Controllable preparation of CuCo2S4 nanotube arrays for high-performance hybrid supercapacitors
•The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend on the sulfurization time.•The optimal CuCo2S4/NF8 exhibited excellent electrochemical performances and good cycling stability.•The assembled...
Saved in:
Published in | Electrochimica acta Vol. 404; p. 139681 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend on the sulfurization time.•The optimal CuCo2S4/NF8 exhibited excellent electrochemical performances and good cycling stability.•The assembled CuCo2S4/NF8//AC device showed a high energy density 51.8 Wh kg1 at a 700 W kg1.
The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results from various spectroscopic and microscopic analyses showed that the 3D hollow nanotube CuCo2S4 arrays were formed by the sulfurization, resulting in a larger contact area with the electrolyte and more active sites with high Faraday efficiency. Benefited from the unique nanotube arrays structure and high crystallinity, the optimized CuCo2S4/NF8 electrode material sulfurized for 8 h displayed superior electrochemical performances with the high specific charge of 458.8 C g − 1 at 1.0 A g − 1 as well as good cycling stability with 96.0% retention at 5.0 A g − 1 after 1 000 cycles. Furthermore, a hybrid supercapacitor device based on the CuCo2S4/NF8 as positive electrode and activated carbon as negative electrode was able to deliver an ultrahigh energy density 51.8 Wh kg−1 at a power density 700.0 W kg−1 with 80.0% capacitance retention at 5.0 A g − 1 after 10 000 cycles. This work provided new insights into the sulfurization process and an effective way to optimize the structure of the transition metal sulfides for supercapacitors.
[Display omitted] |
---|---|
AbstractList | The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results from various spectroscopic and microscopic analyses showed that the 3D hollow nanotube CuCo2S4 arrays were formed by the sulfurization, resulting in a larger contact area with the electrolyte and more active sites with high Faraday efficiency. Benefited from the unique nanotube arrays structure and high crystallinity, the optimized CuCo2S4/NF8 electrode material sulfurized for 8 h displayed superior electrochemical performances with the high specific charge of 458.8 C g − 1 at 1.0 A g − 1 as well as good cycling stability with 96.0% retention at 5.0 A g − 1 after 1 000 cycles. Furthermore, a hybrid supercapacitor device based on the CuCo2S4/NF8 as positive electrode and activated carbon as negative electrode was able to deliver an ultrahigh energy density 51.8 Wh kg−1 at a power density 700.0 W kg−1 with 80.0% capacitance retention at 5.0 A g − 1 after 10 000 cycles. This work provided new insights into the sulfurization process and an effective way to optimize the structure of the transition metal sulfides for supercapacitors. •The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend on the sulfurization time.•The optimal CuCo2S4/NF8 exhibited excellent electrochemical performances and good cycling stability.•The assembled CuCo2S4/NF8//AC device showed a high energy density 51.8 Wh kg1 at a 700 W kg1. The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results from various spectroscopic and microscopic analyses showed that the 3D hollow nanotube CuCo2S4 arrays were formed by the sulfurization, resulting in a larger contact area with the electrolyte and more active sites with high Faraday efficiency. Benefited from the unique nanotube arrays structure and high crystallinity, the optimized CuCo2S4/NF8 electrode material sulfurized for 8 h displayed superior electrochemical performances with the high specific charge of 458.8 C g − 1 at 1.0 A g − 1 as well as good cycling stability with 96.0% retention at 5.0 A g − 1 after 1 000 cycles. Furthermore, a hybrid supercapacitor device based on the CuCo2S4/NF8 as positive electrode and activated carbon as negative electrode was able to deliver an ultrahigh energy density 51.8 Wh kg−1 at a power density 700.0 W kg−1 with 80.0% capacitance retention at 5.0 A g − 1 after 10 000 cycles. This work provided new insights into the sulfurization process and an effective way to optimize the structure of the transition metal sulfides for supercapacitors. [Display omitted] |
ArticleNumber | 139681 |
Author | Lv, Shi-Bing Li, Hao-Bo Wang, Ming-Xin Zhang, Kai Zeng, Hong-Yan Xu, Sheng |
Author_xml | – sequence: 1 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 2 givenname: Hong-Yan surname: Zeng fullname: Zeng, Hong-Yan email: hyzeng@xtu.edu.cn – sequence: 3 givenname: Hao-Bo surname: Li fullname: Li, Hao-Bo – sequence: 4 givenname: Sheng surname: Xu fullname: Xu, Sheng – sequence: 5 givenname: Shi-Bing surname: Lv fullname: Lv, Shi-Bing – sequence: 6 givenname: Ming-Xin surname: Wang fullname: Wang, Ming-Xin |
BookMark | eNqNkE1LxDAQhoMouH78BgOeuyZNN0kPHpbiFyx4UM9hmqZultrUSSvsvzfrigcvygQmDO_7TvKckMM-9I6QC87mnHF5tZm7ztkR0pnnLOdzLkqp-QGZca1EJvSiPCQzxrjICqnlMTmJccMYU1KxGTFV6EcMXQd15-iAbgCE0YeehpZWUxXyp4L20Idxqh0FRNhG2gaka_-6zgaH6f4GvXV0va3RNzROaWhhAOvHgPGMHLXQRXf-3U_Jy-3Nc3WfrR7vHqrlKrOiEGNW6hpsbtuiyZ2q27rgmklprW7ANlIXu2r4AnSuap5GdQtKMabzNilK5sQpudznDhjeJxdHswkT9mmlyaXQSvFFKZLqeq-yGGJE15r0yq_vjgi-M5yZHVOzMT9MzY6p2TNNfvXLP6B_A9z-w7ncO12C8OEdmmi9S9waj0lvmuD_zPgEVs-akw |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103474 crossref_primary_10_1016_j_apsusc_2022_156174 crossref_primary_10_1016_j_mtchem_2024_101990 crossref_primary_10_1016_j_jelechem_2022_116819 crossref_primary_10_1039_D3IM00027C crossref_primary_10_1007_s11581_023_05036_5 crossref_primary_10_1016_j_electacta_2024_144836 crossref_primary_10_1016_j_est_2022_106175 crossref_primary_10_1016_j_electacta_2022_141320 crossref_primary_10_1039_D3DT01902K crossref_primary_10_1016_j_diamond_2023_109737 crossref_primary_10_1016_j_est_2025_115336 crossref_primary_10_1002_celc_202200612 crossref_primary_10_1021_acs_energyfuels_1c04254 crossref_primary_10_1016_j_apsusc_2024_161547 crossref_primary_10_1021_acsomega_4c05172 crossref_primary_10_1016_j_est_2024_113383 crossref_primary_10_1016_j_jallcom_2023_169170 crossref_primary_10_1016_j_jcis_2024_07_035 crossref_primary_10_1016_j_cej_2023_148378 crossref_primary_10_1007_s10008_023_05413_0 crossref_primary_10_1016_j_est_2023_107701 crossref_primary_10_1021_acs_inorgchem_3c00620 crossref_primary_10_1007_s11664_022_09962_4 crossref_primary_10_1016_j_colsurfa_2022_129762 crossref_primary_10_1039_D4NR02215G crossref_primary_10_1016_j_electacta_2023_143392 crossref_primary_10_1016_j_jallcom_2023_171966 crossref_primary_10_1021_acsami_3c09922 crossref_primary_10_1016_j_electacta_2024_144129 crossref_primary_10_1016_j_jcis_2022_12_144 crossref_primary_10_1063_5_0199239 crossref_primary_10_1039_D3QM00212H crossref_primary_10_1016_j_jece_2023_109856 crossref_primary_10_1016_j_foodchem_2024_139430 crossref_primary_10_1016_j_seppur_2025_131738 crossref_primary_10_1007_s11664_022_10007_z crossref_primary_10_1016_j_jpcs_2025_112606 crossref_primary_10_1007_s11705_023_2352_6 crossref_primary_10_1016_j_cej_2024_150937 crossref_primary_10_3390_met14020145 |
Cites_doi | 10.3389/fchem.2020.00062 10.1039/C8TA08149B 10.1016/j.msec.2015.10.003 10.1126/science.1096566 10.1088/1361-6528/ab08fb 10.1002/batt.202100017 10.1088/1361-6528/aa8d85 10.1039/C8NR05662E 10.1016/j.jpowsour.2020.228023 10.1038/s41467-018-04888-0 10.1038/nmat1673 10.1016/j.apsusc.2018.04.254 10.1002/smll.202002806 10.1007/s10853-017-1119-1 10.1016/j.nanoen.2018.11.045 10.1016/j.compositesb.2019.05.075 10.1039/C7TA07890K 10.1016/j.electacta.2017.08.003 10.1016/j.ijhydene.2018.10.190 10.1039/C9TA12104H 10.1002/asia.201700461 10.1038/s41598-017-07102-1 10.1021/am507811a 10.1016/j.cej.2020.124643 10.1016/j.electacta.2018.03.189 10.1016/j.electacta.2014.01.009 10.1016/j.cej.2017.12.055 10.1039/C6CC00215C 10.1039/C6TA07400F 10.1016/j.jcis.2019.04.056 10.1021/jp5010693 10.1016/j.micromeso.2017.02.043 10.1038/srep32431 10.1039/D0TA02939D 10.1016/j.jmst.2019.04.003 10.1016/j.jpowsour.2018.08.012 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Feb 1, 2022 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Feb 1, 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2021.139681 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2021_139681 S0013468621019654 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c343t-98bac2cf4d2e7bfb418066cc8dacd6848484d15a827b1acdbfa770082f8da90e3 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 05:35:51 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Tue Jul 01 03:02:31 EDT 2025 Fri Feb 23 02:40:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hollow nanotube Supercapacitor Sulfidation time CuCo2S4 Ni foam |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-98bac2cf4d2e7bfb418066cc8dacd6848484d15a827b1acdbfa770082f8da90e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2638771593 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2638771593 crossref_citationtrail_10_1016_j_electacta_2021_139681 crossref_primary_10_1016_j_electacta_2021_139681 elsevier_sciencedirect_doi_10_1016_j_electacta_2021_139681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Xie, Xu, Wang, Ma, Su, Dong, Gong (bib0014) 2020; 8 Li, Li, Wu, Sun, Han, Cai, Shen, Liu, Fu (bib0013) 2019; 549 Wang, Yang, Zhou, Pan, Wei, Sun (bib0019) 2017; 28 Li, Chen, Zhang, Zhang, Jia, Zhang, Gu, Sun, Song, Wang (bib0028) 2018; 9 Guo, Chen, Li, Wang, Liu, Cheng (bib0026) 2018; 271 Cheng, Shi, Chen, Zhong, Huang, Tao, Li, Liao, Tang (bib0015) 2017; 7 Zhang, Xu, Zhang, Zheng, Hu, Liu (bib0018) 2017; 52 Zang, Wu, Wang, Jin (bib0023) 2020; 8 Chen, Wang, Ma, Li, Guo, Liu, Cheng (bib0004) 2018; 451 Gao, Huang (bib0007) 2017; 12 Fan, Knez, Scholz, Nielsch, Pippel, Hesse, Zacharias, Gosele (bib0030) 2006; 5 Lin, Jia, Liang, Chen, Cai, Qi, Qu, Cao, Fei, Feng (bib0020) 2018; 336 Aldalbahi, Mkawi, Ibrahim, Farrukh (bib0025) 2016; 6 Moosavifard, Fani, Rahmanian (bib0021) 2016; 52 Zhu, Chen, Zhou, Xiang, Hu, Chen (bib0008) 2017; 249 Ma, Chen, Li, Gui, Fang (bib0011) 2019; 30 Li, Yang, Sun, Shi, Cheng, Li (bib0005) 2019; 56 Yin, Rioux, Erdonmez, Hughes, Somorjai, Alivisatos (bib0029) 2004; 304 Chodankar, Pham, Nanjundan, Fernando, Jayaramulu, Golberg, Dubal (bib0034) 2020; 16 Luo, Li, Yuan, Xiao (bib0006) 2014; 123 Gonçalves, da Silva, Hasheminejad, Toma, Araki, Martins, Angnes (bib0009) 2021; 4 Naveenkumar, Kalaignan (bib0012) 2019; 173 Feng, Li, Liu, Wu, Chen, Wang, Zou, Wang (bib0024) 2015; 7 Goncalves, da Silva, Toma, Angnes, Martins, Araki (bib0032) 2020; 8 Fan, Pan, Tu, Gu, Huang, Huang, Wu (bib0017) 2018; 43 Tang, You, Li, Chen, Zhang (bib0016) 2018; 10 Yu, Li, Guo (bib0035) 2014; 118 Kang, Huang, Zhang, Zhang, Zhang, Liu, Ye, Luo, Gong, Wang, Zhou, Wu (bib0002) 2020; 390 You, Zhang, Jiang, Shao, Li, Gong (bib0033) 2018; 6 Guo, Balamurugan, Thanh, Kim, Lee (bib0031) 2016; 4 Zeng, Chen, Chen, Wang, Xie, Tao, Huang, Wang (bib0027) 2018; 6 Zhao, Huang, He, Wu, Ge, Zu, Li, Qiao (bib0001) 2020; 456 Xu, Liu, Dong, Ajayan, Shen, Ye (bib0003) 2018; 400 Sahoo, Mondal, Late, Rout (bib0010) 2017; 244 Bhowmick, Koul (bib0022) 2016; 59 Liu, Hu, Zeng, Yi, Shen, Xu, Cao, Du (bib0036) 2019; 35 Li (10.1016/j.electacta.2021.139681_bib0005) 2019; 56 Sahoo (10.1016/j.electacta.2021.139681_bib0010) 2017; 244 Xie (10.1016/j.electacta.2021.139681_bib0014) 2020; 8 Yu (10.1016/j.electacta.2021.139681_bib0035) 2014; 118 Zeng (10.1016/j.electacta.2021.139681_bib0027) 2018; 6 Luo (10.1016/j.electacta.2021.139681_bib0006) 2014; 123 Gao (10.1016/j.electacta.2021.139681_bib0007) 2017; 12 Chodankar (10.1016/j.electacta.2021.139681_bib0034) 2020; 16 You (10.1016/j.electacta.2021.139681_bib0033) 2018; 6 Bhowmick (10.1016/j.electacta.2021.139681_bib0022) 2016; 59 Li (10.1016/j.electacta.2021.139681_bib0028) 2018; 9 Lin (10.1016/j.electacta.2021.139681_bib0020) 2018; 336 Zang (10.1016/j.electacta.2021.139681_bib0023) 2020; 8 Ma (10.1016/j.electacta.2021.139681_bib0011) 2019; 30 Fan (10.1016/j.electacta.2021.139681_bib0017) 2018; 43 Guo (10.1016/j.electacta.2021.139681_bib0031) 2016; 4 Xu (10.1016/j.electacta.2021.139681_bib0003) 2018; 400 Zhang (10.1016/j.electacta.2021.139681_bib0018) 2017; 52 Chen (10.1016/j.electacta.2021.139681_bib0004) 2018; 451 Naveenkumar (10.1016/j.electacta.2021.139681_bib0012) 2019; 173 Zhao (10.1016/j.electacta.2021.139681_bib0001) 2020; 456 Goncalves (10.1016/j.electacta.2021.139681_bib0032) 2020; 8 Wang (10.1016/j.electacta.2021.139681_bib0019) 2017; 28 Feng (10.1016/j.electacta.2021.139681_bib0024) 2015; 7 Guo (10.1016/j.electacta.2021.139681_bib0026) 2018; 271 Li (10.1016/j.electacta.2021.139681_bib0013) 2019; 549 Gonçalves (10.1016/j.electacta.2021.139681_bib0009) 2021; 4 Aldalbahi (10.1016/j.electacta.2021.139681_bib0025) 2016; 6 Zhu (10.1016/j.electacta.2021.139681_bib0008) 2017; 249 Cheng (10.1016/j.electacta.2021.139681_bib0015) 2017; 7 Liu (10.1016/j.electacta.2021.139681_bib0036) 2019; 35 Fan (10.1016/j.electacta.2021.139681_bib0030) 2006; 5 Kang (10.1016/j.electacta.2021.139681_bib0002) 2020; 390 Tang (10.1016/j.electacta.2021.139681_bib0016) 2018; 10 Moosavifard (10.1016/j.electacta.2021.139681_bib0021) 2016; 52 Yin (10.1016/j.electacta.2021.139681_bib0029) 2004; 304 |
References_xml | – volume: 6 start-page: 5265 year: 2018 end-page: 5270 ident: bib0033 article-title: Bubble-supported engineering of hierarchical CuCo publication-title: J. Mater. Chem. A – volume: 28 year: 2017 ident: bib0019 article-title: Oriented CuCo publication-title: Nanotechnology – volume: 336 start-page: 562 year: 2018 end-page: 569 ident: bib0020 article-title: Hierarchical CuCo publication-title: Chem. Eng. J. – volume: 52 start-page: 9531 year: 2017 end-page: 9538 ident: bib0018 article-title: Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application publication-title: J. Mater. Sci. – volume: 56 start-page: 100 year: 2019 end-page: 108 ident: bib0005 article-title: A highly reversible Co publication-title: Nano Energy – volume: 9 start-page: 2452 year: 2018 ident: bib0028 article-title: Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting publication-title: Nat. Commun. – volume: 118 start-page: 10616 year: 2014 end-page: 10624 ident: bib0035 article-title: Sodium storage and pseudocapacitive charge in textured Li publication-title: J. Phys. Chem. C. – volume: 12 start-page: 1969 year: 2017 end-page: 1984 ident: bib0007 article-title: NiCo publication-title: Chem. Asian J. – volume: 16 year: 2020 ident: bib0034 article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors publication-title: Small – volume: 6 start-page: 32431 year: 2016 ident: bib0025 article-title: Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition publication-title: Sci. Rep. – volume: 304 start-page: 711 year: 2004 end-page: 714 ident: bib0029 article-title: Formation of hollow nanocrystals through the nanoscale Kirkendall effect publication-title: Science – volume: 249 start-page: 64 year: 2017 end-page: 71 ident: bib0008 article-title: Controllable preparation of highly uniform CuCo publication-title: Electrochim. Acta – volume: 10 start-page: 20526 year: 2018 end-page: 20532 ident: bib0016 article-title: Cross-linked Ni(OH) publication-title: Nanoscale – volume: 4 start-page: 17560 year: 2016 end-page: 17571 ident: bib0031 article-title: Facile fabrication of Co publication-title: J. Mater. Chem. A – volume: 244 start-page: 101 year: 2017 end-page: 108 ident: bib0010 article-title: Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application publication-title: Micropor. Mesopor. Mat. – volume: 52 start-page: 4517 year: 2016 end-page: 4520 ident: bib0021 article-title: Hierarchical CuCo publication-title: Chem. Commun. – volume: 549 start-page: 105 year: 2019 end-page: 113 ident: bib0013 article-title: Enhanced electrochemical performance of CuCo publication-title: J. Colloid Interf. Sci. – volume: 35 start-page: 1691 year: 2019 end-page: 1699 ident: bib0036 article-title: Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors publication-title: J. Mater. Sci. Technol. – volume: 4 start-page: 1397 year: 2021 end-page: 1427 ident: bib0009 article-title: Recent progress in core@shell sulfide electrode materials for advanced supercapacitor devices publication-title: Batteries Supercaps – volume: 7 start-page: 6681 year: 2017 ident: bib0015 article-title: Construction of porous CuCo publication-title: Sci. Rep. – volume: 7 start-page: 980 year: 2015 end-page: 988 ident: bib0024 article-title: Carbon-armored Co publication-title: ACS Appl. Mater. Inter. – volume: 400 start-page: 96 year: 2018 end-page: 103 ident: bib0003 article-title: J, Mesostructured CuCo publication-title: Power Sources – volume: 271 start-page: 498 year: 2018 end-page: 506 ident: bib0026 article-title: Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors publication-title: Electrochim. Acta – volume: 456 year: 2020 ident: bib0001 article-title: High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron publication-title: J. Power Sources – volume: 390 year: 2020 ident: bib0002 article-title: Effect of fluorine doping and sulfur vacancies of CuCo publication-title: Chem. Eng. J. – volume: 123 start-page: 183 year: 2014 end-page: 189 ident: bib0006 article-title: Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors publication-title: Electrochim. Acta – volume: 8 start-page: 10534 year: 2020 end-page: 10570 ident: bib0032 article-title: Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review publication-title: J. Mater. Chem. A. – volume: 451 start-page: 280 year: 2018 end-page: 288 ident: bib0004 article-title: Hierarchical NiCo publication-title: Appl. Surf. Sci. – volume: 8 start-page: 1799 year: 2020 end-page: 1807 ident: bib0023 article-title: Rational design of Cu-Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting publication-title: J. Mater. Chem. A – volume: 6 start-page: 24311 year: 2018 end-page: 24316 ident: bib0027 article-title: One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions publication-title: J. Mater. Chem. A – volume: 8 start-page: 62 year: 2020 ident: bib0014 article-title: Freestanding needle flower structure CuCo publication-title: Front. Chem. – volume: 173 year: 2019 ident: bib0012 article-title: Fabrication of core-shell like hybrids of CuCo publication-title: Compos. Part. B Eng. – volume: 30 year: 2019 ident: bib0011 article-title: A 3D self-supported coralline-like CuCo publication-title: Nanotechnology – volume: 59 start-page: 109 year: 2016 end-page: 119 ident: bib0022 article-title: Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation publication-title: Mater. Sci. Eng., C. – volume: 5 start-page: 627 year: 2006 end-page: 631 ident: bib0030 article-title: Monocrystalline spinel nanotube fabrication based on the Kirkendall effect publication-title: Nat. Mater. – volume: 43 start-page: 23372 year: 2018 end-page: 23381 ident: bib0017 article-title: Synthesis of CuCo publication-title: Int. J, Hydrogen Energy – volume: 8 start-page: 62 year: 2020 ident: 10.1016/j.electacta.2021.139681_bib0014 article-title: Freestanding needle flower structure CuCo2S4 on carbon cloth for flexible high energy supercapacitors with the gel electrolyte publication-title: Front. Chem. doi: 10.3389/fchem.2020.00062 – volume: 6 start-page: 24311 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0027 article-title: One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08149B – volume: 59 start-page: 109 year: 2016 ident: 10.1016/j.electacta.2021.139681_bib0022 article-title: Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation publication-title: Mater. Sci. Eng., C. doi: 10.1016/j.msec.2015.10.003 – volume: 304 start-page: 711 year: 2004 ident: 10.1016/j.electacta.2021.139681_bib0029 article-title: Formation of hollow nanocrystals through the nanoscale Kirkendall effect publication-title: Science doi: 10.1126/science.1096566 – volume: 30 year: 2019 ident: 10.1016/j.electacta.2021.139681_bib0011 article-title: A 3D self-supported coralline-like CuCo2S4@NiCo2S4 core-shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors publication-title: Nanotechnology doi: 10.1088/1361-6528/ab08fb – volume: 4 start-page: 1397 year: 2021 ident: 10.1016/j.electacta.2021.139681_bib0009 article-title: Recent progress in core@shell sulfide electrode materials for advanced supercapacitor devices publication-title: Batteries Supercaps doi: 10.1002/batt.202100017 – volume: 28 year: 2017 ident: 10.1016/j.electacta.2021.139681_bib0019 article-title: Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor publication-title: Nanotechnology doi: 10.1088/1361-6528/aa8d85 – volume: 10 start-page: 20526 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0016 article-title: Cross-linked Ni(OH)2/CuCo2S4/Ni networks as binder-free electrodes for high performance supercapatteries publication-title: Nanoscale doi: 10.1039/C8NR05662E – volume: 456 year: 2020 ident: 10.1016/j.electacta.2021.139681_bib0001 article-title: High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228023 – volume: 9 start-page: 2452 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0028 article-title: Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-018-04888-0 – volume: 5 start-page: 627 year: 2006 ident: 10.1016/j.electacta.2021.139681_bib0030 article-title: Monocrystalline spinel nanotube fabrication based on the Kirkendall effect publication-title: Nat. Mater. doi: 10.1038/nmat1673 – volume: 451 start-page: 280 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0004 article-title: Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.254 – volume: 16 year: 2020 ident: 10.1016/j.electacta.2021.139681_bib0034 article-title: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors publication-title: Small doi: 10.1002/smll.202002806 – volume: 52 start-page: 9531 year: 2017 ident: 10.1016/j.electacta.2021.139681_bib0018 article-title: Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1119-1 – volume: 56 start-page: 100 year: 2019 ident: 10.1016/j.electacta.2021.139681_bib0005 article-title: A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.045 – volume: 173 year: 2019 ident: 10.1016/j.electacta.2021.139681_bib0012 article-title: Fabrication of core-shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications publication-title: Compos. Part. B Eng. doi: 10.1016/j.compositesb.2019.05.075 – volume: 6 start-page: 5265 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0033 article-title: Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07890K – volume: 249 start-page: 64 year: 2017 ident: 10.1016/j.electacta.2021.139681_bib0008 article-title: Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.003 – volume: 43 start-page: 23372 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0017 article-title: Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor publication-title: Int. J, Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.190 – volume: 8 start-page: 1799 year: 2020 ident: 10.1016/j.electacta.2021.139681_bib0023 article-title: Rational design of Cu-Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12104H – volume: 12 start-page: 1969 year: 2017 ident: 10.1016/j.electacta.2021.139681_bib0007 article-title: NiCo2S4 materials for supercapacitor applications publication-title: Chem. Asian J. doi: 10.1002/asia.201700461 – volume: 7 start-page: 6681 year: 2017 ident: 10.1016/j.electacta.2021.139681_bib0015 article-title: Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor publication-title: Sci. Rep. doi: 10.1038/s41598-017-07102-1 – volume: 7 start-page: 980 year: 2015 ident: 10.1016/j.electacta.2021.139681_bib0024 article-title: Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts publication-title: ACS Appl. Mater. Inter. doi: 10.1021/am507811a – volume: 390 year: 2020 ident: 10.1016/j.electacta.2021.139681_bib0002 article-title: Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124643 – volume: 271 start-page: 498 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0026 article-title: Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.03.189 – volume: 123 start-page: 183 year: 2014 ident: 10.1016/j.electacta.2021.139681_bib0006 article-title: Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.01.009 – volume: 336 start-page: 562 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0020 article-title: Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.055 – volume: 52 start-page: 4517 year: 2016 ident: 10.1016/j.electacta.2021.139681_bib0021 article-title: Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors publication-title: Chem. Commun. doi: 10.1039/C6CC00215C – volume: 4 start-page: 17560 year: 2016 ident: 10.1016/j.electacta.2021.139681_bib0031 article-title: Facile fabrication of Co2CuS4 nanoparticle anchored N-doped graphene for high-performance asymmetric supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07400F – volume: 549 start-page: 105 year: 2019 ident: 10.1016/j.electacta.2021.139681_bib0013 article-title: Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2019.04.056 – volume: 118 start-page: 10616 year: 2014 ident: 10.1016/j.electacta.2021.139681_bib0035 article-title: Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films publication-title: J. Phys. Chem. C. doi: 10.1021/jp5010693 – volume: 244 start-page: 101 year: 2017 ident: 10.1016/j.electacta.2021.139681_bib0010 article-title: Electrodeposited Nickel Cobalt Manganese based mixed sulfide nanosheets for high performance supercapacitor application publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2017.02.043 – volume: 6 start-page: 32431 year: 2016 ident: 10.1016/j.electacta.2021.139681_bib0025 article-title: Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition publication-title: Sci. Rep. doi: 10.1038/srep32431 – volume: 8 start-page: 10534 year: 2020 ident: 10.1016/j.electacta.2021.139681_bib0032 article-title: Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA02939D – volume: 35 start-page: 1691 year: 2019 ident: 10.1016/j.electacta.2021.139681_bib0036 article-title: Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.04.003 – volume: 400 start-page: 96 year: 2018 ident: 10.1016/j.electacta.2021.139681_bib0003 article-title: J, Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors publication-title: Power Sources doi: 10.1016/j.jpowsour.2018.08.012 |
SSID | ssj0007670 |
Score | 2.5474594 |
Snippet | •The CuCo2S4 nanotube array on Ni foam was prepared by controlled the sulfurization time.•The crystallinity, morphology and electrochemical performance depend... The CuCo2S4 sulfides were fabricated on Ni foam (NF) through a single-step hydrothermal deposition followed by sulfurization at different times. The results... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 139681 |
SubjectTerms | Activated carbon Arrays CuCo2S4 Electrode materials Electrodes Flux density Hollow nanotube Metal foams Metal sulfides Nanotubes Ni foam Sulfidation time Sulfurization Supercapacitor Supercapacitors Transition metals |
Title | Controllable preparation of CuCo2S4 nanotube arrays for high-performance hybrid supercapacitors |
URI | https://dx.doi.org/10.1016/j.electacta.2021.139681 https://www.proquest.com/docview/2638771593 |
Volume | 404 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IHtSDUdSIIunB62Drylq8kUWCGrkoCbema7uIIRsBduDi3-7rfoCaGA5mO72ty_Lavfd1ed_3ELrjUmqfGs8hseQOhRziAKjXDuyFiCF92nON_aH_Mg5GE_o07U1rKKy4MLassoz9RUzPo3Vp6Zbe7C5mM8vx9XxqCQ5eLotnNUEpZXaVdz53ZR4sYG7VxcDe_aPGK281I-GEjSLxOoCGAu79laF-xeo8AQ1P0UmJHPGgeLkzVDNJAx2GVcO2Bjr-pi14jkRYFKHPLTcKL5amEPlOE5zGOMzClLxSnMgkXWeRwXK5lJsVBgSLrYCxs9jxCfD7xrK68CoDo4Lcqma2Q88Fmgwf3sKRU3ZTcJRP_bXT55FURMVUE8OiOIJ5AbihFNdS6YBTe2ivJzlhkQemKJaMWYQQwx191_iXqJ6kiblC2AXQyJQGo2QULkdSM6Mo1zxmBvBQEwWVB4UqpcZtx4u5qGrKPsTW9cK6XhSubyJ3O3BRqG3sH3JfTZH4sXAE5IT9g1vVpIry210JAiGJMYB5_vV_nn2DjoilSuQV3i1UXy8zcwsAZh218xXaRgeDx-fR-AvF0vIw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64HNSDuOJuDnqstmmmyQgepCrjelHBW0yTFEeGdpgFmYt_yj_oSxc3EA8i7em1CeElfd_3ylsAdoRSJmQ28GiqhMcQQzwk9cZDX4ha2mQN37of-lfXUeuOnd837sfgtc6FcWGVle0vbXphrSvJfqXN_W677XJ8g5C5BIegKIvHqsjKCzt6Rr-tf3h2jJu8S-npyW3c8qrWAp4OWTjwmiJRmuqUGWp5kia4SMRerYVR2kSCucsEDSUoTwIUJani3MFlim80fRvivOMwydBcuLYJey8fcSU84n7dNsEt70tQWdHbRuGNnikN9pB-RSL4CRK_gUOBeKdzMFtRVXJUamMexmy2AFNx3SFuAWY-FTNcBBmXUe8dl4xFuj1bVhXPM5KnJB7GOb1hJFNZPhgmlqheT436BCkzcRWTve5HAgN5HLk0MtIfolAjmOu2awm0BHf_ouNlmMjyzK4A8ZGlcm1QqDjDx4ky3GomjEi5RQK2ClGtQamr2uauxUZH1kFsT_Jd9dKpXpaqXwX_fWC3LO_x-5CDeovkl5MqEYR-H7xRb6qsjEVfUrSBnCOvDNf-Mvc2TLVury7l5dn1xTpMU5enUYSXb8DEoDe0m8ieBslWcVoJPPz35_EGmnAvhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+preparation+of+CuCo2S4+nanotube+arrays+for+high-performance+hybrid+supercapacitors&rft.jtitle=Electrochimica+acta&rft.au=Zhang%2C+Kai&rft.au=Zeng%2C+Hong-Yan&rft.au=Li%2C+Hao-Bo&rft.au=Xu%2C+Sheng&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=404&rft_id=info:doi/10.1016%2Fj.electacta.2021.139681&rft.externalDocID=S0013468621019654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |