Tech. doi: 10.1007/s11018-019-01579-0 – volume-title: in Russian], Vysshaya shkola Publ year: 1977 ident: 2288_CR24 – volume: 1 start-page: 129 year: 2004 ident: 2288_CR13 publication-title: No doi: 10.1007/BF02603004 – volume: 69 start-page: 61 issue: 1 year: 2003 ident: 2288_CR10 publication-title: Ind. Lab. Diagn. Mat. – ident: 2288_CR4 – volume: 3 start-page: 1065 year: 1962 ident: 2288_CR6 publication-title: Nо doi: 10.1214/aoms/1177704472 – volume-title: in Russian], textbook for universities, MGTU im. N. E. Baumana Publ year: 2001 ident: 2288_CR26 – volume: 71 start-page: 353 issue: 2 year: 1984 ident: 2288_CR19 publication-title: Biometrika doi: 10.1093/BIOMET/71.2.353 – volume: 84 start-page: 614 issue: 3 year: 2014 ident: 2288_CR20 publication-title: J. Stat. Comput. Sim. doi: 10.1080/00949655.2012.721366 – volume-title: in German year: 1964 ident: 2288_CR9 – volume: 9 start-page: 65 issue: 2 year: 1982 ident: 2288_CR17 publication-title: Scand. J. Stat. – volume-title: Theory and Practice year: 2007 ident: 2288_CR23 – volume: 56 start-page: 763 issue: 7 year: 2013 ident: 2288_CR14 publication-title: Meas. Tech. doi: 10.1007/s11018-013-0279-x |
SSID | ssj0003769 |
Score | 2.2686834 |
Snippet | The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The... The article considers a problem related to testing the hypothesis about the independence of random variables given large amounts of statistical data. The... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 744 |
SubjectTerms | Algorithms Analytical Chemistry Characterization and Evaluation of Materials Distribution (Probability theory) Forests Hypotheses Maximum likelihood method Measurement Science and Instrumentation Nonparametric statistics Pattern recognition Physical Chemistry Physics Physics and Astronomy Probability density functions Random variables Remote sensing Specific gravity Statistical analysis |
Title | Application of a nonparametric procedure for testing the hypothesis about the independence of random variables given a large amount of statistical data |
URI | https://link.springer.com/article/10.1007/s11018-024-02288-z https://www.proquest.com/docview/3041309360 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFRIcEBQQC6WyEBIHsORHEq-PKepSQOoBWKmcLL-yrcTuVpssEv0n3Pgt_DJm3KRLeRw4RUpGjqOx5xF_8w0hz4QWqShNwZJwnqGHQhCAYNKD7y5V5CJmtMVRdTgt3h6Xx31RWDug3YcjyWypN8VuSC7FwKcw5GwZs_PrZLvE3B1W8VTWl_YXtkwOeksk3zRa9qUyfx_jijv63Sj_cTqanc7kDrndR4u0vlDvXXItLXbIrV84BHfIjYzhDO098q3eHEbTZUPdj--Q2yO39xzbZgWanVVcrxKFSJV2yK-xmFGIAOnJ1zOsxGpPW5qRyvnm6WWH3JBwPPBqcTmnXyC7xnqrls7QUuJrPiOcnLo59p1ASaxSygTQMHeEoN4n08nBx1eHrO-8wIIqVMecNlE5z01QIngNOZFsXJkCjwVvgjFOVU3lGi_HyCajuRtrpaMvkpLecC_UA7IFX5geEsrHMFgjRBUhcJEhmUK6BEFP0mWpjYsj8mJQgD27INiwGyplVJcFddmsLns-Ik9RRxaZKxYIjZm5ddvaNx_e21pDnq-qoqpG5Hkv1Cy7lQuurzSACSHZ1RXJ3UHXtt-7rVUcHbtRFR-Rl4P-N4__PblH_yf-mNyUeSXi_5xdstWt1ukJRDid3yPb9WR__wivrz-9O9jLC_wnxQf4gQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHBAXEQgELIXEAS34kcXxcIaotlB6gK_Vm-ZVtJXa32mSR6D_hxm_hlzHjJl3K48A1GU0cjTOP-JtvCHkhtEhFaQqWhPMMIxSCAASTHmJ3qSIXMaMtDqrJtHh3VB71TWHtgHYfjiSzp940uyG5FIOYwpCzpWZnV8k1UFgjkGsqxxf-Fz6ZnPSWSL5ptOxbZf6u41I4-t0p_3E6moPO7h1yu88W6fjcvHfJlbTYJrd-4RDcJtczhjO098i38eYwmi4b6n58h9oeub3nODYr0Bys4nqVKGSqtEN-jcWMQgZIj7-eYidWe9LSjFTOF08uJuSGhPogqsXlnH6B6hr7rVo6Q0-Jj_mMcHLq5jh3AiWxSykTQMPaEYJ6n0x33x6-mbB-8gILqlAdc9pE5Tw3QYngNdREsnFlCjwWvAnGOFU1lWu8rJFNRnNXa6WjL5KS3nAv1AOyBW-YHhLKa1DWCFFFSFxkSKaQLkHSk3RZauPiiLwaDGBPzwk27IZKGc1lwVw2m8uejchztJFF5ooFQmNmbt22du_TRzvWUOerqqiqEXnZCzXLbuWC6zsNYEFIdnVJcmewte2_3dYqjoHdqIqPyOvB_pvb_17co_8Tf0ZuTA4_7Nv9vYP3j8lNmXcl_tvZIVvdap2eQLbT-ad5c_8EEST4ZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAQHBIWKLQUshMQBrPqRxOvjCli1gCoErNSb5VeWSuxDm2wl-k-48Vv4Zcx4s92Wx4FrMnIcjTPfTDzfZ0KeCS1SUZqCJeE8Q4TCJgDBpAfsLlXkIuZui6PqYFS8PS6PL7D4c7f7ektyxWlAlaZpuz-P9f6G-IZCUwzwhaF-S5-dXSXXIBwLXNcjOTiPxfD55AS4RCFOo2VHm_n7GJeg6fcA_cdOaQag4R1yu8sc6WDl6rvkSppuk1sX9AS3yfXczxmae-T7YLMxTWc1dT9_QJ2POt8TPEIr0AxccblIFLJW2qLWxnRMIRukX77NkZXVnDQ0dy3niyfnp-WGhOMBwsXZhJ5CpY3cq4aOMWriY75iazl1EzyDAi2RsZTFoGHu2I56n4yGbz6_OmDdKQwsqEK1zGkTlfPcBCWC11AfydqVKfBY8DoY41RVV672so_KMpq7vlY6-iIp6Q33Qu2QLXjD9IBQ3ofBaiGqCEmMDMkU0iVIgJIuS21c7JEXawfY-Upsw25kldFdFtxls7vsWY88RR9ZVLGYYpvM2C2bxh5--mgHGmp-VRVV1SPPO6N61i5ccB3rACaEwleXLPfWvrbdd9xYxRHkjap4j7xc-39z-9-T2_0_8yfkxofXQ_v-8OjdQ3JT5kWJv3n2yFa7WKZHkPi0_nFe278AECf8oA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a%C2%A0nonparametric+procedure+for+testing+the+hypothesis+about+the+independence+of+random+variables+given+a%C2%A0large+amount+of+statistical+data&rft.jtitle=Measurement+techniques&rft.au=Lapko%2C+A.+V.&rft.au=Lapko%2C+V.+A.&rft.au=Bakhtina%2C+A.+V.&rft.date=2024-01-01&rft.issn=0543-1972&rft.eissn=1573-8906&rft.volume=66&rft.issue=10&rft.spage=744&rft.epage=754&rft_id=info:doi/10.1007%2Fs11018-024-02288-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11018_024_02288_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0543-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0543-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0543-1972&client=summon |