An innovative echo detection system with STM32 gated and PMT adjustable gain for airborne LiDAR
In bathymetric Airborne LiDAR (Light Detection And Ranging) for the measurement of various water depths, the echo of the laser signal is amplified by an amplifier circuit, the water surface is usually saturated, which results in a serious effect on the bottom echo signal. Therefore, this paper desig...
Saved in:
Published in | International journal of remote sensing Vol. 42; no. 24; pp. 9187 - 9211 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
17.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-1161 1366-5901 1366-5901 |
DOI | 10.1080/01431161.2021.1975844 |
Cover
Loading…
Abstract | In bathymetric Airborne LiDAR (Light Detection And Ranging) for the measurement of various water depths, the echo of the laser signal is amplified by an amplifier circuit, the water surface is usually saturated, which results in a serious effect on the bottom echo signal. Therefore, this paper designs a LiDAR echo signal detection timing control system. The system adopts the STMicroelectronics32 (STM32) controller as the gated signal generator; acts on the photomultiplier tube (PMT) photoelectric conversion circuit; and adjusts the amplitude, frequency, period, and duty cycle of the gating trigger signal to achieve timing control, thus allowing the system to directly avoid the reception of overly strong surface echo signals and increasing the accuracy of the experimental results. The system combines PMT adjustable voltage control gain technology applies the weak underwater echo signal that is amplified to facilitate subsequent collection. In the actual measurement, using STM32 instead of the traditional signal generator, which can reduce the power consumption and load capacity of the system. The experimental results show that the system can amplify the underwater signal by at least 6-fold while avoiding the effect of the surface echo signal. |
---|---|
AbstractList | In bathymetric Airborne LiDAR (Light Detection And Ranging) for the measurement of various water depths, the echo of the laser signal is amplified by an amplifier circuit, the water surface is usually saturated, which results in a serious effect on the bottom echo signal. Therefore, this paper designs a LiDAR echo signal detection timing control system. The system adopts the STMicroelectronics32 (STM32) controller as the gated signal generator; acts on the photomultiplier tube (PMT) photoelectric conversion circuit; and adjusts the amplitude, frequency, period, and duty cycle of the gating trigger signal to achieve timing control, thus allowing the system to directly avoid the reception of overly strong surface echo signals and increasing the accuracy of the experimental results. The system combines PMT adjustable voltage control gain technology applies the weak underwater echo signal that is amplified to facilitate subsequent collection. In the actual measurement, using STM32 instead of the traditional signal generator, which can reduce the power consumption and load capacity of the system. The experimental results show that the system can amplify the underwater signal by at least 6-fold while avoiding the effect of the surface echo signal. |
Author | Li, Xianxing Deng, Ronghua Lin, Gangchao Zhou, Xiang Zhou, Guoqing Tan, Yizhi Li, Weihao |
Author_xml | – sequence: 1 givenname: Guoqing surname: Zhou fullname: Zhou, Guoqing email: gzhou@glut.edu.cn organization: Guilin University of Technology – sequence: 2 givenname: Weihao surname: Li fullname: Li, Weihao organization: College of Mechanical and Control Engineering, Guilin University of Technology – sequence: 3 givenname: Xiang surname: Zhou fullname: Zhou, Xiang organization: College of Mechanical and Control Engineering, Guilin University of Technology – sequence: 4 givenname: Yizhi surname: Tan fullname: Tan, Yizhi organization: College of Mechanical and Control Engineering, Guilin University of Technology – sequence: 5 givenname: Gangchao surname: Lin fullname: Lin, Gangchao organization: College of Mechanical and Control Engineering, Guilin University of Technology – sequence: 6 givenname: Xianxing surname: Li fullname: Li, Xianxing organization: College of Mechanical and Control Engineering, Guilin University of Technology – sequence: 7 givenname: Ronghua surname: Deng fullname: Deng, Ronghua organization: Guilin University of Technology |
BookMark | eNqFkE1PGzEQhi0EUpPQn1DJx1422Ov9snppFFpACgJBerZm7Vkw2thgO0T59-wqcOFQTqPRPO8rzTMlx847JOQHZ3POGnbGeCE4r_g8Zzmfc1mXTVEckQkXVZWVkvFjMhmZbIS-kWmMT4yxqi7rCVELR61z_hWSfUWK-tFTgwl1st7RuI8JN3Rn0yO9X1-LnD5AQkPBGXp7vaZgnrYxQdvjcLCOdj5QsKH1wSFd2fPF3Sk56aCP-P19zsi_v3_Wy8tsdXNxtVysMi0KkTIJomDQdJ2QhalZ3QjNZaVbRNl0eQdG1wXHtm3aHIUph53XLJcGJW8NDPiM_Dz0Pgf_ssWY1MZGjX0PDv02qrwSVcHyUsgB_XVAdfAxBuyUtgnGf1MA2yvO1KhVfWhVo1b1rnVIl5_Sz8FuIOy_zP0-5KwbLG1g50NvVIJ970MXwGkblfh_xRvX2JBr |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106207 crossref_primary_10_1109_JSEN_2022_3206763 crossref_primary_10_3390_rs15041076 crossref_primary_10_1016_j_rinp_2022_105385 crossref_primary_10_1080_19475705_2023_2281241 crossref_primary_10_3390_math11081947 crossref_primary_10_1007_s12145_023_01182_6 crossref_primary_10_1080_17455030_2022_2061745 crossref_primary_10_1038_s41598_023_48639_8 crossref_primary_10_3390_electronics11193087 crossref_primary_10_1109_TGRS_2024_3403895 crossref_primary_10_3389_fphy_2023_1277361 crossref_primary_10_1080_01431161_2023_2206530 crossref_primary_10_1002_gj_4897 crossref_primary_10_1007_s11276_023_03560_w crossref_primary_10_3390_math11183809 crossref_primary_10_1038_s41598_023_47171_z crossref_primary_10_1142_S0219887822501511 crossref_primary_10_1080_02626667_2024_2402483 crossref_primary_10_1016_j_asr_2023_09_012 crossref_primary_10_3389_fbioe_2022_964057 crossref_primary_10_3390_jmse11010124 crossref_primary_10_3390_su152115629 crossref_primary_10_1016_j_asr_2023_09_057 crossref_primary_10_1016_j_rinp_2022_105589 crossref_primary_10_1080_01431161_2022_2155089 crossref_primary_10_3390_atmos14030601 crossref_primary_10_1016_j_envres_2023_118042 crossref_primary_10_3390_biomimetics9020074 crossref_primary_10_3390_w16010063 crossref_primary_10_1140_epjp_s13360_022_02655_1 crossref_primary_10_1007_s11082_022_04033_8 crossref_primary_10_1016_j_uclim_2023_101721 crossref_primary_10_1109_TIM_2024_3441020 crossref_primary_10_1109_TGRS_2023_3282624 crossref_primary_10_3390_rs16030534 crossref_primary_10_3390_rs14225880 crossref_primary_10_1080_17538947_2023_2283490 crossref_primary_10_1016_j_rinp_2023_106943 crossref_primary_10_1016_j_rinp_2023_107313 crossref_primary_10_1038_s41598_023_48860_5 crossref_primary_10_1155_2022_6557949 crossref_primary_10_2113_RGG20234591 crossref_primary_10_3390_s23187782 crossref_primary_10_1007_s11036_023_02169_9 crossref_primary_10_1016_j_ejrh_2024_101759 crossref_primary_10_1080_10106049_2022_2136265 crossref_primary_10_1142_S0217979223501412 crossref_primary_10_1371_journal_pone_0300056 crossref_primary_10_1007_s11269_024_03756_5 crossref_primary_10_1016_j_heliyon_2024_e25107 crossref_primary_10_3390_jmse11101916 crossref_primary_10_1109_JSTARS_2023_3249789 crossref_primary_10_3390_w16010138 crossref_primary_10_1007_s13201_023_02070_6 crossref_primary_10_1155_2022_5854569 crossref_primary_10_1007_s11069_023_06262_w crossref_primary_10_1007_s11276_023_03464_9 crossref_primary_10_1016_j_aej_2023_12_016 crossref_primary_10_1016_j_optlastec_2023_110484 crossref_primary_10_3390_s22145421 crossref_primary_10_1016_j_cnsns_2023_107090 crossref_primary_10_3390_atmos14081236 crossref_primary_10_1080_10106049_2024_2306275 crossref_primary_10_3389_fnbot_2022_1095717 crossref_primary_10_1007_s11831_023_10039_6 crossref_primary_10_1002_gj_4603 crossref_primary_10_1007_s13201_023_02019_9 crossref_primary_10_1109_JSTARS_2024_3388206 crossref_primary_10_1080_17455030_2022_2155319 crossref_primary_10_1371_journal_pone_0294533 crossref_primary_10_1109_TGRS_2023_3298531 crossref_primary_10_1155_2022_9360263 crossref_primary_10_1186_s12302_023_00822_4 crossref_primary_10_3390_w15203606 crossref_primary_10_1016_j_jag_2023_103253 crossref_primary_10_1007_s11356_023_30762_8 crossref_primary_10_3390_s22187098 crossref_primary_10_3390_app13074105 crossref_primary_10_1080_19475705_2023_2290350 crossref_primary_10_1088_1612_202X_ac5e39 crossref_primary_10_1111_1477_8947_12461 crossref_primary_10_1007_s00034_023_02296_4 crossref_primary_10_1007_s11276_023_03546_8 crossref_primary_10_3390_w15244311 crossref_primary_10_1109_JSEN_2023_3301709 crossref_primary_10_1016_j_optlaseng_2022_107468 crossref_primary_10_1016_j_rinp_2022_105457 crossref_primary_10_1016_j_rse_2022_113014 |
Cites_doi | 10.1016/j.optlaseng.2005.07.010 10.1109/36.851780 10.1080/01431161.2016.1249304 10.1080/01431161.2021.1880662 10.1016/j.measurement.2003.11.003 10.3390/app8122482 10.1080/01431168608954714 10.1109/JSEN.2015.2425414 10.1080/01431161.2013.817710 10.1109/JSTARS.2013.2265255 10.1364/AO.36.003469 10.1364/AO.31.003068 10.1080/01431160701767518 10.1086/111605 10.1016/j.isprsjprs.2014.11.005 10.1109/TGRS.2014.2311991 10.1364/AO.34.004437 10.1109/TGRS.2010.2103080 10.1109/JPHOT.2020.3024106 10.1080/01431160304977 10.1016/j.rse.2006.08.003 10.1364/AO.20.003284 10.3390/rs10010035 10.1108/COMPEL-10-2018-0402 10.1088/0022-3727/35/9/316 10.1016/j.optlaseng.2015.12.002 10.1016/j.isprsjprs.2005.12.001 10.1109/JSEN.2004.823684 10.1109/LGRS.2013.2279271 10.1088/1748-0221/14/05/T05004 10.1007/s11107-018-0781-9 |
ContentType | Journal Article |
Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1080/01431161.2021.1975844 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 9211 |
ExternalDocumentID | 10_1080_01431161_2021_1975844 1975844 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7S9 L.6 TASJS |
ID | FETCH-LOGICAL-c343t-9a340a8ff394d70783c196cbee98f2fadc741ebb8b2e3d5adc17029de91bda783 |
ISSN | 0143-1161 1366-5901 |
IngestDate | Fri Sep 05 17:22:07 EDT 2025 Tue Jul 01 04:04:59 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 Wed Dec 25 09:06:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c343t-9a340a8ff394d70783c196cbee98f2fadc741ebb8b2e3d5adc17029de91bda783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636402539 |
PQPubID | 24069 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2636402539 crossref_citationtrail_10_1080_01431161_2021_1975844 crossref_primary_10_1080_01431161_2021_1975844 informaworld_taylorfrancis_310_1080_01431161_2021_1975844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-17 |
PublicationDateYYYYMMDD | 2021-12-17 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2021 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0034 cit0031 cit0010 cit0032 cit0030 Wagner W. (cit0029) 2004; 35 Guenther G. (cit0011) 1996 Cao K. (cit0006) 2009; 33 Tang K. (cit0024) 2015; 42 cit0019 Gonzalez R. (cit0009) 2003 cit0017 cit0039 cit0018 Zhou G. (cit0042) 2021 cit0015 cit0037 cit0016 cit0038 cit0013 Wang D. (cit0033) 2018; 47 cit0036 cit0044 cit0001 cit0023 cit0045 cit0020 cit0021 cit0043 Wagner W. (cit0027) 2007; 36 Roncat A. (cit0022) 2008; 21 Huang W. (cit0014) 2002; 25 Wei J. (cit0035) 2019 Zhou G. (cit0040) 2021; 50 cit0008 cit0028 cit0007 cit0004 cit0026 Zhou G. (cit0041) 2021 cit0005 Guo K. (cit0012) 2018; 10 cit0002 cit0003 cit0025 |
References_xml | – ident: cit0003 doi: 10.1016/j.optlaseng.2005.07.010 – ident: cit0013 doi: 10.1109/36.851780 – volume: 25 issue: 5 year: 2002 ident: cit0014 publication-title: Microcomputer Information – issue: 99 year: 2021 ident: cit0042 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – start-page: 815 year: 2019 ident: cit0035 publication-title: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ident: cit0034 – ident: cit0026 doi: 10.1080/01431161.2016.1249304 – volume: 50 start-page: 93 issue: 4 year: 2021 ident: cit0040 publication-title: Infrared and Laser Engineering – ident: cit0044 doi: 10.1080/01431161.2021.1880662 – ident: cit0002 doi: 10.1016/j.measurement.2003.11.003 – ident: cit0036 doi: 10.3390/app8122482 – ident: cit0020 doi: 10.1080/01431168608954714 – ident: cit0045 doi: 10.1109/JSEN.2015.2425414 – ident: cit0016 doi: 10.1080/01431161.2013.817710 – volume: 35 start-page: 201 year: 2004 ident: cit0029 publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ident: cit0008 doi: 10.1109/JSTARS.2013.2265255 – ident: cit0017 doi: 10.1364/AO.36.003469 – volume: 33 start-page: 60 issue: 1 year: 2009 ident: cit0006 publication-title: Laser Technology – ident: cit0037 doi: 10.1364/AO.31.003068 – ident: cit0010 doi: 10.1080/01431160701767518 – volume-title: Paper presented at the annual meeting for the society of SPIE - The International Society for Optical Engineering year: 1996 ident: cit0011 – ident: cit0019 doi: 10.1086/111605 – ident: cit0031 doi: 10.1016/j.isprsjprs.2014.11.005 – ident: cit0043 doi: 10.1109/TGRS.2014.2311991 – ident: cit0005 doi: 10.1364/AO.34.004437 – ident: cit0038 doi: 10.1109/TGRS.2010.2103080 – volume: 21 start-page: 62 issue: 1 year: 2008 ident: cit0022 publication-title: The Photogrammetric Journal of Finland – volume-title: Digital Image Processing Using Matlab year: 2003 ident: cit0009 – ident: cit0018 doi: 10.1109/JPHOT.2020.3024106 – ident: cit0025 doi: 10.1080/01431160304977 – ident: cit0032 doi: 10.1016/j.rse.2006.08.003 – ident: cit0023 doi: 10.1364/AO.20.003284 – issue: 99 year: 2021 ident: cit0041 publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 10 start-page: 35 issue: 1 year: 2018 ident: cit0012 publication-title: Remote Sensing doi: 10.3390/rs10010035 – ident: cit0021 doi: 10.1108/COMPEL-10-2018-0402 – volume: 36 start-page: 413 issue: 3 year: 2007 ident: cit0027 publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ident: cit0039 doi: 10.1088/0022-3727/35/9/316 – ident: cit0015 doi: 10.1016/j.optlaseng.2015.12.002 – volume: 47 start-page: 161 issue: 2 year: 2018 ident: cit0033 publication-title: Acta Geodaetica et Cartographica Sinica – volume: 42 start-page: 290 issue: 11 year: 2015 ident: cit0024 publication-title: Chinese Journal of Lasers – ident: cit0028 doi: 10.1016/j.isprsjprs.2005.12.001 – ident: cit0007 doi: 10.1109/JSEN.2004.823684 – ident: cit0001 doi: 10.1109/LGRS.2013.2279271 – ident: cit0030 doi: 10.1088/1748-0221/14/05/T05004 – ident: cit0004 doi: 10.1007/s11107-018-0781-9 |
SSID | ssj0006757 |
Score | 2.6135383 |
Snippet | In bathymetric Airborne LiDAR (Light Detection And Ranging) for the measurement of various water depths, the echo of the laser signal is amplified by an... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9187 |
SubjectTerms | electric potential difference energy use and consumption lidar |
Title | An innovative echo detection system with STM32 gated and PMT adjustable gain for airborne LiDAR |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1975844 https://www.proquest.com/docview/2636402539 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4AXxKcYXzISb1GixnbT-LFimyrUDglSrfBiObFDg1A6uhSJ_fWcP5KmbNIGL1HrOqnl-_l8vtz9DqF3YCRrykfDsByRJGRxmYRSwXIHY0EWSSqH0vp056fJdME-LEfLXeiQzS5p8qi4vDav5H-kCm0gV5Ml-w-S7R4KDfAZ5AtXkDBcbyXjiQlTdFVNf-lAgyYLlG60q_7tOJqdo_VzNqckMB4z5dID5lkg1XeTPGUyp77JysUbymoDmAC7c1YdTT71Ddd9z2GPb2KjQdg6uDCB8H4XtH7o9da63Lfrn73mmY0dONPVSq7_7roEoHYdM-eX_VJdrqq-Y4LEJsjD5WF6XUqTJDSprX1ly0gPVIQF5xGPQc1x4lWuU6Omrbclt79eUfc-PhJsvhgs18iMIoo5HIEcp-Q-vfbpR3GymM1EdrzM7qIDAueK4QAdTKZHX8-6zRvOT2OXqufG3iZ9GTr26_5mz5zZI7u9srlbiyV7iB74owaeONw8Qnd0_Rjd81XvV7-fIDGp8Q4_2OAHd_jBDj_Y4Adb_GCLHwz4wYAfvMMPNvjBMCbc4gdb_DxFi5Pj7P009AU3woIy2oRcUjaUaVlSzpShgaIFKOgi15qnJSmlKsD-1Hme5rDA1Qi-x-Mh4UrzOFcSuj9Dg3pd6-cI5ylhyjI7Ec0kpTmYlbHW47RIlXm1fYhYO2-i8Gz0pijKDxG3pLV-uoWZbuGn-xBF3W3njo7lpht4XyiisX6w0hWtEfSGe9-2EhSgdM2bNFnr9fZCkIQmDE4LlL-4RZ-X6P5ufbxCg2az1a_BlG3yNx5-fwD9jJb5 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYKHOBCoQ-VtlBX4rrpeu3drI8RJQptEiEaJG6WH7MiJVoquqnU_npm9hHxUMWB48pry68Zfx7PfMPYIYJkkDqNoyJNskiJIotsQHFHsGB9ltvY1jbdyTQbnatvF-nFnVgYcqukO3TREEXUupqEm4zRnUvcF-KkEwhV8HqXiJ7QiHmVWmMbqc76lL5BxtOVNkZA3IRMExUn1umieP7XzL3z6R576SNtXR9Bw5fMd51vPE-uesvK9fy_B7yOzxvdDttuESofNFtql72A8hXbbJOlX_59zcyg5PM2meof4IAKlAeoap-ukjfU0Jzsu_zHbCITToa6wLE__HQy4zb8pJgttwAsmJccR87t_Aa3Ygl8PP86OHvDzofHs6NR1OZpiLxUsoq0lSq2eVFIrQKxB0mPcu0dgM6LpLDBI2wB53KH-yKk-C36caIDaOGCxd_fsvXyuoR3jLs8UaEmBEpAWSkdohEB0M99HuhFdI-pbnWMb0nMKZfGwoiO67SdPUOzZ9rZ22O9VbVfDYvHUxX03aU3VW0-KZpcJ0Y-Ufdzt08Myio9wNgSrpe_TZLJDO_rqdTvn9H-J7Y5mk3GZnwy_f6BbVER-deI_ke2Xt0sYR9RUuUOajG4BThZAJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgSNALtFBESh-uxHXT9dq7WR-jhqi0SRRBInGz7PVYDUTbqtlUKr-e8T6ipgjl0OPKO5YfM_bn8fgbQr4gSAYu4zBwcZQEgrkk0BbNHcGCzpJUh7r06Y7GycVMXP6Mm2jCZR1W6c_QriKKKNdqb9y31jURcWeeko4hUsHTXcQ6TCLkFeIleZUgPPGKzcPxejFGPFy9mPZMnCjTPOL5XzUb29MGeek_i3W5Aw3eEdO0vQo8-d1ZFaaT_XlC6_iszu2StzU-pb1KofbIC8jfkzd1qvTrhw9E9XI6r1Op3gMFXD6phaKM6MppRQxNvXeX_piOeES9m85SbA6djKZU21_-xZZZABbMc4odp3p-h4qYAx3O-73v-2Q2-Do9vwjqLA1BxgUvAqm5CHXqHJfCeu4gnqFVZwZApi5y2mYIWsCY1KBW2Bi_WTeMpAXJjNX4-0fSym9y-ESoSSNhSzqgCITm3CAWYQDdNEutvw9tE9FMjspqCnOfSWOhWMN0Wo-e8qOn6tFrk85a7Lbi8NgmIB_PvCpK54mrMp0ovkX2tFEThZbqr190DjerpYoSnuBpPeby4Bn1n5DXk_5ADb-Nrz6THV_ig2tY95C0irsVHCFEKsxxaQR_ARmu_zo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+innovative+echo+detection+system+with+STM32+gated+and+PMT+adjustable+gain+for+airborne+LiDAR&rft.jtitle=International+journal+of+remote+sensing&rft.au=Zhou%2C+Guoqing&rft.au=Li%2C+Weihao&rft.au=Zhou%2C+Xiang&rft.au=Tan%2C+Yizhi&rft.date=2021-12-17&rft.issn=1366-5901&rft.volume=42&rft.issue=24+p.9187-9211&rft.spage=9187&rft.epage=9211&rft_id=info:doi/10.1080%2F01431161.2021.1975844&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |