Controlled synthesis of silver nanoplates and nanoparticles by reducing silver nitrate with hydroxylamine hydrochloride

An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, e...

Full description

Saved in:
Bibliographic Details
Published inRare metals Vol. 36; no. 10; pp. 799 - 805
Main Authors Cheng, Zhi-Peng, Chu, Xiao-Zhong, Wu, Xiao-Qing, Xu, Ji-Ming, Zhong, Hui, Yin, Jing-Zhou
Format Journal Article
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and - 100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AID) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 ℃ and leads to a drop in the high decomposition temperature of AP by 60 and 110 ℃ and a rise in the total DSC heat release by 0.86 and 1.05 kJ.g^-1, respectively.
AbstractList An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO 3 ) with hydroxylamine hydrochloride (NH 2 OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and ∼100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AP) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 °C and leads to a drop in the high decomposition temperature of AP by 60 and 110 °C and a rise in the total DSC heat release by 0.86 and 1.05 kJ·g −1 , respectively.
An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and ∼100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AP) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 °C and leads to a drop in the high decomposition temperature of AP by 60 and 110 °C and a rise in the total DSC heat release by 0.86 and 1.05 kJ·g−1, respectively.
An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and - 100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AID) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 ℃ and leads to a drop in the high decomposition temperature of AP by 60 and 110 ℃ and a rise in the total DSC heat release by 0.86 and 1.05 kJ.g^-1, respectively.
Author Zhi-Peng Cheng;Xiao-Zhong Chu;Xiao-Qing Wu;Ji-Ming Xu;Hui Zhong;Jing-Zhou Yin
AuthorAffiliation Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
Author_xml – sequence: 1
  givenname: Zhi-Peng
  orcidid: 0000-0002-4507-9037
  surname: Cheng
  fullname: Cheng, Zhi-Peng
  email: nanohytc@126.com
  organization: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University
– sequence: 2
  givenname: Xiao-Zhong
  surname: Chu
  fullname: Chu, Xiao-Zhong
  organization: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University
– sequence: 3
  givenname: Xiao-Qing
  surname: Wu
  fullname: Wu, Xiao-Qing
  organization: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University
– sequence: 4
  givenname: Ji-Ming
  surname: Xu
  fullname: Xu, Ji-Ming
  organization: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University
– sequence: 5
  givenname: Hui
  surname: Zhong
  fullname: Zhong, Hui
  organization: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University
– sequence: 6
  givenname: Jing-Zhou
  surname: Yin
  fullname: Yin, Jing-Zhou
  organization: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University
BookMark eNp9kE9v2yAYh1HVSWu7fYDdrPbs7sWYf8cp2tpKkXbJHWEbx0QEUiDr_O1H5CiqdugJ3le_hx96btG1D94g9A3DIwbg3xNuqBQ1YF6DbGU9X6EbLBivORb0utwBcA20wZ_RbUo7gLZlDG7Q2yr4HINzZqjS7PNkkk1VGKtk3R8TK699ODidTaq0H5ZRx2x7VzbdXEUzHHvrt5e8zbGkqzebp2qahxj-zk7vrTfL1E8uRDuYL-jTqF0yX8_nHdr8-rlZPdfr308vqx_ruictyTUnQEEYyoaGj43hrNGUata1ZdESJujYjZ1kHWdcgmxkN9ARBkKM6UaOO3KHHpZnDzG8Hk3KaheO0ZdGhWUrJBYgWEnxJdXHkFI0o-pt1tme1GjrFAZ1kqwWyapIVifJai4k_o88RLvXcf6QaRYmlazfmvjuTx9A9-eiKfjta-EuTYwTLiUTgvwDEmWghg
CitedBy_id crossref_primary_10_1016_j_aca_2020_02_018
crossref_primary_10_1016_j_ijbiomac_2022_02_064
crossref_primary_10_1088_1361_6528_ad02a1
crossref_primary_10_1016_j_scitotenv_2023_169824
crossref_primary_10_1002_slct_202003351
crossref_primary_10_1007_s12598_020_01484_4
crossref_primary_10_1016_j_microc_2019_104252
crossref_primary_10_1007_s10854_019_02511_6
crossref_primary_10_3390_s23073692
crossref_primary_10_1016_j_mtcomm_2019_100884
crossref_primary_10_31545_intagr_184863
crossref_primary_10_1016_j_jscs_2023_101610
crossref_primary_10_1021_acsaelm_1c00857
crossref_primary_10_1007_s11664_020_08240_5
Cites_doi 10.1021/es403969x
10.1007/s12598-016-0695-6
10.1186/s11671-015-0746-1
10.1021/cg2007809
10.1021/jp512111v
10.1016/j.ceramint.2015.11.053
10.1016/j.materresbull.2016.01.024
10.1016/j.spmi.2012.04.015
10.1016/j.matchemphys.2012.12.061
10.1039/C4NR06430E
10.1021/jp027460u
10.1016/0168-7336(86)80004-3
10.1021/am3020857
10.1021/cr100275d
10.1038/ncomms7590
10.1007/s12598-016-0778-4
10.1016/j.matchemphys.2015.04.003
10.1002/adma.200401086
10.1016/j.jpcs.2015.11.005
10.1039/C6RA15661D
10.1016/j.matchemphys.2015.01.030
10.1039/c3nr02320f
10.1007/s12598-016-0743-2
10.1016/j.matlet.2015.02.048
10.1006/jssc.1996.0015
10.1021/cg060661t
10.1007/s12598-010-0139-7
10.1021/cm500316k
10.1016/j.solidstatesciences.2013.11.001
10.1021/jp809684y
10.1021/acsami.5b03571
10.1002/chem.200400927
ContentType Journal Article
Copyright The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany 2017
Rare Metals is a copyright of Springer, 2017.
Copyright_xml – notice: The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany 2017
– notice: Rare Metals is a copyright of Springer, 2017.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12598-017-0949-y
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
METADEX
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Controlled synthesis of silver nanoplates and nanoparticles by reducing silver nitrate with hydroxylamine hydrochloride
EISSN 1867-7185
EndPage 805
ExternalDocumentID 10_1007_s12598_017_0949_y
673799688
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51676082
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
-EM
06D
0R~
0VY
188
1B1
29P
2B.
2C0
2KG
2RA
2VQ
30V
4.4
406
408
40D
5VR
5VS
8FE
8FG
8RM
8TC
92H
92I
92L
92R
93N
96X
AAAVM
AAEDT
AAFGU
AAHNG
AAIAL
AAJKR
AALRI
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CDRFL
CHBEP
COF
CQIGP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
ESBYG
FA0
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
I~X
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PDBOC
PT4
Q2X
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDC
SDG
SDH
SHX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U2A
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W92
WK8
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
-SB
-S~
5XA
5XC
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEB
H13
Q--
SJYHP
U1G
U5L
UY8
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8BQ
8FD
ABRTQ
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c343t-730508e56d27f2e762a55a6b46d243685fbfb96b76790929bd5f0d33eebf71b3
IEDL.DBID BENPR
ISSN 1001-0521
IngestDate Fri Jul 25 11:05:17 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 01:30:05 EDT 2025
Fri Feb 21 02:43:29 EST 2025
Wed Feb 14 10:02:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Silver nanoplates
Formation mechanism
Silver nanoparticle
Ammonium perchlorate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-730508e56d27f2e762a55a6b46d243685fbfb96b76790929bd5f0d33eebf71b3
Notes An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride (NH2OH·HCl) at room temperature. Silver nanoplates of various shapes, including triangular, truncated triangular, hexagonal, and truncated hexagonal, exhibit an average width and thickness of approximately 1 μm and 50 nm, respectively. Silver nanoparticles were acquired by placing polyvinyl pyrrolidone (PVP) in the reaction solution. The produced silver nanoparticles are quasi-spherical in shape and - 100 nm in size. The catalytic activity in the thermal decomposition of ammonium perchlorate (AID) was distinguished by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The outcomes reveal that the addition of silver nanoplates and nanoparticles diminishes the low decomposition temperature of AP by 7 and 14 ℃ and leads to a drop in the high decomposition temperature of AP by 60 and 110 ℃ and a rise in the total DSC heat release by 0.86 and 1.05 kJ.g^-1, respectively.
Silver nanoparticle; Silver nanoplates;Formation mechanism; Ammonium perchlorate
11-2112/TF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4507-9037
PQID 1948918086
PQPubID 326325
PageCount 7
ParticipantIDs proquest_journals_1948918086
crossref_citationtrail_10_1007_s12598_017_0949_y
crossref_primary_10_1007_s12598_017_0949_y
springer_journals_10_1007_s12598_017_0949_y
chongqing_primary_673799688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Rare metals
PublicationTitleAbbrev Rare Met
PublicationTitleAlternate Rare Metals
PublicationYear 2017
Publisher Nonferrous Metals Society of China
Springer Nature B.V
Publisher_xml – name: Nonferrous Metals Society of China
– name: Springer Nature B.V
References Ahn, Cha, Gong (CR11) 2015; 153
König, Ledin, Russell, Geldmeier, Mahmoud, El-Sayed, Tsukruk (CR15) 2015; 7
Cheng, Chu, Xu, Zhong, Zhang (CR25) 2016; 77
Chambers, Afrooz, Bae, Aich, Katz, Saleh, Kirisits (CR9) 2014; 48
Du, Han, Liu, Liu (CR26) 2007; 7
Galwey, Mohamed, Cromie (CR32) 1986; 1
Wiley, Sun, Mayers, Xia (CR29) 2005; 11
Meng, Hu, Jiang, Lu (CR5) 2015; 10
Leopold, Lendl (CR27) 2003; 107
Ren, Guo, Huang, Zhang, Yuen, Fu, Yu, Sun, Wong (CR19) 2015; 7
Lewandowski, Fruhnert, Mieczkowski, Rockstuhl, Górecka (CR3) 2015; 6
Sun, Xiao, Zheng, Fan, Xu, Liu, Li, Chen (CR6) 2017; 36
Bordenave, Scarpettini, Roldán, Pellegri, Bragas (CR16) 2013; 139
Métraux, Mirkin (CR18) 2005; 17
Chen, Zhu (CR24) 2014; 27
Xiao, Wang (CR7) 2016; 35
Xiang, Gong, Kuang, Wang (CR13) 2016; 35
Chen, Fu, Lu, Chen (CR10) 2013; 5
Luo, Wang, Yun, Yang, Chen (CR30) 2016; 90
Liu, Yoo, Lee, Park (CR14) 2011; 11
Cai, Zhai (CR8) 2010; 29
Lan, Jin, Deng, Luo (CR31) 2016; 6
Zhang, Zhao, Hu (CR28) 1996; 121
Bastús, Merkoçi, Piella, Puntes (CR21) 2014; 26
Alimohammadi, Gashti, Sharmei, Kiumarsi (CR12) 2012; 52
Lee, Lee, Ahn, Jeong, Lee, Lee (CR4) 2013; 5
Deng, Mansuipur, Muscat (CR20) 2009; 113
Cheng, Chu, Xu, Zhong, Zhang (CR23) 2016; 42
Chen, Liu, Luo, Wei, Li, Liu (CR17) 2015; 147
Rycenga, Cobley, Zeng, Li, Moran, Zhang, Qin, Xia (CR1) 2016; 111
Botelho, Sczancoski, Andres, Gracia, Longo (CR2) 2015; 119
Du, Xu, Huang, Xian, Feng (CR22) 2015; 160
F Alimohammadi (949_CR12) 2012; 52
ZP Cheng (949_CR25) 2016; 77
ZT Deng (949_CR20) 2009; 113
LJ Chen (949_CR24) 2014; 27
LC Liu (949_CR14) 2011; 11
W Xiao (949_CR7) 2016; 35
W Lewandowski (949_CR3) 2015; 6
D Lee (949_CR4) 2013; 5
ZT Zhang (949_CR28) 1996; 121
NG Bastús (949_CR21) 2014; 26
L Chen (949_CR10) 2013; 5
XL Luo (949_CR30) 2016; 90
YF Lan (949_CR31) 2016; 6
XH Cai (949_CR8) 2010; 29
W Meng (949_CR5) 2015; 10
JM Du (949_CR26) 2007; 7
G Botelho (949_CR2) 2015; 119
AK Galwey (949_CR32) 1986; 1
HM Ren (949_CR19) 2015; 7
N Leopold (949_CR27) 2003; 107
GS Métraux (949_CR18) 2005; 17
ZP Cheng (949_CR23) 2016; 42
J Sun (949_CR6) 2017; 36
M Rycenga (949_CR1) 2016; 111
SL Chen (949_CR17) 2015; 147
XZ Xiang (949_CR13) 2016; 35
B Wiley (949_CR29) 2005; 11
HY Ahn (949_CR11) 2015; 153
TAF König (949_CR15) 2015; 7
MD Bordenave (949_CR16) 2013; 139
BA Chambers (949_CR9) 2014; 48
LW Du (949_CR22) 2015; 160
References_xml – volume: 48
  start-page: 761
  issue: 1
  year: 2014
  ident: CR9
  article-title: Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles
  publication-title: Environ Sci Technol
  doi: 10.1021/es403969x
– volume: 35
  start-page: 289
  issue: 4
  year: 2016
  ident: CR13
  article-title: Progress in application and preparation of silver nanowires
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0695-6
– volume: 10
  start-page: 34
  year: 2015
  ident: CR5
  article-title: Preparation of silver colloids with improved uniformity and stable surface-enhanced Raman-scattering
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-015-0746-1
– volume: 11
  start-page: 3731
  issue: 9
  year: 2011
  ident: CR14
  article-title: Electrochemical growth of silver nanobelts in cylindrical alumina nanochannels
  publication-title: Cryst Growth Des
  doi: 10.1021/cg2007809
– volume: 119
  start-page: 6293
  issue: 11
  year: 2015
  ident: CR2
  article-title: Experimental and theoretical study on the structure, optical properties, and growth of metallic silver nanostructures in Ag PO
  publication-title: J Phys Chem C
  doi: 10.1021/jp512111v
– volume: 42
  start-page: 3876
  year: 2016
  ident: CR23
  article-title: Synthesis of various CuO nanostructures via a Na PO —assisted hydrothermal route in a CuSO –NaOH aqueous system and their catalytic performances
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.11.053
– volume: 77
  start-page: 54
  year: 2016
  ident: CR25
  article-title: Synthesis of flower-like and dendritic platinum nanostructures with excellent catalytic activities on thermal decomposition of ammonium perchlorate
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2016.01.024
– volume: 52
  start-page: 50
  issue: 1
  year: 2012
  ident: CR12
  article-title: Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: evaluation of surface, thermal and optical properties
  publication-title: Superlatt Microstruct.
  doi: 10.1016/j.spmi.2012.04.015
– volume: 139
  start-page: 100
  issue: 1
  year: 2013
  ident: CR16
  article-title: Plasmon-induced photochemical synthesis of silver triangular prisms and pentagonal bipyramids by illumination with light emitting diodes
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2012.12.061
– volume: 7
  start-page: 5230
  year: 2015
  ident: CR15
  article-title: Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity
  publication-title: Nanoscale
  doi: 10.1039/C4NR06430E
– volume: 107
  start-page: 5723
  issue: 24
  year: 2003
  ident: CR27
  article-title: A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride
  publication-title: J Phys Chem B
  doi: 10.1021/jp027460u
– volume: 1
  start-page: 235
  year: 1986
  ident: CR32
  article-title: Role of silver compounds in promoting the thermal decomposition of ammonium perchlorate
  publication-title: React Solids
  doi: 10.1016/0168-7336(86)80004-3
– volume: 5
  start-page: 284
  issue: 2
  year: 2013
  ident: CR10
  article-title: Highly sensitive and selective colorimetric sensing of Hg based on the morphology transition of silver nanoprisms
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am3020857
– volume: 111
  start-page: 3669
  issue: 6
  year: 2016
  ident: CR1
  article-title: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications
  publication-title: Chem Rev
  doi: 10.1021/cr100275d
– volume: 6
  start-page: 1
  year: 2015
  ident: CR3
  article-title: Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial
  publication-title: Nature Commun.
  doi: 10.1038/ncomms7590
– volume: 35
  start-page: 581
  issue: 8
  year: 2016
  ident: CR7
  article-title: Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0778-4
– volume: 160
  start-page: 40
  year: 2015
  ident: CR22
  article-title: Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2015.04.003
– volume: 17
  start-page: 412
  issue: 4
  year: 2005
  ident: CR18
  article-title: Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness
  publication-title: Adv Mater
  doi: 10.1002/adma.200401086
– volume: 90
  start-page: 1
  year: 2016
  ident: CR30
  article-title: Structure-dependent activities of Cu O cubes in thermal decomposition of ammonium perchlorate
  publication-title: J Phys Chem Solids
  doi: 10.1016/j.jpcs.2015.11.005
– volume: 6
  start-page: 82112
  issue: 85
  year: 2016
  ident: CR31
  article-title: Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate
  publication-title: RSC Adv
  doi: 10.1039/C6RA15661D
– volume: 153
  start-page: 390
  year: 2015
  ident: CR11
  article-title: Preparation of sintered silver nanosheets by coating technique using silver carbamate complex
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2015.01.030
– volume: 5
  start-page: 7750
  issue: 17
  year: 2013
  ident: CR4
  article-title: Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices
  publication-title: Nanoscale.
  doi: 10.1039/c3nr02320f
– volume: 36
  start-page: 77
  issue: 2
  year: 2017
  ident: CR6
  article-title: Synthesis of nanoscale CeAl and its high catalytic efficiency for hydrogen storage of sodium alanate
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0743-2
– volume: 147
  start-page: 109
  year: 2015
  ident: CR17
  article-title: Construction of silver nanochains on DNA template for flexible electrical conductive composites
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2015.02.048
– volume: 121
  start-page: 105
  issue: 1
  year: 1996
  ident: CR28
  article-title: PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes
  publication-title: J Solid State Chem
  doi: 10.1006/jssc.1996.0015
– volume: 7
  start-page: 900
  issue: 5
  year: 2007
  ident: CR26
  article-title: Control synthesis of silver nanosheets, chainlike sheets, and microwires via a simple solvent–thermal method
  publication-title: Crystal Growth Des
  doi: 10.1021/cg060661t
– volume: 29
  start-page: 407
  issue: 4
  year: 2010
  ident: CR8
  article-title: Preparation of microsized silver crystals with different morphologies by a wet-chemical method
  publication-title: Rare Met
  doi: 10.1007/s12598-010-0139-7
– volume: 26
  start-page: 2836
  issue: 9
  year: 2014
  ident: CR21
  article-title: Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties
  publication-title: Chem Mater
  doi: 10.1021/cm500316k
– volume: 27
  start-page: 69
  year: 2014
  ident: CR24
  article-title: The particle dimension controlling synthesis of a-MnO nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate
  publication-title: Solid State Sci
  doi: 10.1016/j.solidstatesciences.2013.11.001
– volume: 113
  start-page: 867
  issue: 3
  year: 2009
  ident: CR20
  article-title: New method to single-crystal micrometer-sized ultra-thin silver nanosheets: synthesis and characterization
  publication-title: J Phys Chem C
  doi: 10.1021/jp809684y
– volume: 7
  start-page: 13685
  issue: 24
  year: 2015
  ident: CR19
  article-title: One-step preparation of silver hexagonal microsheets as electrically conductive adhesive fillers for printed electronics
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b03571
– volume: 11
  start-page: 454
  issue: 2
  year: 2005
  ident: CR29
  article-title: Shape-controlled synthesis of metal nanostructures: the case of silver
  publication-title: Chem Eur J
  doi: 10.1002/chem.200400927
– volume: 111
  start-page: 3669
  issue: 6
  year: 2016
  ident: 949_CR1
  publication-title: Chem Rev
  doi: 10.1021/cr100275d
– volume: 17
  start-page: 412
  issue: 4
  year: 2005
  ident: 949_CR18
  publication-title: Adv Mater
  doi: 10.1002/adma.200401086
– volume: 90
  start-page: 1
  year: 2016
  ident: 949_CR30
  publication-title: J Phys Chem Solids
– volume: 35
  start-page: 289
  issue: 4
  year: 2016
  ident: 949_CR13
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0695-6
– volume: 27
  start-page: 69
  year: 2014
  ident: 949_CR24
  publication-title: Solid State Sci
  doi: 10.1016/j.solidstatesciences.2013.11.001
– volume: 1
  start-page: 235
  year: 1986
  ident: 949_CR32
  publication-title: React Solids
  doi: 10.1016/0168-7336(86)80004-3
– volume: 6
  start-page: 1
  year: 2015
  ident: 949_CR3
  publication-title: Nature Commun.
  doi: 10.1038/ncomms7590
– volume: 26
  start-page: 2836
  issue: 9
  year: 2014
  ident: 949_CR21
  publication-title: Chem Mater
  doi: 10.1021/cm500316k
– volume: 160
  start-page: 40
  year: 2015
  ident: 949_CR22
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2015.04.003
– volume: 29
  start-page: 407
  issue: 4
  year: 2010
  ident: 949_CR8
  publication-title: Rare Met
  doi: 10.1007/s12598-010-0139-7
– volume: 6
  start-page: 82112
  issue: 85
  year: 2016
  ident: 949_CR31
  publication-title: RSC Adv
  doi: 10.1039/C6RA15661D
– volume: 7
  start-page: 900
  issue: 5
  year: 2007
  ident: 949_CR26
  publication-title: Crystal Growth Des
  doi: 10.1021/cg060661t
– volume: 139
  start-page: 100
  issue: 1
  year: 2013
  ident: 949_CR16
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2012.12.061
– volume: 113
  start-page: 867
  issue: 3
  year: 2009
  ident: 949_CR20
  publication-title: J Phys Chem C
  doi: 10.1021/jp809684y
– volume: 10
  start-page: 34
  year: 2015
  ident: 949_CR5
  publication-title: Nanoscale Res Lett
  doi: 10.1186/s11671-015-0746-1
– volume: 35
  start-page: 581
  issue: 8
  year: 2016
  ident: 949_CR7
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0778-4
– volume: 5
  start-page: 7750
  issue: 17
  year: 2013
  ident: 949_CR4
  publication-title: Nanoscale.
  doi: 10.1039/c3nr02320f
– volume: 48
  start-page: 761
  issue: 1
  year: 2014
  ident: 949_CR9
  publication-title: Environ Sci Technol
  doi: 10.1021/es403969x
– volume: 11
  start-page: 3731
  issue: 9
  year: 2011
  ident: 949_CR14
  publication-title: Cryst Growth Des
  doi: 10.1021/cg2007809
– volume: 11
  start-page: 454
  issue: 2
  year: 2005
  ident: 949_CR29
  publication-title: Chem Eur J
  doi: 10.1002/chem.200400927
– volume: 52
  start-page: 50
  issue: 1
  year: 2012
  ident: 949_CR12
  publication-title: Superlatt Microstruct.
  doi: 10.1016/j.spmi.2012.04.015
– volume: 119
  start-page: 6293
  issue: 11
  year: 2015
  ident: 949_CR2
  publication-title: J Phys Chem C
  doi: 10.1021/jp512111v
– volume: 153
  start-page: 390
  year: 2015
  ident: 949_CR11
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2015.01.030
– volume: 36
  start-page: 77
  issue: 2
  year: 2017
  ident: 949_CR6
  publication-title: Rare Met
  doi: 10.1007/s12598-016-0743-2
– volume: 147
  start-page: 109
  year: 2015
  ident: 949_CR17
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2015.02.048
– volume: 7
  start-page: 5230
  year: 2015
  ident: 949_CR15
  publication-title: Nanoscale
  doi: 10.1039/C4NR06430E
– volume: 121
  start-page: 105
  issue: 1
  year: 1996
  ident: 949_CR28
  publication-title: J Solid State Chem
  doi: 10.1006/jssc.1996.0015
– volume: 107
  start-page: 5723
  issue: 24
  year: 2003
  ident: 949_CR27
  publication-title: J Phys Chem B
  doi: 10.1021/jp027460u
– volume: 7
  start-page: 13685
  issue: 24
  year: 2015
  ident: 949_CR19
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b03571
– volume: 77
  start-page: 54
  year: 2016
  ident: 949_CR25
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2016.01.024
– volume: 42
  start-page: 3876
  year: 2016
  ident: 949_CR23
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2015.11.053
– volume: 5
  start-page: 284
  issue: 2
  year: 2013
  ident: 949_CR10
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am3020857
SSID ssj0044660
Score 2.1578083
Snippet An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride...
An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO 3 ) with hydroxylamine hydrochloride (NH 2...
An easy and effective method of silver nanoplate synthesis technique was created by reducing silver nitrate (AgNO3) with hydroxylamine hydrochloride...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 799
SubjectTerms Biomaterials
Catalysis
Catalytic activity
Chemical synthesis
Chemistry and Materials Science
Differential scanning calorimetry
Energy
Heat measurement
Materials Engineering
Materials Science
Metallic Materials
Nanoparticles
Nanoscale Science and Technology
Physical Chemistry
Silver
Thermal analysis
Thermal decomposition
Thermogravimetric analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP7FuSg6elEC_P45jOIagpw12K02TuMFI5zqR_ve-1zbbFBU8pk0TyEvyfq_vl18IuQNUm4Mb9BlqeTNf2LCk4ihjMgF0amd-7tTZ8-eXcDTxn6bBtD3HXRq2u0lJ1jv19rAbIHUkXkUMQpKEVfvkIIDQHXlcE7dvtl_MTzYSBBgng3MyqcyfmkBBhVmhX9-gu6-OaYs2vyVIa78zPCHHLWCk_cbCp2RP6jNytCMjeE4-Bg3ffCEFLSsNkK6cl7RQtJwj75nqTBfLBYJKmmnRFA0hjvKKrlC-FVra1J_XkrUU_9HSWSWQ6QITBzpsSvkMaXtCXpDx8HE8GLH2QgWWe763ZrCaAY_JIBRupFwJ-2AWBFnIfXhQK9ErrngS8iiMEhtwExeBsoXnSclV5HDvknR0oeUVoQr1bBMeRpzn4N6yjAup4kQo7knhiNAi3c3ApstGNwMpZBGEV3FsEdsMdZq3UuR4I8Yi3Yooo6VSsFSKlkori9xvPjHt_VG5Z-yXtkuyTJ3EjxMnhhDOIg_Gpjuvf2vs-l-1u-TQxflV0_16pLNevcsbgC1rfltP00_42OdI
  priority: 102
  providerName: Springer Nature
Title Controlled synthesis of silver nanoplates and nanoparticles by reducing silver nitrate with hydroxylamine hydrochloride
URI http://lib.cqvip.com/qk/85314X/201710/673799688.html
https://link.springer.com/article/10.1007/s12598-017-0949-y
https://www.proquest.com/docview/1948918086
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bT9swFD4a7ct4mGBsolwqP-wJZJE2N-dpKtBSbRRNo5W6pyiObVqpSlrSacq_55xc2oI0nqLEjiP52Od89vnyGeAbotoYw6DDScubO8rCKSX8iOsA0akVOXGnyJ6PHrzhxPkxdafVhltW0Sprn1g4apXGtEd-hYttEXQEIvDvyxWnU6Mou1odobEHTXTBQjSged1_-PW79sWUrCz1CGjRjJGqzmsWP88h8icil89xiRPwnNQVZmnytMKY8TpKbaHnm2xpEYQGB_CpQo-sV5r7ED7o5DPs72gKHsG_m5J8vtCKZXmC-C6bZyw1LJsTCZolUZIuF4QwWZSo8rZmxzGZs2fScsWWNvXnhX4tow1bNssV0V5wFOEHy7t4Rhw-pb_AeNAf3wx5dboCj23HXnOc2gjOtOuprm-6Gp1i5LqRJx18UMjSG2lk4Enf8wMLQZRUrrGUbWstjd-R9ldoJGmij4EZErcNpOdLGWOsiyKptBGBMtLWqqO8FpxuOjZcliIaxCfzca0lRAusuqvDuNIlp-MxFuFWUZksFaKlQrJUmLfgYvNK3d47lc9q-4XV_MzC7WhqwWVt053i_zV28n5jp_CxSwOqIPudQWP9_FefI2hZyzbsicFdG5q929H9I13v_vzst6vxiqWTbu8F6xHwjg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOiL5EeLR7aC-tVnX89gEhRAmhkJyClNvK690lkSI74CDkH8V_ZMbOJoBEbhydOBNpZzzzjefbbwF-IqrNsAz6nLS8ua8cfKTiKOU6QXTqpH7WrqfnvX7Yvfb_D4PhGjzavTBEq7Q5sU7UqsjoHflfbLbjpB0jAj-e3nI6NYqmq_YIjSYsLnX1gC1beXTxD_37y3U7Z4PTLp-fKsAzz_dmHEMaQYkOQuVGxtWYDNIgSEPp4we1HLuRRiahjMIocRA8SBUYR3me1tJEbemh2Q-w4XtYyGljeufcJn6ajDbiB9ShY1m0Q9R6px62GcQaizj2UwmvSMphVOQ3t1igXpbEJc59NZqtK15nB7bnUJWdNLH1CdZ0_hm2ngkYfoGH04bpPtGKlVWOYLIcl6wwrBwT45rlaV5MJwRnWZqr5tJS8Zis2B0Jx6Klxf3jWiyX0dthNqoUcWwwZPEPm6tsRIRBpb_C4D0W_Rus50Wud4EZUtJNZBhJmWFhTVOptIkTZaSnVVuFLdhfLKyYNoodRF6LsLGL4xY4dqlFNhdBp7M4JmIp30yeEugpQZ4SVQt-L35i7a24-cD6T8yTQSmWoduCP9anz75-y9jeamM_YLM76F2Jq4v-5T58dCm4apbhAazP7u71IaKlmfxexygD8c7PxBN1MyXq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xIKHlsIJd0JanD8tlUUTejwMHBFS8xQEkblYc29tKlVtIEcqf2t_ITBK3gACJA8e0rpt4xp5vMp8_A_xBVFtgGAwd0vJ2QunilEqT3FEZolM3Dwuvrp5fXMbHN-HpbXQ7A__tXpia7W5Lks2eBlJpMuPdkdS7041viNqJhJU4mJ5kTtWyKs9U9Yg5W7l3cogG3vb97tH1wbHTHivgFEEYjB30aUQlKoqln2hf4WqQR1EeixA_qPXYtdAii0USJ5mL6EHISLsyCJQSOvFEgN1-g7mQ9h7j_Lnx9-3KT6XRRv2AUnSMi7aK-tYdk5ZDb2j-3eGTvoyJU6D7qjZbh7zuIvxosSrbb5xrCWaU-QkLzxQMf8HjQUN1HyjJysogmiz7JRtqVvaJcs1MboajAeFZlhvZXFouHhMVuyflWOxp0r5fq-Uyej3MepUkkg36LP5hc1X0iDEo1TJcf8Wgr8CsGRr1G5gmKd1MxIkQBUbWPBdS6TSTWgRKejLuwNpkYPmokewg9lqCmV2adsC1Q82LVgWdDuMY8Kl-M1mKo6U4WYpXHfg7-Ynt74PG69Z-vF0NSu5lYZp5KWaPHdixNn329XudrX6q9RbMXx12-fnJ5dkafPfJ1WrS4TrMju8f1AaCp7HYrD2WAf_iGfIECAAnUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+synthesis+of+silver+nanoplates+and+nanoparticles+by+reducing+silver+nitrate+with+hydroxylamine+hydrochloride&rft.jtitle=Rare+metals&rft.au=Cheng%2C+Zhi-Peng&rft.au=Chu%2C+Xiao-Zhong&rft.au=Wu%2C+Xiao-Qing&rft.au=Xu%2C+Ji-Ming&rft.date=2017-10-01&rft.issn=1001-0521&rft.eissn=1867-7185&rft.volume=36&rft.issue=10&rft.spage=799&rft.epage=805&rft_id=info:doi/10.1007%2Fs12598-017-0949-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12598_017_0949_y
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85314X%2F85314X.jpg