Graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets for lithium-ion battery anode with enhanced reversible capacity and cyclic performance

With the large-scale practical application of electric vehicles and mobile devices, more and more attention has been focused on the research of high specific capacity lithium-ion batteries (LiBs) anode materials. Novel graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets (Si@Cu...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 341; p. 136037
Main Authors Yang, Yu, Yang, Hui-Xian, Wu, Ya-Qian, Pu, Hao, Meng, Wen-Jie, Gao, Rui-Ze, Zhao, Dong-Lin
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the large-scale practical application of electric vehicles and mobile devices, more and more attention has been focused on the research of high specific capacity lithium-ion batteries (LiBs) anode materials. Novel graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets (Si@Cu@rGO) anode was prepared by deposition-precipitation and one-step thermal reduction methods. During the preparation, CuC2O4 and graphene oxide are simultaneously reduced and coated on silicon nanoparticles. Introduced copper can enhance charge transfer kinetics of the electrode and suppress the tight cluster of Si nanoparticles. Besides, the graphene nanocage outside Si@Cu nanoparticle restricts polarization and pulverization of silicon inside itself. Graphene provides not only buffering space for core-shell Si@Cu nanoparticles to expand but also a conductive network to enhance the electronic conductivity and flexibility of the electrode. Therefore, the synergism of copper shells and graphene sheets improved electrochemical performance. The Si@Cu@rGO composites exhibited the reversible capacity of 2095.2 mAh g−1 at 200 mA g−1 after 50 cycles, showing extraordinary electrochemical performance. This outstanding Si@Cu@rGO anode becomes an ideal candidate for superior silicon-based lithium-ion battery applications. [Display omitted] •Si@Cu@rGO composite is fabricated by deposition-precipitation and one-step thermal reduction methods.•The synergism of copper shell and graphene greatly improved electrochemical performance.•Si@Cu@rGO anode exhibits high reversible capacity and excellent cycle capability.
AbstractList With the large-scale practical application of electric vehicles and mobile devices, more and more attention has been focused on the research of high specific capacity lithium-ion batteries (LiBs) anode materials. Novel graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets (Si@Cu@rGO) anode was prepared by deposition-precipitation and one-step thermal reduction methods. During the preparation, CuC2O4 and graphene oxide are simultaneously reduced and coated on silicon nanoparticles. Introduced copper can enhance charge transfer kinetics of the electrode and suppress the tight cluster of Si nanoparticles. Besides, the graphene nanocage outside Si@Cu nanoparticle restricts polarization and pulverization of silicon inside itself. Graphene provides not only buffering space for core-shell Si@Cu nanoparticles to expand but also a conductive network to enhance the electronic conductivity and flexibility of the electrode. Therefore, the synergism of copper shells and graphene sheets improved electrochemical performance. The Si@Cu@rGO composites exhibited the reversible capacity of 2095.2 mAh g−1 at 200 mA g−1 after 50 cycles, showing extraordinary electrochemical performance. This outstanding Si@Cu@rGO anode becomes an ideal candidate for superior silicon-based lithium-ion battery applications.
With the large-scale practical application of electric vehicles and mobile devices, more and more attention has been focused on the research of high specific capacity lithium-ion batteries (LiBs) anode materials. Novel graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets (Si@Cu@rGO) anode was prepared by deposition-precipitation and one-step thermal reduction methods. During the preparation, CuC2O4 and graphene oxide are simultaneously reduced and coated on silicon nanoparticles. Introduced copper can enhance charge transfer kinetics of the electrode and suppress the tight cluster of Si nanoparticles. Besides, the graphene nanocage outside Si@Cu nanoparticle restricts polarization and pulverization of silicon inside itself. Graphene provides not only buffering space for core-shell Si@Cu nanoparticles to expand but also a conductive network to enhance the electronic conductivity and flexibility of the electrode. Therefore, the synergism of copper shells and graphene sheets improved electrochemical performance. The Si@Cu@rGO composites exhibited the reversible capacity of 2095.2 mAh g−1 at 200 mA g−1 after 50 cycles, showing extraordinary electrochemical performance. This outstanding Si@Cu@rGO anode becomes an ideal candidate for superior silicon-based lithium-ion battery applications. [Display omitted] •Si@Cu@rGO composite is fabricated by deposition-precipitation and one-step thermal reduction methods.•The synergism of copper shell and graphene greatly improved electrochemical performance.•Si@Cu@rGO anode exhibits high reversible capacity and excellent cycle capability.
ArticleNumber 136037
Author Meng, Wen-Jie
Yang, Hui-Xian
Pu, Hao
Yang, Yu
Wu, Ya-Qian
Zhao, Dong-Lin
Gao, Rui-Ze
Author_xml – sequence: 1
  givenname: Yu
  surname: Yang
  fullname: Yang, Yu
– sequence: 2
  givenname: Hui-Xian
  surname: Yang
  fullname: Yang, Hui-Xian
– sequence: 3
  givenname: Ya-Qian
  surname: Wu
  fullname: Wu, Ya-Qian
– sequence: 4
  givenname: Hao
  surname: Pu
  fullname: Pu, Hao
– sequence: 5
  givenname: Wen-Jie
  surname: Meng
  fullname: Meng, Wen-Jie
– sequence: 6
  givenname: Rui-Ze
  surname: Gao
  fullname: Gao, Rui-Ze
– sequence: 7
  givenname: Dong-Lin
  surname: Zhao
  fullname: Zhao, Dong-Lin
  email: dlzhao@mail.buct.edu.cn
BookMark eNqFkd1q3DAQhUVJoZu0z1BBr72VrT_vXcOSpIVALppcC1ker7V4JVfSJuzj9E0zZtvcBgQDmu-cYeZckosQAxDytWbrmtXq-34NE7hi8a0b1uAvV4zrD2RVt5pXvJWbC7JirOaVUK36RC5z3jPGtNJsRf7eJTuPEIA6u_NhR11MUOURpon-9j-2RxpsiLNNxbsJMrXBjUj0NAa6-y9FHEqmQ0x08mX0x0Plsd_ZUiCdUBN7oC_YoRBGdEB5gmdI2XfTMni2zpeF66k7uck7OkNCt8PCfiYfBztl-PKvXpGn25vH7c_q_uHu1_b6vnJc8FJtNF7DAXRaNKzrmZVOa6lUP7BGWinbphaCKS0GrK3sW6lq2Tkt2g642Gh-Rb6dfecU_xwhF7OPxxRwpGkEb3UjJWuQ0mfKpZhzgsHMyR9sOpmamSUPszdveZglD3POA5XXZyXgEs8eksnOw3IMn5A3ffTverwC1TucBw
CitedBy_id crossref_primary_10_3390_nanoenergyadv2020007
crossref_primary_10_1016_j_psep_2022_01_055
crossref_primary_10_1007_s11666_023_01567_5
crossref_primary_10_1002_advs_202203162
crossref_primary_10_1016_j_surfcoat_2021_127336
crossref_primary_10_1016_j_electacta_2021_138271
crossref_primary_10_1088_1742_6596_2378_1_012029
crossref_primary_10_1007_s12598_024_02723_8
crossref_primary_10_1016_j_jpowsour_2021_229709
crossref_primary_10_1016_j_egyr_2021_10_110
crossref_primary_10_1021_acsmaterialslett_3c00253
crossref_primary_10_1016_j_carbon_2021_05_024
crossref_primary_10_1016_j_susmat_2022_e00410
crossref_primary_10_1021_acsapm_3c00532
crossref_primary_10_1016_j_apsusc_2021_150868
crossref_primary_10_1016_j_apsusc_2023_156843
crossref_primary_10_1002_chem_202100174
crossref_primary_10_1016_j_electacta_2020_136663
crossref_primary_10_1039_D0TA08198A
crossref_primary_10_1680_jsuin_20_00055
crossref_primary_10_1016_j_electacta_2021_138546
crossref_primary_10_1016_j_jcis_2021_09_066
crossref_primary_10_1016_j_jelechem_2023_117614
crossref_primary_10_1016_j_cclet_2021_04_029
crossref_primary_10_1039_D2SE01507B
crossref_primary_10_1515_ntrev_2023_0168
crossref_primary_10_1021_acs_energyfuels_0c04272
crossref_primary_10_1088_2515_7655_acb6b4
crossref_primary_10_1021_acsami_3c13969
crossref_primary_10_4164_sptj_59_66
crossref_primary_10_1016_j_cej_2024_150564
crossref_primary_10_12677_MS_2021_113022
crossref_primary_10_1016_j_electacta_2022_141696
crossref_primary_10_1021_acsaem_0c02971
crossref_primary_10_1016_j_cjche_2024_05_001
crossref_primary_10_1016_j_ijhydene_2022_09_279
crossref_primary_10_1016_j_est_2023_109351
crossref_primary_10_1016_j_jallcom_2021_159988
crossref_primary_10_1016_j_jcis_2022_05_135
crossref_primary_10_1021_acsami_1c01088
crossref_primary_10_1016_j_jelechem_2022_116973
crossref_primary_10_1039_D0NR09209F
Cites_doi 10.1016/j.jpowsour.2018.12.011
10.1016/j.jpowsour.2018.02.010
10.1016/j.apsusc.2018.10.253
10.1039/c2nr11936f
10.1016/j.materresbull.2016.03.038
10.1016/j.elecom.2010.09.003
10.1021/nl901670t
10.1016/j.electacta.2019.04.170
10.1016/j.apsusc.2013.09.018
10.1016/j.ensm.2018.10.011
10.1016/j.jallcom.2019.05.023
10.1016/j.matlet.2011.07.022
10.1007/s12633-018-9946-5
10.1002/celc.201600254
10.1016/j.jpowsour.2015.11.102
10.1016/j.cej.2018.08.132
10.1016/j.electacta.2018.01.088
10.1016/j.carbon.2017.05.002
10.1016/j.jpowsour.2006.09.084
10.1016/j.electacta.2018.11.020
10.1016/j.micromeso.2018.08.014
10.1016/j.jpowsour.2010.12.075
10.1016/j.electacta.2014.02.135
10.1016/j.ijhydene.2018.11.065
10.1021/jp509783h
10.1016/j.jechem.2018.07.008
10.1039/C4TA03370A
10.1039/C6EE00023A
10.1016/j.scriptamat.2017.12.018
10.1002/aenm.201200158
10.1016/j.cej.2018.09.110
10.1016/j.apsusc.2018.08.126
10.1016/j.jpowsour.2015.11.032
10.1016/j.jpowsour.2004.12.041
10.1016/j.jpowsour.2019.02.041
10.1002/adma.200903755
10.1016/j.jpowsour.2019.227097
10.1016/j.jhazmat.2020.122017
10.1016/j.electacta.2019.06.024
10.1016/j.powtec.2013.11.004
10.1039/C8QI00173A
10.1080/02670836.2019.1590506
10.1007/s41918-018-0001-4
10.1016/j.apsusc.2019.02.145
10.1016/j.jallcom.2018.04.128
10.1016/j.electacta.2018.12.005
10.1016/j.carbon.2015.11.031
10.1016/j.carbon.2019.04.080
10.1016/j.jallcom.2014.10.028
10.1002/adfm.201602324
10.1007/s12274-015-0973-x
10.1016/j.apsusc.2019.03.080
10.1038/nnano.2007.411
10.1039/C0EE00281J
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV May 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2020.136037
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2020_136037
S0013468620304291
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AAXKI
AAYXX
ABEFU
ABTAH
ABXDB
ACNNM
ADIYS
ADMUD
AFJKZ
AI.
AIDUJ
AJQLL
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c343t-97101ceeb7420bd0a5c77566df025a55821440674f14485d85615bc748be34973
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Fri Sep 13 05:20:58 EDT 2024
Thu Sep 26 15:56:04 EDT 2024
Fri Feb 23 02:48:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Graphene nanosheets
Core-shell structure
Anode materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-97101ceeb7420bd0a5c77566df025a55821440674f14485d85615bc748be34973
PQID 2438725502
PQPubID 2045485
ParticipantIDs proquest_journals_2438725502
crossref_primary_10_1016_j_electacta_2020_136037
elsevier_sciencedirect_doi_10_1016_j_electacta_2020_136037
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Fan, Ren, Wen, Wang (bib17) 2018; 462
Jing, Jiang, Hu, Li (bib51) 2014; 2
Lee, Chae, Jeong, Noh, Ahn, Cho, Choi, Nam, Kim, Cho (bib8) 2016; 82
Luo, Xiao, Lei, Li, Tang (bib52) 2016; 98
Zhao, Fan, Ma, Zhang, Wang, Li, Jiang, Cao (bib11) 2019; 439
Cetinkaya, Uysal, Guler, Akbulut, Alp (bib40) 2014; 253
Yu, Li, Zhou, Chen, Lee, Yang (bib20) 2017; 120
Wei, Liu, Zhang, Hong, Song, Yang, Zhang, Huang, Cai (bib22) 2019; 317
Zhao, Stein, Bai, Al-Siraj, Yang, Xu (bib1) 2019; 413
Polat, Keles, Amine (bib34) 2016; 304
Huang, Sun, Yang, Wang, Wu, Xiao (bib35) 2018; 146
Kim, Ryu, Lee, Oh (bib55) 2005; 147
Polat, Keles (bib27) 2015; 622
An, Xiang, Fu, Mei, Guo, Huo, Zhang, Gao, Chu (bib21) 2019; 479
Liu, Zhao, He, Luo, Meng, Yu, Zhao, Zhou, Mai (bib15) 2019; 19
Chabot, Feng, Park, Hassan, Elsayed, Yu, Xiao, Chen (bib31) 2014; 130
Wang, Yang, Li, Wang, Liu, Wang, He (bib24) 2011; 65
Zhou, Yin, Wan, Guo (bib32) 2012; 2
Xu, Zhu, Zhou, Liu, Liu, Dai, Bao (bib54) 2014; 118
Nguyen, Kim, Hur (bib53) 2019; 297
Yu, Gu, Zhu, Tsukimoto, van Aken, Maier (bib7) 2010; 22
Ma, Fan, Zheng, Wang, Zhao, Zhang, Yadav, Wang, Dong, Wang (bib14) 2020; 387
Lu, Chen, Pan, Cui, Amine (bib2) 2018; 1
Nguyen, Song (bib44) 2010; 12
Yi, Qian, Cao, Lin, Qian (bib10) 2019; 149
Liu, Lu, Chu, Luo, Zheng, Chen, Li (bib29) 2018; 27
Zhao, Fan, Zhang, Wang, Ren, Peng, Li, Jiang, Cao (bib16) 2019; 796
Hou, Zheng, Cui, Jiang, Li, Jiang, Gao, Gao (bib4) 2019; 275
Ming Hsien, Sunny, Chun Yu, Ju Hsiang, John, Nen Wen, Wei Nien, Chang Lee, Hwang (bib50) 2016; 3
Su, Zhang, Chen, Liu, Huang, Yu (bib6) 2018; 381
Chen, Ye, Qin, Hao, Xu, Hou (bib23) 2019; 44
He, Xu, Wang, Xu, Zhang (bib18) 2018; 264
Cui, Yang, Hsu, Cui (bib5) 2009; 9
Caballero, Morales (bib45) 2012; 4
Wang, Wang, Wang, Zhang, Wang, Zhong, Tang, Yang, Zheng, Li (bib33) 2019; 356
Bai, Yu, Kung, Wang, Jiang (bib19) 2016; 306
Lu, Guo, Luo, Li, Zhu, Pang (bib13) 2019; 355
Xu, Hao, Zhao (bib39) 2016; 9
Szczech, Jin (bib9) 2011; 4
Guojun, Naigen (bib25) 2018; 11
Kasavajjula, Wang, Appleby (bib30) 2007; 163
Yi, Yu, Tsiamtsouri, Zhang, He, Dai, Hu, Tong, Zheng, Zhang, Liao (bib37) 2019; 295
Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib43) 2008; 3
Ha, Haridas, Cho, Ahn, Ahn, Cho (bib42) 2019; 481
Zhou, Zhang, Hua, Dong, Lin, Xu, Wang, Li, Han, Duan (bib46) 2018; 751
Chae, Ko, Park, Kim, Ma, Cho (bib28) 2016; 9
Kim, Shin, Jeong (bib41) 2019; 467–468
Masmoudi, Rahal, Abdelmouleh, Abdelhedi (bib36) 2013; 286
Zhang, Fan, Ren, Zhao, Peng, Wang, Wu, Dong, Long, Wang, Gao, Ma, Wu, Li, Jiang (bib12) 2019; 418
Cen, Qin, Tao, Sisson, Liang (bib38) 2019; 35
Xu, Lin, Cai, Yi, Zhou, Han, Zhu, Qian (bib48) 2018; 5
Chen, He, Hou, Wang, Chen, Qin, Xia, Zhou (bib3) 2019; 312
Ma, Younesi, Pan, Liu, Zhu, Wei, Edström (bib49) 2016; 26
Chen, Xiao, Wang, Yang (bib26) 2011; 196
Hu, Luo, Wu, Hu, Wang, Zhang (bib47) 2019; 32
Yi (10.1016/j.electacta.2020.136037_bib10) 2019; 149
Zhou (10.1016/j.electacta.2020.136037_bib32) 2012; 2
Luo (10.1016/j.electacta.2020.136037_bib52) 2016; 98
Liu (10.1016/j.electacta.2020.136037_bib15) 2019; 19
Guojun (10.1016/j.electacta.2020.136037_bib25) 2018; 11
Wang (10.1016/j.electacta.2020.136037_bib33) 2019; 356
Masmoudi (10.1016/j.electacta.2020.136037_bib36) 2013; 286
Zhao (10.1016/j.electacta.2020.136037_bib11) 2019; 439
Zhao (10.1016/j.electacta.2020.136037_bib1) 2019; 413
Ming Hsien (10.1016/j.electacta.2020.136037_bib50) 2016; 3
Chen (10.1016/j.electacta.2020.136037_bib23) 2019; 44
Huang (10.1016/j.electacta.2020.136037_bib35) 2018; 146
Kasavajjula (10.1016/j.electacta.2020.136037_bib30) 2007; 163
Cui (10.1016/j.electacta.2020.136037_bib5) 2009; 9
Zhao (10.1016/j.electacta.2020.136037_bib16) 2019; 796
Ha (10.1016/j.electacta.2020.136037_bib42) 2019; 481
Yi (10.1016/j.electacta.2020.136037_bib37) 2019; 295
Ma (10.1016/j.electacta.2020.136037_bib49) 2016; 26
Liu (10.1016/j.electacta.2020.136037_bib29) 2018; 27
Cen (10.1016/j.electacta.2020.136037_bib38) 2019; 35
Hou (10.1016/j.electacta.2020.136037_bib4) 2019; 275
Caballero (10.1016/j.electacta.2020.136037_bib45) 2012; 4
Zhou (10.1016/j.electacta.2020.136037_bib46) 2018; 751
Jing (10.1016/j.electacta.2020.136037_bib51) 2014; 2
Zhang (10.1016/j.electacta.2020.136037_bib12) 2019; 418
Polat (10.1016/j.electacta.2020.136037_bib27) 2015; 622
An (10.1016/j.electacta.2020.136037_bib21) 2019; 479
Chen (10.1016/j.electacta.2020.136037_bib3) 2019; 312
Lu (10.1016/j.electacta.2020.136037_bib2) 2018; 1
Xu (10.1016/j.electacta.2020.136037_bib54) 2014; 118
Szczech (10.1016/j.electacta.2020.136037_bib9) 2011; 4
Wang (10.1016/j.electacta.2020.136037_bib17) 2018; 462
Bai (10.1016/j.electacta.2020.136037_bib19) 2016; 306
Chae (10.1016/j.electacta.2020.136037_bib28) 2016; 9
Ma (10.1016/j.electacta.2020.136037_bib14) 2020; 387
He (10.1016/j.electacta.2020.136037_bib18) 2018; 264
Chen (10.1016/j.electacta.2020.136037_bib26) 2011; 196
Chan (10.1016/j.electacta.2020.136037_bib43) 2008; 3
Lee (10.1016/j.electacta.2020.136037_bib8) 2016; 82
Nguyen (10.1016/j.electacta.2020.136037_bib53) 2019; 297
Hu (10.1016/j.electacta.2020.136037_bib47) 2019; 32
Wang (10.1016/j.electacta.2020.136037_bib24) 2011; 65
Polat (10.1016/j.electacta.2020.136037_bib34) 2016; 304
Yu (10.1016/j.electacta.2020.136037_bib7) 2010; 22
Lu (10.1016/j.electacta.2020.136037_bib13) 2019; 355
Cetinkaya (10.1016/j.electacta.2020.136037_bib40) 2014; 253
Su (10.1016/j.electacta.2020.136037_bib6) 2018; 381
Kim (10.1016/j.electacta.2020.136037_bib55) 2005; 147
Wei (10.1016/j.electacta.2020.136037_bib22) 2019; 317
Xu (10.1016/j.electacta.2020.136037_bib39) 2016; 9
Kim (10.1016/j.electacta.2020.136037_bib41) 2019; 467–468
Yu (10.1016/j.electacta.2020.136037_bib20) 2017; 120
Nguyen (10.1016/j.electacta.2020.136037_bib44) 2010; 12
Chabot (10.1016/j.electacta.2020.136037_bib31) 2014; 130
Xu (10.1016/j.electacta.2020.136037_bib48) 2018; 5
References_xml – volume: 118
  start-page: 28502
  year: 2014
  end-page: 28508
  ident: bib54
  article-title: Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries
  publication-title: J. Phys. Chem. C
  contributor:
    fullname: Bao
– volume: 98
  start-page: 373
  year: 2016
  end-page: 380
  ident: bib52
  article-title: Si nanoparticles/graphene composite membrane for high-performance silicon anode in lithium-ion batteries
  publication-title: Carbon
  contributor:
    fullname: Tang
– volume: 120
  start-page: 397
  year: 2017
  end-page: 404
  ident: bib20
  article-title: Self-adaptive Si/reduced graphene oxide scrolls for high-performance Li-ion battery anodes
  publication-title: Carbon
  contributor:
    fullname: Yang
– volume: 32
  start-page: 124
  year: 2019
  end-page: 130
  ident: bib47
  article-title: Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes
  publication-title: J. Energy Chem.
  contributor:
    fullname: Zhang
– volume: 130
  start-page: 127
  year: 2014
  end-page: 134
  ident: bib31
  article-title: Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries
  publication-title: Electrochim. Acta
  contributor:
    fullname: Chen
– volume: 146
  start-page: 304
  year: 2018
  end-page: 307
  ident: bib35
  article-title: Binder-free anode with porous Si/Cu architecture for lithium-ion batteries
  publication-title: Scripta Mater.
  contributor:
    fullname: Xiao
– volume: 27
  year: 2018
  ident: bib29
  article-title: Size effect of Si particles on the electrochemical performances of Si/C composite anodes
  publication-title: Chin. Phys. B
  contributor:
    fullname: Li
– volume: 82
  start-page: 87
  year: 2016
  end-page: 91
  ident: bib8
  article-title: Si film electrodes with surface-modified Cu current collectors for micro Li batteries
  publication-title: Mater. Res. Bull.
  contributor:
    fullname: Cho
– volume: 264
  start-page: 173
  year: 2018
  end-page: 182
  ident: bib18
  article-title: Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells
  publication-title: Electrochim Acta
  contributor:
    fullname: Zhang
– volume: 306
  start-page: 42
  year: 2016
  end-page: 48
  ident: bib19
  article-title: Si@SiOx/graphene hydrogel composite anode for lithium-ion battery
  publication-title: J. Power Sources
  contributor:
    fullname: Jiang
– volume: 11
  start-page: 2517
  year: 2018
  end-page: 2520
  ident: bib25
  article-title: Synthesis and properties of Si/Ag and Si/Ag/CMS composites as anode materials for Li-ion batteries
  publication-title: Siliconindia
  contributor:
    fullname: Naigen
– volume: 387
  year: 2020
  ident: bib14
  article-title: Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature
  publication-title: J. Hazard Mater.
  contributor:
    fullname: Wang
– volume: 35
  start-page: 725
  year: 2019
  end-page: 730
  ident: bib38
  article-title: The influence of Graphene quality on performance of a Si/Graphene nanocomposite anode
  publication-title: Mater. Sci. Technol.
  contributor:
    fullname: Liang
– volume: 295
  start-page: 719
  year: 2019
  end-page: 725
  ident: bib37
  article-title: Highly conductive C-Si@G nanocomposite as a high-performance anode material for Li-ion batteries
  publication-title: Electrochim. Acta
  contributor:
    fullname: Liao
– volume: 5
  start-page: 1463
  year: 2018
  end-page: 1469
  ident: bib48
  article-title: Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes
  publication-title: Inorg. Chem. Front.
  contributor:
    fullname: Qian
– volume: 12
  start-page: 1593
  year: 2010
  end-page: 1595
  ident: bib44
  article-title: Characterization of SEI layer formed on high-performance Si-Cu anode in ionic liquid battery electrolyte
  publication-title: Electrochem. Commun.
  contributor:
    fullname: Song
– volume: 147
  start-page: 227
  year: 2005
  end-page: 233
  ident: bib55
  article-title: Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Oh
– volume: 462
  start-page: 423
  year: 2018
  end-page: 431
  ident: bib17
  article-title: Highly dispersed PtO nanodots as efficient co-catalyst for photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Wang
– volume: 9
  start-page: 1251
  year: 2016
  end-page: 1257
  ident: bib28
  article-title: Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Cho
– volume: 3
  start-page: 1446
  year: 2016
  ident: bib50
  article-title: Resilient yolk-shell silicon reduced graphene oxide amorphous carbon anode material from a synergistic dual coating process for Lithium-ion batteries
  publication-title: ChemElectroChem
  contributor:
    fullname: Hwang
– volume: 26
  start-page: 6797
  year: 2016
  end-page: 6806
  ident: bib49
  article-title: Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Edström
– volume: 2
  start-page: 16360
  year: 2014
  end-page: 16364
  ident: bib51
  article-title: Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Li
– volume: 19
  start-page: 299
  year: 2019
  end-page: 305
  ident: bib15
  article-title: Yolk@Shell SiO/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage
  publication-title: Energy Storage Materials
  contributor:
    fullname: Mai
– volume: 467–468
  start-page: 926
  year: 2019
  end-page: 931
  ident: bib41
  article-title: Protective carbon-coated silicon nanoparticles with graphene buffer layers for high-performance anodes in lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Jeong
– volume: 275
  start-page: 42
  year: 2019
  end-page: 49
  ident: bib4
  article-title: Silicon carbon nanohybrids with expandable space: a high-performance lithium battery anodes
  publication-title: Microporous Mesoporous Mater.
  contributor:
    fullname: Gao
– volume: 196
  start-page: 6657
  year: 2011
  end-page: 6662
  ident: bib26
  article-title: Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Yang
– volume: 418
  start-page: 202
  year: 2019
  end-page: 210
  ident: bib12
  article-title: Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO
  publication-title: J. Power Sources
  contributor:
    fullname: Jiang
– volume: 297
  start-page: 355
  year: 2019
  end-page: 364
  ident: bib53
  article-title: Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries
  publication-title: Electrochim. Acta
  contributor:
    fullname: Hur
– volume: 622
  start-page: 418
  year: 2015
  end-page: 425
  ident: bib27
  article-title: Multi-layered Cu/Si nanorods and its use for lithium ion batteries
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Keles
– volume: 413
  start-page: 259
  year: 2019
  end-page: 283
  ident: bib1
  article-title: A review on modeling of electro-chemo-mechanics in lithium-ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Xu
– volume: 22
  start-page: 2247
  year: 2010
  end-page: 2250
  ident: bib7
  article-title: Reversible storage of lithium in silver-coated three-dimensional macroporous silicon
  publication-title: Adv. Mater.
  contributor:
    fullname: Maier
– volume: 312
  start-page: 242
  year: 2019
  end-page: 250
  ident: bib3
  article-title: Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode
  publication-title: Electrochim. Acta
  contributor:
    fullname: Zhou
– volume: 355
  start-page: 208
  year: 2019
  end-page: 237
  ident: bib13
  article-title: Core-shell materials for advanced batteries
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Pang
– volume: 796
  start-page: 111
  year: 2019
  end-page: 119
  ident: bib16
  article-title: Preparation of partially-cladding NiCo-LDH/Mn
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Cao
– volume: 2
  start-page: 1086
  year: 2012
  end-page: 1090
  ident: bib32
  article-title: Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for Lithium-ion batteries
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Guo
– volume: 439
  year: 2019
  ident: bib11
  article-title: Entire synergistic contribution of electrodeposited battery-type NiCo
  publication-title: J. Power Sources
  contributor:
    fullname: Cao
– volume: 65
  start-page: 3227
  year: 2011
  end-page: 3229
  ident: bib24
  article-title: Performance of Si-Ni nanorod as anode for Li-ion batteries
  publication-title: Mater. Lett.
  contributor:
    fullname: He
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  ident: bib43
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Cui
– volume: 253
  start-page: 63
  year: 2014
  end-page: 69
  ident: bib40
  article-title: Improvement cycleability of core-shell silicon/copper composite electrodes for Li-ion batteries by using electroless deposition of copper on silicon powders
  publication-title: Powder Technol.
  contributor:
    fullname: Alp
– volume: 4
  start-page: 2083
  year: 2012
  end-page: 2092
  ident: bib45
  article-title: Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
  publication-title: Nanoscale
  contributor:
    fullname: Morales
– volume: 381
  start-page: 66
  year: 2018
  end-page: 71
  ident: bib6
  article-title: Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode
  publication-title: J. Power Sources
  contributor:
    fullname: Yu
– volume: 4
  start-page: 56
  year: 2011
  end-page: 72
  ident: bib9
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Jin
– volume: 481
  start-page: 307
  year: 2019
  end-page: 312
  ident: bib42
  article-title: Nano silicon encapsulated in modified copper as an anode for high-performance lithium-ion battery
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Cho
– volume: 751
  start-page: 307
  year: 2018
  end-page: 315
  ident: bib46
  article-title: Molten salt electrolytic synthesis of silicon-copper composite nanowires with enhanced performances as lithium-ion battery anode
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Duan
– volume: 304
  start-page: 273
  year: 2016
  end-page: 281
  ident: bib34
  article-title: Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries
  publication-title: J. Power Sources
  contributor:
    fullname: Amine
– volume: 479
  start-page: 896
  year: 2019
  end-page: 902
  ident: bib21
  article-title: Three-dimensional carbon-coating silicon nanoparticles welded on carbon nanotubes composites for high-stability lithium-ion battery anodes
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Chu
– volume: 9
  start-page: 908
  year: 2016
  end-page: 916
  ident: bib39
  article-title: Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries
  publication-title: Nano Res
  contributor:
    fullname: Zhao
– volume: 149
  start-page: 664
  year: 2019
  end-page: 671
  ident: bib10
  article-title: Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage
  publication-title: Carbon
  contributor:
    fullname: Qian
– volume: 163
  start-page: 1003
  year: 2007
  end-page: 1039
  ident: bib30
  article-title: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
  publication-title: J. Power Sources
  contributor:
    fullname: Appleby
– volume: 1
  start-page: 35
  year: 2018
  end-page: 53
  ident: bib2
  article-title: High-performance anode materials for rechargeable Lithium-ion batteries
  publication-title: Electro. ener. rev.
  contributor:
    fullname: Amine
– volume: 9
  start-page: 3370
  year: 2009
  end-page: 3374
  ident: bib5
  article-title: Carbon-silicon core-shell nanowires as high capacity electrode for Lithium-ion batteries
  publication-title: Nano Lett.
  contributor:
    fullname: Cui
– volume: 286
  start-page: 71
  year: 2013
  end-page: 77
  ident: bib36
  article-title: Hydrolysis process of γ-APS and characterization of silane film formed on copper in different conditions
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Abdelhedi
– volume: 356
  start-page: 895
  year: 2019
  end-page: 903
  ident: bib33
  article-title: In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Li
– volume: 317
  start-page: 583
  year: 2019
  end-page: 593
  ident: bib22
  article-title: Novel honeycomb silicon wrapped in reduced graphene oxide/CNT system as high-stability anodes for lithium-ion batteries
  publication-title: Electrochim. Acta
  contributor:
    fullname: Cai
– volume: 44
  start-page: 1078
  year: 2019
  end-page: 1087
  ident: bib23
  article-title: Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Hou
– volume: 413
  start-page: 259
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib1
  article-title: A review on modeling of electro-chemo-mechanics in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.12.011
  contributor:
    fullname: Zhao
– volume: 381
  start-page: 66
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib6
  article-title: Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.010
  contributor:
    fullname: Su
– volume: 467–468
  start-page: 926
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib41
  article-title: Protective carbon-coated silicon nanoparticles with graphene buffer layers for high-performance anodes in lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.253
  contributor:
    fullname: Kim
– volume: 4
  start-page: 2083
  year: 2012
  ident: 10.1016/j.electacta.2020.136037_bib45
  article-title: Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
  publication-title: Nanoscale
  doi: 10.1039/c2nr11936f
  contributor:
    fullname: Caballero
– volume: 82
  start-page: 87
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib8
  article-title: Si film electrodes with surface-modified Cu current collectors for micro Li batteries
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.03.038
  contributor:
    fullname: Lee
– volume: 12
  start-page: 1593
  year: 2010
  ident: 10.1016/j.electacta.2020.136037_bib44
  article-title: Characterization of SEI layer formed on high-performance Si-Cu anode in ionic liquid battery electrolyte
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.09.003
  contributor:
    fullname: Nguyen
– volume: 9
  start-page: 3370
  year: 2009
  ident: 10.1016/j.electacta.2020.136037_bib5
  article-title: Carbon-silicon core-shell nanowires as high capacity electrode for Lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl901670t
  contributor:
    fullname: Cui
– volume: 312
  start-page: 242
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib3
  article-title: Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.170
  contributor:
    fullname: Chen
– volume: 286
  start-page: 71
  year: 2013
  ident: 10.1016/j.electacta.2020.136037_bib36
  article-title: Hydrolysis process of γ-APS and characterization of silane film formed on copper in different conditions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.09.018
  contributor:
    fullname: Masmoudi
– volume: 19
  start-page: 299
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib15
  article-title: Yolk@Shell SiO/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2018.10.011
  contributor:
    fullname: Liu
– volume: 796
  start-page: 111
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib16
  article-title: Preparation of partially-cladding NiCo-LDH/Mn3O4 composite by electrodeposition route and its excellent supercapacitor performance
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.023
  contributor:
    fullname: Zhao
– volume: 65
  start-page: 3227
  year: 2011
  ident: 10.1016/j.electacta.2020.136037_bib24
  article-title: Performance of Si-Ni nanorod as anode for Li-ion batteries
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.07.022
  contributor:
    fullname: Wang
– volume: 11
  start-page: 2517
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib25
  article-title: Synthesis and properties of Si/Ag and Si/Ag/CMS composites as anode materials for Li-ion batteries
  publication-title: Siliconindia
  doi: 10.1007/s12633-018-9946-5
  contributor:
    fullname: Guojun
– volume: 3
  start-page: 1446
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib50
  article-title: Resilient yolk-shell silicon reduced graphene oxide amorphous carbon anode material from a synergistic dual coating process for Lithium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600254
  contributor:
    fullname: Ming Hsien
– volume: 306
  start-page: 42
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib19
  article-title: Si@SiOx/graphene hydrogel composite anode for lithium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.102
  contributor:
    fullname: Bai
– volume: 355
  start-page: 208
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib13
  article-title: Core-shell materials for advanced batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.132
  contributor:
    fullname: Lu
– volume: 264
  start-page: 173
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib18
  article-title: Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.01.088
  contributor:
    fullname: He
– volume: 120
  start-page: 397
  year: 2017
  ident: 10.1016/j.electacta.2020.136037_bib20
  article-title: Self-adaptive Si/reduced graphene oxide scrolls for high-performance Li-ion battery anodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.05.002
  contributor:
    fullname: Yu
– volume: 163
  start-page: 1003
  year: 2007
  ident: 10.1016/j.electacta.2020.136037_bib30
  article-title: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.084
  contributor:
    fullname: Kasavajjula
– volume: 295
  start-page: 719
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib37
  article-title: Highly conductive C-Si@G nanocomposite as a high-performance anode material for Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.11.020
  contributor:
    fullname: Yi
– volume: 275
  start-page: 42
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib4
  article-title: Silicon carbon nanohybrids with expandable space: a high-performance lithium battery anodes
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.08.014
  contributor:
    fullname: Hou
– volume: 196
  start-page: 6657
  year: 2011
  ident: 10.1016/j.electacta.2020.136037_bib26
  article-title: Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.12.075
  contributor:
    fullname: Chen
– volume: 27
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib29
  article-title: Size effect of Si particles on the electrochemical performances of Si/C composite anodes
  publication-title: Chin. Phys. B
  contributor:
    fullname: Liu
– volume: 130
  start-page: 127
  year: 2014
  ident: 10.1016/j.electacta.2020.136037_bib31
  article-title: Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.135
  contributor:
    fullname: Chabot
– volume: 44
  start-page: 1078
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib23
  article-title: Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.065
  contributor:
    fullname: Chen
– volume: 118
  start-page: 28502
  year: 2014
  ident: 10.1016/j.electacta.2020.136037_bib54
  article-title: Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp509783h
  contributor:
    fullname: Xu
– volume: 32
  start-page: 124
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib47
  article-title: Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.07.008
  contributor:
    fullname: Hu
– volume: 2
  start-page: 16360
  year: 2014
  ident: 10.1016/j.electacta.2020.136037_bib51
  article-title: Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA03370A
  contributor:
    fullname: Jing
– volume: 9
  start-page: 1251
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib28
  article-title: Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00023A
  contributor:
    fullname: Chae
– volume: 146
  start-page: 304
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib35
  article-title: Binder-free anode with porous Si/Cu architecture for lithium-ion batteries
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2017.12.018
  contributor:
    fullname: Huang
– volume: 2
  start-page: 1086
  year: 2012
  ident: 10.1016/j.electacta.2020.136037_bib32
  article-title: Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for Lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200158
  contributor:
    fullname: Zhou
– volume: 356
  start-page: 895
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib33
  article-title: In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.110
  contributor:
    fullname: Wang
– volume: 462
  start-page: 423
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib17
  article-title: Highly dispersed PtO nanodots as efficient co-catalyst for photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.126
  contributor:
    fullname: Wang
– volume: 304
  start-page: 273
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib34
  article-title: Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.032
  contributor:
    fullname: Polat
– volume: 147
  start-page: 227
  year: 2005
  ident: 10.1016/j.electacta.2020.136037_bib55
  article-title: Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.12.041
  contributor:
    fullname: Kim
– volume: 418
  start-page: 202
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib12
  article-title: Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.02.041
  contributor:
    fullname: Zhang
– volume: 22
  start-page: 2247
  year: 2010
  ident: 10.1016/j.electacta.2020.136037_bib7
  article-title: Reversible storage of lithium in silver-coated three-dimensional macroporous silicon
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903755
  contributor:
    fullname: Yu
– volume: 439
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib11
  article-title: Entire synergistic contribution of electrodeposited battery-type NiCo2O4@Ni4.5Co4.5S8 composite for high-performance supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227097
  contributor:
    fullname: Zhao
– volume: 387
  year: 2020
  ident: 10.1016/j.electacta.2020.136037_bib14
  article-title: Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122017
  contributor:
    fullname: Ma
– volume: 317
  start-page: 583
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib22
  article-title: Novel honeycomb silicon wrapped in reduced graphene oxide/CNT system as high-stability anodes for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.024
  contributor:
    fullname: Wei
– volume: 253
  start-page: 63
  year: 2014
  ident: 10.1016/j.electacta.2020.136037_bib40
  article-title: Improvement cycleability of core-shell silicon/copper composite electrodes for Li-ion batteries by using electroless deposition of copper on silicon powders
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.11.004
  contributor:
    fullname: Cetinkaya
– volume: 5
  start-page: 1463
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib48
  article-title: Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C8QI00173A
  contributor:
    fullname: Xu
– volume: 35
  start-page: 725
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib38
  article-title: The influence of Graphene quality on performance of a Si/Graphene nanocomposite anode
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2019.1590506
  contributor:
    fullname: Cen
– volume: 1
  start-page: 35
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib2
  article-title: High-performance anode materials for rechargeable Lithium-ion batteries
  publication-title: Electro. ener. rev.
  doi: 10.1007/s41918-018-0001-4
  contributor:
    fullname: Lu
– volume: 479
  start-page: 896
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib21
  article-title: Three-dimensional carbon-coating silicon nanoparticles welded on carbon nanotubes composites for high-stability lithium-ion battery anodes
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.145
  contributor:
    fullname: An
– volume: 751
  start-page: 307
  year: 2018
  ident: 10.1016/j.electacta.2020.136037_bib46
  article-title: Molten salt electrolytic synthesis of silicon-copper composite nanowires with enhanced performances as lithium-ion battery anode
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.04.128
  contributor:
    fullname: Zhou
– volume: 297
  start-page: 355
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib53
  article-title: Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.005
  contributor:
    fullname: Nguyen
– volume: 98
  start-page: 373
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib52
  article-title: Si nanoparticles/graphene composite membrane for high-performance silicon anode in lithium-ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.031
  contributor:
    fullname: Luo
– volume: 149
  start-page: 664
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib10
  article-title: Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.04.080
  contributor:
    fullname: Yi
– volume: 622
  start-page: 418
  year: 2015
  ident: 10.1016/j.electacta.2020.136037_bib27
  article-title: Multi-layered Cu/Si nanorods and its use for lithium ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.10.028
  contributor:
    fullname: Polat
– volume: 26
  start-page: 6797
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib49
  article-title: Constraining Si particles within graphene foam monolith: interfacial modification for high-performance Li+ Storage and flexible integrated configuration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602324
  contributor:
    fullname: Ma
– volume: 9
  start-page: 908
  year: 2016
  ident: 10.1016/j.electacta.2020.136037_bib39
  article-title: Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries
  publication-title: Nano Res
  doi: 10.1007/s12274-015-0973-x
  contributor:
    fullname: Xu
– volume: 481
  start-page: 307
  year: 2019
  ident: 10.1016/j.electacta.2020.136037_bib42
  article-title: Nano silicon encapsulated in modified copper as an anode for high-performance lithium-ion battery
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.080
  contributor:
    fullname: Ha
– volume: 3
  start-page: 31
  year: 2008
  ident: 10.1016/j.electacta.2020.136037_bib43
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
  contributor:
    fullname: Chan
– volume: 4
  start-page: 56
  year: 2011
  ident: 10.1016/j.electacta.2020.136037_bib9
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00281J
  contributor:
    fullname: Szczech
SSID ssj0007670
Score 2.5287561
Snippet With the large-scale practical application of electric vehicles and mobile devices, more and more attention has been focused on the research of high specific...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 136037
SubjectTerms Anode materials
Anodes
Charge transfer
Copper
Core-shell structure
Electric vehicles
Electrochemical analysis
Electrode materials
Electrode polarization
Electrodes
Electronic devices
Graphene
Graphene nanosheets
Lithium
Lithium-ion batteries
Nanoparticles
Rechargeable batteries
Sheets
Silicon
Thermal reduction
Title Graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets for lithium-ion battery anode with enhanced reversible capacity and cyclic performance
URI https://dx.doi.org/10.1016/j.electacta.2020.136037
https://www.proquest.com/docview/2438725502/abstract/
Volume 341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQHEoPFYWi0lI0B66BbGKvvZyKVqXbonIBJG6W7Xi7qbbZFbt74MJ_6T_tm3yUUiH1gBQpSjROoow9814yH0IcRgMvZpxOtHMeBCX0EqfAWvW4MN5Fb1LDicLfLvqja_n1Rt2siWGXC8Nhla3tb2x6ba3bM8ft2zyelyXn-PZyyQkO_HcvazLY4Ywwp4_uH8I8dF-nXRcDln4U41W3mnHYQBQz7gHRT7kh-tMe6h9bXTugsy3xqkWOdNo83GuxFqtt8WLYNWzbFi__qi24I3595lLUsGQU6kZExPUqkwXHfdJl-XG4ospVYMxtYBxB-xNIFDSr6Hs3FOJxuSAAWwJcn5Srnwn0SL4uynmHMbMiEn_KpVhN6lgC4pJQt1hnU74xCDlQPuQKCndhWgaaPyQqvBHXZ5-uhqOk7ceQhFzmy2QANNKDU_Wg06kvUqeC1oCDxRjAySlOuZXAB1qOsTeqMMBmygctjY-5HOh8V6xXsyq-FRRirnpe-hAdKJPSHjAyA1tWGXz2wBR7Iu10YOdN2Q3bxaP9sH_UZllttlHbnjjpdGUfzSAL5_D_wfuddm27iBc2k7nRoFxp9u45134vNvmoiZLcF-vL21X8ACSz9Af1VD0QG6dfzkcXvwGn5PW8
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hcKAcEIVWPNs59Grhx252wwkUQUOBXAoSt9XuetMYBSciyYGfwz9lxg9aUKUeKlmyZO_Ylmd35vvseQB8C5q8mLYqUtY6Iig-iawk1qpGuXY2OB1rThS-HnYHt-LHnbxbgX6bC8NhlY3tr216Za2bI0fN2zyaFQXn-CaZ4AQH_ruXcgb7qpAqER1YPb24HAxfDbLqqrhtZMACb8K8qm4zljbiiim3gejG3BP9707qnbmufND5Jmw04BFP6-f7CCuh3IK1ftuzbQvW_ygvuA3P37kaNRkz9FUvIuSSldGcQz_xZ3HSX2JpSyLNTWwc0gQY04gcpyX-akVpeFjMkbAtEmIfF8uHiFSJrqrL-UQy0zwgf83FUI6rcALkqlCPtNQmfGPi5AT0aVyO_slPCo-z37kKn-D2_OymP4ialgyRz0S2iHoESBLyq44Ydezy2EqvFCHCfETYyUrOuhUEEZQY0V7LXBM8k84roV3IRE9ln6FTTsuwA-hDJhMnnA-WWJNUjpBkSoRZpuS2ezrfhbjVgZnVlTdMG5J2b17VZlhtplbbLhy3ujJvJpEh__Bv4YNWu6ZZx3OTikwrYl1xuvc_1_4Ka4Ob6ytzdTG83IcPfKYOmjyAzuJxGQ4J2Czcl2bivgAbavhy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+caging+core-shell+Si%40Cu+nanoparticles+anchored+on+graphene+sheets+for+lithium-ion+battery+anode+with+enhanced+reversible+capacity+and+cyclic+performance&rft.jtitle=Electrochimica+acta&rft.au=Yang%2C+Yu&rft.au=Yang%2C+Hui-Xian&rft.au=Wu%2C+Ya-Qian&rft.au=Pu%2C+Hao&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=341&rft_id=info:doi/10.1016%2Fj.electacta.2020.136037&rft.externalDocID=S0013468620304291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon