Controllable preparation of CuCo2S4 nanotube arrays for high-performance hybrid supercapacitors

•The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend on the sulfurization time.•The optimal CuCo2S4/NF8 exhibited excellent electrochemical performances and good cycling stability.•The assembled...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 404; p. 139681
Main Authors Zhang, Kai, Zeng, Hong-Yan, Li, Hao-Bo, Xu, Sheng, Lv, Shi-Bing, Wang, Ming-Xin
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend on the sulfurization time.•The optimal CuCo2S4/NF8 exhibited excellent electrochemical performances and good cycling stability.•The assembled CuCo2S4/NF8//AC device showed a high energy density 51.8 Wh kg1 at a 700 W kg1. The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results from various spectroscopic and microscopic analyses showed that the 3D hollow nanotube CuCo2S4 arrays were formed by the sulfurization, resulting in a larger contact area with the electrolyte and more active sites with high Faraday efficiency. Benefited from the unique nanotube arrays structure and high crystallinity, the optimized CuCo2S4/NF8 electrode material sulfurized for 8 h displayed superior electrochemical performances with the high specific charge of 458.8 C g − 1 at 1.0 A g − 1 as well as good cycling stability with 96.0% retention at 5.0 A g − 1 after 1 000 cycles. Furthermore, a hybrid supercapacitor device based on the CuCo2S4/NF8 as positive electrode and activated carbon as negative electrode was able to deliver an ultrahigh energy density 51.8 Wh kg−1 at a power density 700.0 W kg−1 with 80.0% capacitance retention at 5.0 A g − 1 after 10 000 cycles. This work provided new insights into the sulfurization process and an effective way to optimize the structure of the transition metal sulfides for supercapacitors. [Display omitted]
AbstractList The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results from various spectroscopic and microscopic analyses showed that the 3D hollow nanotube CuCo2S4 arrays were formed by the sulfurization, resulting in a larger contact area with the electrolyte and more active sites with high Faraday efficiency. Benefited from the unique nanotube arrays structure and high crystallinity, the optimized CuCo2S4/NF8 electrode material sulfurized for 8 h displayed superior electrochemical performances with the high specific charge of 458.8 C g − 1 at 1.0 A g − 1 as well as good cycling stability with 96.0% retention at 5.0 A g − 1 after 1 000 cycles. Furthermore, a hybrid supercapacitor device based on the CuCo2S4/NF8 as positive electrode and activated carbon as negative electrode was able to deliver an ultrahigh energy density 51.8 Wh kg−1 at a power density 700.0 W kg−1 with 80.0% capacitance retention at 5.0 A g − 1 after 10 000 cycles. This work provided new insights into the sulfurization process and an effective way to optimize the structure of the transition metal sulfides for supercapacitors.
•The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend on the sulfurization time.•The optimal CuCo2S4/NF8 exhibited excellent electrochemical performances and good cycling stability.•The assembled CuCo2S4/NF8//AC device showed a high energy density 51.8 Wh kg1 at a 700 W kg1. The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results from various spectroscopic and microscopic analyses showed that the 3D hollow nanotube CuCo2S4 arrays were formed by the sulfurization, resulting in a larger contact area with the electrolyte and more active sites with high Faraday efficiency. Benefited from the unique nanotube arrays structure and high crystallinity, the optimized CuCo2S4/NF8 electrode material sulfurized for 8 h displayed superior electrochemical performances with the high specific charge of 458.8 C g − 1 at 1.0 A g − 1 as well as good cycling stability with 96.0% retention at 5.0 A g − 1 after 1 000 cycles. Furthermore, a hybrid supercapacitor device based on the CuCo2S4/NF8 as positive electrode and activated carbon as negative electrode was able to deliver an ultrahigh energy density 51.8 Wh kg−1 at a power density 700.0 W kg−1 with 80.0% capacitance retention at 5.0 A g − 1 after 10 000 cycles. This work provided new insights into the sulfurization process and an effective way to optimize the structure of the transition metal sulfides for supercapacitors. [Display omitted]
ArticleNumber 139681
Author Lv, Shi-Bing
Li, Hao-Bo
Wang, Ming-Xin
Zhang, Kai
Zeng, Hong-Yan
Xu, Sheng
Author_xml – sequence: 1
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 2
  givenname: Hong-Yan
  surname: Zeng
  fullname: Zeng, Hong-Yan
  email: hyzeng@xtu.edu.cn
– sequence: 3
  givenname: Hao-Bo
  surname: Li
  fullname: Li, Hao-Bo
– sequence: 4
  givenname: Sheng
  surname: Xu
  fullname: Xu, Sheng
– sequence: 5
  givenname: Shi-Bing
  surname: Lv
  fullname: Lv, Shi-Bing
– sequence: 6
  givenname: Ming-Xin
  surname: Wang
  fullname: Wang, Ming-Xin
BookMark eNqNkE1LxDAQhoMouH78BgOeuyZNN0kPHpbiFyx4UM9hmqZultrUSSvsvzfrigcvygQmDO_7TvKckMM-9I6QC87mnHF5tZm7ztkR0pnnLOdzLkqp-QGZca1EJvSiPCQzxrjICqnlMTmJccMYU1KxGTFV6EcMXQd15-iAbgCE0YeehpZWUxXyp4L20Idxqh0FRNhG2gaka_-6zgaH6f4GvXV0va3RNzROaWhhAOvHgPGMHLXQRXf-3U_Jy-3Nc3WfrR7vHqrlKrOiEGNW6hpsbtuiyZ2q27rgmklprW7ANlIXu2r4AnSuap5GdQtKMabzNilK5sQpudznDhjeJxdHswkT9mmlyaXQSvFFKZLqeq-yGGJE15r0yq_vjgi-M5yZHVOzMT9MzY6p2TNNfvXLP6B_A9z-w7ncO12C8OEdmmi9S9waj0lvmuD_zPgEVs-akw
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103474
crossref_primary_10_1016_j_apsusc_2022_156174
crossref_primary_10_1016_j_mtchem_2024_101990
crossref_primary_10_1016_j_jelechem_2022_116819
crossref_primary_10_1039_D3IM00027C
crossref_primary_10_1007_s11581_023_05036_5
crossref_primary_10_1016_j_electacta_2024_144836
crossref_primary_10_1016_j_est_2022_106175
crossref_primary_10_1016_j_electacta_2022_141320
crossref_primary_10_1039_D3DT01902K
crossref_primary_10_1016_j_diamond_2023_109737
crossref_primary_10_1016_j_est_2025_115336
crossref_primary_10_1002_celc_202200612
crossref_primary_10_1021_acs_energyfuels_1c04254
crossref_primary_10_1016_j_apsusc_2024_161547
crossref_primary_10_1021_acsomega_4c05172
crossref_primary_10_1016_j_est_2024_113383
crossref_primary_10_1016_j_jallcom_2023_169170
crossref_primary_10_1016_j_jcis_2024_07_035
crossref_primary_10_1016_j_cej_2023_148378
crossref_primary_10_1007_s10008_023_05413_0
crossref_primary_10_1016_j_est_2023_107701
crossref_primary_10_1021_acs_inorgchem_3c00620
crossref_primary_10_1007_s11664_022_09962_4
crossref_primary_10_1016_j_colsurfa_2022_129762
crossref_primary_10_1039_D4NR02215G
crossref_primary_10_1016_j_electacta_2023_143392
crossref_primary_10_1016_j_jallcom_2023_171966
crossref_primary_10_1021_acsami_3c09922
crossref_primary_10_1016_j_electacta_2024_144129
crossref_primary_10_1016_j_jcis_2022_12_144
crossref_primary_10_1063_5_0199239
crossref_primary_10_1039_D3QM00212H
crossref_primary_10_1016_j_jece_2023_109856
crossref_primary_10_1016_j_foodchem_2024_139430
crossref_primary_10_1016_j_seppur_2025_131738
crossref_primary_10_1007_s11664_022_10007_z
crossref_primary_10_1016_j_jpcs_2025_112606
crossref_primary_10_1007_s11705_023_2352_6
crossref_primary_10_1016_j_cej_2024_150937
crossref_primary_10_3390_met14020145
Cites_doi 10.3389/fchem.2020.00062
10.1039/C8TA08149B
10.1016/j.msec.2015.10.003
10.1126/science.1096566
10.1088/1361-6528/ab08fb
10.1002/batt.202100017
10.1088/1361-6528/aa8d85
10.1039/C8NR05662E
10.1016/j.jpowsour.2020.228023
10.1038/s41467-018-04888-0
10.1038/nmat1673
10.1016/j.apsusc.2018.04.254
10.1002/smll.202002806
10.1007/s10853-017-1119-1
10.1016/j.nanoen.2018.11.045
10.1016/j.compositesb.2019.05.075
10.1039/C7TA07890K
10.1016/j.electacta.2017.08.003
10.1016/j.ijhydene.2018.10.190
10.1039/C9TA12104H
10.1002/asia.201700461
10.1038/s41598-017-07102-1
10.1021/am507811a
10.1016/j.cej.2020.124643
10.1016/j.electacta.2018.03.189
10.1016/j.electacta.2014.01.009
10.1016/j.cej.2017.12.055
10.1039/C6CC00215C
10.1039/C6TA07400F
10.1016/j.jcis.2019.04.056
10.1021/jp5010693
10.1016/j.micromeso.2017.02.043
10.1038/srep32431
10.1039/D0TA02939D
10.1016/j.jmst.2019.04.003
10.1016/j.jpowsour.2018.08.012
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Feb 1, 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Feb 1, 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2021.139681
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2021_139681
S0013468621019654
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c343t-98bac2cf4d2e7bfb418066cc8dacd6848484d15a827b1acdbfa770082f8da90e3
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Jul 25 05:35:51 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Tue Jul 01 03:02:31 EDT 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hollow nanotube
Supercapacitor
Sulfidation time
CuCo2S4
Ni foam
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-98bac2cf4d2e7bfb418066cc8dacd6848484d15a827b1acdbfa770082f8da90e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2638771593
PQPubID 2045485
ParticipantIDs proquest_journals_2638771593
crossref_citationtrail_10_1016_j_electacta_2021_139681
crossref_primary_10_1016_j_electacta_2021_139681
elsevier_sciencedirect_doi_10_1016_j_electacta_2021_139681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xie, Xu, Wang, Ma, Su, Dong, Gong (bib0014) 2020; 8
Li, Li, Wu, Sun, Han, Cai, Shen, Liu, Fu (bib0013) 2019; 549
Wang, Yang, Zhou, Pan, Wei, Sun (bib0019) 2017; 28
Li, Chen, Zhang, Zhang, Jia, Zhang, Gu, Sun, Song, Wang (bib0028) 2018; 9
Guo, Chen, Li, Wang, Liu, Cheng (bib0026) 2018; 271
Cheng, Shi, Chen, Zhong, Huang, Tao, Li, Liao, Tang (bib0015) 2017; 7
Zhang, Xu, Zhang, Zheng, Hu, Liu (bib0018) 2017; 52
Zang, Wu, Wang, Jin (bib0023) 2020; 8
Chen, Wang, Ma, Li, Guo, Liu, Cheng (bib0004) 2018; 451
Gao, Huang (bib0007) 2017; 12
Fan, Knez, Scholz, Nielsch, Pippel, Hesse, Zacharias, Gosele (bib0030) 2006; 5
Lin, Jia, Liang, Chen, Cai, Qi, Qu, Cao, Fei, Feng (bib0020) 2018; 336
Aldalbahi, Mkawi, Ibrahim, Farrukh (bib0025) 2016; 6
Moosavifard, Fani, Rahmanian (bib0021) 2016; 52
Zhu, Chen, Zhou, Xiang, Hu, Chen (bib0008) 2017; 249
Ma, Chen, Li, Gui, Fang (bib0011) 2019; 30
Li, Yang, Sun, Shi, Cheng, Li (bib0005) 2019; 56
Yin, Rioux, Erdonmez, Hughes, Somorjai, Alivisatos (bib0029) 2004; 304
Chodankar, Pham, Nanjundan, Fernando, Jayaramulu, Golberg, Dubal (bib0034) 2020; 16
Luo, Li, Yuan, Xiao (bib0006) 2014; 123
Gonçalves, da Silva, Hasheminejad, Toma, Araki, Martins, Angnes (bib0009) 2021; 4
Naveenkumar, Kalaignan (bib0012) 2019; 173
Feng, Li, Liu, Wu, Chen, Wang, Zou, Wang (bib0024) 2015; 7
Goncalves, da Silva, Toma, Angnes, Martins, Araki (bib0032) 2020; 8
Fan, Pan, Tu, Gu, Huang, Huang, Wu (bib0017) 2018; 43
Tang, You, Li, Chen, Zhang (bib0016) 2018; 10
Yu, Li, Guo (bib0035) 2014; 118
Kang, Huang, Zhang, Zhang, Zhang, Liu, Ye, Luo, Gong, Wang, Zhou, Wu (bib0002) 2020; 390
You, Zhang, Jiang, Shao, Li, Gong (bib0033) 2018; 6
Guo, Balamurugan, Thanh, Kim, Lee (bib0031) 2016; 4
Zeng, Chen, Chen, Wang, Xie, Tao, Huang, Wang (bib0027) 2018; 6
Zhao, Huang, He, Wu, Ge, Zu, Li, Qiao (bib0001) 2020; 456
Xu, Liu, Dong, Ajayan, Shen, Ye (bib0003) 2018; 400
Sahoo, Mondal, Late, Rout (bib0010) 2017; 244
Bhowmick, Koul (bib0022) 2016; 59
Liu, Hu, Zeng, Yi, Shen, Xu, Cao, Du (bib0036) 2019; 35
Li (10.1016/j.electacta.2021.139681_bib0005) 2019; 56
Sahoo (10.1016/j.electacta.2021.139681_bib0010) 2017; 244
Xie (10.1016/j.electacta.2021.139681_bib0014) 2020; 8
Yu (10.1016/j.electacta.2021.139681_bib0035) 2014; 118
Zeng (10.1016/j.electacta.2021.139681_bib0027) 2018; 6
Luo (10.1016/j.electacta.2021.139681_bib0006) 2014; 123
Gao (10.1016/j.electacta.2021.139681_bib0007) 2017; 12
Chodankar (10.1016/j.electacta.2021.139681_bib0034) 2020; 16
You (10.1016/j.electacta.2021.139681_bib0033) 2018; 6
Bhowmick (10.1016/j.electacta.2021.139681_bib0022) 2016; 59
Li (10.1016/j.electacta.2021.139681_bib0028) 2018; 9
Lin (10.1016/j.electacta.2021.139681_bib0020) 2018; 336
Zang (10.1016/j.electacta.2021.139681_bib0023) 2020; 8
Ma (10.1016/j.electacta.2021.139681_bib0011) 2019; 30
Fan (10.1016/j.electacta.2021.139681_bib0017) 2018; 43
Guo (10.1016/j.electacta.2021.139681_bib0031) 2016; 4
Xu (10.1016/j.electacta.2021.139681_bib0003) 2018; 400
Zhang (10.1016/j.electacta.2021.139681_bib0018) 2017; 52
Chen (10.1016/j.electacta.2021.139681_bib0004) 2018; 451
Naveenkumar (10.1016/j.electacta.2021.139681_bib0012) 2019; 173
Zhao (10.1016/j.electacta.2021.139681_bib0001) 2020; 456
Goncalves (10.1016/j.electacta.2021.139681_bib0032) 2020; 8
Wang (10.1016/j.electacta.2021.139681_bib0019) 2017; 28
Feng (10.1016/j.electacta.2021.139681_bib0024) 2015; 7
Guo (10.1016/j.electacta.2021.139681_bib0026) 2018; 271
Li (10.1016/j.electacta.2021.139681_bib0013) 2019; 549
Gonçalves (10.1016/j.electacta.2021.139681_bib0009) 2021; 4
Aldalbahi (10.1016/j.electacta.2021.139681_bib0025) 2016; 6
Zhu (10.1016/j.electacta.2021.139681_bib0008) 2017; 249
Cheng (10.1016/j.electacta.2021.139681_bib0015) 2017; 7
Liu (10.1016/j.electacta.2021.139681_bib0036) 2019; 35
Fan (10.1016/j.electacta.2021.139681_bib0030) 2006; 5
Kang (10.1016/j.electacta.2021.139681_bib0002) 2020; 390
Tang (10.1016/j.electacta.2021.139681_bib0016) 2018; 10
Moosavifard (10.1016/j.electacta.2021.139681_bib0021) 2016; 52
Yin (10.1016/j.electacta.2021.139681_bib0029) 2004; 304
References_xml – volume: 6
  start-page: 5265
  year: 2018
  end-page: 5270
  ident: bib0033
  article-title: Bubble-supported engineering of hierarchical CuCo
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2017
  ident: bib0019
  article-title: Oriented CuCo
  publication-title: Nanotechnology
– volume: 336
  start-page: 562
  year: 2018
  end-page: 569
  ident: bib0020
  article-title: Hierarchical CuCo
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 9531
  year: 2017
  end-page: 9538
  ident: bib0018
  article-title: Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application
  publication-title: J. Mater. Sci.
– volume: 56
  start-page: 100
  year: 2019
  end-page: 108
  ident: bib0005
  article-title: A highly reversible Co
  publication-title: Nano Energy
– volume: 9
  start-page: 2452
  year: 2018
  ident: bib0028
  article-title: Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting
  publication-title: Nat. Commun.
– volume: 118
  start-page: 10616
  year: 2014
  end-page: 10624
  ident: bib0035
  article-title: Sodium storage and pseudocapacitive charge in textured Li
  publication-title: J. Phys. Chem. C.
– volume: 12
  start-page: 1969
  year: 2017
  end-page: 1984
  ident: bib0007
  article-title: NiCo
  publication-title: Chem. Asian J.
– volume: 16
  year: 2020
  ident: bib0034
  article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors
  publication-title: Small
– volume: 6
  start-page: 32431
  year: 2016
  ident: bib0025
  article-title: Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition
  publication-title: Sci. Rep.
– volume: 304
  start-page: 711
  year: 2004
  end-page: 714
  ident: bib0029
  article-title: Formation of hollow nanocrystals through the nanoscale Kirkendall effect
  publication-title: Science
– volume: 249
  start-page: 64
  year: 2017
  end-page: 71
  ident: bib0008
  article-title: Controllable preparation of highly uniform CuCo
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 20526
  year: 2018
  end-page: 20532
  ident: bib0016
  article-title: Cross-linked Ni(OH)
  publication-title: Nanoscale
– volume: 4
  start-page: 17560
  year: 2016
  end-page: 17571
  ident: bib0031
  article-title: Facile fabrication of Co
  publication-title: J. Mater. Chem. A
– volume: 244
  start-page: 101
  year: 2017
  end-page: 108
  ident: bib0010
  article-title: Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application
  publication-title: Micropor. Mesopor. Mat.
– volume: 52
  start-page: 4517
  year: 2016
  end-page: 4520
  ident: bib0021
  article-title: Hierarchical CuCo
  publication-title: Chem. Commun.
– volume: 549
  start-page: 105
  year: 2019
  end-page: 113
  ident: bib0013
  article-title: Enhanced electrochemical performance of CuCo
  publication-title: J. Colloid Interf. Sci.
– volume: 35
  start-page: 1691
  year: 2019
  end-page: 1699
  ident: bib0036
  article-title: Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors
  publication-title: J. Mater. Sci. Technol.
– volume: 4
  start-page: 1397
  year: 2021
  end-page: 1427
  ident: bib0009
  article-title: Recent progress in core@shell sulfide electrode materials for advanced supercapacitor devices
  publication-title: Batteries Supercaps
– volume: 7
  start-page: 6681
  year: 2017
  ident: bib0015
  article-title: Construction of porous CuCo
  publication-title: Sci. Rep.
– volume: 7
  start-page: 980
  year: 2015
  end-page: 988
  ident: bib0024
  article-title: Carbon-armored Co
  publication-title: ACS Appl. Mater. Inter.
– volume: 400
  start-page: 96
  year: 2018
  end-page: 103
  ident: bib0003
  article-title: J, Mesostructured CuCo
  publication-title: Power Sources
– volume: 271
  start-page: 498
  year: 2018
  end-page: 506
  ident: bib0026
  article-title: Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors
  publication-title: Electrochim. Acta
– volume: 456
  year: 2020
  ident: bib0001
  article-title: High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron
  publication-title: J. Power Sources
– volume: 390
  year: 2020
  ident: bib0002
  article-title: Effect of fluorine doping and sulfur vacancies of CuCo
  publication-title: Chem. Eng. J.
– volume: 123
  start-page: 183
  year: 2014
  end-page: 189
  ident: bib0006
  article-title: Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 10534
  year: 2020
  end-page: 10570
  ident: bib0032
  article-title: Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review
  publication-title: J. Mater. Chem. A.
– volume: 451
  start-page: 280
  year: 2018
  end-page: 288
  ident: bib0004
  article-title: Hierarchical NiCo
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 1799
  year: 2020
  end-page: 1807
  ident: bib0023
  article-title: Rational design of Cu-Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 24311
  year: 2018
  end-page: 24316
  ident: bib0027
  article-title: One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 62
  year: 2020
  ident: bib0014
  article-title: Freestanding needle flower structure CuCo
  publication-title: Front. Chem.
– volume: 173
  year: 2019
  ident: bib0012
  article-title: Fabrication of core-shell like hybrids of CuCo
  publication-title: Compos. Part. B Eng.
– volume: 30
  year: 2019
  ident: bib0011
  article-title: A 3D self-supported coralline-like CuCo
  publication-title: Nanotechnology
– volume: 59
  start-page: 109
  year: 2016
  end-page: 119
  ident: bib0022
  article-title: Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation
  publication-title: Mater. Sci. Eng., C.
– volume: 5
  start-page: 627
  year: 2006
  end-page: 631
  ident: bib0030
  article-title: Monocrystalline spinel nanotube fabrication based on the Kirkendall effect
  publication-title: Nat. Mater.
– volume: 43
  start-page: 23372
  year: 2018
  end-page: 23381
  ident: bib0017
  article-title: Synthesis of CuCo
  publication-title: Int. J, Hydrogen Energy
– volume: 8
  start-page: 62
  year: 2020
  ident: 10.1016/j.electacta.2021.139681_bib0014
  article-title: Freestanding needle flower structure CuCo2S4 on carbon cloth for flexible high energy supercapacitors with the gel electrolyte
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00062
– volume: 6
  start-page: 24311
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0027
  article-title: One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08149B
– volume: 59
  start-page: 109
  year: 2016
  ident: 10.1016/j.electacta.2021.139681_bib0022
  article-title: Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation
  publication-title: Mater. Sci. Eng., C.
  doi: 10.1016/j.msec.2015.10.003
– volume: 304
  start-page: 711
  year: 2004
  ident: 10.1016/j.electacta.2021.139681_bib0029
  article-title: Formation of hollow nanocrystals through the nanoscale Kirkendall effect
  publication-title: Science
  doi: 10.1126/science.1096566
– volume: 30
  year: 2019
  ident: 10.1016/j.electacta.2021.139681_bib0011
  article-title: A 3D self-supported coralline-like CuCo2S4@NiCo2S4 core-shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab08fb
– volume: 4
  start-page: 1397
  year: 2021
  ident: 10.1016/j.electacta.2021.139681_bib0009
  article-title: Recent progress in core@shell sulfide electrode materials for advanced supercapacitor devices
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202100017
– volume: 28
  year: 2017
  ident: 10.1016/j.electacta.2021.139681_bib0019
  article-title: Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa8d85
– volume: 10
  start-page: 20526
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0016
  article-title: Cross-linked Ni(OH)2/CuCo2S4/Ni networks as binder-free electrodes for high performance supercapatteries
  publication-title: Nanoscale
  doi: 10.1039/C8NR05662E
– volume: 456
  year: 2020
  ident: 10.1016/j.electacta.2021.139681_bib0001
  article-title: High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228023
– volume: 9
  start-page: 2452
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0028
  article-title: Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04888-0
– volume: 5
  start-page: 627
  year: 2006
  ident: 10.1016/j.electacta.2021.139681_bib0030
  article-title: Monocrystalline spinel nanotube fabrication based on the Kirkendall effect
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1673
– volume: 451
  start-page: 280
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0004
  article-title: Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.254
– volume: 16
  year: 2020
  ident: 10.1016/j.electacta.2021.139681_bib0034
  article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors
  publication-title: Small
  doi: 10.1002/smll.202002806
– volume: 52
  start-page: 9531
  year: 2017
  ident: 10.1016/j.electacta.2021.139681_bib0018
  article-title: Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1119-1
– volume: 56
  start-page: 100
  year: 2019
  ident: 10.1016/j.electacta.2021.139681_bib0005
  article-title: A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.045
– volume: 173
  year: 2019
  ident: 10.1016/j.electacta.2021.139681_bib0012
  article-title: Fabrication of core-shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications
  publication-title: Compos. Part. B Eng.
  doi: 10.1016/j.compositesb.2019.05.075
– volume: 6
  start-page: 5265
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0033
  article-title: Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07890K
– volume: 249
  start-page: 64
  year: 2017
  ident: 10.1016/j.electacta.2021.139681_bib0008
  article-title: Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.003
– volume: 43
  start-page: 23372
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0017
  article-title: Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor
  publication-title: Int. J, Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.190
– volume: 8
  start-page: 1799
  year: 2020
  ident: 10.1016/j.electacta.2021.139681_bib0023
  article-title: Rational design of Cu-Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12104H
– volume: 12
  start-page: 1969
  year: 2017
  ident: 10.1016/j.electacta.2021.139681_bib0007
  article-title: NiCo2S4 materials for supercapacitor applications
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201700461
– volume: 7
  start-page: 6681
  year: 2017
  ident: 10.1016/j.electacta.2021.139681_bib0015
  article-title: Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07102-1
– volume: 7
  start-page: 980
  year: 2015
  ident: 10.1016/j.electacta.2021.139681_bib0024
  article-title: Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/am507811a
– volume: 390
  year: 2020
  ident: 10.1016/j.electacta.2021.139681_bib0002
  article-title: Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124643
– volume: 271
  start-page: 498
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0026
  article-title: Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.03.189
– volume: 123
  start-page: 183
  year: 2014
  ident: 10.1016/j.electacta.2021.139681_bib0006
  article-title: Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.01.009
– volume: 336
  start-page: 562
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0020
  article-title: Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.055
– volume: 52
  start-page: 4517
  year: 2016
  ident: 10.1016/j.electacta.2021.139681_bib0021
  article-title: Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00215C
– volume: 4
  start-page: 17560
  year: 2016
  ident: 10.1016/j.electacta.2021.139681_bib0031
  article-title: Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07400F
– volume: 549
  start-page: 105
  year: 2019
  ident: 10.1016/j.electacta.2021.139681_bib0013
  article-title: Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2019.04.056
– volume: 118
  start-page: 10616
  year: 2014
  ident: 10.1016/j.electacta.2021.139681_bib0035
  article-title: Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp5010693
– volume: 244
  start-page: 101
  year: 2017
  ident: 10.1016/j.electacta.2021.139681_bib0010
  article-title: Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application
  publication-title: Micropor. Mesopor. Mat.
  doi: 10.1016/j.micromeso.2017.02.043
– volume: 6
  start-page: 32431
  year: 2016
  ident: 10.1016/j.electacta.2021.139681_bib0025
  article-title: Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition
  publication-title: Sci. Rep.
  doi: 10.1038/srep32431
– volume: 8
  start-page: 10534
  year: 2020
  ident: 10.1016/j.electacta.2021.139681_bib0032
  article-title: Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA02939D
– volume: 35
  start-page: 1691
  year: 2019
  ident: 10.1016/j.electacta.2021.139681_bib0036
  article-title: Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.04.003
– volume: 400
  start-page: 96
  year: 2018
  ident: 10.1016/j.electacta.2021.139681_bib0003
  article-title: J, Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors
  publication-title: Power Sources
  doi: 10.1016/j.jpowsour.2018.08.012
SSID ssj0007670
Score 2.5474594
Snippet •The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend...
The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139681
SubjectTerms Activated carbon
Arrays
CuCo2S4
Electrode materials
Electrodes
Flux density
Hollow nanotube
Metal foams
Metal sulfides
Nanotubes
Ni foam
Sulfidation time
Sulfurization
Supercapacitor
Supercapacitors
Transition metals
Title Controllable preparation of CuCo2S4 nanotube arrays for high-performance hybrid supercapacitors
URI https://dx.doi.org/10.1016/j.electacta.2021.139681
https://www.proquest.com/docview/2638771593
Volume 404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IHtSDUdSIIunB62Drylq8kUWCGrkoCbema7uIIRsBduDi3-7rfoCaGA5mO72ty_Lavfd1ed_3ELrjUmqfGs8hseQOhRziAKjXDuyFiCF92nON_aH_Mg5GE_o07U1rKKy4MLassoz9RUzPo3Vp6Zbe7C5mM8vx9XxqCQ5eLotnNUEpZXaVdz53ZR4sYG7VxcDe_aPGK281I-GEjSLxOoCGAu79laF-xeo8AQ1P0UmJHPGgeLkzVDNJAx2GVcO2Bjr-pi14jkRYFKHPLTcKL5amEPlOE5zGOMzClLxSnMgkXWeRwXK5lJsVBgSLrYCxs9jxCfD7xrK68CoDo4Lcqma2Q88Fmgwf3sKRU3ZTcJRP_bXT55FURMVUE8OiOIJ5AbihFNdS6YBTe2ivJzlhkQemKJaMWYQQwx191_iXqJ6kiblC2AXQyJQGo2QULkdSM6Mo1zxmBvBQEwWVB4UqpcZtx4u5qGrKPsTW9cK6XhSubyJ3O3BRqG3sH3JfTZH4sXAE5IT9g1vVpIry210JAiGJMYB5_vV_nn2DjoilSuQV3i1UXy8zcwsAZh218xXaRgeDx-fR-AvF0vIw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64HNSDuOJuDnqstmmmyQgepCrjelHBW0yTFEeGdpgFmYt_yj_oSxc3EA8i7em1CeElfd_3ylsAdoRSJmQ28GiqhMcQQzwk9cZDX4ha2mQN37of-lfXUeuOnd837sfgtc6FcWGVle0vbXphrSvJfqXN_W677XJ8g5C5BIegKIvHqsjKCzt6Rr-tf3h2jJu8S-npyW3c8qrWAp4OWTjwmiJRmuqUGWp5kia4SMRerYVR2kSCucsEDSUoTwIUJani3MFlim80fRvivOMwydBcuLYJey8fcSU84n7dNsEt70tQWdHbRuGNnikN9pB-RSL4CRK_gUOBeKdzMFtRVXJUamMexmy2AFNx3SFuAWY-FTNcBBmXUe8dl4xFuj1bVhXPM5KnJB7GOb1hJFNZPhgmlqheT436BCkzcRWTve5HAgN5HLk0MtIfolAjmOu2awm0BHf_ouNlmMjyzK4A8ZGlcm1QqDjDx4ky3GomjEi5RQK2ClGtQamr2uauxUZH1kFsT_Jd9dKpXpaqXwX_fWC3LO_x-5CDeovkl5MqEYR-H7xRb6qsjEVfUrSBnCOvDNf-Mvc2TLVury7l5dn1xTpMU5enUYSXb8DEoDe0m8ieBslWcVoJPPz35_EGmnAvhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+preparation+of+CuCo2S4+nanotube+arrays+for+high-performance+hybrid+supercapacitors&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Kai&rft.au=Zeng%2C+Hong-Yan&rft.au=Li%2C+Hao-Bo&rft.au=Xu%2C+Sheng&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=404&rft_id=info:doi/10.1016%2Fj.electacta.2021.139681&rft.externalDocID=S0013468621019654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon