A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering
•A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency uncertainty criterion removes most spurious modes and guarantees reliability of identified modal parameters.•The modified version of DBSCAN algorithm...
Saved in:
Published in | Engineering structures Vol. 255; p. 113891 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.03.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0141-0296 1873-7323 |
DOI | 10.1016/j.engstruct.2022.113891 |
Cover
Loading…
Abstract | •A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency uncertainty criterion removes most spurious modes and guarantees reliability of identified modal parameters.•The modified version of DBSCAN algorithm remains robust even subject to the interference of spurious modes.•The propose framework can be applied to other civil structures in addition to the bridges.
As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge parameters based on the uncertainty of estimated frequencies and density-based clustering algorithm, which consists of the following three stages: First, the modal parameters and standard deviations of the estimated frequencies are calculated in a wide range of model orders to construct the stabilization diagram using the reference-based covariance-driven stochastic subspace identification algorithm. Second, the criteria of frequency uncertainty and stabilization are adopted to eliminate the spurious modes. Third, for present purpose, the modified version of an unsupervised density-based clustering algorithm is introduced to group physical modes and detect outliers to reach automated identification of bridge modal parameters. From the analysis, it has shown that the proposed framework is powerful in eliminating the spurious modes and robust in the presence of interference caused by spurious modes while a simple procedure for clustering physical modes with desired statistical reliability is employed. |
---|---|
AbstractList | As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge parameters based on the uncertainty of estimated frequencies and density-based clustering algorithm, which consists of the following three stages: First, the modal parameters and standard deviations of the estimated frequencies are calculated in a wide range of model orders to construct the stabilization diagram using the reference-based covariance-driven stochastic subspace identification algorithm. Second, the criteria of frequency uncertainty and stabilization are adopted to eliminate the spurious modes. Third, for present purpose, the modified version of an unsupervised density-based clustering algorithm is introduced to group physical modes and detect outliers to reach automated identification of bridge modal parameters. From the analysis, it has shown that the proposed framework is powerful in eliminating the spurious modes and robust in the presence of interference caused by spurious modes while a simple procedure for clustering physical modes with desired statistical reliability is employed. •A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency uncertainty criterion removes most spurious modes and guarantees reliability of identified modal parameters.•The modified version of DBSCAN algorithm remains robust even subject to the interference of spurious modes.•The propose framework can be applied to other civil structures in addition to the bridges. As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge parameters based on the uncertainty of estimated frequencies and density-based clustering algorithm, which consists of the following three stages: First, the modal parameters and standard deviations of the estimated frequencies are calculated in a wide range of model orders to construct the stabilization diagram using the reference-based covariance-driven stochastic subspace identification algorithm. Second, the criteria of frequency uncertainty and stabilization are adopted to eliminate the spurious modes. Third, for present purpose, the modified version of an unsupervised density-based clustering algorithm is introduced to group physical modes and detect outliers to reach automated identification of bridge modal parameters. From the analysis, it has shown that the proposed framework is powerful in eliminating the spurious modes and robust in the presence of interference caused by spurious modes while a simple procedure for clustering physical modes with desired statistical reliability is employed. |
ArticleNumber | 113891 |
Author | Li, Yi-Feng He, Yi Yang, Judy P. |
Author_xml | – sequence: 1 givenname: Yi surname: He fullname: He, Yi organization: Research Center of Engineering Vibration and Disaster Prevention & School of Civil Engineering, Chongqing University, Chongqing 400045, China – sequence: 2 givenname: Judy P. surname: Yang fullname: Yang, Judy P. email: jpyang@nycu.edu.tw organization: Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan – sequence: 3 givenname: Yi-Feng surname: Li fullname: Li, Yi-Feng organization: Xiamen Academy of Building Research Group Co., Ltd, Xiamen, Fujian 361005, China |
BookMark | eNqNkM1uEzEURi3USqSlz4Al1hP8N-OZBYuoglKpUjewthz7Ojgkdrj2gLLlyXGaqgs2sPKV9Z3v2ueKXKScgJC3nC0548P77RLSplScXV0KJsSSczlO_BVZ8FHLTkshL8iCccU7JqbhNbkqZcsYE-PIFuT3itZvCNCVajdA7Vzz3lbwdJ-93dHoIdUYorM15kQD2j38yvidhox0jdE35mBPtxWw0LUtDX0Kwo8ZkjvSOTnAamOqR2qTp62wxDa73VwaE9PmDbkMdlfg5vm8Jl8_ffxy-7l7eLy7v109dE4qWTurlFa6933fB6WCmLQeGAtaucmqkTsJQa-Z7IMWwk8hBGFlv1agLRvHoKW8Ju_OvQfM7XGlmm2eMbWVRgxKy2mY2Cn14ZxymEtBCMbF-vT7ijbuDGfmpN1szYt2c9Juztobr__iDxj3Fo__Qa7OJDQJPyOgKS42h-AjQsv6HP_Z8Qdc5aem |
CitedBy_id | crossref_primary_10_1177_14759217231218175 crossref_primary_10_1016_j_istruc_2025_108434 crossref_primary_10_1007_s13349_024_00791_z crossref_primary_10_1016_j_tws_2022_110266 crossref_primary_10_3390_su142013290 crossref_primary_10_3390_ma17204999 crossref_primary_10_1016_j_engstruct_2023_116323 crossref_primary_10_1016_j_jobe_2024_110141 crossref_primary_10_1016_j_ymssp_2023_110485 crossref_primary_10_1142_S0219455424710056 crossref_primary_10_1142_S0219455424500147 crossref_primary_10_1155_stc_6267884 crossref_primary_10_1142_S0219455423400023 crossref_primary_10_1142_S0219455422300051 crossref_primary_10_1177_13694332241266533 crossref_primary_10_3390_app132212274 crossref_primary_10_1016_j_engfailanal_2023_107435 crossref_primary_10_1177_13694332221130792 crossref_primary_10_1016_j_engstruct_2023_116317 crossref_primary_10_1016_j_istruc_2023_105247 crossref_primary_10_1016_j_jtte_2023_05_007 crossref_primary_10_1016_j_ast_2025_110112 crossref_primary_10_1016_j_istruc_2024_106194 crossref_primary_10_1016_j_ymssp_2024_112011 crossref_primary_10_1016_j_jobe_2023_107187 crossref_primary_10_1016_j_istruc_2023_03_101 crossref_primary_10_1016_j_jobe_2024_109007 crossref_primary_10_1061_JSENDH_STENG_14181 crossref_primary_10_1016_j_istruc_2023_05_112 crossref_primary_10_1016_j_jsv_2025_118929 crossref_primary_10_1007_s42417_022_00724_4 crossref_primary_10_1080_15732479_2024_2439489 crossref_primary_10_1016_j_engstruct_2022_115139 crossref_primary_10_1016_j_jocs_2023_101996 crossref_primary_10_1016_j_ymssp_2023_110587 crossref_primary_10_1007_s13349_022_00644_7 crossref_primary_10_1016_j_istruc_2024_106023 crossref_primary_10_1016_j_ymssp_2023_110306 crossref_primary_10_1016_j_ymssp_2023_110669 crossref_primary_10_1016_j_jsv_2023_117638 crossref_primary_10_1016_j_ymssp_2022_109959 crossref_primary_10_1016_j_ins_2023_119382 crossref_primary_10_1142_S1758825123500059 crossref_primary_10_3390_machines13010039 crossref_primary_10_1016_j_engstruct_2024_119027 crossref_primary_10_1007_s13349_025_00931_z crossref_primary_10_1016_j_autcon_2024_105416 crossref_primary_10_1007_s13349_022_00653_6 crossref_primary_10_1016_j_engstruct_2022_115424 crossref_primary_10_1186_s43251_024_00143_3 crossref_primary_10_1016_j_jcsr_2025_109416 crossref_primary_10_1155_2023_6906855 |
Cites_doi | 10.1016/j.neucom.2016.09.103 10.1016/j.ymssp.2013.01.012 10.1006/mssp.2002.1492 10.1061/(ASCE)BE.1943-5592.0001141 10.1016/j.ymssp.2011.03.005 10.1111/j.1747-1567.2011.00751.x 10.1016/j.patcog.2012.02.003 10.1016/j.ymssp.2008.05.003 10.1016/j.ymssp.2007.10.009 10.1007/s13349-016-0160-0 10.1016/j.engstruct.2021.111988 10.1016/j.engstruct.2016.04.057 10.1061/(ASCE)BE.1943-5592.0001730 10.1061/(ASCE)EM.1943-7889.0001847 10.1061/(ASCE)AS.1943-5525.0000984 10.2514/3.21092 10.1016/j.ymssp.2012.01.007 10.1016/j.jsv.2014.03.024 10.1006/mssp.1999.1249 10.1016/j.engstruct.2014.03.010 10.1016/j.ymssp.2007.09.004 10.1007/s10409-016-0579-x 10.1016/j.istruc.2020.08.077 10.1016/j.ymssp.2013.03.001 10.1051/matecconf/201925502012 10.1002/stc.2146 10.1115/1.1410919 10.1016/j.ymssp.2020.107436 10.1016/j.engstruct.2004.11.013 10.1016/j.ymssp.2006.11.007 10.1016/j.ymssp.2015.04.018 10.1061/(ASCE)EM.1943-7889.0001557 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Mar 15, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Mar 15, 2022 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2022.113891 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
ExternalDocumentID | 10_1016_j_engstruct_2022_113891 S0141029622000505 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c343t-a447475d555f44f2977600f74c9a481c3ef7b035f722d9fff2a35b4e7a088f733 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 09:20:34 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 01:21:53 EDT 2025 Sun Apr 06 06:54:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bridge modal analysis DBSCAN algorithm Frequency uncertainty Spurious mode Automated modal identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-a447475d555f44f2977600f74c9a481c3ef7b035f722d9fff2a35b4e7a088f733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2647396903 |
PQPubID | 2045481 |
ParticipantIDs | proquest_journals_2647396903 crossref_citationtrail_10_1016_j_engstruct_2022_113891 crossref_primary_10_1016_j_engstruct_2022_113891 elsevier_sciencedirect_doi_10_1016_j_engstruct_2022_113891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yang, Yi, Qu, Li, Liu (b0030) 2019; 32 Ren, Peng, Lin (b0175) 2005; 27 Kim, Zhang, Chang, McGetrick Patrick, Goi (b0220) 2021; 26 Mao, Wang, Feng, Tao, Zheng (b0045) 2018; 25 Chang, Kim (b0215) 2016; 122 Su, Huang, Song, Michael LaFave (b0155) 2020; 28 Yi, Yao, Qu, Li (b0095) 2019; 145 Reynders, Roeck (b0120) 2008; 22 Hai-peng, Xuan-Jing, Ying-da, Jian-Wu (b0205) 2017; 236 Overschee PV, Moor BLD. Subspace identification for linear systems theory — implementation — applications. US: Springer; 1996. Moser, Moaveni (b0200) 2011; 25 Pintelon, Guillaume, Schoukens (b0165) 2007; 21 Xie, Liu, Cai (b0140) 2016; 32 Mok, Huang, Kwok, Au (b0210) 2012; 45 Hasan, Ahmad, Leong, Hee, Haffizzi Md. Idris, Hee (b0070) 2019; 255 Golub, Loan (b0160) 2013 Ewins (b0010) 2000 Peeters, De roeck (b0025) 1999; 13 Zhang, Ma, Chen, Wang (b0035) 2014; 333 Reynders, Pintelon, De Roeck (b0050) 2008; 22 Moser, Moaveni (b0190) 2013; 37 Scionti M, Lanslots J, Goethals I, Vecchio A, Van der Auweraer H, Peeters B et al. Tools to improve detection of structural changes from in-flight flutter data. In: Proc Eighth Int Conf Recent Adv Struct Dyn. Southampton, UK; 2003. Döhler, Mevel (b0135) 2013; 38 Reynders, Houbrechts, De Roeck (b0055) 2012; 29 Reynders, Maes, Lombaert, De Roeck (b0125) 2016; 66-67 Schipfors, Fabbrocino (b0015) 2014 Ml, Benveniste, Goursat, Hermans, Mevel, Van der Auweraer (b0170) 2001; 123 Sun, Makki Alamdari, Kalhori (b0075) 2017; 22 Goethals, Vanluyten, De Moor (b0090) 2004 Paz, Kim (b0185) 2012 Allemang R, Brown DL. A correlation coefficient for modal vector analysis. In: Proceedings of the First International Modal Analysis Conference. Orlando, FL; 1982. p. 110–60. Ester, Kriegel, Sander, Xu (b0100) 1996 . Lanslots J, Rodiers B, Peeters B. Automated pole-selection: proof-of-concept & validation. In: Proc ISMA2004 Int Conf Noise Vib Eng. Leuven, Belgium; 2004. p. 1005–18. Greś, Döhler, Andersen, Mevel (b0115) 2021; 152 Wei, Pizhong (b0005) 2010; 10 He, Liang, Li, Zhang, Liu (b0080) 2021; 234 Pappa, Elliott, Schenk (b0110) 1993; 16 Verboven, Parloo, Guillaume, Van overmeire (b0130) 2002; 16 Yang, Yi, Qu, Li, Liu (b0145) 2020; 146 Diez, Khoa, Makki Alamdari, Wang, Chen, Runcie (b0085) 2016; 6 Magalhães, Cunha, Caetano (b0040) 2009; 23 Döhler, Hille, Mevel, Rücker (b0150) 2014; 69 Cara, Juan, Alarcón, Reynders, De Roeck (b0180) 2013; 38 Magalhães (10.1016/j.engstruct.2022.113891_b0040) 2009; 23 Ren (10.1016/j.engstruct.2022.113891_b0175) 2005; 27 Xie (10.1016/j.engstruct.2022.113891_b0140) 2016; 32 Moser (10.1016/j.engstruct.2022.113891_b0200) 2011; 25 Reynders (10.1016/j.engstruct.2022.113891_b0055) 2012; 29 Mao (10.1016/j.engstruct.2022.113891_b0045) 2018; 25 Reynders (10.1016/j.engstruct.2022.113891_b0050) 2008; 22 Kim (10.1016/j.engstruct.2022.113891_b0220) 2021; 26 Yang (10.1016/j.engstruct.2022.113891_b0145) 2020; 146 Verboven (10.1016/j.engstruct.2022.113891_b0130) 2002; 16 10.1016/j.engstruct.2022.113891_b0195 Paz (10.1016/j.engstruct.2022.113891_b0185) 2012 Hai-peng (10.1016/j.engstruct.2022.113891_b0205) 2017; 236 Cara (10.1016/j.engstruct.2022.113891_b0180) 2013; 38 Reynders (10.1016/j.engstruct.2022.113891_b0120) 2008; 22 Ml (10.1016/j.engstruct.2022.113891_b0170) 2001; 123 Döhler (10.1016/j.engstruct.2022.113891_b0135) 2013; 38 Goethals (10.1016/j.engstruct.2022.113891_b0090) 2004 Greś (10.1016/j.engstruct.2022.113891_b0115) 2021; 152 Pintelon (10.1016/j.engstruct.2022.113891_b0165) 2007; 21 Peeters (10.1016/j.engstruct.2022.113891_b0025) 1999; 13 Pappa (10.1016/j.engstruct.2022.113891_b0110) 1993; 16 Golub (10.1016/j.engstruct.2022.113891_b0160) 2013 Schipfors (10.1016/j.engstruct.2022.113891_b0015) 2014 Zhang (10.1016/j.engstruct.2022.113891_b0035) 2014; 333 Moser (10.1016/j.engstruct.2022.113891_b0190) 2013; 37 Diez (10.1016/j.engstruct.2022.113891_b0085) 2016; 6 Su (10.1016/j.engstruct.2022.113891_b0155) 2020; 28 10.1016/j.engstruct.2022.113891_b0105 10.1016/j.engstruct.2022.113891_b0065 10.1016/j.engstruct.2022.113891_b0020 Chang (10.1016/j.engstruct.2022.113891_b0215) 2016; 122 Ewins (10.1016/j.engstruct.2022.113891_b0010) 2000 Yang (10.1016/j.engstruct.2022.113891_b0030) 2019; 32 He (10.1016/j.engstruct.2022.113891_b0080) 2021; 234 Sun (10.1016/j.engstruct.2022.113891_b0075) 2017; 22 10.1016/j.engstruct.2022.113891_b0060 Ester (10.1016/j.engstruct.2022.113891_b0100) 1996 Döhler (10.1016/j.engstruct.2022.113891_b0150) 2014; 69 Mok (10.1016/j.engstruct.2022.113891_b0210) 2012; 45 Yi (10.1016/j.engstruct.2022.113891_b0095) 2019; 145 Hasan (10.1016/j.engstruct.2022.113891_b0070) 2019; 255 Reynders (10.1016/j.engstruct.2022.113891_b0125) 2016; 66-67 Wei (10.1016/j.engstruct.2022.113891_b0005) 2010; 10 |
References_xml | – volume: 6 start-page: 429 year: 2016 end-page: 445 ident: b0085 article-title: A clustering approach for structural health monitoring on bridges publication-title: J Civil Struct Health Monit – reference: Allemang R, Brown DL. A correlation coefficient for modal vector analysis. In: Proceedings of the First International Modal Analysis Conference. Orlando, FL; 1982. p. 110–60. – year: 2014 ident: b0015 article-title: Operational modal analysis of civil engineering structures – volume: 255 start-page: 02012 year: 2019 ident: b0070 article-title: Cluster analysis for automated operational modal analysis: a review publication-title: MATEC Web Conf – volume: 25 start-page: 2336 year: 2011 end-page: 2357 ident: b0200 article-title: Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge publication-title: Mech Syst Signal Process – volume: 69 start-page: 183 year: 2014 end-page: 193 ident: b0150 article-title: Structural health monitoring with statistical methods during progressive damage test of S101 Bridge publication-title: Eng Struct – reference: Overschee PV, Moor BLD. Subspace identification for linear systems theory — implementation — applications. US: Springer; 1996. – volume: 32 start-page: 04018148 year: 2019 ident: b0030 article-title: Automated eigensystem realization algorithm for operational modal identification of bridge structures publication-title: J Aerosp Eng – volume: 22 start-page: 05017012 year: 2017 ident: b0075 article-title: Automated operational modal analysis of a cable-stayed bridge publication-title: J Bridge Eng – volume: 26 start-page: 04721002 year: 2021 ident: b0220 article-title: Ambient and vehicle-induced vibration data of a steel truss bridge subject to artificial damage publication-title: J Bridge Eng – volume: 22 start-page: 617 year: 2008 end-page: 637 ident: b0120 article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis publication-title: Mech Syst Signal Process – volume: 16 start-page: 637 year: 2002 end-page: 657 ident: b0130 article-title: Autonomous structural health monitoring —part I: modal parameter estimation and tracking publication-title: Mech Syst Signal Process – year: 2004 ident: b0090 article-title: Reliable spurious mode rejection using self learning algorithms publication-title: ISMA – year: 2000 ident: b0010 article-title: Modal testing: theory, practice and application – volume: 25 start-page: e2146 year: 2018 ident: b0045 article-title: Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition publication-title: Struct Control Health Monit – volume: 29 start-page: 228 year: 2012 end-page: 250 ident: b0055 article-title: Fully automated (operational) modal analysis publication-title: Mech Syst Signal Process – volume: 10 start-page: 83 year: 2010 end-page: 111 ident: b0005 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Struct Health Monit – reference: Lanslots J, Rodiers B, Peeters B. Automated pole-selection: proof-of-concept & validation. In: Proc ISMA2004 Int Conf Noise Vib Eng. Leuven, Belgium; 2004. p. 1005–18. – volume: 45 start-page: 3017 year: 2012 end-page: 3033 ident: b0210 article-title: A robust adaptive clustering analysis method for automatic identification of clusters publication-title: Pattern Recognit – volume: 152 start-page: 107436 year: 2021 ident: b0115 article-title: Uncertainty quantification for the Modal Phase Collinearity of complex mode shapes publication-title: Mech Syst Signal Process – year: 2013 ident: b0160 article-title: Matrix computations – volume: 66-67 start-page: 13 year: 2016 end-page: 30 ident: b0125 article-title: Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications publication-title: Mech Syst Signal Process – year: 2012 ident: b0185 article-title: Structural dynamics: theory and computation – volume: 22 start-page: 948 year: 2008 end-page: 969 ident: b0050 article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification publication-title: Mech Syst Signal Process – volume: 234 start-page: 111988 year: 2021 ident: b0080 article-title: Fully automated precise operational modal identification publication-title: Eng Struct – volume: 16 start-page: 852 year: 1993 end-page: 858 ident: b0110 article-title: Consistent-mode indicator for the eigensystem realization algorithm publication-title: J Guid Control Dyn – volume: 37 start-page: 15 year: 2013 end-page: 26 ident: b0190 article-title: Design and deployment of a continuous monitoring system for the Dowling Hall Footbridge publication-title: Exp Tech – volume: 145 start-page: 04018122 year: 2019 ident: b0095 article-title: Clustering number determination for sparse component analysis during output-only modal identification publication-title: J Eng Mech – volume: 236 start-page: 104 year: 2017 end-page: 112 ident: b0205 article-title: A novel automatic fuzzy clustering algorithm based on soft partition and membership information publication-title: Neurocomputing – volume: 123 start-page: 668 year: 2001 end-page: 676 ident: b0170 article-title: Output-only subspace-based structural identification: from theory to industrial testing practice publication-title: J Dyn Syst Meas Control – volume: 122 start-page: 156 year: 2016 end-page: 173 ident: b0215 article-title: Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge publication-title: Eng Struct – volume: 23 start-page: 316 year: 2009 end-page: 329 ident: b0040 article-title: Online automatic identification of the modal parameters of a long span arch bridge publication-title: Mech Syst Signal Process – volume: 146 start-page: 04020107 year: 2020 ident: b0145 article-title: Modal identification of high-speed railway bridges through free-vibration detection publication-title: J Eng Mech – volume: 28 start-page: 369 year: 2020 end-page: 379 ident: b0155 article-title: Automatic identification of modal parameters for structures based on an uncertainty diagram and a convolutional neural network publication-title: Structures – volume: 32 start-page: 710 year: 2016 end-page: 719 ident: b0140 article-title: Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method publication-title: Acta Mech Sin – reference: . – volume: 13 start-page: 855 year: 1999 end-page: 878 ident: b0025 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mech Syst Signal Process – volume: 38 start-page: 276 year: 2013 end-page: 298 ident: b0180 article-title: Modal contribution and state space order selection in operational modal analysis publication-title: Mech Syst Signal Process – volume: 38 start-page: 346 year: 2013 end-page: 366 ident: b0135 article-title: Efficient multi-order uncertainty computation for stochastic subspace identification publication-title: Mech Syst Signal Process – volume: 333 start-page: 3550 year: 2014 end-page: 3563 ident: b0035 article-title: Automated eigensystem realisation algorithm for operational modal analysis publication-title: J Sound Vib – start-page: 226 year: 1996 end-page: 231 ident: b0100 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining – volume: 27 start-page: 535 year: 2005 end-page: 548 ident: b0175 article-title: Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge publication-title: Eng Struct – volume: 21 start-page: 2359 year: 2007 end-page: 2373 ident: b0165 article-title: Uncertainty calculation in (operational) modal analysis publication-title: Mech Syst Signal Process – reference: Scionti M, Lanslots J, Goethals I, Vecchio A, Van der Auweraer H, Peeters B et al. Tools to improve detection of structural changes from in-flight flutter data. In: Proc Eighth Int Conf Recent Adv Struct Dyn. Southampton, UK; 2003. – ident: 10.1016/j.engstruct.2022.113891_b0195 – volume: 236 start-page: 104 year: 2017 ident: 10.1016/j.engstruct.2022.113891_b0205 article-title: A novel automatic fuzzy clustering algorithm based on soft partition and membership information publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.103 – volume: 38 start-page: 346 issue: 2 year: 2013 ident: 10.1016/j.engstruct.2022.113891_b0135 article-title: Efficient multi-order uncertainty computation for stochastic subspace identification publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.01.012 – ident: 10.1016/j.engstruct.2022.113891_b0065 – volume: 16 start-page: 637 issue: 4 year: 2002 ident: 10.1016/j.engstruct.2022.113891_b0130 article-title: Autonomous structural health monitoring —part I: modal parameter estimation and tracking publication-title: Mech Syst Signal Process doi: 10.1006/mssp.2002.1492 – volume: 22 start-page: 05017012 issue: 12 year: 2017 ident: 10.1016/j.engstruct.2022.113891_b0075 article-title: Automated operational modal analysis of a cable-stayed bridge publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001141 – volume: 25 start-page: 2336 issue: 7 year: 2011 ident: 10.1016/j.engstruct.2022.113891_b0200 article-title: Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.03.005 – volume: 37 start-page: 15 issue: 1 year: 2013 ident: 10.1016/j.engstruct.2022.113891_b0190 article-title: Design and deployment of a continuous monitoring system for the Dowling Hall Footbridge publication-title: Exp Tech doi: 10.1111/j.1747-1567.2011.00751.x – volume: 45 start-page: 3017 issue: 8 year: 2012 ident: 10.1016/j.engstruct.2022.113891_b0210 article-title: A robust adaptive clustering analysis method for automatic identification of clusters publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.02.003 – volume: 23 start-page: 316 issue: 2 year: 2009 ident: 10.1016/j.engstruct.2022.113891_b0040 article-title: Online automatic identification of the modal parameters of a long span arch bridge publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2008.05.003 – volume: 22 start-page: 948 issue: 4 year: 2008 ident: 10.1016/j.engstruct.2022.113891_b0050 article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.10.009 – volume: 6 start-page: 429 issue: 3 year: 2016 ident: 10.1016/j.engstruct.2022.113891_b0085 article-title: A clustering approach for structural health monitoring on bridges publication-title: J Civil Struct Health Monit doi: 10.1007/s13349-016-0160-0 – volume: 234 start-page: 111988 year: 2021 ident: 10.1016/j.engstruct.2022.113891_b0080 article-title: Fully automated precise operational modal identification publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.111988 – volume: 122 start-page: 156 year: 2016 ident: 10.1016/j.engstruct.2022.113891_b0215 article-title: Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.04.057 – volume: 26 start-page: 04721002 year: 2021 ident: 10.1016/j.engstruct.2022.113891_b0220 article-title: Ambient and vehicle-induced vibration data of a steel truss bridge subject to artificial damage publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001730 – volume: 146 start-page: 04020107 issue: 9 year: 2020 ident: 10.1016/j.engstruct.2022.113891_b0145 article-title: Modal identification of high-speed railway bridges through free-vibration detection publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0001847 – year: 2012 ident: 10.1016/j.engstruct.2022.113891_b0185 – year: 2013 ident: 10.1016/j.engstruct.2022.113891_b0160 – volume: 32 start-page: 04018148 issue: 2 year: 2019 ident: 10.1016/j.engstruct.2022.113891_b0030 article-title: Automated eigensystem realization algorithm for operational modal identification of bridge structures publication-title: J Aerosp Eng doi: 10.1061/(ASCE)AS.1943-5525.0000984 – volume: 16 start-page: 852 issue: 5 year: 1993 ident: 10.1016/j.engstruct.2022.113891_b0110 article-title: Consistent-mode indicator for the eigensystem realization algorithm publication-title: J Guid Control Dyn doi: 10.2514/3.21092 – volume: 10 start-page: 83 year: 2010 ident: 10.1016/j.engstruct.2022.113891_b0005 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Struct Health Monit – volume: 29 start-page: 228 year: 2012 ident: 10.1016/j.engstruct.2022.113891_b0055 article-title: Fully automated (operational) modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.01.007 – volume: 333 start-page: 3550 issue: 15 year: 2014 ident: 10.1016/j.engstruct.2022.113891_b0035 article-title: Automated eigensystem realisation algorithm for operational modal analysis publication-title: J Sound Vib doi: 10.1016/j.jsv.2014.03.024 – year: 2000 ident: 10.1016/j.engstruct.2022.113891_b0010 – volume: 13 start-page: 855 issue: 6 year: 1999 ident: 10.1016/j.engstruct.2022.113891_b0025 article-title: Reference-based stochastic subspace identification for output-only modal analysis publication-title: Mech Syst Signal Process doi: 10.1006/mssp.1999.1249 – volume: 69 start-page: 183 year: 2014 ident: 10.1016/j.engstruct.2022.113891_b0150 article-title: Structural health monitoring with statistical methods during progressive damage test of S101 Bridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2014.03.010 – ident: 10.1016/j.engstruct.2022.113891_b0060 – volume: 22 start-page: 617 issue: 3 year: 2008 ident: 10.1016/j.engstruct.2022.113891_b0120 article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.09.004 – volume: 32 start-page: 710 issue: 4 year: 2016 ident: 10.1016/j.engstruct.2022.113891_b0140 article-title: Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method publication-title: Acta Mech Sin doi: 10.1007/s10409-016-0579-x – ident: 10.1016/j.engstruct.2022.113891_b0020 – volume: 28 start-page: 369 year: 2020 ident: 10.1016/j.engstruct.2022.113891_b0155 article-title: Automatic identification of modal parameters for structures based on an uncertainty diagram and a convolutional neural network publication-title: Structures doi: 10.1016/j.istruc.2020.08.077 – volume: 38 start-page: 276 issue: 2 year: 2013 ident: 10.1016/j.engstruct.2022.113891_b0180 article-title: Modal contribution and state space order selection in operational modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.03.001 – volume: 255 start-page: 02012 year: 2019 ident: 10.1016/j.engstruct.2022.113891_b0070 article-title: Cluster analysis for automated operational modal analysis: a review publication-title: MATEC Web Conf doi: 10.1051/matecconf/201925502012 – year: 2004 ident: 10.1016/j.engstruct.2022.113891_b0090 article-title: Reliable spurious mode rejection using self learning algorithms publication-title: ISMA – start-page: 226 year: 1996 ident: 10.1016/j.engstruct.2022.113891_b0100 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 25 start-page: e2146 issue: 5 year: 2018 ident: 10.1016/j.engstruct.2022.113891_b0045 article-title: Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition publication-title: Struct Control Health Monit doi: 10.1002/stc.2146 – volume: 123 start-page: 668 year: 2001 ident: 10.1016/j.engstruct.2022.113891_b0170 article-title: Output-only subspace-based structural identification: from theory to industrial testing practice publication-title: J Dyn Syst Meas Control doi: 10.1115/1.1410919 – volume: 152 start-page: 107436 year: 2021 ident: 10.1016/j.engstruct.2022.113891_b0115 article-title: Uncertainty quantification for the Modal Phase Collinearity of complex mode shapes publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2020.107436 – volume: 27 start-page: 535 issue: 4 year: 2005 ident: 10.1016/j.engstruct.2022.113891_b0175 article-title: Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge publication-title: Eng Struct doi: 10.1016/j.engstruct.2004.11.013 – volume: 21 start-page: 2359 issue: 6 year: 2007 ident: 10.1016/j.engstruct.2022.113891_b0165 article-title: Uncertainty calculation in (operational) modal analysis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.11.007 – year: 2014 ident: 10.1016/j.engstruct.2022.113891_b0015 – volume: 66-67 start-page: 13 year: 2016 ident: 10.1016/j.engstruct.2022.113891_b0125 article-title: Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.04.018 – ident: 10.1016/j.engstruct.2022.113891_b0105 – volume: 145 start-page: 04018122 issue: 1 year: 2019 ident: 10.1016/j.engstruct.2022.113891_b0095 article-title: Clustering number determination for sparse component analysis during output-only modal identification publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0001557 |
SSID | ssj0002880 |
Score | 2.5503604 |
Snippet | •A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency... As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113891 |
SubjectTerms | Algorithms Automated modal identification Automation Bridge modal analysis Clustering Data analysis DBSCAN algorithm Density Frequency uncertainty Modal analysis Modal identification Outliers (statistics) Parameter identification Spurious mode Stabilization Uncertainty |
Title | A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering |
URI | https://dx.doi.org/10.1016/j.engstruct.2022.113891 https://www.proquest.com/docview/2647396903 |
Volume | 255 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnqJQKg-soY0fic1WVaACggUqdbMSP1ARTSsRhi4M_HLOTlIoEmJgS6K7KPJn332OPt8hdBZzFzNtaZRwamGDkpMolyyPpJVGWCO0DT_c7u6T4YjdjPl4DQ2aszBeVlnH_iqmh2hdP-nWo9mdTybdhyBRJDIhJFQx8QfNGUv9LD9__5J5EBG6p3njyFuvaLxs8VSVaYWNIiG-v4mQ8W8Z6kesDgnoagdt18wR96uP20VrtthDW9_qCe6jjz4uARsbAeV7sjh7K2dASK3B05kB14mppUEBDewaXRYG4oqrk1vYlwKfeonMK_YJzuBgWOmtFxiSYCUhKBc4Kww2Xv4O1_rlzRdcgI84QKOry8fBMKqbLESaMlpGGYwZS7nhnDvGHAE-CBzIpUzLjIlYU-vSvEe5Swkx0jlHMspzZtMM4pNLKT1E68WssEcIZ4JoZhOqhdBMcC0MjzWEFNbLYJ0L1kJJM7BK1xXIfSOMF9VIzZ7VEhHlEVEVIi3UWzrOqyIcf7tcNMiplfmkIFX87dxusFb1kn5VwBxTKhPZo8f_efcJ2vR3XsYW8zZaBwN7CrymzDth4nbQRv_6dnj_CSzc-18 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T-wwEB7xloJHgbieuHFBG-3GR2LTrRBoubYBJDor8YH2ackiEQpafjnjxFkBEqKgixJPZHnsmc_W528AjlLhU24cSzLBHG5QSpqUipeJcspKZ6VxzYHb9Tgb3fGLe3G_ACfdXZhAq4yxv43pTbSOb_pxNPtPk0n_pqEoUpVR2qiYiD-wGNSpRA8Wh-eXo_E8IFPZFFAL7ZNg8Inm5aqHVqkV94qUhhInUqXfJakv4brJQWersBLBIxm2_VuDBVetw_IHScENeBuSGt3jEkR9D44UL_UMMamz5HFm0XRiIzuocQjxHTWLIHYl7eUtEtTAHwNL5pmEHGdJ07ClXL8SzIMti6B-JUVliQ0MeHw205eguYCd2IS7s9Pbk1ES6ywkhnFWJwXnuKkQVgjhOfcUISHCIJ9zowouU8Ocz8sBEz6n1CrvPS2YKLnLCwxRPmfsH_SqWeW2gBSSGu4yZqQ0XAojrUgNRhU-KHCpS74NWTew2kQR8lALY6o7ttl_PfeIDh7RrUe2YTA3fGp1OH42Oe48pz9NKY3Z4mfjvc7XOq7qZ43gMWcqUwO285t_H8LS6Pb6Sl-djy934W_4ElhtqdiDHjZ2-whz6vIgTuN3vnn-EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-stage+automated+modal+identification+framework+for+bridge+parameters+based+on+frequency+uncertainty+and+density+clustering&rft.jtitle=Engineering+structures&rft.au=He%2C+Yi&rft.au=Yang%2C+Judy+P&rft.au=Li%2C+Yi-Feng&rft.date=2022-03-15&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=255&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2022.113891&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |