A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering

•A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency uncertainty criterion removes most spurious modes and guarantees reliability of identified modal parameters.•The modified version of DBSCAN algorithm...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 255; p. 113891
Main Authors He, Yi, Yang, Judy P., Li, Yi-Feng
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.03.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0141-0296
1873-7323
DOI10.1016/j.engstruct.2022.113891

Cover

Loading…
Abstract •A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency uncertainty criterion removes most spurious modes and guarantees reliability of identified modal parameters.•The modified version of DBSCAN algorithm remains robust even subject to the interference of spurious modes.•The propose framework can be applied to other civil structures in addition to the bridges. As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge parameters based on the uncertainty of estimated frequencies and density-based clustering algorithm, which consists of the following three stages: First, the modal parameters and standard deviations of the estimated frequencies are calculated in a wide range of model orders to construct the stabilization diagram using the reference-based covariance-driven stochastic subspace identification algorithm. Second, the criteria of frequency uncertainty and stabilization are adopted to eliminate the spurious modes. Third, for present purpose, the modified version of an unsupervised density-based clustering algorithm is introduced to group physical modes and detect outliers to reach automated identification of bridge modal parameters. From the analysis, it has shown that the proposed framework is powerful in eliminating the spurious modes and robust in the presence of interference caused by spurious modes while a simple procedure for clustering physical modes with desired statistical reliability is employed.
AbstractList As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge parameters based on the uncertainty of estimated frequencies and density-based clustering algorithm, which consists of the following three stages: First, the modal parameters and standard deviations of the estimated frequencies are calculated in a wide range of model orders to construct the stabilization diagram using the reference-based covariance-driven stochastic subspace identification algorithm. Second, the criteria of frequency uncertainty and stabilization are adopted to eliminate the spurious modes. Third, for present purpose, the modified version of an unsupervised density-based clustering algorithm is introduced to group physical modes and detect outliers to reach automated identification of bridge modal parameters. From the analysis, it has shown that the proposed framework is powerful in eliminating the spurious modes and robust in the presence of interference caused by spurious modes while a simple procedure for clustering physical modes with desired statistical reliability is employed.
•A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency uncertainty criterion removes most spurious modes and guarantees reliability of identified modal parameters.•The modified version of DBSCAN algorithm remains robust even subject to the interference of spurious modes.•The propose framework can be applied to other civil structures in addition to the bridges. As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge parameters based on the uncertainty of estimated frequencies and density-based clustering algorithm, which consists of the following three stages: First, the modal parameters and standard deviations of the estimated frequencies are calculated in a wide range of model orders to construct the stabilization diagram using the reference-based covariance-driven stochastic subspace identification algorithm. Second, the criteria of frequency uncertainty and stabilization are adopted to eliminate the spurious modes. Third, for present purpose, the modified version of an unsupervised density-based clustering algorithm is introduced to group physical modes and detect outliers to reach automated identification of bridge modal parameters. From the analysis, it has shown that the proposed framework is powerful in eliminating the spurious modes and robust in the presence of interference caused by spurious modes while a simple procedure for clustering physical modes with desired statistical reliability is employed.
ArticleNumber 113891
Author Li, Yi-Feng
He, Yi
Yang, Judy P.
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
  organization: Research Center of Engineering Vibration and Disaster Prevention & School of Civil Engineering, Chongqing University, Chongqing 400045, China
– sequence: 2
  givenname: Judy P.
  surname: Yang
  fullname: Yang, Judy P.
  email: jpyang@nycu.edu.tw
  organization: Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
– sequence: 3
  givenname: Yi-Feng
  surname: Li
  fullname: Li, Yi-Feng
  organization: Xiamen Academy of Building Research Group Co., Ltd, Xiamen, Fujian 361005, China
BookMark eNqNkM1uEzEURi3USqSlz4Al1hP8N-OZBYuoglKpUjewthz7Ojgkdrj2gLLlyXGaqgs2sPKV9Z3v2ueKXKScgJC3nC0548P77RLSplScXV0KJsSSczlO_BVZ8FHLTkshL8iCccU7JqbhNbkqZcsYE-PIFuT3itZvCNCVajdA7Vzz3lbwdJ-93dHoIdUYorM15kQD2j38yvidhox0jdE35mBPtxWw0LUtDX0Kwo8ZkjvSOTnAamOqR2qTp62wxDa73VwaE9PmDbkMdlfg5vm8Jl8_ffxy-7l7eLy7v109dE4qWTurlFa6933fB6WCmLQeGAtaucmqkTsJQa-Z7IMWwk8hBGFlv1agLRvHoKW8Ju_OvQfM7XGlmm2eMbWVRgxKy2mY2Cn14ZxymEtBCMbF-vT7ijbuDGfmpN1szYt2c9Juztobr__iDxj3Fo__Qa7OJDQJPyOgKS42h-AjQsv6HP_Z8Qdc5aem
CitedBy_id crossref_primary_10_1177_14759217231218175
crossref_primary_10_1016_j_istruc_2025_108434
crossref_primary_10_1007_s13349_024_00791_z
crossref_primary_10_1016_j_tws_2022_110266
crossref_primary_10_3390_su142013290
crossref_primary_10_3390_ma17204999
crossref_primary_10_1016_j_engstruct_2023_116323
crossref_primary_10_1016_j_jobe_2024_110141
crossref_primary_10_1016_j_ymssp_2023_110485
crossref_primary_10_1142_S0219455424710056
crossref_primary_10_1142_S0219455424500147
crossref_primary_10_1155_stc_6267884
crossref_primary_10_1142_S0219455423400023
crossref_primary_10_1142_S0219455422300051
crossref_primary_10_1177_13694332241266533
crossref_primary_10_3390_app132212274
crossref_primary_10_1016_j_engfailanal_2023_107435
crossref_primary_10_1177_13694332221130792
crossref_primary_10_1016_j_engstruct_2023_116317
crossref_primary_10_1016_j_istruc_2023_105247
crossref_primary_10_1016_j_jtte_2023_05_007
crossref_primary_10_1016_j_ast_2025_110112
crossref_primary_10_1016_j_istruc_2024_106194
crossref_primary_10_1016_j_ymssp_2024_112011
crossref_primary_10_1016_j_jobe_2023_107187
crossref_primary_10_1016_j_istruc_2023_03_101
crossref_primary_10_1016_j_jobe_2024_109007
crossref_primary_10_1061_JSENDH_STENG_14181
crossref_primary_10_1016_j_istruc_2023_05_112
crossref_primary_10_1016_j_jsv_2025_118929
crossref_primary_10_1007_s42417_022_00724_4
crossref_primary_10_1080_15732479_2024_2439489
crossref_primary_10_1016_j_engstruct_2022_115139
crossref_primary_10_1016_j_jocs_2023_101996
crossref_primary_10_1016_j_ymssp_2023_110587
crossref_primary_10_1007_s13349_022_00644_7
crossref_primary_10_1016_j_istruc_2024_106023
crossref_primary_10_1016_j_ymssp_2023_110306
crossref_primary_10_1016_j_ymssp_2023_110669
crossref_primary_10_1016_j_jsv_2023_117638
crossref_primary_10_1016_j_ymssp_2022_109959
crossref_primary_10_1016_j_ins_2023_119382
crossref_primary_10_1142_S1758825123500059
crossref_primary_10_3390_machines13010039
crossref_primary_10_1016_j_engstruct_2024_119027
crossref_primary_10_1007_s13349_025_00931_z
crossref_primary_10_1016_j_autcon_2024_105416
crossref_primary_10_1007_s13349_022_00653_6
crossref_primary_10_1016_j_engstruct_2022_115424
crossref_primary_10_1186_s43251_024_00143_3
crossref_primary_10_1016_j_jcsr_2025_109416
crossref_primary_10_1155_2023_6906855
Cites_doi 10.1016/j.neucom.2016.09.103
10.1016/j.ymssp.2013.01.012
10.1006/mssp.2002.1492
10.1061/(ASCE)BE.1943-5592.0001141
10.1016/j.ymssp.2011.03.005
10.1111/j.1747-1567.2011.00751.x
10.1016/j.patcog.2012.02.003
10.1016/j.ymssp.2008.05.003
10.1016/j.ymssp.2007.10.009
10.1007/s13349-016-0160-0
10.1016/j.engstruct.2021.111988
10.1016/j.engstruct.2016.04.057
10.1061/(ASCE)BE.1943-5592.0001730
10.1061/(ASCE)EM.1943-7889.0001847
10.1061/(ASCE)AS.1943-5525.0000984
10.2514/3.21092
10.1016/j.ymssp.2012.01.007
10.1016/j.jsv.2014.03.024
10.1006/mssp.1999.1249
10.1016/j.engstruct.2014.03.010
10.1016/j.ymssp.2007.09.004
10.1007/s10409-016-0579-x
10.1016/j.istruc.2020.08.077
10.1016/j.ymssp.2013.03.001
10.1051/matecconf/201925502012
10.1002/stc.2146
10.1115/1.1410919
10.1016/j.ymssp.2020.107436
10.1016/j.engstruct.2004.11.013
10.1016/j.ymssp.2006.11.007
10.1016/j.ymssp.2015.04.018
10.1061/(ASCE)EM.1943-7889.0001557
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Mar 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 15, 2022
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2022.113891
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2022_113891
S0141029622000505
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
VH1
WUQ
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c343t-a447475d555f44f2977600f74c9a481c3ef7b035f722d9fff2a35b4e7a088f733
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 09:20:34 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 01:21:53 EDT 2025
Sun Apr 06 06:54:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bridge modal analysis
DBSCAN algorithm
Frequency uncertainty
Spurious mode
Automated modal identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-a447475d555f44f2977600f74c9a481c3ef7b035f722d9fff2a35b4e7a088f733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2647396903
PQPubID 2045481
ParticipantIDs proquest_journals_2647396903
crossref_citationtrail_10_1016_j_engstruct_2022_113891
crossref_primary_10_1016_j_engstruct_2022_113891
elsevier_sciencedirect_doi_10_1016_j_engstruct_2022_113891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-15
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yang, Yi, Qu, Li, Liu (b0030) 2019; 32
Ren, Peng, Lin (b0175) 2005; 27
Kim, Zhang, Chang, McGetrick Patrick, Goi (b0220) 2021; 26
Mao, Wang, Feng, Tao, Zheng (b0045) 2018; 25
Chang, Kim (b0215) 2016; 122
Su, Huang, Song, Michael LaFave (b0155) 2020; 28
Yi, Yao, Qu, Li (b0095) 2019; 145
Reynders, Roeck (b0120) 2008; 22
Hai-peng, Xuan-Jing, Ying-da, Jian-Wu (b0205) 2017; 236
Overschee PV, Moor BLD. Subspace identification for linear systems theory — implementation — applications. US: Springer; 1996.
Moser, Moaveni (b0200) 2011; 25
Pintelon, Guillaume, Schoukens (b0165) 2007; 21
Xie, Liu, Cai (b0140) 2016; 32
Mok, Huang, Kwok, Au (b0210) 2012; 45
Hasan, Ahmad, Leong, Hee, Haffizzi Md. Idris, Hee (b0070) 2019; 255
Golub, Loan (b0160) 2013
Ewins (b0010) 2000
Peeters, De roeck (b0025) 1999; 13
Zhang, Ma, Chen, Wang (b0035) 2014; 333
Reynders, Pintelon, De Roeck (b0050) 2008; 22
Moser, Moaveni (b0190) 2013; 37
Scionti M, Lanslots J, Goethals I, Vecchio A, Van der Auweraer H, Peeters B et al. Tools to improve detection of structural changes from in-flight flutter data. In: Proc Eighth Int Conf Recent Adv Struct Dyn. Southampton, UK; 2003.
Döhler, Mevel (b0135) 2013; 38
Reynders, Houbrechts, De Roeck (b0055) 2012; 29
Reynders, Maes, Lombaert, De Roeck (b0125) 2016; 66-67
Schipfors, Fabbrocino (b0015) 2014
Ml, Benveniste, Goursat, Hermans, Mevel, Van der Auweraer (b0170) 2001; 123
Sun, Makki Alamdari, Kalhori (b0075) 2017; 22
Goethals, Vanluyten, De Moor (b0090) 2004
Paz, Kim (b0185) 2012
Allemang R, Brown DL. A correlation coefficient for modal vector analysis. In: Proceedings of the First International Modal Analysis Conference. Orlando, FL; 1982. p. 110–60.
Ester, Kriegel, Sander, Xu (b0100) 1996
.
Lanslots J, Rodiers B, Peeters B. Automated pole-selection: proof-of-concept & validation. In: Proc ISMA2004 Int Conf Noise Vib Eng. Leuven, Belgium; 2004. p. 1005–18.
Greś, Döhler, Andersen, Mevel (b0115) 2021; 152
Wei, Pizhong (b0005) 2010; 10
He, Liang, Li, Zhang, Liu (b0080) 2021; 234
Pappa, Elliott, Schenk (b0110) 1993; 16
Verboven, Parloo, Guillaume, Van overmeire (b0130) 2002; 16
Yang, Yi, Qu, Li, Liu (b0145) 2020; 146
Diez, Khoa, Makki Alamdari, Wang, Chen, Runcie (b0085) 2016; 6
Magalhães, Cunha, Caetano (b0040) 2009; 23
Döhler, Hille, Mevel, Rücker (b0150) 2014; 69
Cara, Juan, Alarcón, Reynders, De Roeck (b0180) 2013; 38
Magalhães (10.1016/j.engstruct.2022.113891_b0040) 2009; 23
Ren (10.1016/j.engstruct.2022.113891_b0175) 2005; 27
Xie (10.1016/j.engstruct.2022.113891_b0140) 2016; 32
Moser (10.1016/j.engstruct.2022.113891_b0200) 2011; 25
Reynders (10.1016/j.engstruct.2022.113891_b0055) 2012; 29
Mao (10.1016/j.engstruct.2022.113891_b0045) 2018; 25
Reynders (10.1016/j.engstruct.2022.113891_b0050) 2008; 22
Kim (10.1016/j.engstruct.2022.113891_b0220) 2021; 26
Yang (10.1016/j.engstruct.2022.113891_b0145) 2020; 146
Verboven (10.1016/j.engstruct.2022.113891_b0130) 2002; 16
10.1016/j.engstruct.2022.113891_b0195
Paz (10.1016/j.engstruct.2022.113891_b0185) 2012
Hai-peng (10.1016/j.engstruct.2022.113891_b0205) 2017; 236
Cara (10.1016/j.engstruct.2022.113891_b0180) 2013; 38
Reynders (10.1016/j.engstruct.2022.113891_b0120) 2008; 22
Ml (10.1016/j.engstruct.2022.113891_b0170) 2001; 123
Döhler (10.1016/j.engstruct.2022.113891_b0135) 2013; 38
Goethals (10.1016/j.engstruct.2022.113891_b0090) 2004
Greś (10.1016/j.engstruct.2022.113891_b0115) 2021; 152
Pintelon (10.1016/j.engstruct.2022.113891_b0165) 2007; 21
Peeters (10.1016/j.engstruct.2022.113891_b0025) 1999; 13
Pappa (10.1016/j.engstruct.2022.113891_b0110) 1993; 16
Golub (10.1016/j.engstruct.2022.113891_b0160) 2013
Schipfors (10.1016/j.engstruct.2022.113891_b0015) 2014
Zhang (10.1016/j.engstruct.2022.113891_b0035) 2014; 333
Moser (10.1016/j.engstruct.2022.113891_b0190) 2013; 37
Diez (10.1016/j.engstruct.2022.113891_b0085) 2016; 6
Su (10.1016/j.engstruct.2022.113891_b0155) 2020; 28
10.1016/j.engstruct.2022.113891_b0105
10.1016/j.engstruct.2022.113891_b0065
10.1016/j.engstruct.2022.113891_b0020
Chang (10.1016/j.engstruct.2022.113891_b0215) 2016; 122
Ewins (10.1016/j.engstruct.2022.113891_b0010) 2000
Yang (10.1016/j.engstruct.2022.113891_b0030) 2019; 32
He (10.1016/j.engstruct.2022.113891_b0080) 2021; 234
Sun (10.1016/j.engstruct.2022.113891_b0075) 2017; 22
10.1016/j.engstruct.2022.113891_b0060
Ester (10.1016/j.engstruct.2022.113891_b0100) 1996
Döhler (10.1016/j.engstruct.2022.113891_b0150) 2014; 69
Mok (10.1016/j.engstruct.2022.113891_b0210) 2012; 45
Yi (10.1016/j.engstruct.2022.113891_b0095) 2019; 145
Hasan (10.1016/j.engstruct.2022.113891_b0070) 2019; 255
Reynders (10.1016/j.engstruct.2022.113891_b0125) 2016; 66-67
Wei (10.1016/j.engstruct.2022.113891_b0005) 2010; 10
References_xml – volume: 6
  start-page: 429
  year: 2016
  end-page: 445
  ident: b0085
  article-title: A clustering approach for structural health monitoring on bridges
  publication-title: J Civil Struct Health Monit
– reference: Allemang R, Brown DL. A correlation coefficient for modal vector analysis. In: Proceedings of the First International Modal Analysis Conference. Orlando, FL; 1982. p. 110–60.
– year: 2014
  ident: b0015
  article-title: Operational modal analysis of civil engineering structures
– volume: 255
  start-page: 02012
  year: 2019
  ident: b0070
  article-title: Cluster analysis for automated operational modal analysis: a review
  publication-title: MATEC Web Conf
– volume: 25
  start-page: 2336
  year: 2011
  end-page: 2357
  ident: b0200
  article-title: Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge
  publication-title: Mech Syst Signal Process
– volume: 69
  start-page: 183
  year: 2014
  end-page: 193
  ident: b0150
  article-title: Structural health monitoring with statistical methods during progressive damage test of S101 Bridge
  publication-title: Eng Struct
– reference: Overschee PV, Moor BLD. Subspace identification for linear systems theory — implementation — applications. US: Springer; 1996.
– volume: 32
  start-page: 04018148
  year: 2019
  ident: b0030
  article-title: Automated eigensystem realization algorithm for operational modal identification of bridge structures
  publication-title: J Aerosp Eng
– volume: 22
  start-page: 05017012
  year: 2017
  ident: b0075
  article-title: Automated operational modal analysis of a cable-stayed bridge
  publication-title: J Bridge Eng
– volume: 26
  start-page: 04721002
  year: 2021
  ident: b0220
  article-title: Ambient and vehicle-induced vibration data of a steel truss bridge subject to artificial damage
  publication-title: J Bridge Eng
– volume: 22
  start-page: 617
  year: 2008
  end-page: 637
  ident: b0120
  article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis
  publication-title: Mech Syst Signal Process
– volume: 16
  start-page: 637
  year: 2002
  end-page: 657
  ident: b0130
  article-title: Autonomous structural health monitoring —part I: modal parameter estimation and tracking
  publication-title: Mech Syst Signal Process
– year: 2004
  ident: b0090
  article-title: Reliable spurious mode rejection using self learning algorithms
  publication-title: ISMA
– year: 2000
  ident: b0010
  article-title: Modal testing: theory, practice and application
– volume: 25
  start-page: e2146
  year: 2018
  ident: b0045
  article-title: Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition
  publication-title: Struct Control Health Monit
– volume: 29
  start-page: 228
  year: 2012
  end-page: 250
  ident: b0055
  article-title: Fully automated (operational) modal analysis
  publication-title: Mech Syst Signal Process
– volume: 10
  start-page: 83
  year: 2010
  end-page: 111
  ident: b0005
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Struct Health Monit
– reference: Lanslots J, Rodiers B, Peeters B. Automated pole-selection: proof-of-concept & validation. In: Proc ISMA2004 Int Conf Noise Vib Eng. Leuven, Belgium; 2004. p. 1005–18.
– volume: 45
  start-page: 3017
  year: 2012
  end-page: 3033
  ident: b0210
  article-title: A robust adaptive clustering analysis method for automatic identification of clusters
  publication-title: Pattern Recognit
– volume: 152
  start-page: 107436
  year: 2021
  ident: b0115
  article-title: Uncertainty quantification for the Modal Phase Collinearity of complex mode shapes
  publication-title: Mech Syst Signal Process
– year: 2013
  ident: b0160
  article-title: Matrix computations
– volume: 66-67
  start-page: 13
  year: 2016
  end-page: 30
  ident: b0125
  article-title: Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications
  publication-title: Mech Syst Signal Process
– year: 2012
  ident: b0185
  article-title: Structural dynamics: theory and computation
– volume: 22
  start-page: 948
  year: 2008
  end-page: 969
  ident: b0050
  article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification
  publication-title: Mech Syst Signal Process
– volume: 234
  start-page: 111988
  year: 2021
  ident: b0080
  article-title: Fully automated precise operational modal identification
  publication-title: Eng Struct
– volume: 16
  start-page: 852
  year: 1993
  end-page: 858
  ident: b0110
  article-title: Consistent-mode indicator for the eigensystem realization algorithm
  publication-title: J Guid Control Dyn
– volume: 37
  start-page: 15
  year: 2013
  end-page: 26
  ident: b0190
  article-title: Design and deployment of a continuous monitoring system for the Dowling Hall Footbridge
  publication-title: Exp Tech
– volume: 145
  start-page: 04018122
  year: 2019
  ident: b0095
  article-title: Clustering number determination for sparse component analysis during output-only modal identification
  publication-title: J Eng Mech
– volume: 236
  start-page: 104
  year: 2017
  end-page: 112
  ident: b0205
  article-title: A novel automatic fuzzy clustering algorithm based on soft partition and membership information
  publication-title: Neurocomputing
– volume: 123
  start-page: 668
  year: 2001
  end-page: 676
  ident: b0170
  article-title: Output-only subspace-based structural identification: from theory to industrial testing practice
  publication-title: J Dyn Syst Meas Control
– volume: 122
  start-page: 156
  year: 2016
  end-page: 173
  ident: b0215
  article-title: Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge
  publication-title: Eng Struct
– volume: 23
  start-page: 316
  year: 2009
  end-page: 329
  ident: b0040
  article-title: Online automatic identification of the modal parameters of a long span arch bridge
  publication-title: Mech Syst Signal Process
– volume: 146
  start-page: 04020107
  year: 2020
  ident: b0145
  article-title: Modal identification of high-speed railway bridges through free-vibration detection
  publication-title: J Eng Mech
– volume: 28
  start-page: 369
  year: 2020
  end-page: 379
  ident: b0155
  article-title: Automatic identification of modal parameters for structures based on an uncertainty diagram and a convolutional neural network
  publication-title: Structures
– volume: 32
  start-page: 710
  year: 2016
  end-page: 719
  ident: b0140
  article-title: Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method
  publication-title: Acta Mech Sin
– reference: .
– volume: 13
  start-page: 855
  year: 1999
  end-page: 878
  ident: b0025
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mech Syst Signal Process
– volume: 38
  start-page: 276
  year: 2013
  end-page: 298
  ident: b0180
  article-title: Modal contribution and state space order selection in operational modal analysis
  publication-title: Mech Syst Signal Process
– volume: 38
  start-page: 346
  year: 2013
  end-page: 366
  ident: b0135
  article-title: Efficient multi-order uncertainty computation for stochastic subspace identification
  publication-title: Mech Syst Signal Process
– volume: 333
  start-page: 3550
  year: 2014
  end-page: 3563
  ident: b0035
  article-title: Automated eigensystem realisation algorithm for operational modal analysis
  publication-title: J Sound Vib
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0100
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 27
  start-page: 535
  year: 2005
  end-page: 548
  ident: b0175
  article-title: Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge
  publication-title: Eng Struct
– volume: 21
  start-page: 2359
  year: 2007
  end-page: 2373
  ident: b0165
  article-title: Uncertainty calculation in (operational) modal analysis
  publication-title: Mech Syst Signal Process
– reference: Scionti M, Lanslots J, Goethals I, Vecchio A, Van der Auweraer H, Peeters B et al. Tools to improve detection of structural changes from in-flight flutter data. In: Proc Eighth Int Conf Recent Adv Struct Dyn. Southampton, UK; 2003.
– ident: 10.1016/j.engstruct.2022.113891_b0195
– volume: 236
  start-page: 104
  year: 2017
  ident: 10.1016/j.engstruct.2022.113891_b0205
  article-title: A novel automatic fuzzy clustering algorithm based on soft partition and membership information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.103
– volume: 38
  start-page: 346
  issue: 2
  year: 2013
  ident: 10.1016/j.engstruct.2022.113891_b0135
  article-title: Efficient multi-order uncertainty computation for stochastic subspace identification
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.01.012
– ident: 10.1016/j.engstruct.2022.113891_b0065
– volume: 16
  start-page: 637
  issue: 4
  year: 2002
  ident: 10.1016/j.engstruct.2022.113891_b0130
  article-title: Autonomous structural health monitoring —part I: modal parameter estimation and tracking
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2002.1492
– volume: 22
  start-page: 05017012
  issue: 12
  year: 2017
  ident: 10.1016/j.engstruct.2022.113891_b0075
  article-title: Automated operational modal analysis of a cable-stayed bridge
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001141
– volume: 25
  start-page: 2336
  issue: 7
  year: 2011
  ident: 10.1016/j.engstruct.2022.113891_b0200
  article-title: Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.03.005
– volume: 37
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.engstruct.2022.113891_b0190
  article-title: Design and deployment of a continuous monitoring system for the Dowling Hall Footbridge
  publication-title: Exp Tech
  doi: 10.1111/j.1747-1567.2011.00751.x
– volume: 45
  start-page: 3017
  issue: 8
  year: 2012
  ident: 10.1016/j.engstruct.2022.113891_b0210
  article-title: A robust adaptive clustering analysis method for automatic identification of clusters
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.02.003
– volume: 23
  start-page: 316
  issue: 2
  year: 2009
  ident: 10.1016/j.engstruct.2022.113891_b0040
  article-title: Online automatic identification of the modal parameters of a long span arch bridge
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.05.003
– volume: 22
  start-page: 948
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2022.113891_b0050
  article-title: Uncertainty bounds on modal parameters obtained from stochastic subspace identification
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.10.009
– volume: 6
  start-page: 429
  issue: 3
  year: 2016
  ident: 10.1016/j.engstruct.2022.113891_b0085
  article-title: A clustering approach for structural health monitoring on bridges
  publication-title: J Civil Struct Health Monit
  doi: 10.1007/s13349-016-0160-0
– volume: 234
  start-page: 111988
  year: 2021
  ident: 10.1016/j.engstruct.2022.113891_b0080
  article-title: Fully automated precise operational modal identification
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.111988
– volume: 122
  start-page: 156
  year: 2016
  ident: 10.1016/j.engstruct.2022.113891_b0215
  article-title: Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2016.04.057
– volume: 26
  start-page: 04721002
  year: 2021
  ident: 10.1016/j.engstruct.2022.113891_b0220
  article-title: Ambient and vehicle-induced vibration data of a steel truss bridge subject to artificial damage
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001730
– volume: 146
  start-page: 04020107
  issue: 9
  year: 2020
  ident: 10.1016/j.engstruct.2022.113891_b0145
  article-title: Modal identification of high-speed railway bridges through free-vibration detection
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001847
– year: 2012
  ident: 10.1016/j.engstruct.2022.113891_b0185
– year: 2013
  ident: 10.1016/j.engstruct.2022.113891_b0160
– volume: 32
  start-page: 04018148
  issue: 2
  year: 2019
  ident: 10.1016/j.engstruct.2022.113891_b0030
  article-title: Automated eigensystem realization algorithm for operational modal identification of bridge structures
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0000984
– volume: 16
  start-page: 852
  issue: 5
  year: 1993
  ident: 10.1016/j.engstruct.2022.113891_b0110
  article-title: Consistent-mode indicator for the eigensystem realization algorithm
  publication-title: J Guid Control Dyn
  doi: 10.2514/3.21092
– volume: 10
  start-page: 83
  year: 2010
  ident: 10.1016/j.engstruct.2022.113891_b0005
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Struct Health Monit
– volume: 29
  start-page: 228
  year: 2012
  ident: 10.1016/j.engstruct.2022.113891_b0055
  article-title: Fully automated (operational) modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.01.007
– volume: 333
  start-page: 3550
  issue: 15
  year: 2014
  ident: 10.1016/j.engstruct.2022.113891_b0035
  article-title: Automated eigensystem realisation algorithm for operational modal analysis
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2014.03.024
– year: 2000
  ident: 10.1016/j.engstruct.2022.113891_b0010
– volume: 13
  start-page: 855
  issue: 6
  year: 1999
  ident: 10.1016/j.engstruct.2022.113891_b0025
  article-title: Reference-based stochastic subspace identification for output-only modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.1999.1249
– volume: 69
  start-page: 183
  year: 2014
  ident: 10.1016/j.engstruct.2022.113891_b0150
  article-title: Structural health monitoring with statistical methods during progressive damage test of S101 Bridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2014.03.010
– ident: 10.1016/j.engstruct.2022.113891_b0060
– volume: 22
  start-page: 617
  issue: 3
  year: 2008
  ident: 10.1016/j.engstruct.2022.113891_b0120
  article-title: Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.09.004
– volume: 32
  start-page: 710
  issue: 4
  year: 2016
  ident: 10.1016/j.engstruct.2022.113891_b0140
  article-title: Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-016-0579-x
– ident: 10.1016/j.engstruct.2022.113891_b0020
– volume: 28
  start-page: 369
  year: 2020
  ident: 10.1016/j.engstruct.2022.113891_b0155
  article-title: Automatic identification of modal parameters for structures based on an uncertainty diagram and a convolutional neural network
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.08.077
– volume: 38
  start-page: 276
  issue: 2
  year: 2013
  ident: 10.1016/j.engstruct.2022.113891_b0180
  article-title: Modal contribution and state space order selection in operational modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.03.001
– volume: 255
  start-page: 02012
  year: 2019
  ident: 10.1016/j.engstruct.2022.113891_b0070
  article-title: Cluster analysis for automated operational modal analysis: a review
  publication-title: MATEC Web Conf
  doi: 10.1051/matecconf/201925502012
– year: 2004
  ident: 10.1016/j.engstruct.2022.113891_b0090
  article-title: Reliable spurious mode rejection using self learning algorithms
  publication-title: ISMA
– start-page: 226
  year: 1996
  ident: 10.1016/j.engstruct.2022.113891_b0100
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 25
  start-page: e2146
  issue: 5
  year: 2018
  ident: 10.1016/j.engstruct.2022.113891_b0045
  article-title: Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2146
– volume: 123
  start-page: 668
  year: 2001
  ident: 10.1016/j.engstruct.2022.113891_b0170
  article-title: Output-only subspace-based structural identification: from theory to industrial testing practice
  publication-title: J Dyn Syst Meas Control
  doi: 10.1115/1.1410919
– volume: 152
  start-page: 107436
  year: 2021
  ident: 10.1016/j.engstruct.2022.113891_b0115
  article-title: Uncertainty quantification for the Modal Phase Collinearity of complex mode shapes
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107436
– volume: 27
  start-page: 535
  issue: 4
  year: 2005
  ident: 10.1016/j.engstruct.2022.113891_b0175
  article-title: Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.11.013
– volume: 21
  start-page: 2359
  issue: 6
  year: 2007
  ident: 10.1016/j.engstruct.2022.113891_b0165
  article-title: Uncertainty calculation in (operational) modal analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.11.007
– year: 2014
  ident: 10.1016/j.engstruct.2022.113891_b0015
– volume: 66-67
  start-page: 13
  year: 2016
  ident: 10.1016/j.engstruct.2022.113891_b0125
  article-title: Uncertainty quantification in operational modal analysis with stochastic subspace identification: Validation and applications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.04.018
– ident: 10.1016/j.engstruct.2022.113891_b0105
– volume: 145
  start-page: 04018122
  issue: 1
  year: 2019
  ident: 10.1016/j.engstruct.2022.113891_b0095
  article-title: Clustering number determination for sparse component analysis during output-only modal identification
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001557
SSID ssj0002880
Score 2.5503604
Snippet •A three-stage automated modal identification framework is proposed on the basis of frequency uncertainty and density-based clustering.•The frequency...
As the automated modal analysis is crucial for a continuous monitoring system, this study proposes a framework for automated modal identification of bridge...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113891
SubjectTerms Algorithms
Automated modal identification
Automation
Bridge modal analysis
Clustering
Data analysis
DBSCAN algorithm
Density
Frequency uncertainty
Modal analysis
Modal identification
Outliers (statistics)
Parameter identification
Spurious mode
Stabilization
Uncertainty
Title A three-stage automated modal identification framework for bridge parameters based on frequency uncertainty and density clustering
URI https://dx.doi.org/10.1016/j.engstruct.2022.113891
https://www.proquest.com/docview/2647396903
Volume 255
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnqJQKg-soY0fic1WVaACggUqdbMSP1ARTSsRhi4M_HLOTlIoEmJgS6K7KPJn332OPt8hdBZzFzNtaZRwamGDkpMolyyPpJVGWCO0DT_c7u6T4YjdjPl4DQ2aszBeVlnH_iqmh2hdP-nWo9mdTybdhyBRJDIhJFQx8QfNGUv9LD9__5J5EBG6p3njyFuvaLxs8VSVaYWNIiG-v4mQ8W8Z6kesDgnoagdt18wR96uP20VrtthDW9_qCe6jjz4uARsbAeV7sjh7K2dASK3B05kB14mppUEBDewaXRYG4oqrk1vYlwKfeonMK_YJzuBgWOmtFxiSYCUhKBc4Kww2Xv4O1_rlzRdcgI84QKOry8fBMKqbLESaMlpGGYwZS7nhnDvGHAE-CBzIpUzLjIlYU-vSvEe5Swkx0jlHMspzZtMM4pNLKT1E68WssEcIZ4JoZhOqhdBMcC0MjzWEFNbLYJ0L1kJJM7BK1xXIfSOMF9VIzZ7VEhHlEVEVIi3UWzrOqyIcf7tcNMiplfmkIFX87dxusFb1kn5VwBxTKhPZo8f_efcJ2vR3XsYW8zZaBwN7CrymzDth4nbQRv_6dnj_CSzc-18
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T-wwEB7xloJHgbieuHFBG-3GR2LTrRBoubYBJDor8YH2ackiEQpafjnjxFkBEqKgixJPZHnsmc_W528AjlLhU24cSzLBHG5QSpqUipeJcspKZ6VxzYHb9Tgb3fGLe3G_ACfdXZhAq4yxv43pTbSOb_pxNPtPk0n_pqEoUpVR2qiYiD-wGNSpRA8Wh-eXo_E8IFPZFFAL7ZNg8Inm5aqHVqkV94qUhhInUqXfJakv4brJQWersBLBIxm2_VuDBVetw_IHScENeBuSGt3jEkR9D44UL_UMMamz5HFm0XRiIzuocQjxHTWLIHYl7eUtEtTAHwNL5pmEHGdJ07ClXL8SzIMti6B-JUVliQ0MeHw205eguYCd2IS7s9Pbk1ES6ywkhnFWJwXnuKkQVgjhOfcUISHCIJ9zowouU8Ocz8sBEz6n1CrvPS2YKLnLCwxRPmfsH_SqWeW2gBSSGu4yZqQ0XAojrUgNRhU-KHCpS74NWTew2kQR8lALY6o7ttl_PfeIDh7RrUe2YTA3fGp1OH42Oe48pz9NKY3Z4mfjvc7XOq7qZ43gMWcqUwO285t_H8LS6Pb6Sl-djy934W_4ElhtqdiDHjZ2-whz6vIgTuN3vnn-EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-stage+automated+modal+identification+framework+for+bridge+parameters+based+on+frequency+uncertainty+and+density+clustering&rft.jtitle=Engineering+structures&rft.au=He%2C+Yi&rft.au=Yang%2C+Judy+P&rft.au=Li%2C+Yi-Feng&rft.date=2022-03-15&rft.pub=Elsevier+BV&rft.issn=0141-0296&rft.eissn=1873-7323&rft.volume=255&rft.spage=1&rft_id=info:doi/10.1016%2Fj.engstruct.2022.113891&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon