Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals

•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurall...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fatigue Vol. 149; p. 106278
Main Authors Gavras, Anastasios G., Spangenberger, Anthony G., Lados, Diana A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well. Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.
AbstractList Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.
•Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure transition.•Design maps visually interpolate crack growth mechanisms to untested stress ratios.•Grain-sensitive model predicts microstructurally small crack growth rates well. Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure, stress ratio, and initial flaw size and related to the effective slip length (grain and phase boundaries). Damage mechanism maps were developed to provide design tools to improve material selection for safety-critical structural components. A predictive model for grain size-controlled microstructurally small FCG was developed with consideration of crack size, grain orientation, and the stochastic effects of discrete microstructural interactions. The model allows for rapid estimation of small FCG behavior and agrees well with experimental data.
ArticleNumber 106278
Author Gavras, Anastasios G.
Spangenberger, Anthony G.
Lados, Diana A.
Author_xml – sequence: 1
  givenname: Anastasios G.
  surname: Gavras
  fullname: Gavras, Anastasios G.
– sequence: 2
  givenname: Anthony G.
  orcidid: 0000-0002-7940-9778
  surname: Spangenberger
  fullname: Spangenberger, Anthony G.
  email: aspangenberger@wpi.edu
– sequence: 3
  givenname: Diana A.
  surname: Lados
  fullname: Lados, Diana A.
BookMark eNqFkElPwzAQhS0EEmX5DVjinOIl8XJEiE2qxAXOluuMW4cmKbbD9utJCULixGVm9DTvjeY7Qvtd3wFCZ5TMKaHiopmHxtscVgPMGWF0VAWTag_NqJK64GXF9tGM0JIVlDJ-iI5Sagghmshqhj5vJit20bpnvIr9W17jNrjYpxwHl4doN7gFt7ZdSG3CtqtxhvdRhyJBl0IOr4C3Eergvse2r2ETuhXuPd6E1Tq_wa7iP3HZbtIJOvBjg9Offoyebq4fr-6KxcPt_dXlonC85LlQ0ksBQtTcEaYdgKbeg62sXC6lokovva2UddbSinuhSamVsGopgHiuQfFjdD7lbmP_MkDKpumH2I0nDatKLZkgJR-35LS1-zxF8GYbQ2vjh6HE7ECbxvyCNjvQZgI9Oi8nJ4xPvAaIJrkAnRuJRHDZ1H34N-MLpNWRTw
CitedBy_id crossref_primary_10_1016_j_ijfatigue_2024_108190
crossref_primary_10_1080_10408436_2022_2137462
crossref_primary_10_1016_j_ijfatigue_2022_107027
Cites_doi 10.1111/ffe.12392
10.1016/j.actamat.2012.01.023
10.1016/j.ijfatigue.2015.11.011
10.1016/j.jmrt.2019.11.055
10.1016/j.actamat.2017.04.071
10.1016/j.ijfatigue.2016.12.029
10.1016/S0921-5093(01)00984-4
10.1016/j.prostr.2020.01.137
10.1520/STP13426S
10.1016/j.actamat.2008.04.065
10.1046/j.1460-2695.2002.00571.x
10.1179/026708300101508315
10.1016/j.ijplas.2019.09.010
10.1016/j.engfracmech.2018.09.009
10.1016/S0142-1123(99)00053-5
10.1007/s11661-012-1121-9
10.1016/j.engfracmech.2015.06.003
10.1016/S0921-5093(01)01014-0
10.1016/j.matchar.2020.110349
10.1007/BF00551992
10.1016/j.ijfatigue.2004.04.004
10.1016/0025-5416(86)90217-X
10.1016/j.ijfatigue.2005.06.013
10.1179/026708399101505923
10.1016/j.engfracmech.2020.107129
10.1016/j.ijfatigue.2018.01.030
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.ijfatigue.2021.106278
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3452
ExternalDocumentID 10_1016_j_ijfatigue_2021_106278
S0142112321001389
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83
IEDL.DBID AIKHN
ISSN 0142-1123
IngestDate Thu Oct 10 16:30:55 EDT 2024
Thu Sep 26 20:27:27 EDT 2024
Fri Feb 23 02:43:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Titanium alloys
Fatigue crack growth
Aluminum alloys
Microstructure
Stress ratio
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-87f76e66d3c029cee91ffea5a7bb78189bfa58acaa153f6904986a8b6e0f39e83
ORCID 0000-0002-7940-9778
PQID 2549726043
PQPubID 2045465
ParticipantIDs proquest_journals_2549726043
crossref_primary_10_1016_j_ijfatigue_2021_106278
elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2021_106278
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of fatigue
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References ASTM E8/E8M-16ae1, Standard test methods for tension testing of metallic materials. West Conshohocken (PA): ASTM International; 2016.
Ishihara, Sugai, McEvily (b0025) 2012; 43
Wu, Kou, Tang, Chen, Han, Deng (b0110) 2020; 235
Lawson, Chen, Meshii (b0015) 1999
ASTM E647-15e1, Standard test method for measurement of fatigue crack growth rates. West Conshohocken (PA): ASTM International; 2015.
Garb, Leitner, Stauder, Schnubel, Grün (b0160) 2018; 111
Donald, Bray, Bush (b0040) 1999; 29
Lee, Park, Nam (b0090) 1999; 15
Chowdhury, Sehitoglu (b0020) 2016; 39
Papakyriacou, Mayer, Fuchs, Stanzl-Tschegg, Wei (b0135) 2002; 25
Liu, Winwood, Rhodes, Birosca (b0060) 2020; 125
Yin, Liu, Chen, Yi, Wang, Wang (b0070) 2016; 84
Bianchetti, Zheng, Chromik, Brochu (b0080) 2018; 202
Newman J. The effects of load ratio on threshold fatigue crack growth of aluminum alloys. Virginia Tech, doctoral dissertation; 2000.
Qin, Zhang, Ye, Shan-Tung (b0065) 2015; 142
Blind, Martin (b0155) 1983; 18
Di Giovanni, de Menezes, Cerri, Castrodeza (b0050) 2020; 9
Schroeder, Albrecht, Lütjering (b0035) 2001; 319–321
Spangenberger, Lados, Coleman, Birosca, Hardy (b0045) 2017; 97
Roy, Suwas (b0150) 2017; 134
Takahashi, Shikama, Yoshihara, Aiura, Noguchi (b0075) 2012; 60
Germain, Gey, Humbert, Vo, Jahzi, Bocher (b0145) 2008; 56
Lados, Apelian, Paris, Donald (b0030) 2005; 27
Suresh, Ritchie (b0010) 1984; 29
Lodgaard, Ryum (b0095) 2000; 16
Sinha, Soboyejo (b0105) 2001; 319–321
Ritchie, Lankford (b0005) 1986; 84
Gerbe, Tenkamp, Scherbring, Bleicher, Krupp, Michels (b0055) 2019; 23
Srinivasan N, Velmurugan R, Kumar Singh S, Pant B, Kumar R. Texture strengthening and anisotropic hardening of mill annealed Ti-6Al-4V alloy under equi-biaxial tension. Mater Charact 2020;164.
Lee, Yoon, Aliabadi (b0130) 2008; 385–387
Lütjering G, Williams J. Alpha + Beta Alloys. In: Titanium. Berlin Heidelberg: Springer-Verlag; 2007. p. 203–58.
Borrego, Costa, Silva, Ferreira (b0085) 2004; 26
10.1016/j.ijfatigue.2021.106278_b0100
Ishihara (10.1016/j.ijfatigue.2021.106278_b0025) 2012; 43
10.1016/j.ijfatigue.2021.106278_b0125
Germain (10.1016/j.ijfatigue.2021.106278_b0145) 2008; 56
Takahashi (10.1016/j.ijfatigue.2021.106278_b0075) 2012; 60
Lawson (10.1016/j.ijfatigue.2021.106278_b0015) 1999
Yin (10.1016/j.ijfatigue.2021.106278_b0070) 2016; 84
10.1016/j.ijfatigue.2021.106278_b0120
Lee (10.1016/j.ijfatigue.2021.106278_b0130) 2008; 385–387
10.1016/j.ijfatigue.2021.106278_b0140
Donald (10.1016/j.ijfatigue.2021.106278_b0040) 1999; 29
Gerbe (10.1016/j.ijfatigue.2021.106278_b0055) 2019; 23
Lodgaard (10.1016/j.ijfatigue.2021.106278_b0095) 2000; 16
Chowdhury (10.1016/j.ijfatigue.2021.106278_b0020) 2016; 39
Lee (10.1016/j.ijfatigue.2021.106278_b0090) 1999; 15
Lados (10.1016/j.ijfatigue.2021.106278_b0030) 2005; 27
Blind (10.1016/j.ijfatigue.2021.106278_b0155) 1983; 18
Di Giovanni (10.1016/j.ijfatigue.2021.106278_b0050) 2020; 9
Papakyriacou (10.1016/j.ijfatigue.2021.106278_b0135) 2002; 25
Liu (10.1016/j.ijfatigue.2021.106278_b0060) 2020; 125
Qin (10.1016/j.ijfatigue.2021.106278_b0065) 2015; 142
10.1016/j.ijfatigue.2021.106278_b0115
Bianchetti (10.1016/j.ijfatigue.2021.106278_b0080) 2018; 202
Sinha (10.1016/j.ijfatigue.2021.106278_b0105) 2001; 319–321
Garb (10.1016/j.ijfatigue.2021.106278_b0160) 2018; 111
Schroeder (10.1016/j.ijfatigue.2021.106278_b0035) 2001; 319–321
Roy (10.1016/j.ijfatigue.2021.106278_b0150) 2017; 134
Suresh (10.1016/j.ijfatigue.2021.106278_b0010) 1984; 29
Ritchie (10.1016/j.ijfatigue.2021.106278_b0005) 1986; 84
Wu (10.1016/j.ijfatigue.2021.106278_b0110) 2020; 235
Spangenberger (10.1016/j.ijfatigue.2021.106278_b0045) 2017; 97
Borrego (10.1016/j.ijfatigue.2021.106278_b0085) 2004; 26
References_xml – volume: 97
  start-page: 202
  year: 2017
  end-page: 213
  ident: b0045
  article-title: Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356–T61 aluminum alloys
  publication-title: Int J Fatigue
  contributor:
    fullname: Hardy
– volume: 56
  start-page: 4298
  year: 2008
  end-page: 4308
  ident: b0145
  article-title: Texture heterogeneities induced by subtransus processing of near α titanium alloys
  publication-title: Acta Mater
  contributor:
    fullname: Bocher
– volume: 134
  start-page: 283
  year: 2017
  end-page: 301
  ident: b0150
  article-title: Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of Ti-6Al-4V alloy
  publication-title: Acta Mater
  contributor:
    fullname: Suwas
– volume: 9
  start-page: 1286
  year: 2020
  end-page: 1295
  ident: b0050
  article-title: Influence of microstructure and porosity on the fracture toughness of Al-Si-Mg alloy
  publication-title: J Mater Res Technol
  contributor:
    fullname: Castrodeza
– start-page: S15
  year: 1999
  end-page: S34
  ident: b0015
  article-title: Near-threshold fatigue: a review
  publication-title: Int J Fatigue
  contributor:
    fullname: Meshii
– volume: 84
  start-page: 11
  year: 1986
  end-page: 16
  ident: b0005
  article-title: Small fatigue cracks: a statement of the problem and potential solutions
  publication-title: Mater Sci Eng
  contributor:
    fullname: Lankford
– volume: 111
  start-page: 256
  year: 2018
  end-page: 268
  ident: b0160
  article-title: Application of modified Kitagawa-Takahashi diagram for fatigue strength assessment of cast Al-Si-Cu alloys
  publication-title: Int J Fatigue
  contributor:
    fullname: Grün
– volume: 84
  start-page: 9
  year: 2016
  end-page: 16
  ident: b0070
  article-title: Effect of grain size on fatigue-crack growth in 2524 aluminium alloy
  publication-title: Int J Fatigue
  contributor:
    fullname: Wang
– volume: 29
  start-page: 445
  year: 1984
  end-page: 475
  ident: b0010
  article-title: Propagation of short fatigue cracks
  publication-title: Int Metals Rev
  contributor:
    fullname: Ritchie
– volume: 60
  start-page: 2554
  year: 2012
  end-page: 2567
  ident: b0075
  article-title: Study on dominant mechanism of high-cycle fatigue life in 6061–T6 aluminum alloy through microanalyses of microstructurally small cracks
  publication-title: Acta Mater
  contributor:
    fullname: Noguchi
– volume: 319–321
  start-page: 607
  year: 2001
  end-page: 612
  ident: b0105
  article-title: An investigation of the effects of colony microstructure on fatigue crack growth in Ti-6Al-4V
  publication-title: Mater Sci Eng, A
  contributor:
    fullname: Soboyejo
– volume: 142
  start-page: 140
  year: 2015
  end-page: 153
  ident: b0065
  article-title: Grain size effect on multi-scale fatigue crack growth mechanism of Nickel-based alloy GH4169
  publication-title: Eng Fract Mech
  contributor:
    fullname: Shan-Tung
– volume: 26
  start-page: 1321
  year: 2004
  end-page: 1331
  ident: b0085
  article-title: Microstructure dependent fatigue crack growth in aged hardened aluminum alloys
  publication-title: Int J Fatigue
  contributor:
    fullname: Ferreira
– volume: 25
  start-page: 795
  year: 2002
  end-page: 804
  ident: b0135
  article-title: Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminum and magnesium alloys
  publication-title: Fatigue Fract Eng Mater Struct
  contributor:
    fullname: Wei
– volume: 319–321
  start-page: 602
  year: 2001
  end-page: 606
  ident: b0035
  article-title: Fatigue crack propagation in titanium alloys with lamellar and bi-lamellar microstructures
  publication-title: Mater Sci Eng, A
  contributor:
    fullname: Lütjering
– volume: 15
  start-page: 450
  year: 1999
  end-page: 455
  ident: b0090
  article-title: Enhancement of mechanical properties in Al-Mg-Si alloys by means of manganese dispersiods
  publication-title: Mater Sci Technol
  contributor:
    fullname: Nam
– volume: 43
  start-page: 3086
  year: 2012
  end-page: 3096
  ident: b0025
  article-title: On the distinction between plasticity- and roughness-induced fatigue crack closure
  publication-title: Metall Mater Trans A
  contributor:
    fullname: McEvily
– volume: 18
  start-page: 1224
  year: 1983
  end-page: 1234
  ident: b0155
  article-title: The effect of dispersoids on the micromechanisms of crack extension in Al-Mg-Si alloys
  publication-title: J Mater Sci
  contributor:
    fullname: Martin
– volume: 23
  start-page: 511
  year: 2019
  end-page: 516
  ident: b0055
  article-title: Microstructural influences on the fatigue crack initiation and propagation mechanisms in hypo-eutectic Al-Si cast alloys
  publication-title: Procedia Struct Integrity
  contributor:
    fullname: Michels
– volume: 27
  start-page: 1463
  year: 2005
  end-page: 1472
  ident: b0030
  article-title: Closure mechanisms in Al-Si-Mg cast alloys and long-crack to small-crack corrections
  publication-title: Int J Fatigue
  contributor:
    fullname: Donald
– volume: 16
  start-page: 599
  year: 2000
  end-page: 604
  ident: b0095
  article-title: Precipitation of chromium containing dispersoids in Al-Mg-Si alloys
  publication-title: Mater Sci Technol
  contributor:
    fullname: Ryum
– volume: 29
  start-page: 674
  year: 1999
  end-page: 695
  ident: b0040
  article-title: An evaluation of the adjusted compliance ratio technique for determining the effective stress intensity factor
  publication-title: Fatigue Fract Mech
  contributor:
    fullname: Bush
– volume: 125
  start-page: 150
  year: 2020
  end-page: 168
  ident: b0060
  article-title: The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloy
  publication-title: Int J Plast
  contributor:
    fullname: Birosca
– volume: 202
  start-page: 20
  year: 2018
  end-page: 32
  ident: b0080
  article-title: Comparison of small and long fatigue crack growth behavior in AA 7050–T7451
  publication-title: Eng Fract Mech
  contributor:
    fullname: Brochu
– volume: 39
  start-page: 652
  year: 2016
  end-page: 674
  ident: b0020
  article-title: Mechanisms of fatigue crack growth - a critical digest of theoretical developments
  publication-title: Fatigue Fract Eng Mater Struct
  contributor:
    fullname: Sehitoglu
– volume: 235
  start-page: 107
  year: 2020
  end-page: 129
  ident: b0110
  article-title: Microstructural effects on the high-cycle fatigue and fracture behaviors of Ti-6Al-4V alloy
  publication-title: Eng Fract Mech
  contributor:
    fullname: Deng
– volume: 385–387
  start-page: 397
  year: 2008
  end-page: 400
  ident: b0130
  article-title: Effect of humidity on fatigue strength of squeeze cast Al alloy
  publication-title: Key Eng Mater
  contributor:
    fullname: Aliabadi
– volume: 39
  start-page: 652
  issue: 6
  year: 2016
  ident: 10.1016/j.ijfatigue.2021.106278_b0020
  article-title: Mechanisms of fatigue crack growth - a critical digest of theoretical developments
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/ffe.12392
  contributor:
    fullname: Chowdhury
– volume: 60
  start-page: 2554
  issue: 6–7
  year: 2012
  ident: 10.1016/j.ijfatigue.2021.106278_b0075
  article-title: Study on dominant mechanism of high-cycle fatigue life in 6061–T6 aluminum alloy through microanalyses of microstructurally small cracks
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2012.01.023
  contributor:
    fullname: Takahashi
– volume: 84
  start-page: 9
  year: 2016
  ident: 10.1016/j.ijfatigue.2021.106278_b0070
  article-title: Effect of grain size on fatigue-crack growth in 2524 aluminium alloy
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2015.11.011
  contributor:
    fullname: Yin
– volume: 9
  start-page: 1286
  issue: 2
  year: 2020
  ident: 10.1016/j.ijfatigue.2021.106278_b0050
  article-title: Influence of microstructure and porosity on the fracture toughness of Al-Si-Mg alloy
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.11.055
  contributor:
    fullname: Di Giovanni
– volume: 134
  start-page: 283
  year: 2017
  ident: 10.1016/j.ijfatigue.2021.106278_b0150
  article-title: Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of Ti-6Al-4V alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.04.071
  contributor:
    fullname: Roy
– volume: 97
  start-page: 202
  year: 2017
  ident: 10.1016/j.ijfatigue.2021.106278_b0045
  article-title: Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356–T61 aluminum alloys
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2016.12.029
  contributor:
    fullname: Spangenberger
– volume: 319–321
  start-page: 602
  year: 2001
  ident: 10.1016/j.ijfatigue.2021.106278_b0035
  article-title: Fatigue crack propagation in titanium alloys with lamellar and bi-lamellar microstructures
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(01)00984-4
  contributor:
    fullname: Schroeder
– volume: 23
  start-page: 511
  year: 2019
  ident: 10.1016/j.ijfatigue.2021.106278_b0055
  article-title: Microstructural influences on the fatigue crack initiation and propagation mechanisms in hypo-eutectic Al-Si cast alloys
  publication-title: Procedia Struct Integrity
  doi: 10.1016/j.prostr.2020.01.137
  contributor:
    fullname: Gerbe
– ident: 10.1016/j.ijfatigue.2021.106278_b0125
  doi: 10.1520/STP13426S
– volume: 56
  start-page: 4298
  issue: 16
  year: 2008
  ident: 10.1016/j.ijfatigue.2021.106278_b0145
  article-title: Texture heterogeneities induced by subtransus processing of near α titanium alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.04.065
  contributor:
    fullname: Germain
– volume: 385–387
  start-page: 397
  year: 2008
  ident: 10.1016/j.ijfatigue.2021.106278_b0130
  article-title: Effect of humidity on fatigue strength of squeeze cast Al alloy
  publication-title: Key Eng Mater
  contributor:
    fullname: Lee
– volume: 25
  start-page: 795
  issue: 8–9
  year: 2002
  ident: 10.1016/j.ijfatigue.2021.106278_b0135
  article-title: Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminum and magnesium alloys
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1046/j.1460-2695.2002.00571.x
  contributor:
    fullname: Papakyriacou
– volume: 16
  start-page: 599
  issue: 6
  year: 2000
  ident: 10.1016/j.ijfatigue.2021.106278_b0095
  article-title: Precipitation of chromium containing dispersoids in Al-Mg-Si alloys
  publication-title: Mater Sci Technol
  doi: 10.1179/026708300101508315
  contributor:
    fullname: Lodgaard
– ident: 10.1016/j.ijfatigue.2021.106278_b0120
– volume: 125
  start-page: 150
  year: 2020
  ident: 10.1016/j.ijfatigue.2021.106278_b0060
  article-title: The effects of grain size, dendritic structure and crystallographic orientation on fatigue crack propagation in IN713C nickel-based superalloy
  publication-title: Int J Plast
  doi: 10.1016/j.ijplas.2019.09.010
  contributor:
    fullname: Liu
– volume: 29
  start-page: 674
  year: 1999
  ident: 10.1016/j.ijfatigue.2021.106278_b0040
  article-title: An evaluation of the adjusted compliance ratio technique for determining the effective stress intensity factor
  publication-title: Fatigue Fract Mech
  contributor:
    fullname: Donald
– volume: 202
  start-page: 20
  year: 2018
  ident: 10.1016/j.ijfatigue.2021.106278_b0080
  article-title: Comparison of small and long fatigue crack growth behavior in AA 7050–T7451
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.09.009
  contributor:
    fullname: Bianchetti
– start-page: S15
  year: 1999
  ident: 10.1016/j.ijfatigue.2021.106278_b0015
  article-title: Near-threshold fatigue: a review
  publication-title: Int J Fatigue
  doi: 10.1016/S0142-1123(99)00053-5
  contributor:
    fullname: Lawson
– volume: 43
  start-page: 3086
  year: 2012
  ident: 10.1016/j.ijfatigue.2021.106278_b0025
  article-title: On the distinction between plasticity- and roughness-induced fatigue crack closure
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-012-1121-9
  contributor:
    fullname: Ishihara
– volume: 142
  start-page: 140
  year: 2015
  ident: 10.1016/j.ijfatigue.2021.106278_b0065
  article-title: Grain size effect on multi-scale fatigue crack growth mechanism of Nickel-based alloy GH4169
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.06.003
  contributor:
    fullname: Qin
– volume: 29
  start-page: 445
  year: 1984
  ident: 10.1016/j.ijfatigue.2021.106278_b0010
  article-title: Propagation of short fatigue cracks
  publication-title: Int Metals Rev
  contributor:
    fullname: Suresh
– volume: 319–321
  start-page: 607
  year: 2001
  ident: 10.1016/j.ijfatigue.2021.106278_b0105
  article-title: An investigation of the effects of colony microstructure on fatigue crack growth in Ti-6Al-4V
  publication-title: Mater Sci Eng, A
  doi: 10.1016/S0921-5093(01)01014-0
  contributor:
    fullname: Sinha
– ident: 10.1016/j.ijfatigue.2021.106278_b0140
  doi: 10.1016/j.matchar.2020.110349
– ident: 10.1016/j.ijfatigue.2021.106278_b0115
– volume: 18
  start-page: 1224
  year: 1983
  ident: 10.1016/j.ijfatigue.2021.106278_b0155
  article-title: The effect of dispersoids on the micromechanisms of crack extension in Al-Mg-Si alloys
  publication-title: J Mater Sci
  doi: 10.1007/BF00551992
  contributor:
    fullname: Blind
– volume: 26
  start-page: 1321
  issue: 12
  year: 2004
  ident: 10.1016/j.ijfatigue.2021.106278_b0085
  article-title: Microstructure dependent fatigue crack growth in aged hardened aluminum alloys
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2004.04.004
  contributor:
    fullname: Borrego
– volume: 84
  start-page: 11
  year: 1986
  ident: 10.1016/j.ijfatigue.2021.106278_b0005
  article-title: Small fatigue cracks: a statement of the problem and potential solutions
  publication-title: Mater Sci Eng
  doi: 10.1016/0025-5416(86)90217-X
  contributor:
    fullname: Ritchie
– ident: 10.1016/j.ijfatigue.2021.106278_b0100
– volume: 27
  start-page: 1463
  issue: 10–12
  year: 2005
  ident: 10.1016/j.ijfatigue.2021.106278_b0030
  article-title: Closure mechanisms in Al-Si-Mg cast alloys and long-crack to small-crack corrections
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2005.06.013
  contributor:
    fullname: Lados
– volume: 15
  start-page: 450
  issue: 4
  year: 1999
  ident: 10.1016/j.ijfatigue.2021.106278_b0090
  article-title: Enhancement of mechanical properties in Al-Mg-Si alloys by means of manganese dispersiods
  publication-title: Mater Sci Technol
  doi: 10.1179/026708399101505923
  contributor:
    fullname: Lee
– volume: 235
  start-page: 107
  year: 2020
  ident: 10.1016/j.ijfatigue.2021.106278_b0110
  article-title: Microstructural effects on the high-cycle fatigue and fracture behaviors of Ti-6Al-4V alloy
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107129
  contributor:
    fullname: Wu
– volume: 111
  start-page: 256
  year: 2018
  ident: 10.1016/j.ijfatigue.2021.106278_b0160
  article-title: Application of modified Kitagawa-Takahashi diagram for fatigue strength assessment of cast Al-Si-Cu alloys
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2018.01.030
  contributor:
    fullname: Garb
SSID ssj0009075
Score 2.3854089
Snippet •Slip length controls crack growth behavior in studied lightweight structural alloys.•Critical stress intensity and grain size control intergranular failure...
Long and small fatigue crack growth (FCG) mechanisms of various light structural aluminum and titanium alloys were studied with respect to microstructure,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 106278
SubjectTerms Aluminum
Aluminum alloys
Crack propagation
Fatigue crack growth
Fatigue failure
Fracture mechanics
Grain orientation
Grain size
Materials fatigue
Materials selection
Metal fatigue
Microstructure
Prediction models
Safety critical
Stress ratio
Titanium alloys
Titanium base alloys
Title Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals
URI https://dx.doi.org/10.1016/j.ijfatigue.2021.106278
https://www.proquest.com/docview/2549726043
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5Bu8CAeIpHqTywhqaxkzhsCFEVEExU6mbZiQ0FWqqmCImB385dHkAREgNbYsWX6M75Pp99dwY4ciFysJHGC6Qxnkh54kkpAo9KQdk4DLPEpwTn65uoPxCXw3C4BGd1LgyFVVbYX2J6gdZVS6fSZmc6GnUoLAm9l4CSUIrttmVoIh0J0YDm6cVV_-ar9m5Zb5ee96jDQpjX6MGhCmiVJEC6w9YooCPXfiepH3BdcFBvHdaqySM7Lb9vA5bsZBNWv5UU3IK3Xvkels50-sju0Mue37Mxhd2VpWKpzAYbW0r4HeXjnOlJxij642VmvZyi2Qn_2HRGGzjFZXFWDspmz449kSv_WqymsgVxOIXPt2HQO78963vV-QpeygWfIxC6OLJRlPHUDxJky6TrnNWhjo2JkcgT43Qodao1wqJDN1okMtLSRNZ3PLGS70Bj8jyxu8Ayro3vnBTO-Eh3kbYoSHOjU5dJlL8Hfq1QNS3LaKg6vuxBfdpAkQ1UaYM9OKkVrxZGhEKw_7tzqzaVqn7KXJEvHKP_Jvj-f2QfwArdlVGALWigtu0hzkzmpg3Lx-_ddjX-PgBIBuiZ
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSFAh5YQ0Och8OGKqoCbadWYrPsxIYUmlZNERIDv527PIAiJAa2yHEu0Z3znc_-7kzImfHAByuuLIcrZbkRCy3OXcfCUlA68Lw4tDHBuT_wuyP39t67r5F2lQuDtMoS-wtMz9G6bGmV2mzNkqSFtCSIXhxMQsm321bIKs4GkNd1_v7F8wiLarvY28LuSySvZGxAAbhG4oCzg1bfwQPXfndRP8A690CdLbJZTh3pVfF126Sm0x2y8a2g4C556xTvodFcRk_0AWLsxSOdIOmuKBSLRTboRGO6b5JNMirTmCL342WurQy57Ih-dDbH7Zv8Mj8pB2TTqaHPGMi_5mupdEkcTOCzPTLqXA_bXas8XcGKmMsWAIMm8LXvxyyynRB8ZXhhjJaeDJQKwI2HykiPy0hKAEUDQbQbcl9y5WvbsFBztk_q6TTVB4TGTCrbGO4aZYOz86UGQZIpGZmYg_wGsSuFillRRENU7LKx-LSBQBuIwgYNclkpXiyNBwFQ__fDzcpUovwlM4GRcADRm8sO_yP7lKx1h_2e6N0M7o7IOt4p-IBNUgfN62OYoyzUST4GPwBi8ulu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+crack+growth+microstructural+mechanisms+and+texture-sensitive+predictive+modeling+of+lightweight+structural+metals&rft.jtitle=International+journal+of+fatigue&rft.au=Gavras%2C+Anastasios+G&rft.au=Spangenberger%2C+Anthony+G&rft.au=Lados%2C+Diana+A&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=149&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijfatigue.2021.106278&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon